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LOGIC PROGRAMMING ENVIRONMENTS: 

DYNAMIC PROGRAM ANALYSIS AND DEBUGGING 

MIREILLE DUCASSI? AND JACQUES NOti 

D Programming environments are essential for the acceptance of programming lan- 
guages. This survey emphasizes that program analysis, both static and dynamic, 
is the central issue of programming environments. Because their clean semantics 
makes powerful analysis possible, logic programming languages have an indis- 
putable asset in the long term. 
This survey is focused on logic program analysis and debugging. The large number 
of references provided show that the field, although maybe scattered, is active. A 
unifying framework is given which separates environment tools into extraction, 
analysis, and visualization. It facilitates the analysis of existing tools and should 
give some guidelines to develop new ones. 
Achievements in logic programming are listed; some techniques developed for 
other languages are pointed out, and some trends for further research are drawn. 
Among the main achievements are algorithmic debugging, tracing for sequential 
Prolog, and abstract interpretation. The main missing techniques are slicing, test 
case generation, and program mutation. The perspectives we see are integration, 
evaluation, and above all, automated static and dynamic analysis. a 

1. INTRODUCTION 

Programming environments are essential for the acceptance of programming languages. 
Programmers, if not provided with the support of proper development and maintenance 
tools, are more likely to waste time and produce low-quality software. They are there- 
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fore reluctant to use a language without appropriate programming environments, however 
powerful the programming language. Logic programming languages are no exception. 

Logic programming is continually used as a basis for new languages; people need support 
to get acquainted with them. Furthermore, and somehow paradoxically, it is the very 
power of the declarativeness of logic programming which demands powerful support. The 
discrepancies between the declarative and operational semantics of logic programming 
languages can be a source of confusion for programmers; tools are required to bridge the 

gap. 
Although logic programming requires programming environments like any other pro- 

gramming language, it offers a better basis than many of them. A clean semantics paves 
the way for powerful program analysis, which, as discussed in the following, is the core of 
programming environment tools. Even if not always developed with programming envi- 
ronment considerations in mind, logic program analysis is a flourishing activity. There is 
undoubtedly a breakthrough potential for programming environments in general. 

Research on logic programming environments started relatively early [ 1041 and shows 
substantial achievements. Original tools are now being adapted to other languages, for 
example, Algorithmic Program Debugging [ 1681 is being adapted to imperative languages 
[ 1001 (see Section 6.1). On the other hand, not all the techniques existing for other languages 
have been adapted to logic programming. The most striking example is a dependency 
analysis technique used for debugging, called “slicing” [ 1921 (see Section 6.3). 

It has been emphasized that, in general, more research on programming environments is 
needed [ 1481. This is especially true in logic programming, where research on programming 
environments has been marginal in comparison to the needs. We believe that programming 
environments should be one of the top priorities for the logic programming community in 
the next ten years. 

This survey gives a unifying framework which should help to develop further research 
on the topic. It is subjective and certainly incomplete, but should provide a useful starting 
point for people interested in logic programming environments. It gives an overview of tech- 
niques, tools, and systems which help programmers develop and maintain logic programs. 
It goes into some details for very basic techniques. Wherever it seems necessary, it mentions 
techniques developed for other languages, which could be useful for logic programming. 

The paper is organized as follows. We first set the scene. In particular, we isolate the 
three aspects we believe are the core of programming environments: program development, 

program analysis, andprogram debugging. We then concentrate our discussions on program 
analysis and program debugging. Program analysis is especially emphasized as it is the 
basis of all the tools. Presentation and visualization of information is also addressed. Lastly, 
we discuss two general issues: integration mechanisms and evaluation criteria. 

2. SETTING UP THE SCENE 

2.1. A User Viewpoint of Programming Environments 

The notion of “programming environment” can be understood in many different ways. A 
common view considers all aspects related to programming, such as language features, 
compiler, system support, tools, etc., as part of the programming environment. This view 

is, for example, illustrated by the wide range of topics addressed in a recent workshop about 
programming environments [ 1021. 

Although this view has some foundations, it is too broad to efficiently gather research. 
We would like to cover a more focused area. In particular, we want to distinguish research 
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on programming environments from research on languages. 
Research on programming environments can contribute significantly to the design of 

new languages, mainly by pointing out the weaknesses of existing programming languages. 
A good example is contextual logic programming, which is the main outcome of the Esprit 
project ALPES on logic programming environments [3]. Contextual programming neatly 
integrates modules inside Prolog [ 1341. The types, modules, and meta-programming facili- 
ties provided by the declarative language Gijdel also owe a lot to programming environment 
concerns [90]. Another example is AProlog [ 1391 which, among other features, provides 
“for free” the programming cliche mechanisms described in [7]. 

There are, however, problems which are not due to weaknesses of programming lan- 
guages, but to intrinsic weaknesses of the human beings who specify, develop, and main- 
tain programs. We consider that excising language weaknesses is part of language research, 
and that research on environments should concentrate on tools to accommodate user weak- 
nesses. Thus, logic programming environments would still be needed even if the “perfect” 
logic programming language could be defined. 

In particular, development, analysis, and debugging will always have to be supported. 
Firstly, some support is needed to help users develop their programs because this is a creative 
process. There is very little chance that we can ever fully model it. Secondly, automated 
analysis is needed because, however abstract the programming paradigm, the size of the 
programs will always end up too large for the human mind. Programmers will always have 
difficulties in understanding large programs [36]. Lastly, debugging and testing support is 
needed because, however careful programmers are, they can always make mistakes, either 
at the specification or programming level. 

The classification into development, analysis, and debugging is mainly a guideline to 
present the survey. The boundaries among the three classes are not clear-cut; for example, 
development and debugging are intertwined, and debugging requires program analysis. In 
the following, we will concentrate on program analysis and debugging. 

2.2. User-Oriented Program Analysis 

Program analysis is often performed in the context of compilation, aiming at optimiza- 
tion. When performed in the context of programming environments, the main difference is 
that the derived properties are ultimately analyzed by human beings. This induces strong 
requirements about flexibility, response time, and ergonomy. It therefore influences the 
technical design of the related tools. 

User-oriented program analysis is mainly aimed at helping programmers understand 
programs and their behaviors. They are usually referred to as debugging tools. They, of 
course, do help programmers to debug because one of the main problems while debugging 
is understanding programs. However, on the one hand, debugging is more than just un- 
derstanding, and on the other hand, understanding can be an aim per se. For example, a 
mode analysis can help with the understanding of the dataflow of a program; a visualization 
tool can help with the understanding of the operational semantics of a language; when a 
new feature has to be added in an existing program, the programmer has to understand this 
program, at least partially, to avoid introducing inconsistencies. 

Figure 1 gives a model of user-oriented program analysis. This model is used as a 
guideline in the following sections, which describe each aspect in some depth. Let us just 
give a brief overview here. Program analysis uses three sources of data: program source 
codes, program executions, and program specifications. These data should be available to 
the analysis component as object data. This includes the transformation of specifications 
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FIGURE 1. A model of user-oriented program analysis. 

and source codes into an appropriate abstract syntax, as well as the extraction of execution 
traces. The analysis component can perform browsing, explanation, profiling, testing, 
debugging, etc. It produces information, relevant to the user at a certain moment, which is 
displayed in an ergonomical way by a visualization component. This material is eventually 
examined by the user. 

The model emphasizes two important aspects. Firstly, program analysis is not restricted 
to static analysis, i.e., analysis of source code only; Section 3 stresses that specifications 
and executions are also interesting sources of data. Secondly, the central component of a 
programming environment is the analysis component. 

In our view, the most important objective of a programming environment tool is to 
automate as much as possible of the related development and maintenance task in order 
to reduce the burden of the programmers. These tasks are usually too difficult to be fully 
automated. The visualization module is therefore needed to report to the user, but it is not 
the main part of the environment. We, as users, prefer to examine three lines of relevant 
information rather than a screen full of nice, graphically displayed, irrelevant information. 
Hence, the analysis component should be the main focus of the research on programming 
environments. 

Very often, existing tools are regarded as too low-level or even useless because their 
analysis component is, actually, too weak. For example, tracers provide a limited number of 
filtering functionalities which are a degenerate and “hacked” form of analysis. Visualization 
tools usually provide more sophisticated analysis mechanisms to enable several levels of 
abstraction, but these mechanisms are still hidden, ad hoc, and intertwined with the graphical 
mechanisms. With a proper analysis component, the generality of these tools could be 
greatly improved. 

The model is simple, if not simplistic. In particular, users also input requests to the 
tools. It should be stressed, however, that existing systems are only a degenerate form of 
this model. No current system satisfactorily covers extraction, analysis, and visualization. 
We hope that in the near future we will see systems covering and integrating all aspects. 

Note that program analysis as considered here is essentially a meta-programming activ- 
ity; it handles program as data, as well as data as programs. This suggests considering the 
analysis tools (if not the whole environment) as a meta logic program and the target logic lan- 
guage as the implementation language. Some important benefits can be expected from this 
approach. In particular, the development of new tools is facilitated by the self-applicability 
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of the environment and the possibility to reuse software from the object level. This also 
provides a demanding testbed for the meta-programming facilities of logic programming 
languages. 

3. PROGRAM ANALYSIS DATA 

As already mentioned, program analysis can use three sources of data: program source 

codes, program executions, and program speczjkations. Program source code is a natural 
candidate; there are indeed many projects on static analysis. In this section, we want to 
clarify the role of program executions and program specifications. 

3.1. Program Executions 

Program analysis seems often restricted to static analysis, i.e., analysis of program source 
code, only. Although static analysis has advantages, it is not always the most appropriate 
type of analysis. 

As shown by the popularity of prototyping, it seems, for example, that people often have 
a better understanding of what a program should do rather than of what it should be. As 
understanding is a central issue in user-oriented program analysis, executions which show 
what programs actually do are an essential source of data. 

As a matter of fact, there exist a number of dynamic analysis tools, for example, de- 
buggers, profilers, monitors, or explanation generators. These tools are often ad hoc, with 
limited scope. They are, however, driven by user demand, and their usefulness is not to be 
questioned. 

An execution is an instantiation of a program with specific input; only some of the 
potential paths of a program are covered. While this reduces the generality of the analysis, 
it also reduces its complexity. In some cases, such as bug diagnosis, there is no need to 
investigate all potential execution paths. Only the paths actually used to produce the error 
symptoms are relevant. Hence, analyzing executions is sometimes more relevant and more 
efficient. 

This is not to say that dynamic analysis is better than static analysis. Sometimes one is 
more appropriate, sometimes it is the other one. Our experience shows that, most of the 
time, a combination of both is actually the most appropriate, 

3.2. Specifications 

The third source of data for program analysis is program specifications, where a program 
specification is, basically, a high-level description of the intention of the programmer. 

A big asset of logic programming is that it provides a smooth transition between speci- 
fications and programs. In many cases, specifications can be made formal and executable 
[82], i.e., the distinction between specifications and programs is mainly a question of ef- 
ficiency and level of abstraction. As a matter of fact, Prolog is sometimes considered as 
a specification language (see, for example, [13, 129, 931). Even when, for the sake of 
expressiveness, specifications cannot be reduced to logic programs, a uniform use of logic 
provides a path between specifications, (pure) logic programs, and (efficient) Prolog pro- 
grams. This has been applied with success to program synthesis (see the survey on program 
synthesis, by Deville and Lau, in this issue [49]). 
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The link between specifications and programs is currently tightened through a growing 
understanding of the importance of types [ 1531, which are essential to capture the notion 
of meaningless or erroneous data, as well as to reveal meaningful approximations of the 
relations to be computed. This has led to the introduction of typed versions of Prolog, e.g., 
Typed Prolog [ 1 IO], as well as languages which further depart from Prolog, e.g., Giidel 
[90] or kProlog [ 1391. The type systems offered by these languages may not, however, be 
expressive enough to capture the intention of the programmer. Naish suggests, for instance, 
to include distinguished predicates (called type predicates) at the specification level. These 
predicates are not part of the program level, but can be used to make more precise the 
intended semantics of the program in different phases of its development [ 1421. 

Introducing specifications replaces a big step (programmer’s intention to program) by 
two smaller steps (intention to specification and specification to program), hopefully easier 
to manage. Capturing the programmer’s intention in complete and sound specifications 
remains a difficult task. In the best case, methodologies are used to enforce rigorous 
development based on specifications; in the worst case, whether specifications are produced 
or not depends entirely on the good will of programmers. 

As a result, program analysis cannot rely on the availability of complete specifications. 
Nevertheless, there are always some aspects of a system which can be easily specified. 
Thus, expecting incomplete specifications is reasonable and may be beneficial. For example, 
assertions partially specifying the behavior of a program help reduce user’s mediation during 

algorithmic debugging [%I. 

4. EXTRACTION 

Program specifications, program source codes, and program executions cannot be straight- 
forwardly used as analysis data. The extraction component transforms them into object data. 
The role of the object syntax is both to make sure that there will be no confusion between 
the object program (the program being analyzed) and the meta-program (the analyzer), and 
to retain information which may be pertinent to the user (e.g., variable print names). 

The transformations of program sources and specifications into object data are simple 
syntactic transformations. Information about programexecutions is not as straightforwardly 
available. Program executions are modeled by sets of events, usually called traces, or event 
histories. Instrumentation depending on the chosen execution model is required to extract 
these traces. 

In the remainder of the section, we briefly describe each of these mechanisms. They 
are basic mechanisms for general static and dynamic analysis, essential to programming 

environments. 

4.1. Object Data 

The basic role of the transformation into object data is to avoid any confusion between the 
object-level and the meta-level. It is essentially a naming problem, well known in static 
analysis and, more generally, in meta-programming [124, 8, 121, 1961. 

4.1.1. NONGROLJND AND GROUND REPRESENTATIONS. The major issue is the repre- 
sentation of object-level variables. The general alternative is between a nonground and a 
ground representation. Object-level variables are represented by meta-level variables in 
nonground representations and by ground terms in ground representations. 
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Ideally, a nonground representation should be typed as advocated by Hill and Lloyd [91] 
in order to prevent unifying real meta-level variables with meta-level variables representing 
object-level variables. 

Using typeless Prolog, a straightforward choice is to use a ground representation, which 
has the advantage that the meta-level version of the meta-logical predicates can be given a 
declarative semantics [91]. 

A basic ground representation of terms is described by Barklund in [8] as follows: 

The name of a constant X is the compound term constant (X) 
The name of a compound term whose functor is F/m and whose arguments are 
Al toAmiscompound(F, [Nl, . . . , Nm] ) , where Nl to Nm are names of the 
arguments Al to Am, respectively. 
A name of a variable X is a term var ( I ) where I is any positive integer, such that 
the same integer I is used for every occurrence of X in all terms under consideration, 

and that all distinct variables in these terms are assigned different names. 

Many variants are possible. Actually, van Harmelen advocates user definable represen- 

tations [ 1871. For our purpose, the name of constants can be the constants themselves. It 

is also possible to represent compound terms by compound terms with the same principal 

functor. It is then necessary to be careful not to confuse the representation of a compound 

term var (Term) and the representation of a variable. A solution consists of applying a 
mechanism reminiscent of the double quote mechanism used to insert quotes in strings and 

represent the compound term as var (var (Term) ) . Finally, the representation can also 
be supported at the implementation level, e.g., by replacing wrappers such as var/l by 
special tags [S]. 

The use of such a representation is classical in static analysis and meta-programming. 
However, to our knowledge, only interpreter-based tracers, such as Maeda’s [127], have 

extended its use to the representation of events. 

4.1.2. UNIQUE (GLOBAL) IDENTIFIERS. Traced events including variables should not 

lose variable sharing information. If two events involve the same variable, it is necessary 

for dataflow analysis that the analysis component can recognize it. For instance, in Figure 2, 

one expects to see the same name for the first argument of p / 1, line 1, and the argument of 

q/l, line 4. Basically, each new variable created during an execution should be associated 
with an identifier unique within the scope of the execution subject to analysis. In the terms 
of the ground representation defined above, all terms under consideration for the definition 
of I are all the terms involved in the events susceptible to analysis. However, since dataflow 
analysis only makes sense along a given derivation, distinct variables which are not shared 
between different derivation paths may be assigned the same name. Let us look again at 
Figure 2. It does not make sense to look at lines 2 and 9, where -2 = a and -2 = b, 
respectively, without understanding that they belong to two different derivations (one from 
line 2 to 7, and one from line 9 to 12). Therefore, the two different instances of X, lines 5 

and 12, can share the same identifier without creating any ambiguity. 

The standard practice is to use the physical address of a variable as its identifier. Un- 

fortunately, the uniqueness of such identifiers cannot be guaranteed; addresses may change 

during the execution (e.g., due to a globalization in a WAM-based implementation, or a 

memory copying or compaction due to garbage collection). 
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P(X, Z) :- Z = a, q(X), fail. 

P(X) Z) :- z = b, q(X). 
q(f(X) 1. 

?- P(X, Y). 

1 

2 

3 
4 

5 

6 

8 

9 

10 

11 

12 

13 

Call P(-_l# -2) 
Call -2 = a 

Exit a=a 

Call q(J) 
Exit q(fL3)) 
Call fail 

Fail fail 

Next P(__l, -2) 
Call -2 = b 

Exit b=b 

Call q(A) 
Exit q(f(_3)) 

Exit P(f(_3), b) 

FIGURE 2. A simple Prolog trace with variable identifiers. 

4.1.3. VARIABLE PRINT NAMES. Usually, programmers carefully choose theprint names 
of program variables (i.e., their external, source-level, representation), so that they carry 
some meaning about the application domain. As the result of an analysis is to be presented 
to users, it is essential that the variable print names are kept in the representation of object 
variables. The representation of a variable should therefore be composed of both its print 
name and its unique global identifier. Prolog/KR [ 1441, KCM [ 1461, and ECLIPSE/SEPIA 
[ 13 l] have implemented such a representation (modulo the problem mentioned above). 

4.2. Basic Execution Models 

Information about executions is not straightforwardly available. Basic models of executions 
have to be designed so that extraction mechanisms can extract information related to these 
models. It should be emphasized again that the basic models are not aimed at users, but at 
the automated analysis module. 

An execution is modeled by a set of atomic actions, or events, organized as a trace, or 
event history. A sequential execution leads then to a single sequence of events, whereas 
a parallel execution leads to a set of (local) sequences of events connected by dependency 
links. 

Events can potentially be very low level, e.g., the execution of a machine instruction, a 
store access, or the execution of a communication primitive. The issue is to design a model 
which is sufficiently detailed so that the analysis does not miss any information, sufficiently 
high-level so that the analysis does not spend too much time restructuring or recomputing 
information, and sufficiently easy to extract so that the resulting response times of the tools 
are reasonable. 
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For Prolog, a number of basic models exist. A popular one is the “box model,” designed 
by Byrd [26] and described formally by Tobermann and Beckstein [ 1821. This model shows 
a procedure execution as a black box (hence its name). Events are related to goals; there 
are four types of events (traditionally called “ports”). For a given goal g, the meaning of 
the events is as follows: 

Call g: g is being invoked; 
Exit g: g has just been proved; 
Redo g: the execution backtracks to a subgoal of g; 
Fail g: g could not be proved. 

Another model is closer to the operational semantics of Prolog. It shows backtracking 
in the order in which it actually appears in the execution. The only difference with the box 
model is the backtracking port Next, which has a slightly different semantics from Redo:’ 

Next g: the execution backtracks to g. 

The difference between the two models is subtle but significant. Let us illustrate it with 
an example. Figure 3 shows a program traced using the five ports previously defined. One 
can see that for the facts (e.g., s) the Redo and Next events are consecutive and seem 
redundant. But in large executions, goals with a nonempty body are usually more numerous 
than facts. If such goals have choice points (e.g., q), the two backtracking events related to 
these goals occur at very different places. Here, re-entering the box of q is shown at line 7 
(before the very first backtracking to a subgoal of q), while the actual backtracking to q is 
shown at line 11. The deeper the subtree to prove goals such as q, the larger the distance. 
Note that if line 11 is missing from the trace (Next q), which is the case in the box model, 
the invocation of t on line 12 seems to arrive by magic. 

The two ports are useful. The Next port is more faithful to the operational semantics of 
Prolog; it tells where backtracking actually occurs. The Redo port is very useful to trace 
“breadth-first.” In particular, if the details of the execution of a goal are hidden, the Redo 
port captures backtracking information which otherwise would have been lost [ 1881. For 
automated analysis, both ports should be extracted and clearly separated as in the example. 

Many refinements to the previous models can be made. For example, Eisenstadt [69] 
defines six types of failure: “subgoals of g have failed; system primitive has failed; subgoal 
has backtracked to cut, failing parent; no definition in database; definition exists but different 
arity; arity OK but no resolvents found; and clause would have been considered but does not 
unify.” Morishita and Numao [ 1351, as well as Schleiermacher et al. [ 1641, add information 
at the clause level, in particular about unification. The box model has been adapted to 
functional logic programming by Hanus and Josephs [88]. 

For some analyses, e.g., algorithmic debugging, the control flow information is of little 
interest and a declarative model is more appropriate than an operational one. In such a 
case, the resulting proof tree can be sufficient. Sometimes, it is also important to have 
information about intermediate proof trees (i.e., before failures) or to see how the resulting 
proof tree has been constructed. In such cases, one can use a degenerate version of the 

’ Note that the two ports are often given the same name in different models, which is a source of ‘confusion. 
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q :- s. cl :- t. S. 

?- q, r.. 

1 

2 

4 

5 

6 

8 

9 

10 

11 

12 

13 

14 

Call q 

Call s 

Exit s 

Exit q 

Call r 

Fail r 

Redo q % *** re-entering the box of q 

Redo s 8 re-entering the box of s 

Next s % backtracking to s 

Fail s 

Next q % *** backtracking to q 

Call t 

Fail t 

Fail q 

FIGURE 3. An operational model with two types of backtracking events. 

previous operational models and keep only the Exit ports. 

This list is certainly not exhaustive, and each Prolog tracer actually uses a different variant 

of the previous models with more or less information. Each model has its advantages, but 

none of them is absolutely better than all the others. The basic model to be used depends 

on many parameters, in particular on the type of analysis which is to be performed. 

4.3. Tracing Mechanisms for Sequential Executions 

In the following, we list and briefly discuss some mechanisms to extract trace information 

from sequential executions. A more thorough discussion can be found in [67]. 

4.3.1. MANUAL PROGRAM SOURCE INSTRUMENTATION. A straightforward way to ex- 

tract information about executions of a program is to instrument its source code. The most 

primitive way is to let users insert “write” statements into their programs. This can be very 

precise when users know exactly what information is needed and insert write statements at 

appropriate places, but this manual treatment can become very tedious. It usually requires 

a lot of trials and errors to find the relevant places. 

A more sophisticated way consists of inserting (still by hand) “trace” statements instead 

of “write” statements. The trace statements can then be programmed to send information 

to the analysis component. Nevertheless, letting the user insert the trace statements is 

not appropriate for automated dynamic program analysis. The trace information has to 

be generated automatically so that the analysis component has some guarantees that the 

required information will be extracted. 
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4.3.2. AUTOMATIC PROGRAM SOURCE INSTRUMENTATION. The next step is to automat- 

ically instrument programs. A technique to trace according to the box model described in 

the previous section is to encapsulate examined predicates. For example, the definition of 

predicate P/ 1 can be replaced by 

P(X) :- 

( tracetcall, p(X)) ; trace(fai1, p(x)), fail ), 
p-do(X) t 
( tracetexit, p(X)) ; trace(redo, p(X)), fail ). 

p-do(x) :- 

<p body>. 

The trace/ 2 predicate succeeds once. When p/ 1 is invoked, trace ( call, p (x) ) 

is invoked and a Call line is traced, then p/ 1 is executed normally. If p/l succeeds, 

trace(exit, p (X) ) is invoked; otherwise, trace ( f ai 1, p (X) ) is invoked and the 

failure is propagated. If p/l succeeds and the execution later backtracks, 

trace (redo, p (X) ) is first invoked, then fail / 0 forces a backtracking to p/ 1 it- 

self. 

Note that it is the current substitution of the variables which is traced. This is, in 

general, what is needed; the Redo and Fail events, however, need some refinements. 

This mechanism is also more sophisticated for full Prolog.* 

Note also that, as mentioned before, if one is only interested in the construction of the 

proof tree, tracing the Exit events is sufficient. The transformed p/ 1 predicate is then 

P(X) :- 

P-do(X) , 
trace(exit, p(X)). 

The trace/2 predicate is programmed to pass the information to the analysis com- 

ponent. The transformed code can be compiled, and therefore runs reasonably efficiently, 

although the method leaves choice points at each predicate even when it is determinate, 

impeding last call optimization. This solution is not too difficult to implement and is 

satisfactory for occasional breakpoints. 

When only the resulting proof tree is of interest, another transformation consists of 

adding an extra argument to each predicate, which collects the proof tree. The predicates 

P :- q, r. 

q :- ( sl ; s2 ). 

are transformed into something like 

21nterestcd readers can see the “advice” utility written by R. O’Keefe which is part of the 
DEClO Prolog library, available by anonymous ftp from the AIAI of the University of Edinburgh 
(aiai.edinburgh.ac.uk). 
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P(Proof(P, (ProofQ, ProofR) 1) :- q(ProofQ), r(ProofR). 

q(proof(q, Proofs)) :- ( sl(ProofS) ; s2(ProofS) ). 

Note that this can only answer questions of the type “why x” for programs without negation. 
In order to answer questions of the type “why not X,” and to be able to trace programs with 
negation, failing search trees have to be explicitly stored [ 190, 1721. 

As discussed by Specht [172], the latter approach seems to be particularly adapted 
to tracing bottom-up evaluations such as in deductive databases. Indeed, in bottom-up 
evaluations, one cannot rely on the execution order to trace information by side effect. 
Furthermore, in deductive databases, the program is typically heavily transformed before it 
is compiled. Such a program instrumentation allows the information to be traced in terms 
of the initial program and not in terms of the transformed one. 

4.3.3. INSTRUMENTATION OF META-INTERPRETERS. A natural step is to use the same 
techniques as before, but within a meta-interpreter. An introduction to meta-interpreters 
can be found, for example, in [ 174, chapter 191. Typically, a meta-interpreter contains some 
clauses to recursively process lists of goals, and a clause which reduces a single goal. This 
clause can be instrumented with the same tracing instructions as above. 

solve (Goal) : - 
( trace(cal1, Goal) ; trace(fai1, Goal), fail ), 
reduce(Goal), 

( trace(exit, Goal) ; trace(redo, Goal), fail ). 

This can be generalized to multilayered meta-interpreters [ 14, 175, 341. 
In the same way, the construction of the proof tree in an argument, mentioned in the 

previous paragraph, can be done by a meta-interpreter [19, 1671. The solve/2 predicate 
carries on a second argument which is constructed inside the reduce/2 predicate as 

follows: 

reduce(Goa1, proof(Goa1, ProofBody)) :- 

clause(Goa1, Body), 

solve(Body, ProofBody). 

Unfortunately, the space and time optimizations of the compiler are mostly lost. Thus, 
large programs that can run when compiled may require too much memory when interpreted 
by a meta-interpreter. If the only tracing means is a meta-interpreter, programmers may 
be left with programs which they cannot trace. Furthermore, for user-oriented analysis, 

response times must be kept reasonable; hence, the lack of efficiency is a major problem. 
Partial evaluation [ 103,84,161,173,124], used on the instrumented meta-interpreter and 

the program to be traced, can produce a program equivalent to the instrumented program of 
the previous section. Partial evaluation plus instrumented meta-interpreters is more generic 
than a specialized program instrumentation. One does not need to write a specialized 

program transformation, but can benefit from a general partial evaluator. Furthermore, if 
the simple instrumented meta-interpreter is efficient enough to trace the analyzed program, 
then the partial evaluation step can be skipped. 



LOGIC PROGRAMMING ENVIRONMENTS 363 

Enhancing standard meta-interpreters to get high-level information is very easy. They are 
therefore useful to prototype particular analyses. For example, [ 174, chapter 191 presents a 
meta-interpreter which detects stack overflows, one which diagnoses false solutions bottom- 
up, one which diagnoses false solutions top-down, and one which diagnoses missing solu- 
tions. 

4.3.4. COMPILED CODE INSTRUMENTATION. The implementation of the tracer can be 
pushed further down. If an interpreter implemented in a low-level language is used, this 
interpreter can be modified to generate trace information. Alternatively, if a compiler is 
used, the compiled code can be modified for the same purpose. In the case of byte-code 
compilation, the emulator can also be modified. 

Notification points are set into the compiled code when an interesting event is reached. 
Note that not every interesting event corresponds to a physical location in the compiled code. 
The most obvious example is the Exit port. All reasonable Prolog compilers implement 
last call optimization via a continuation mechanism; the last subgoal call of a clause does 
not return to its caller, but the execution directly proceeds with the continuation of the call. 
Hence, there is no location in the code where the debugger could be notified when the last 
subgoal of a clause exits. 

In the tracer of the ECLiPSe/SEPIA Prolog system [ 1311, the Call port corresponds 
directly to a call instruction, while only facts notify the debugger when they exit. The tracer 
uses its own stack of Call and Exit frames to reconstruct the other ports. 

Compiled code instrumentation has given, so far, the best results in terms of both effi- 
ciency and space consumption. It has also led to more precise tracing. For example, cuts 
can be traced showing precisely which choice points are actually removed. This solution, 
however, takes notably more time and effort to implement. The resulting tracer is also 
highly dependent on the implementation of the interpreter or compiler with which it is 
tightly connected. It is therefore worth considering the other solutions further, all the more 
as program transformation and partial evaluation techniques have great potential. 

4.4. Tracing Mechanisms for Parallel Executions 

Tracing parallel executions exhibits further difficulties due to the “probe effect,” nonre- 
peatability, and the lack of a synchronized global clock [ 1301. The first two problems can 
be alleviated by resorting to execution replay. The latter one requires a careful organization 
of the trace, capturing the partial ordering of the recorded events. 

4.4.1. EXECUTION REPLAY. The probe effect and nonrepeatability are actually two as- 
pects of the same problem: parallel executions inherently lead to races, i.e., competitions 
for the access of some shared data, for example, OR-parallel access to a choice point, or 
AND-parallel access to an unbound variable. The resolution of a race depends on the rel- 
ative speeds of the competitors, and is therefore sensitive to any factor modifying these 
relative speeds, e.g., the state of the memory hierarchy or the amount of network traffic. 

This problem is especially acute with concurrent logic languages where indeterminism, 
through the committed choice mechanism, is a basic language feature. If several clauses 
match a goal, the chosen clause depends on the availability of the goal variable bindings and 
the relative speeds of the parallel clause matching activities. As a result, running a program 
twice can lead to different behaviors of the program. The problem is not absent from 
parallel Prolog systems either. In OR-parallel systems, such as Aurora [32], the relaxation 
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of the order in which the solutions are produced, combined with the use of cuts or one- 
solution constructs, also leads to programs returning different results, here different answer 
substitutions, including failure, from one run to the other. The introduction of asynchronous 
built-in side effects (I/O, assert/retract) adds some more sources of indeterminism. 

Repeatability remains an issue even when there is no indeterminism in the language (or 
in the program). In that case, the results are repeatable, but the paths followed to get to these 
results may still be different. Let us consider the AND-parallel execution of two goals for 
both of which there is no successful derivation. Failure may then be caught alternatively 
while solving one goal or the other. At an even lower level of observation, the paths may be 
the same, but the scheduling of work between the processing agents different. This cannot 
be ignored when tracing is done with performance debugging in mind or when the system 
itself is being debugged. 

Finally, since tracing is both time and space consuming, switching tracing on may also 
influence race resolution and modify the behavior of the traced program. This is the probe 
effect. In general, a trace does not reflect the execution without tracing, and two executions 
of the same program do not result in the same trace. 

Control driven execution replay [ 11_5,118] is a generic method to deal with indeterminism 
in parallel programs. During an initial execution, each process involved in the computation 
records a minimal trace, called history tape, collecting the result of all the race resolutions, 
as well as program input. The race-related events are very simple. In case of a shared 
memory implementation, each event corresponds to a shared object access. It records the 
object identifier and its version number. In case of a message-passing implementation, each 
event corresponds to a message reception. It records the sender identifier and the message 
number (local to the sender). This simplicity, together with the lack of global bottleneck, 
makes the process very lightweight, limiting the probe effect. The history tapes can then be 
used to guide new executions, called replays, which are equivalent to the initial execution. 
In particular, detailed tracing can be safely performed during replay. 

Execution replay has been implemented in the parallel Prolog system PEPSys [9], based 
on Instant Replay [ 1151, the seminal version of execution replay based on shared objects. 
Execution replay was mainly seen as a tool to help debug the system itself. In particular, it 
captured scheduling decisions. Interestingly, exploiting specific properties of the PEPSys 
computational model made it possible to implement a simplification of the initial instant 
replay scheme [44]. This resulted in a very low overhead for the initial execution, typically 
2-3%, ensuring, in general, an identical behavior of the system with and without recording 

on. 
Execution replay has also been considered in the context of concurrent logic languages. 

In [ 1671, Shapiro describes a simple Flat Concurrent Prolog meta-interpreter which, com- 
bined with a source transformation of a (noninteractive) program, computes, as a tree 

data-structure, a trace recording the order of goal reductions. This makes it possible to 
reconstruct the computation, e.g., to apply algorithmic debugging techniques. In the same 
spirit, Gaifman et al. give a transformation which captures the indeterminism of committed 
choices [83]. The transformation is justified by a study of execution replay in an abstract 
setting, showing in particular that execution replay of concurrent logic/constraint programs 
is simplified by a monotonicity property of these programs. Preliminary experimental re- 
sults on a stream merger running on the Concurrent Prolog system Logix [ 1701 give some 
upper bounds of the cost of the transformation: a 50% overhead on the initial execution 
and 25% on the replay. Considering the highly nondeterministic nature of the application, 
the transformation should be reasonably effective in real-life applications including sizable 
deterministic computations. Let us note that both proposals are weak forms of execution 
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replay, as previously described. They do not allow for a parallel replay of the execution 
with an equivalent scheduling. 

Execution replay makes it possible to remove indeterminism from parallel tracing, al- 
lowing cyclical debugging, while limiting the probe effect. It also makes it possible to 
relate different kinds of traces of the same program, leading to a better integration of the 
debugging tools. Leu and Schiper [ 1171 show, for instance, how to integrate visualization 
and symbolic debugging. Execution replay should be a basic component of any parallel 
environment. 

4.4.2. THE LACK OF GLOBAL TIME. It is essential that the analysis component can 
move forward and backward from a given event. This is easy when considering sequential 
executions. Events are usually time stamped with a chronological event number and the 
trace is organized as a sequence of events. Such an organization is still possible with 
parallel executions. It requires either a global (possibly logical) clock, easily available on 
a shared memory machine, or totally ordered logical clocks, as defined by Lamport [ 1111. 
An interesting alternative consists of organizing the global trace as a set of local traces 
connected together through links corresponding to communication between the parallel 
activities, in the spirit of the history tapes of execution replay. Such an organization is more 
accurate in that it does not impose an arbitrary total order on the trace, but keeps the causal 
dependencies between the events. A further step would be to time stamp the events with 
partially ordered logical clocks [79, 1571, or to recreate these time stamps at analysis time 
(in case of post mortem analysis of a full trace), and take advantage of the applicability of 
these clocks to concurrency measures and global state analysis. 

4.5. Connection with the Analysis Component 

The model given in Figure 1 is a conceptual model only. It is very costly to systematically 
extract and send all the pieces of possibly interesting information regarding specifications, 
sources, and executions to the analysis module each time something new is occurring. 
Traces and sources can be very large, and any particular analysis requires, in general, only 
selected information. Thus, communication between the two components has to be driven 
by the analysis component. 

Partial solutions exist for analysis of executions traces. Ducasst has designed a trace 
query mechanism which optimizes control flow analysis [61]. Kusalik and Oster provide 
parameterizations of the extraction components, based on meta-interpreters [ 1071. Solu- 
tions derived for imperative languages in the Dalek system [ 1471 could be useful for logic 
programming. 

The problem, even if less acute, also exists for source access. When program sources 
get really large, it is inappropriate to parse them each time a property has to be derived. 
Database systems could be used to store already parsed pieces of code. 

5. SOME USER-ORIENTED PROGRAM ANALYSES 

The following list of analyses focuses on aspects which have not been given much attention 
so far in the community: browsing, explanations, profiling, and reverse-engineering. It 
does not pretend to be exhaustive. In particular, we conjecture that many existing static 
analyses developed within the framework of abstract interpretation (see, for example, [ 132, 
21, 39, 22, 891) could derive properties interesting for end users. 
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Our aim is not to discuss how analyses are implemented, but to give an indication of 
what they can be used for in the context of programming environments. Debugging and 
testing, which are particularly important for programming environments, are addressed in 
the next section.. 

5. I. Browsing 

For experienced programmers, it is usually easy to gain local understanding of programs. 
This is especially true in Prolog where variables are local to a clause and where most 
systems now have some sort of modularity. When the size and number of modules increase, 
programs become harder and harder to understand. Users need some support to gain a global 
understanding, e.g., of the relationships between predicates and between modules. 

A strong ergonomical requirement is that, at each moment, a user should not have to face 
more than seven items of information (plus or minus two) [ 1331. The nature of the items 
depends on the skill of the concerned user. 

Browsers help users traverse stepwise both source and executions. Step-by-step tracing, 
for example, is a very primitive way of browsing. Executions and sources can be abstracted 
so that, at each browsing step, the user sees a “chunk” of information which gives meaningful 
information of reasonable size. 

The issue is then to define abstraction criteria. For Prolog executions, some necessary 
abstraction criteria have been identified by Bergantz and Hassell [ 111: control flow, data 
flow, data structure, and function relations. Control flow, data flow, and data abstracts have 
been implemented in the Opium system [58], together with failure and endless loop analyses 
which produce symptom-oriented abstracts. Hook et al. propose a recursion abstract and 
a dataflow abstract [95]. Top-down zooming is a common browsing strategy [5,70, 1231. 
It starts from the topmost goals and recursively zooms into their executions whenever the 
analysis requests it. Most graphic systems discussed in the visualization section provide 
browsing facilities. The transparent Prolog Machine (TPM) has two levels of granularity 
and provides ad hoc abstraction mechanisms [16]. In a related field, [122] restructures 
proofs made by theorem provers. For imperative languages, the Traceview system [128] 

provides a number of abstract points of view. 
The usual source browser is a cross referencer as, for example, Xref, written by Dave 

Bowen et al., and part of the AIAI Prolog library. In our point of view, much more could 
be done in source browsing than cross referencing. For example, it would be very helpful, 
when looking at recursive predicates, to automatically abstract away all the arguments which 
do not take part in the recursion. 

5.2. Explanations 

Explanation systems are usually based on high-level browsing, but go further in the direction 
of users. 

Explanations are essential for teaching purposes. Novice programmers have misconcep- 
tions about the language they use [ 189,941. This can be overcome by an appropriate model 
[25], or by tutoring systems [43]. Explanations can also be very helpful for experienced 
programmers to debug programs [ 197,72,59]. 

However, explanations are mostly required to help end-users of sophisticated programs 
to accept the results of computations. The problem is well known for expert systems, 

but it seems to be identical for other areas, such as deductive databases or systems using 
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constraints. Unless appropriate explanation tools are provided, the new technologies will 
not break through. 

For deductive databases, the study has started [ 169, 193, 172,4], but people are mainly 
busy extracting the resulting proof tree. No sophisticated explanation system has been built 
yet. 

Logic programming has been used to support explanations for expert systems [42,73, 
163, 175, 1961. Conversely, studies of explanations for expert systems could certainly 
contribute to the explanations of logic programs; see, for example, [159, 178, 1491. 

5.3. Projling 

Profiling consists of investigating where the programs consume most of their time or space 
in order to know, for example, what needs to be optimized by hand. Although clever 
compilers reduce the need for profiling, there is always a need for tools to understand 
where computations spend time. For example, a program written in a style as declarative 
as possible will not, in general, be sufficiently efficient. However, there is no need to 
optimize all of it (at the risk of making the program too complicated and hard to maintain). 
Usually, 80% of a computation is spent in 20% of the code. Identifying this 20%, and only 
optimizing it, is a significant gain in time and maintainability. 

Profilers give some insight into the time spent in units of the code [87]. This information 
can be seen as a sort of trace. It is, however, of a lower level than the information usually 
provided by tracers. Nevertheless, this information is basic, and should be extracted by 
the same component as the other trace. Once extracted, it has to be analyzed in the same 
flexible way by the analysis component. It is a problem that existing profilers require the 
users to perform most of the analysis by hand. 

Most existing logic programming systems provide a profiler which gives some statistics 
about occurrences of events and measurements of time; see, for example, ParaGraph [2] for 
a multiprocessor profiler. Most profilers are dynamic only. Gorlick and Kesselman [85] and 
Tick [ 1811 combine static and dynamic analysis. These systems, however, lack, in general, 
the flexibility of a generic analysis component. Cohen and Carpenter [40] developed a 
language to inquire about the run-time behavior of Algol programs. This language allows 
more general analysis to take place. 

In the context of parallel systems, profiling is also useful to estimate the inherent paral- 
lelism of an application and even give parallelization hints [177,75, 165, 1081. 

5.4. Reverse-Engineering 

Prolog has been successfully used for reverse-engineering Cobol programs [ 17,311. Con- 
versely, although the number of logic programs has not yet reached the critical mass 
which makes reverse-engineering an absolute necessity, one could imagine that reverse- 
engineering tools are designed for logic programming to help structure or re-structure 
existing code. 

6. AUTOMATED DEBUGGING AND TESTING 

Debugging and testing are central issues of programming environments. We see testing as 
the process of analyzing a program with the intent of detecting errors, while debugging is 
the process of analyzing a program to locate andjix the detected errors. 
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In this section, we review strategies and tools which are aimed at automating these costly 
activities. The boundary between testing and debugging is not easy to define. For example, 
some strategies are able to detect and locate at the same time. In the following, testing and 
debugging are therefore usually mixed. 

In a survey of automated debugging covering declarative and imperative languages [62], 
we have identified three main strategies for automated debugging: verification with respect 
to specification, checking with respect to language knowledge, and filtering with respect 
to the error symptom. The veri$ication strategy compares the actual program with some 
specification of the intended program. The checking strategy looks for suspicious places 
which do not comply with some explicit knowledge of the programming language. The 
jiltering strategy filters out parts of the code which cannot be responsible for the error 
symptom. To these three strategies we have added a section on automated generation of test 
data, as executing programs with appropriate test data happens to be the most commonly 
used testing strategy in practice. 

6.1. VeriJcation with Respect to SpeciJication 

In the context of logic programming, the most active trend in verification is algorithmic 
program debugging, based on the initial work of Shapiro [ 1681. It compares the execution 
of a program against its specification. It assumes that there is such a complete specification. 
As it is, in general, impossible to have a complete formal specification of a program, it 
is actually assumed that the user can complement the formal specification and act as an 
“oracle.” Algorithmic debugging, in its simplest form, runs an actual computation; at each 
computation step, the assertions derived from this computation are presented to the user, 
who decides whether they hold. If the program is incorrect, and if the user can correctly 
answer all the questions, then an erroneous component is found. It is the part of the program 
whose behavior is incorrect, but whose components all exhibit a correct behavior. 

Following Shapiro’s work, a number of studies have been made for Prolog [76, 1231. 
Algorithmic debugging is used in tutoring systems [ 1251. As the number of queries may 
be rather large, some systems use heuristics to ask users more relevant questions first 
[ 15 1,28, 27,92, 1521. Another way to reduce the number of queries is to use partial formal 
specifications as partial oracles [57,56]. 

Algorithmic debugging has been extended to concurrent logic programming [96, 180, 
120, 741, concurrent constraint logic programming [81], deductive databases [ 1691, and 
Godel [ 121. Some preliminary work has been done to automatically fix programs when 
complete specifications are available [48, 1161. Although this assumption seems a bit 
unrealistic for real programs, this work could be useful for tutoring systems. Algorithmic 
debugging has also being adapted to imperative languages [ 100, 1661 and lazy functional 
languages [141, 1451. 

Algorithmic debugging is an interesting technique. The current implementations, how- 
ever, lack some user support. For example, users may make mistakes while acting as oracles. 
There must therefore be some sort of checking of their answers to validate the diagnosis of 

the algorithm. 
Type and mode checking are other important incarnations of the verification strategy 

[143, 110, 18, 1531. 
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6.2. Checking with Respect to Language Knowledge 

The checking strategy systematically parses programs and searches for language-dependent 
errors. The knowledge of some aspects of the language is represented by consistency rules 
which model how these aspects should be implemented or should behave. These rules 
capture well-formedness knowledge which could not be encoded in the compiler. Some of 
the rules may assume that programming conventions are adhered to. This technique checks 
program sources and program executions against the consistency rules. The parts of the 
program which do not conform are suspicious. The rules used to detect the errors provide 
some explanation of the mistake. 

The larger the programs, the more likely it is that they will deviate from stereotyped 
programming styles, even if coding standards are adhered to. Hence, an important issue 
for this technique is to choose the sensitivity of the checking: how much should a part of 
a program deviate from a rule to be suspected? If the technique is too sensitive, it will be 
oversuspicious; if it is not sensitive enough, it will miss many errors. 

In general, the suspicious code is not necessarily erroneous. Furthermore, some errors 
cannot be detected by a system which only uses language knowledge. Last but not least, 
there is no criterion to evaluate the completeness of the set of checking criteria. Therefore, 
there is no limit on the number of aspects to be checked. This can result in the bad situation 
where none of the errors has been detected while most of the program is suspicious with 
respect to several criteria. In such a case, the programmer would have to analyze a lot of 
warnings to no avail. 

As already mentioned, all the analyses performed by abstract interpretation could be 
applied here. The most typical examples are type and mode inference; see, for example, 
[23, 461. They are very often thought of for optimization purposes, but they can be very 
useful for debugging. The same applies to optimization analyses for concurrent and parallel 
languages, e.g., [38]. 

Stereotyped bug recognition has been studied for Prolog [70, 179, 125,721. For concur- 
rent languages, deadlocks have been the main type of problem investigated [97,98]. 

6.3. Filtering with Respect to the Error Symptom 

Once a symptom of error has been detected, the filtering strategy assumes the correctness 
of the program components which cannot have produced the error symptom (or which are 
unlikely to produce it). This strategy does not suspect any code, but is aimed at reducing 
the amount of code which has to be examined by users. 

The most important filtering technique is slicing, which is a symptom-driven dependency 
analysis [ 1921. So far, it has been addressing two symptoms: “wrong valued output variable” 
and “wrong control sequence.” Slicing prunes out the parts of the program which the wrong 
value, respectively the wrong control sequence, does not depend on. What remains from 
the program is called a slice. Slicing according to a wrong valued variable uses a dataflow 
analysis, and slicing according to a wrong control sequence uses acontrol-flow analysis. The 
slice can be computed symbolically using the program source only, or it can be computed 
on the particular program behavior which has exhibited the symptom under study. A slice 
does not always contain the erroneous statement [ 1051, but it is always informative. 

At present, there exists no slicing algorithm for Prolog or any other logic programming 
language. There are enough flow analyses so that this could be done promptly; see, for 
example, [46]. Slicing algorithms for imperative languages can be found in [192, 155, 61. 
Slicing for concurrent and parallel imperative languages has also been studied [68,35,51]. 
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Heuristic filtering consists of making a priori hypotheses about parts of the program 
which may not have caused the detected symptom in order to restrict the search space 
for further investigations. This technique is only acceptable if there is a possibility of 
backtracking over the hypotheses when further analysis does not succeed in finding the error. 
Pereira and Calejo have applied some heuristic filtering to logic programs, in complement 
with algorithmic debugging [ 150,281. 

4.4. Test Cases 

A restrictive definition of testing is given by [ 1381: Testing is the process of executing a 
program with the intent offinding errors. There are testing strategies other than simply ex- 
ecuting the program. Verification and language checking as defined earlier are good means 
to detect errors. However, even powerful verification and checking tools are incomplete. 
Executing programs with appropriate test data cannot be avoided. Therefore, support is 
needed to generate systematic test data. 

Test cases should ensure that as many errors as possible are detected. It should integrate 
several techniques, and should be able to tell users what has been tested so far, and what 
confidence on which part can be assumed. 

Software testing is a flourishing field of software engineering, and logic programming 
is used as a basis for testing other languages [86, 129, 1761. However, work on testing 
methodologies applied to logic programming languages is just starting [lo]. 

Testing methodologies and techniques are essential for the acceptance of Prolog and other 
logic programming programs as “real” programming languages. For example, program 
mutation [47] should be investigated . Program mutation consists of changing small parts 
of a program and seeing whether the program still behaves correctly (or incorrectly). 

7. PRESENTATION AND VISUALIZATION OF INFORMATION 

Once program specifications, sources, and executions have been analyzed and properties 
derived, the results have to be presented to the user. In this section, we present some 

ergonomical presentation and visualization concepts. 

We consider both textual and graphical presentation means. Indeed, some people have 
poor abilities to decipher 3D diagrams. It has been shown that these people are penalized 
when browsing through hypertext systems [30]. Therefore, environments should provide 
both textual and graphical tools to accommodate all kinds of users. 

In the following, we distinguish two types of visualization: application independent 
and application dependent. We believe that the issue is really to provide the support for 
application-dependent visualization. For example, 80% of the code written for CHIP [52] 
applications is typically dedicated to visualization, 

7.1. Application-Zndependent Visualization 

We review in this section the general visualization tools. 

7.1.1. TEXTUAL PRESENTATION. A straightforward and mandatory help is to display 
both source and trace at the same time, emphasizing their connection. For example, source- 
oriented tracers move pointers in the source code to show where the execution currently is 
[ 154, 156,291. Source code, therefore, gives some context to understand execution traces. 
A next step is to use hypertexts as in the thesis of Calejo [27, chapter 61. 
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7.1.2. GRAPHICAL PRESENTATION. Quite a number of graphical paradigms exist. These 
paradigms are at the end of the chain; they do not help any automation, but are instead aimed 
at users. Enhanced proof trees have been used in the context of sequential systems. OR- 
parallel systems usually rely on representations of the search tree. Concurrent logic systems 
favor process-oriented views. Some representations are static, giving a global view, or rig- 
nature, of the execution. Some change over time, leading to either histories or animations. 

There is actually no best representation; each representation gives a different view, and is 
useful in some cases and not so useful in others. Elaborate systems combining different 
representations, together with new tools based on more powerful analyses, are emerging. 

Execution trees and graphs. In the context of sequential systems, most graphical 
systems are based on proof tree representations, which give an immediate picture of the 
proof structure and are easy to match to the clause structure of the source code, as well as to 
the implementation. The problem with proof trees, however, is that the information related 
to backtracking is lost. Ferguson diagrams [ 184, 501 and Aorta diagrams of the Transpar- 
ent Prolog machine [71] are enhanced proof trees which retain part of the backtracking 
information. 

In parallel systems, the focus is more on the amount and exploitation of the available par- 
allelism. In OR-parallel systems, the focus has therefore been on the incremental building 
of the search tree in WAMTRACE [53], Must [ 1771, and Par-Trace [55]. Alhough a proof 
tree (or procedure invocation tree) can be used to represent an AND-parallel execution, as in 
VISTA [ 18 I], a graph structure has to be used to represent the synchronization induced by 
the parallel execution of AND branches. VisAndOr [33] uses such a structure in a generic 
way; it has been designed in order to accommodate different basic execution models (OR- 
parallelism, restricted AND-parallelism, and determinate-dependent AND-parallelism), as 
well as to explore representations for combinations of these models. 

The static call graph is another means used to graphically give some context to a com- 
putation. In [I 121, Lazzeri first builds a static call graph and, as source-oriented tracers, 
points to nodes of this graph as the execution proceeds. 

A process-oriented view. Switching from the standard left to right computation rule 
of Prolog to coroutining [140] introduces the idea of goals “communicating” data back 
and forth, and suggests visualizing a logic program as a dynamic network of processes 
communicating via shared variables, i.e., visualizing the so-called process reading of logic 
programs [ 1861. Such a representation has been mainly used in the context of concurrent 
logic languages [74, 183, 127,411. 

Histories, animations, and program signatures. There are many ways to look at the 
above-mentioned representations. Two basic choices are between a dynamic versus a static 
view and a local versus a global view. Each view has its advantages. 

For instance, the animation of the search tree offered by OR-parallel systems is a sophis- 
ticated browsing mechanism which turns out to be very good for observing the instantaneous 
state of a system, but is not able to capture patterns of behavior over time. 

Such global patterns can be better analyzed from static program signatures such as the 
ones generated by VisAndOr and VISTA. An interesting feature of VISTA is that procedure- 
invocation trees of concurrent logic programs are displayed by using radial coordinates and 
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condensation. This indeed makes it possible to better use the space on the screen, and gives 
global pictures of executions which are still reasonably “readable” in spite of the number 
of nodes displayed. 

In [41], Conlon .and Gregory present a set of local views on query variables, shared 
variables between processes (channels), and processes, which facilitates the debugging of 
Parlog programs. In particular, the instantiation of shared variables can be displayed either 
in film format or in snapshot format. The film format is an animation of the successive 
variable instantiations. As animation in general, it does not make it easy to follow the 
history of the variable over time. When this is necessary, the snapshot format, listing a 
history of the variable states, can be used. The same kind of idea is also applied to tracing 
individual processes. 

A better representation for parallel and concurrent executions is a process (or agent)- 
oriented view. The sequential parts are abstracted away and the communication parts are 
emphasized. 

Integration and abstraction. More powerful environments can be built by combining 
the above-mentioned visualizations and better integrating them in the overall environment. 
For instance, the programming environment of the OR-parallel system MUSE integrates, 
together with a built-in statistics and benchmarking package, animation and global view 
by combining Must and VisAndOr [ 1011. This direction is also followed by its competitor 
system, Aurora [126]. For the time being, visualization is performed, in both systems, 
off-line. A further step would be to use, as suggested above, execution replay techniques 
to synchronize visualization and an execution replay. 

A key to a better use of visualization is also the provision of higher-level analyses. This 
is illustrated by the work on ParSee [ 1081 which, in the context of performance debugging, 
is able to characterize a predicate by a single colored line combining three abstract measures 
related to granularity and scheduling. 

Graphical languages. Following strict visual requirements, a graphical representation 
of Prolog predicates is used as a basis for a graphical language [ 1091. It can be animated 
[160]. 

Also based on predicate representation, a graphical programming language is underway 
for concurrent constraint logic programming [99]. It is used for writing, animating, and 
debugging programs. 

7.2. Application-Dependent Visualization 

As with explanations, the main issue of visualization is actually to support the end-users of 
the applications. We believe that the problem is not so much to provide nice representations 
at the level of the programming language, but to provide customization mechanisms and 
basic graphical packages to help programmers provide appropriate graphic representations 
of their applications. A survey of the topic can be found in [ 1371. 

For example, the KEATS system provides graphical explanations for knowledge-based 
systems [54]. In [37], mechanisms are introduced to enable customization of the graphics. 
In [ 15, 1071, parameterization is a general design concept. 

Graphical packages that have a proper interface to the environments are essential. Two 
such packages for Prolog are PCE [ 194, 1951 and the graphic facilities of YAP [ 113, 1141. 
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h usual source of data 
~ -b unusual source of data 

FIGURE 4. Current tools waste resources. 

8. GENERAL PROGRAMMING ENVIRONMENT ISSUES 

In this section, we discuss two general problems, namely, integration mechanisms and 
evaluation criteria. 

8.1. Integration Mechanisms 

A major issue in programming environments in general (not only for logic programming) is 
to design integration mechanisms. How can we integrate, in a user-friendly and sound way, 
so many tools based on so many techniques? Part of the problem is that, at the moment, 
not all the sources of data are used by the tools. As illustrated by Figure 4, (partial) 
specifications, source code, and (traces of) executions are not used at their full potential. 
The three sources of data about a program should be used in synergy if a strategy requires 
it. The problem is also that tools are artificially partitioned, and that they do not benefit 
from each other. Users want more than a list of tools, as illustrated by Figure 5. 

Regarding integration, one very important requirement is flexibility. As programming 
environment tools are aiming at accommodating human weaknesses, they have to be flexible. 
No two people are the same and need exactly the same support at the same time. Some 
elements of solution are proposed in [60]. The analysis component provides a programming 
language, namely, Prolog, so that static and dynamic analysis can be jointly programmed. 
These programs can be neatly integrated into the debugging environment thanks to an 
extension handler which ensures some consistency in the visibility of the extensions. In 
particular, on-line help and insertion in the graphical interfaces are provided (almost) for 
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FIGURE 5. Ideal view of programming environments. 

free. However, much work remains to be done. The integration mechanisms of the FIELD 
environment for Unix should give some hints [ 1581. 

8.2. Evaluation and Validation 

It is difficult to draw evaluation criteria of programming environments. Since the tools are 
user oriented, it is not enough to measure their performance. What should be measured is 
their usability. The ideal way is to set up inquiries as done by Bergantz and Hassel [l l] 
and Mulholland [136]. Such measurements are very costly. They are nevertheless very 
instructive. Cooperation with cognitive scientists should be reinforced to try to establish a 
list of criteria for the evaluation of (logic) programming environments. 

Cognitive validation is a long-term objective. In the meantime, a common basis should 
be established to test and validate the ideas at least on the same ground. In the same way that 
the implementation community benefited from the setting up and circulating of benchmark 
suites, a library of important buggy and correct programs should be set up and shared among 
the logic programming community. 

9. CONCLUSION 

In this survey, we have given a focused and maybe unusual point of view of logic program- 
ming environments. A large number of references related to logic programming environ- 
ments are gathered, which show that the field, although maybe scattered, is active. We 
have given a framework which separates environment tools into extraction, analysis, and 
visualization. It emphasizes that program analysis, both static and dynamic, is the central 
issue in programming environments. This point of view helps to analyze existing tools and 
should give some guidelines for forthcoming ones. 

We have listed the achievements in logic programming, pointed out some techniques 
developed for other languages which should be adapted to logic programming environments, 
and drawn some trends for further research. Among the main achievements are algorithmic 
debugging, tracing for sequential Prolog, and abstract interpretation. The main techniques 
still missing are slicing, test case generation, and program mutation. The perspectives we 
see are integration, evaluation, and above all, automated static and dynamic analysis. 

Programming environments are essential, however good a programming language. As 
program analysis is the key issue of programming environments, languages with a clean 
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semantics which enables analysis have an indisputable superiority in the long term. Logic 
programming languages have this advantage: even Prolog with its well-known weaknesses 
is better than imperative languages in this area. Environments are therefore a major argument 
in favor of logic programming. Research on logic programming environments should 
therefore be mobilized as part of the marketing effort required for logic programming 
[185]. 
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