
J. LOGIC PROGRAMMING 1994:19,20:3.51-384 351

LOGIC PROGRAMMING ENVIRONMENTS:

DYNAMIC PROGRAM ANALYSIS AND DEBUGGING

MIREILLE DUCASSI? AND JACQUES NOti

D Programming environments are essential for the acceptance of programming lan-
guages. This survey emphasizes that program analysis, both static and dynamic,
is the central issue of programming environments. Because their clean semantics
makes powerful analysis possible, logic programming languages have an indis-
putable asset in the long term.
This survey is focused on logic program analysis and debugging. The large number
of references provided show that the field, although maybe scattered, is active. A
unifying framework is given which separates environment tools into extraction,
analysis, and visualization. It facilitates the analysis of existing tools and should
give some guidelines to develop new ones.
Achievements in logic programming are listed; some techniques developed for
other languages are pointed out, and some trends for further research are drawn.
Among the main achievements are algorithmic debugging, tracing for sequential
Prolog, and abstract interpretation. The main missing techniques are slicing, test
case generation, and program mutation. The perspectives we see are integration,
evaluation, and above all, automated static and dynamic analysis. a

1. INTRODUCTION

Programming environments are essential for the acceptance of programming languages.
Programmers, if not provided with the support of proper development and maintenance
tools, are more likely to waste time and produce low-quality software. They are there-

Address correspondence to Mireille Ducasst, INSAARISA, 20 avenue des Buttes de Cohmes, 35043
Rennes Cedex, France or Jacques Noyt, IRISA, Campus de Beaulieu, F- 35042 Rennes Cedex, France.
Email: (Mireille.Ducasse, Jacques.Noye]@irisa.fr.

Received May 1993; accepted January 1994.

THE JOURNAL OF LOGIC PROGRAMMING

63 Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

352 M. DUCASS6 AND J. NOYE

fore reluctant to use a language without appropriate programming environments, however
powerful the programming language. Logic programming languages are no exception.

Logic programming is continually used as a basis for new languages; people need support
to get acquainted with them. Furthermore, and somehow paradoxically, it is the very
power of the declarativeness of logic programming which demands powerful support. The
discrepancies between the declarative and operational semantics of logic programming
languages can be a source of confusion for programmers; tools are required to bridge the

gap.
Although logic programming requires programming environments like any other pro-

gramming language, it offers a better basis than many of them. A clean semantics paves
the way for powerful program analysis, which, as discussed in the following, is the core of
programming environment tools. Even if not always developed with programming envi-
ronment considerations in mind, logic program analysis is a flourishing activity. There is
undoubtedly a breakthrough potential for programming environments in general.

Research on logic programming environments started relatively early [1041 and shows
substantial achievements. Original tools are now being adapted to other languages, for
example, Algorithmic Program Debugging [1681 is being adapted to imperative languages
[1001 (see Section 6.1). On the other hand, not all the techniques existing for other languages
have been adapted to logic programming. The most striking example is a dependency
analysis technique used for debugging, called “slicing” [1921 (see Section 6.3).

It has been emphasized that, in general, more research on programming environments is
needed [1481. This is especially true in logic programming, where research on programming
environments has been marginal in comparison to the needs. We believe that programming
environments should be one of the top priorities for the logic programming community in
the next ten years.

This survey gives a unifying framework which should help to develop further research
on the topic. It is subjective and certainly incomplete, but should provide a useful starting
point for people interested in logic programming environments. It gives an overview of tech-
niques, tools, and systems which help programmers develop and maintain logic programs.
It goes into some details for very basic techniques. Wherever it seems necessary, it mentions
techniques developed for other languages, which could be useful for logic programming.

The paper is organized as follows. We first set the scene. In particular, we isolate the
three aspects we believe are the core of programming environments: program development,

program analysis, andprogram debugging. We then concentrate our discussions on program
analysis and program debugging. Program analysis is especially emphasized as it is the
basis of all the tools. Presentation and visualization of information is also addressed. Lastly,
we discuss two general issues: integration mechanisms and evaluation criteria.

2. SETTING UP THE SCENE

2.1. A User Viewpoint of Programming Environments

The notion of “programming environment” can be understood in many different ways. A
common view considers all aspects related to programming, such as language features,
compiler, system support, tools, etc., as part of the programming environment. This view

is, for example, illustrated by the wide range of topics addressed in a recent workshop about
programming environments [1021.

Although this view has some foundations, it is too broad to efficiently gather research.
We would like to cover a more focused area. In particular, we want to distinguish research

LOGIC PROGRAMMING ENVIRONMENTS 353

on programming environments from research on languages.
Research on programming environments can contribute significantly to the design of

new languages, mainly by pointing out the weaknesses of existing programming languages.
A good example is contextual logic programming, which is the main outcome of the Esprit
project ALPES on logic programming environments [3]. Contextual programming neatly
integrates modules inside Prolog [1341. The types, modules, and meta-programming facili-
ties provided by the declarative language Gijdel also owe a lot to programming environment
concerns [90]. Another example is AProlog [1391 which, among other features, provides
“for free” the programming cliche mechanisms described in [7].

There are, however, problems which are not due to weaknesses of programming lan-
guages, but to intrinsic weaknesses of the human beings who specify, develop, and main-
tain programs. We consider that excising language weaknesses is part of language research,
and that research on environments should concentrate on tools to accommodate user weak-
nesses. Thus, logic programming environments would still be needed even if the “perfect”
logic programming language could be defined.

In particular, development, analysis, and debugging will always have to be supported.
Firstly, some support is needed to help users develop their programs because this is a creative
process. There is very little chance that we can ever fully model it. Secondly, automated
analysis is needed because, however abstract the programming paradigm, the size of the
programs will always end up too large for the human mind. Programmers will always have
difficulties in understanding large programs [36]. Lastly, debugging and testing support is
needed because, however careful programmers are, they can always make mistakes, either
at the specification or programming level.

The classification into development, analysis, and debugging is mainly a guideline to
present the survey. The boundaries among the three classes are not clear-cut; for example,
development and debugging are intertwined, and debugging requires program analysis. In
the following, we will concentrate on program analysis and debugging.

2.2. User-Oriented Program Analysis

Program analysis is often performed in the context of compilation, aiming at optimiza-
tion. When performed in the context of programming environments, the main difference is
that the derived properties are ultimately analyzed by human beings. This induces strong
requirements about flexibility, response time, and ergonomy. It therefore influences the
technical design of the related tools.

User-oriented program analysis is mainly aimed at helping programmers understand
programs and their behaviors. They are usually referred to as debugging tools. They, of
course, do help programmers to debug because one of the main problems while debugging
is understanding programs. However, on the one hand, debugging is more than just un-
derstanding, and on the other hand, understanding can be an aim per se. For example, a
mode analysis can help with the understanding of the dataflow of a program; a visualization
tool can help with the understanding of the operational semantics of a language; when a
new feature has to be added in an existing program, the programmer has to understand this
program, at least partially, to avoid introducing inconsistencies.

Figure 1 gives a model of user-oriented program analysis. This model is used as a
guideline in the following sections, which describe each aspect in some depth. Let us just
give a brief overview here. Program analysis uses three sources of data: program source
codes, program executions, and program specifications. These data should be available to
the analysis component as object data. This includes the transformation of specifications

354 M. DUCASSfi AND J. NOYk

,:’ Object specif. Browsing R j

A’ Object sowxs Explanations
Traces Pmfiling

Testing
Debugging

FIGURE 1. A model of user-oriented program analysis.

and source codes into an appropriate abstract syntax, as well as the extraction of execution
traces. The analysis component can perform browsing, explanation, profiling, testing,
debugging, etc. It produces information, relevant to the user at a certain moment, which is
displayed in an ergonomical way by a visualization component. This material is eventually
examined by the user.

The model emphasizes two important aspects. Firstly, program analysis is not restricted
to static analysis, i.e., analysis of source code only; Section 3 stresses that specifications
and executions are also interesting sources of data. Secondly, the central component of a
programming environment is the analysis component.

In our view, the most important objective of a programming environment tool is to
automate as much as possible of the related development and maintenance task in order
to reduce the burden of the programmers. These tasks are usually too difficult to be fully
automated. The visualization module is therefore needed to report to the user, but it is not
the main part of the environment. We, as users, prefer to examine three lines of relevant
information rather than a screen full of nice, graphically displayed, irrelevant information.
Hence, the analysis component should be the main focus of the research on programming
environments.

Very often, existing tools are regarded as too low-level or even useless because their
analysis component is, actually, too weak. For example, tracers provide a limited number of
filtering functionalities which are a degenerate and “hacked” form of analysis. Visualization
tools usually provide more sophisticated analysis mechanisms to enable several levels of
abstraction, but these mechanisms are still hidden, ad hoc, and intertwined with the graphical
mechanisms. With a proper analysis component, the generality of these tools could be
greatly improved.

The model is simple, if not simplistic. In particular, users also input requests to the
tools. It should be stressed, however, that existing systems are only a degenerate form of
this model. No current system satisfactorily covers extraction, analysis, and visualization.
We hope that in the near future we will see systems covering and integrating all aspects.

Note that program analysis as considered here is essentially a meta-programming activ-
ity; it handles program as data, as well as data as programs. This suggests considering the
analysis tools (if not the whole environment) as a meta logic program and the target logic lan-
guage as the implementation language. Some important benefits can be expected from this
approach. In particular, the development of new tools is facilitated by the self-applicability

LOGIC PROGRAMMING ENVIRONMENTS 355

of the environment and the possibility to reuse software from the object level. This also
provides a demanding testbed for the meta-programming facilities of logic programming
languages.

3. PROGRAM ANALYSIS DATA

As already mentioned, program analysis can use three sources of data: program source

codes, program executions, and program speczjkations. Program source code is a natural
candidate; there are indeed many projects on static analysis. In this section, we want to
clarify the role of program executions and program specifications.

3.1. Program Executions

Program analysis seems often restricted to static analysis, i.e., analysis of program source
code, only. Although static analysis has advantages, it is not always the most appropriate
type of analysis.

As shown by the popularity of prototyping, it seems, for example, that people often have
a better understanding of what a program should do rather than of what it should be. As
understanding is a central issue in user-oriented program analysis, executions which show
what programs actually do are an essential source of data.

As a matter of fact, there exist a number of dynamic analysis tools, for example, de-
buggers, profilers, monitors, or explanation generators. These tools are often ad hoc, with
limited scope. They are, however, driven by user demand, and their usefulness is not to be
questioned.

An execution is an instantiation of a program with specific input; only some of the
potential paths of a program are covered. While this reduces the generality of the analysis,
it also reduces its complexity. In some cases, such as bug diagnosis, there is no need to
investigate all potential execution paths. Only the paths actually used to produce the error
symptoms are relevant. Hence, analyzing executions is sometimes more relevant and more
efficient.

This is not to say that dynamic analysis is better than static analysis. Sometimes one is
more appropriate, sometimes it is the other one. Our experience shows that, most of the
time, a combination of both is actually the most appropriate,

3.2. Specifications

The third source of data for program analysis is program specifications, where a program
specification is, basically, a high-level description of the intention of the programmer.

A big asset of logic programming is that it provides a smooth transition between speci-
fications and programs. In many cases, specifications can be made formal and executable
[82], i.e., the distinction between specifications and programs is mainly a question of ef-
ficiency and level of abstraction. As a matter of fact, Prolog is sometimes considered as
a specification language (see, for example, [13, 129, 931). Even when, for the sake of
expressiveness, specifications cannot be reduced to logic programs, a uniform use of logic
provides a path between specifications, (pure) logic programs, and (efficient) Prolog pro-
grams. This has been applied with success to program synthesis (see the survey on program
synthesis, by Deville and Lau, in this issue [49]).

356 M.DUCAS&ANDJ.NOYl?

The link between specifications and programs is currently tightened through a growing
understanding of the importance of types [1531, which are essential to capture the notion
of meaningless or erroneous data, as well as to reveal meaningful approximations of the
relations to be computed. This has led to the introduction of typed versions of Prolog, e.g.,
Typed Prolog [1 IO], as well as languages which further depart from Prolog, e.g., Giidel
[90] or kProlog [1391. The type systems offered by these languages may not, however, be
expressive enough to capture the intention of the programmer. Naish suggests, for instance,
to include distinguished predicates (called type predicates) at the specification level. These
predicates are not part of the program level, but can be used to make more precise the
intended semantics of the program in different phases of its development [1421.

Introducing specifications replaces a big step (programmer’s intention to program) by
two smaller steps (intention to specification and specification to program), hopefully easier
to manage. Capturing the programmer’s intention in complete and sound specifications
remains a difficult task. In the best case, methodologies are used to enforce rigorous
development based on specifications; in the worst case, whether specifications are produced
or not depends entirely on the good will of programmers.

As a result, program analysis cannot rely on the availability of complete specifications.
Nevertheless, there are always some aspects of a system which can be easily specified.
Thus, expecting incomplete specifications is reasonable and may be beneficial. For example,
assertions partially specifying the behavior of a program help reduce user’s mediation during

algorithmic debugging [%I.

4. EXTRACTION

Program specifications, program source codes, and program executions cannot be straight-
forwardly used as analysis data. The extraction component transforms them into object data.
The role of the object syntax is both to make sure that there will be no confusion between
the object program (the program being analyzed) and the meta-program (the analyzer), and
to retain information which may be pertinent to the user (e.g., variable print names).

The transformations of program sources and specifications into object data are simple
syntactic transformations. Information about programexecutions is not as straightforwardly
available. Program executions are modeled by sets of events, usually called traces, or event
histories. Instrumentation depending on the chosen execution model is required to extract
these traces.

In the remainder of the section, we briefly describe each of these mechanisms. They
are basic mechanisms for general static and dynamic analysis, essential to programming

environments.

4.1. Object Data

The basic role of the transformation into object data is to avoid any confusion between the
object-level and the meta-level. It is essentially a naming problem, well known in static
analysis and, more generally, in meta-programming [124, 8, 121, 1961.

4.1.1. NONGROLJND AND GROUND REPRESENTATIONS. The major issue is the repre-
sentation of object-level variables. The general alternative is between a nonground and a
ground representation. Object-level variables are represented by meta-level variables in
nonground representations and by ground terms in ground representations.

LOGIC PROGRAMMING ENVIRONMENTS 357

Ideally, a nonground representation should be typed as advocated by Hill and Lloyd [91]
in order to prevent unifying real meta-level variables with meta-level variables representing
object-level variables.

Using typeless Prolog, a straightforward choice is to use a ground representation, which
has the advantage that the meta-level version of the meta-logical predicates can be given a
declarative semantics [91].

A basic ground representation of terms is described by Barklund in [8] as follows:

The name of a constant X is the compound term constant (X)
The name of a compound term whose functor is F/m and whose arguments are
Al toAmiscompound(F, [Nl, . . . , Nm]) , where Nl to Nm are names of the
arguments Al to Am, respectively.
A name of a variable X is a term var (I) where I is any positive integer, such that
the same integer I is used for every occurrence of X in all terms under consideration,

and that all distinct variables in these terms are assigned different names.

Many variants are possible. Actually, van Harmelen advocates user definable represen-

tations [1871. For our purpose, the name of constants can be the constants themselves. It

is also possible to represent compound terms by compound terms with the same principal

functor. It is then necessary to be careful not to confuse the representation of a compound

term var (Term) and the representation of a variable. A solution consists of applying a
mechanism reminiscent of the double quote mechanism used to insert quotes in strings and

represent the compound term as var (var (Term)) . Finally, the representation can also
be supported at the implementation level, e.g., by replacing wrappers such as var/l by
special tags [S].

The use of such a representation is classical in static analysis and meta-programming.
However, to our knowledge, only interpreter-based tracers, such as Maeda’s [127], have

extended its use to the representation of events.

4.1.2. UNIQUE (GLOBAL) IDENTIFIERS. Traced events including variables should not

lose variable sharing information. If two events involve the same variable, it is necessary

for dataflow analysis that the analysis component can recognize it. For instance, in Figure 2,

one expects to see the same name for the first argument of p / 1, line 1, and the argument of

q/l, line 4. Basically, each new variable created during an execution should be associated
with an identifier unique within the scope of the execution subject to analysis. In the terms
of the ground representation defined above, all terms under consideration for the definition
of I are all the terms involved in the events susceptible to analysis. However, since dataflow
analysis only makes sense along a given derivation, distinct variables which are not shared
between different derivation paths may be assigned the same name. Let us look again at
Figure 2. It does not make sense to look at lines 2 and 9, where -2 = a and -2 = b,
respectively, without understanding that they belong to two different derivations (one from
line 2 to 7, and one from line 9 to 12). Therefore, the two different instances of X, lines 5

and 12, can share the same identifier without creating any ambiguity.

The standard practice is to use the physical address of a variable as its identifier. Un-

fortunately, the uniqueness of such identifiers cannot be guaranteed; addresses may change

during the execution (e.g., due to a globalization in a WAM-based implementation, or a

memory copying or compaction due to garbage collection).

358 M. DUCA& AND 1. NOYfi

P(X, Z) :- Z = a, q(X), fail.

P(X) Z) :- z = b, q(X).
q(f(X) 1.

?- P(X, Y).

1

2

3
4

5

6

8

9

10

11

12

13

Call P(-_l# -2)
Call -2 = a

Exit a=a

Call q(J)
Exit q(fL3))
Call fail

Fail fail

Next P(__l, -2)
Call -2 = b

Exit b=b

Call q(A)
Exit q(f(_3))

Exit P(f(_3), b)

FIGURE 2. A simple Prolog trace with variable identifiers.

4.1.3. VARIABLE PRINT NAMES. Usually, programmers carefully choose theprint names
of program variables (i.e., their external, source-level, representation), so that they carry
some meaning about the application domain. As the result of an analysis is to be presented
to users, it is essential that the variable print names are kept in the representation of object
variables. The representation of a variable should therefore be composed of both its print
name and its unique global identifier. Prolog/KR [1441, KCM [1461, and ECLIPSE/SEPIA
[13 l] have implemented such a representation (modulo the problem mentioned above).

4.2. Basic Execution Models

Information about executions is not straightforwardly available. Basic models of executions
have to be designed so that extraction mechanisms can extract information related to these
models. It should be emphasized again that the basic models are not aimed at users, but at
the automated analysis module.

An execution is modeled by a set of atomic actions, or events, organized as a trace, or
event history. A sequential execution leads then to a single sequence of events, whereas
a parallel execution leads to a set of (local) sequences of events connected by dependency
links.

Events can potentially be very low level, e.g., the execution of a machine instruction, a
store access, or the execution of a communication primitive. The issue is to design a model
which is sufficiently detailed so that the analysis does not miss any information, sufficiently
high-level so that the analysis does not spend too much time restructuring or recomputing
information, and sufficiently easy to extract so that the resulting response times of the tools
are reasonable.

LOGIC PROGRAMMING ENVIRONMENTS 359

For Prolog, a number of basic models exist. A popular one is the “box model,” designed
by Byrd [26] and described formally by Tobermann and Beckstein [1821. This model shows
a procedure execution as a black box (hence its name). Events are related to goals; there
are four types of events (traditionally called “ports”). For a given goal g, the meaning of
the events is as follows:

Call g: g is being invoked;
Exit g: g has just been proved;
Redo g: the execution backtracks to a subgoal of g;
Fail g: g could not be proved.

Another model is closer to the operational semantics of Prolog. It shows backtracking
in the order in which it actually appears in the execution. The only difference with the box
model is the backtracking port Next, which has a slightly different semantics from Redo:’

Next g: the execution backtracks to g.

The difference between the two models is subtle but significant. Let us illustrate it with
an example. Figure 3 shows a program traced using the five ports previously defined. One
can see that for the facts (e.g., s) the Redo and Next events are consecutive and seem
redundant. But in large executions, goals with a nonempty body are usually more numerous
than facts. If such goals have choice points (e.g., q), the two backtracking events related to
these goals occur at very different places. Here, re-entering the box of q is shown at line 7
(before the very first backtracking to a subgoal of q), while the actual backtracking to q is
shown at line 11. The deeper the subtree to prove goals such as q, the larger the distance.
Note that if line 11 is missing from the trace (Next q), which is the case in the box model,
the invocation of t on line 12 seems to arrive by magic.

The two ports are useful. The Next port is more faithful to the operational semantics of
Prolog; it tells where backtracking actually occurs. The Redo port is very useful to trace
“breadth-first.” In particular, if the details of the execution of a goal are hidden, the Redo
port captures backtracking information which otherwise would have been lost [1881. For
automated analysis, both ports should be extracted and clearly separated as in the example.

Many refinements to the previous models can be made. For example, Eisenstadt [69]
defines six types of failure: “subgoals of g have failed; system primitive has failed; subgoal
has backtracked to cut, failing parent; no definition in database; definition exists but different
arity; arity OK but no resolvents found; and clause would have been considered but does not
unify.” Morishita and Numao [1351, as well as Schleiermacher et al. [1641, add information
at the clause level, in particular about unification. The box model has been adapted to
functional logic programming by Hanus and Josephs [88].

For some analyses, e.g., algorithmic debugging, the control flow information is of little
interest and a declarative model is more appropriate than an operational one. In such a
case, the resulting proof tree can be sufficient. Sometimes, it is also important to have
information about intermediate proof trees (i.e., before failures) or to see how the resulting
proof tree has been constructed. In such cases, one can use a degenerate version of the

’ Note that the two ports are often given the same name in different models, which is a source of ‘confusion.

360 M. DUCASSti AND J. NOYfi

q :- s. cl :- t. S.

?- q, r..

1

2

4

5

6

8

9

10

11

12

13

14

Call q

Call s

Exit s

Exit q

Call r

Fail r

Redo q % *** re-entering the box of q

Redo s 8 re-entering the box of s

Next s % backtracking to s

Fail s

Next q % *** backtracking to q

Call t

Fail t

Fail q

FIGURE 3. An operational model with two types of backtracking events.

previous operational models and keep only the Exit ports.

This list is certainly not exhaustive, and each Prolog tracer actually uses a different variant

of the previous models with more or less information. Each model has its advantages, but

none of them is absolutely better than all the others. The basic model to be used depends

on many parameters, in particular on the type of analysis which is to be performed.

4.3. Tracing Mechanisms for Sequential Executions

In the following, we list and briefly discuss some mechanisms to extract trace information

from sequential executions. A more thorough discussion can be found in [67].

4.3.1. MANUAL PROGRAM SOURCE INSTRUMENTATION. A straightforward way to ex-

tract information about executions of a program is to instrument its source code. The most

primitive way is to let users insert “write” statements into their programs. This can be very

precise when users know exactly what information is needed and insert write statements at

appropriate places, but this manual treatment can become very tedious. It usually requires

a lot of trials and errors to find the relevant places.

A more sophisticated way consists of inserting (still by hand) “trace” statements instead

of “write” statements. The trace statements can then be programmed to send information

to the analysis component. Nevertheless, letting the user insert the trace statements is

not appropriate for automated dynamic program analysis. The trace information has to

be generated automatically so that the analysis component has some guarantees that the

required information will be extracted.

LOGIC PROGRAMMING ENVIRONMENTS 361

4.3.2. AUTOMATIC PROGRAM SOURCE INSTRUMENTATION. The next step is to automat-

ically instrument programs. A technique to trace according to the box model described in

the previous section is to encapsulate examined predicates. For example, the definition of

predicate P/ 1 can be replaced by

P(X) :-

(tracetcall, p(X)) ; trace(fai1, p(x)), fail),
p-do(X) t
(tracetexit, p(X)) ; trace(redo, p(X)), fail).

p-do(x) :-

<p body>.

The trace/ 2 predicate succeeds once. When p/ 1 is invoked, trace (call, p (x))

is invoked and a Call line is traced, then p/ 1 is executed normally. If p/l succeeds,

trace(exit, p (X)) is invoked; otherwise, trace (f ai 1, p (X)) is invoked and the

failure is propagated. If p/l succeeds and the execution later backtracks,

trace (redo, p (X)) is first invoked, then fail / 0 forces a backtracking to p/ 1 it-

self.

Note that it is the current substitution of the variables which is traced. This is, in

general, what is needed; the Redo and Fail events, however, need some refinements.

This mechanism is also more sophisticated for full Prolog.*

Note also that, as mentioned before, if one is only interested in the construction of the

proof tree, tracing the Exit events is sufficient. The transformed p/ 1 predicate is then

P(X) :-

P-do(X) ,
trace(exit, p(X)).

The trace/2 predicate is programmed to pass the information to the analysis com-

ponent. The transformed code can be compiled, and therefore runs reasonably efficiently,

although the method leaves choice points at each predicate even when it is determinate,

impeding last call optimization. This solution is not too difficult to implement and is

satisfactory for occasional breakpoints.

When only the resulting proof tree is of interest, another transformation consists of

adding an extra argument to each predicate, which collects the proof tree. The predicates

P :- q, r.

q :- (sl ; s2).

are transformed into something like

21nterestcd readers can see the “advice” utility written by R. O’Keefe which is part of the
DEClO Prolog library, available by anonymous ftp from the AIAI of the University of Edinburgh
(aiai.edinburgh.ac.uk).

362 M. DUCASSk AND 1. NOY6

P(Proof(P, (ProofQ, ProofR) 1) :- q(ProofQ), r(ProofR).

q(proof(q, Proofs)) :- (sl(ProofS) ; s2(ProofS)).

Note that this can only answer questions of the type “why x” for programs without negation.
In order to answer questions of the type “why not X,” and to be able to trace programs with
negation, failing search trees have to be explicitly stored [190, 1721.

As discussed by Specht [172], the latter approach seems to be particularly adapted
to tracing bottom-up evaluations such as in deductive databases. Indeed, in bottom-up
evaluations, one cannot rely on the execution order to trace information by side effect.
Furthermore, in deductive databases, the program is typically heavily transformed before it
is compiled. Such a program instrumentation allows the information to be traced in terms
of the initial program and not in terms of the transformed one.

4.3.3. INSTRUMENTATION OF META-INTERPRETERS. A natural step is to use the same
techniques as before, but within a meta-interpreter. An introduction to meta-interpreters
can be found, for example, in [174, chapter 191. Typically, a meta-interpreter contains some
clauses to recursively process lists of goals, and a clause which reduces a single goal. This
clause can be instrumented with the same tracing instructions as above.

solve (Goal) : -
(trace(cal1, Goal) ; trace(fai1, Goal), fail),
reduce(Goal),

(trace(exit, Goal) ; trace(redo, Goal), fail).

This can be generalized to multilayered meta-interpreters [14, 175, 341.
In the same way, the construction of the proof tree in an argument, mentioned in the

previous paragraph, can be done by a meta-interpreter [19, 1671. The solve/2 predicate
carries on a second argument which is constructed inside the reduce/2 predicate as

follows:

reduce(Goa1, proof(Goa1, ProofBody)) :-

clause(Goa1, Body),

solve(Body, ProofBody).

Unfortunately, the space and time optimizations of the compiler are mostly lost. Thus,
large programs that can run when compiled may require too much memory when interpreted
by a meta-interpreter. If the only tracing means is a meta-interpreter, programmers may
be left with programs which they cannot trace. Furthermore, for user-oriented analysis,

response times must be kept reasonable; hence, the lack of efficiency is a major problem.
Partial evaluation [103,84,161,173,124], used on the instrumented meta-interpreter and

the program to be traced, can produce a program equivalent to the instrumented program of
the previous section. Partial evaluation plus instrumented meta-interpreters is more generic
than a specialized program instrumentation. One does not need to write a specialized

program transformation, but can benefit from a general partial evaluator. Furthermore, if
the simple instrumented meta-interpreter is efficient enough to trace the analyzed program,
then the partial evaluation step can be skipped.

LOGIC PROGRAMMING ENVIRONMENTS 363

Enhancing standard meta-interpreters to get high-level information is very easy. They are
therefore useful to prototype particular analyses. For example, [174, chapter 191 presents a
meta-interpreter which detects stack overflows, one which diagnoses false solutions bottom-
up, one which diagnoses false solutions top-down, and one which diagnoses missing solu-
tions.

4.3.4. COMPILED CODE INSTRUMENTATION. The implementation of the tracer can be
pushed further down. If an interpreter implemented in a low-level language is used, this
interpreter can be modified to generate trace information. Alternatively, if a compiler is
used, the compiled code can be modified for the same purpose. In the case of byte-code
compilation, the emulator can also be modified.

Notification points are set into the compiled code when an interesting event is reached.
Note that not every interesting event corresponds to a physical location in the compiled code.
The most obvious example is the Exit port. All reasonable Prolog compilers implement
last call optimization via a continuation mechanism; the last subgoal call of a clause does
not return to its caller, but the execution directly proceeds with the continuation of the call.
Hence, there is no location in the code where the debugger could be notified when the last
subgoal of a clause exits.

In the tracer of the ECLiPSe/SEPIA Prolog system [1311, the Call port corresponds
directly to a call instruction, while only facts notify the debugger when they exit. The tracer
uses its own stack of Call and Exit frames to reconstruct the other ports.

Compiled code instrumentation has given, so far, the best results in terms of both effi-
ciency and space consumption. It has also led to more precise tracing. For example, cuts
can be traced showing precisely which choice points are actually removed. This solution,
however, takes notably more time and effort to implement. The resulting tracer is also
highly dependent on the implementation of the interpreter or compiler with which it is
tightly connected. It is therefore worth considering the other solutions further, all the more
as program transformation and partial evaluation techniques have great potential.

4.4. Tracing Mechanisms for Parallel Executions

Tracing parallel executions exhibits further difficulties due to the “probe effect,” nonre-
peatability, and the lack of a synchronized global clock [1301. The first two problems can
be alleviated by resorting to execution replay. The latter one requires a careful organization
of the trace, capturing the partial ordering of the recorded events.

4.4.1. EXECUTION REPLAY. The probe effect and nonrepeatability are actually two as-
pects of the same problem: parallel executions inherently lead to races, i.e., competitions
for the access of some shared data, for example, OR-parallel access to a choice point, or
AND-parallel access to an unbound variable. The resolution of a race depends on the rel-
ative speeds of the competitors, and is therefore sensitive to any factor modifying these
relative speeds, e.g., the state of the memory hierarchy or the amount of network traffic.

This problem is especially acute with concurrent logic languages where indeterminism,
through the committed choice mechanism, is a basic language feature. If several clauses
match a goal, the chosen clause depends on the availability of the goal variable bindings and
the relative speeds of the parallel clause matching activities. As a result, running a program
twice can lead to different behaviors of the program. The problem is not absent from
parallel Prolog systems either. In OR-parallel systems, such as Aurora [32], the relaxation

364 M. DUCASSh AND I. NOY6

of the order in which the solutions are produced, combined with the use of cuts or one-
solution constructs, also leads to programs returning different results, here different answer
substitutions, including failure, from one run to the other. The introduction of asynchronous
built-in side effects (I/O, assert/retract) adds some more sources of indeterminism.

Repeatability remains an issue even when there is no indeterminism in the language (or
in the program). In that case, the results are repeatable, but the paths followed to get to these
results may still be different. Let us consider the AND-parallel execution of two goals for
both of which there is no successful derivation. Failure may then be caught alternatively
while solving one goal or the other. At an even lower level of observation, the paths may be
the same, but the scheduling of work between the processing agents different. This cannot
be ignored when tracing is done with performance debugging in mind or when the system
itself is being debugged.

Finally, since tracing is both time and space consuming, switching tracing on may also
influence race resolution and modify the behavior of the traced program. This is the probe
effect. In general, a trace does not reflect the execution without tracing, and two executions
of the same program do not result in the same trace.

Control driven execution replay [11_5,118] is a generic method to deal with indeterminism
in parallel programs. During an initial execution, each process involved in the computation
records a minimal trace, called history tape, collecting the result of all the race resolutions,
as well as program input. The race-related events are very simple. In case of a shared
memory implementation, each event corresponds to a shared object access. It records the
object identifier and its version number. In case of a message-passing implementation, each
event corresponds to a message reception. It records the sender identifier and the message
number (local to the sender). This simplicity, together with the lack of global bottleneck,
makes the process very lightweight, limiting the probe effect. The history tapes can then be
used to guide new executions, called replays, which are equivalent to the initial execution.
In particular, detailed tracing can be safely performed during replay.

Execution replay has been implemented in the parallel Prolog system PEPSys [9], based
on Instant Replay [1151, the seminal version of execution replay based on shared objects.
Execution replay was mainly seen as a tool to help debug the system itself. In particular, it
captured scheduling decisions. Interestingly, exploiting specific properties of the PEPSys
computational model made it possible to implement a simplification of the initial instant
replay scheme [44]. This resulted in a very low overhead for the initial execution, typically
2-3%, ensuring, in general, an identical behavior of the system with and without recording

on.
Execution replay has also been considered in the context of concurrent logic languages.

In [1671, Shapiro describes a simple Flat Concurrent Prolog meta-interpreter which, com-
bined with a source transformation of a (noninteractive) program, computes, as a tree

data-structure, a trace recording the order of goal reductions. This makes it possible to
reconstruct the computation, e.g., to apply algorithmic debugging techniques. In the same
spirit, Gaifman et al. give a transformation which captures the indeterminism of committed
choices [83]. The transformation is justified by a study of execution replay in an abstract
setting, showing in particular that execution replay of concurrent logic/constraint programs
is simplified by a monotonicity property of these programs. Preliminary experimental re-
sults on a stream merger running on the Concurrent Prolog system Logix [1701 give some
upper bounds of the cost of the transformation: a 50% overhead on the initial execution
and 25% on the replay. Considering the highly nondeterministic nature of the application,
the transformation should be reasonably effective in real-life applications including sizable
deterministic computations. Let us note that both proposals are weak forms of execution

LOGICPROGRAMMINGENVlRONMENTS 365

replay, as previously described. They do not allow for a parallel replay of the execution
with an equivalent scheduling.

Execution replay makes it possible to remove indeterminism from parallel tracing, al-
lowing cyclical debugging, while limiting the probe effect. It also makes it possible to
relate different kinds of traces of the same program, leading to a better integration of the
debugging tools. Leu and Schiper [1171 show, for instance, how to integrate visualization
and symbolic debugging. Execution replay should be a basic component of any parallel
environment.

4.4.2. THE LACK OF GLOBAL TIME. It is essential that the analysis component can
move forward and backward from a given event. This is easy when considering sequential
executions. Events are usually time stamped with a chronological event number and the
trace is organized as a sequence of events. Such an organization is still possible with
parallel executions. It requires either a global (possibly logical) clock, easily available on
a shared memory machine, or totally ordered logical clocks, as defined by Lamport [1111.
An interesting alternative consists of organizing the global trace as a set of local traces
connected together through links corresponding to communication between the parallel
activities, in the spirit of the history tapes of execution replay. Such an organization is more
accurate in that it does not impose an arbitrary total order on the trace, but keeps the causal
dependencies between the events. A further step would be to time stamp the events with
partially ordered logical clocks [79, 1571, or to recreate these time stamps at analysis time
(in case of post mortem analysis of a full trace), and take advantage of the applicability of
these clocks to concurrency measures and global state analysis.

4.5. Connection with the Analysis Component

The model given in Figure 1 is a conceptual model only. It is very costly to systematically
extract and send all the pieces of possibly interesting information regarding specifications,
sources, and executions to the analysis module each time something new is occurring.
Traces and sources can be very large, and any particular analysis requires, in general, only
selected information. Thus, communication between the two components has to be driven
by the analysis component.

Partial solutions exist for analysis of executions traces. Ducasst has designed a trace
query mechanism which optimizes control flow analysis [61]. Kusalik and Oster provide
parameterizations of the extraction components, based on meta-interpreters [1071. Solu-
tions derived for imperative languages in the Dalek system [1471 could be useful for logic
programming.

The problem, even if less acute, also exists for source access. When program sources
get really large, it is inappropriate to parse them each time a property has to be derived.
Database systems could be used to store already parsed pieces of code.

5. SOME USER-ORIENTED PROGRAM ANALYSES

The following list of analyses focuses on aspects which have not been given much attention
so far in the community: browsing, explanations, profiling, and reverse-engineering. It
does not pretend to be exhaustive. In particular, we conjecture that many existing static
analyses developed within the framework of abstract interpretation (see, for example, [132,
21, 39, 22, 891) could derive properties interesting for end users.

366 M. DUCASS6 AND 3. NOYfi

Our aim is not to discuss how analyses are implemented, but to give an indication of
what they can be used for in the context of programming environments. Debugging and
testing, which are particularly important for programming environments, are addressed in
the next section..

5. I. Browsing

For experienced programmers, it is usually easy to gain local understanding of programs.
This is especially true in Prolog where variables are local to a clause and where most
systems now have some sort of modularity. When the size and number of modules increase,
programs become harder and harder to understand. Users need some support to gain a global
understanding, e.g., of the relationships between predicates and between modules.

A strong ergonomical requirement is that, at each moment, a user should not have to face
more than seven items of information (plus or minus two) [1331. The nature of the items
depends on the skill of the concerned user.

Browsers help users traverse stepwise both source and executions. Step-by-step tracing,
for example, is a very primitive way of browsing. Executions and sources can be abstracted
so that, at each browsing step, the user sees a “chunk” of information which gives meaningful
information of reasonable size.

The issue is then to define abstraction criteria. For Prolog executions, some necessary
abstraction criteria have been identified by Bergantz and Hassell [111: control flow, data
flow, data structure, and function relations. Control flow, data flow, and data abstracts have
been implemented in the Opium system [58], together with failure and endless loop analyses
which produce symptom-oriented abstracts. Hook et al. propose a recursion abstract and
a dataflow abstract [95]. Top-down zooming is a common browsing strategy [5,70, 1231.
It starts from the topmost goals and recursively zooms into their executions whenever the
analysis requests it. Most graphic systems discussed in the visualization section provide
browsing facilities. The transparent Prolog Machine (TPM) has two levels of granularity
and provides ad hoc abstraction mechanisms [16]. In a related field, [122] restructures
proofs made by theorem provers. For imperative languages, the Traceview system [128]

provides a number of abstract points of view.
The usual source browser is a cross referencer as, for example, Xref, written by Dave

Bowen et al., and part of the AIAI Prolog library. In our point of view, much more could
be done in source browsing than cross referencing. For example, it would be very helpful,
when looking at recursive predicates, to automatically abstract away all the arguments which
do not take part in the recursion.

5.2. Explanations

Explanation systems are usually based on high-level browsing, but go further in the direction
of users.

Explanations are essential for teaching purposes. Novice programmers have misconcep-
tions about the language they use [189,941. This can be overcome by an appropriate model
[25], or by tutoring systems [43]. Explanations can also be very helpful for experienced
programmers to debug programs [197,72,59].

However, explanations are mostly required to help end-users of sophisticated programs
to accept the results of computations. The problem is well known for expert systems,

but it seems to be identical for other areas, such as deductive databases or systems using

LOGIC PROGRAMMING ENVIRONMENTS 367

constraints. Unless appropriate explanation tools are provided, the new technologies will
not break through.

For deductive databases, the study has started [169, 193, 172,4], but people are mainly
busy extracting the resulting proof tree. No sophisticated explanation system has been built
yet.

Logic programming has been used to support explanations for expert systems [42,73,
163, 175, 1961. Conversely, studies of explanations for expert systems could certainly
contribute to the explanations of logic programs; see, for example, [159, 178, 1491.

5.3. Projling

Profiling consists of investigating where the programs consume most of their time or space
in order to know, for example, what needs to be optimized by hand. Although clever
compilers reduce the need for profiling, there is always a need for tools to understand
where computations spend time. For example, a program written in a style as declarative
as possible will not, in general, be sufficiently efficient. However, there is no need to
optimize all of it (at the risk of making the program too complicated and hard to maintain).
Usually, 80% of a computation is spent in 20% of the code. Identifying this 20%, and only
optimizing it, is a significant gain in time and maintainability.

Profilers give some insight into the time spent in units of the code [87]. This information
can be seen as a sort of trace. It is, however, of a lower level than the information usually
provided by tracers. Nevertheless, this information is basic, and should be extracted by
the same component as the other trace. Once extracted, it has to be analyzed in the same
flexible way by the analysis component. It is a problem that existing profilers require the
users to perform most of the analysis by hand.

Most existing logic programming systems provide a profiler which gives some statistics
about occurrences of events and measurements of time; see, for example, ParaGraph [2] for
a multiprocessor profiler. Most profilers are dynamic only. Gorlick and Kesselman [85] and
Tick [1811 combine static and dynamic analysis. These systems, however, lack, in general,
the flexibility of a generic analysis component. Cohen and Carpenter [40] developed a
language to inquire about the run-time behavior of Algol programs. This language allows
more general analysis to take place.

In the context of parallel systems, profiling is also useful to estimate the inherent paral-
lelism of an application and even give parallelization hints [177,75, 165, 1081.

5.4. Reverse-Engineering

Prolog has been successfully used for reverse-engineering Cobol programs [17,311. Con-
versely, although the number of logic programs has not yet reached the critical mass
which makes reverse-engineering an absolute necessity, one could imagine that reverse-
engineering tools are designed for logic programming to help structure or re-structure
existing code.

6. AUTOMATED DEBUGGING AND TESTING

Debugging and testing are central issues of programming environments. We see testing as
the process of analyzing a program with the intent of detecting errors, while debugging is
the process of analyzing a program to locate andjix the detected errors.

368 M. DUCASS6 AND 1. NOYI?

In this section, we review strategies and tools which are aimed at automating these costly
activities. The boundary between testing and debugging is not easy to define. For example,
some strategies are able to detect and locate at the same time. In the following, testing and
debugging are therefore usually mixed.

In a survey of automated debugging covering declarative and imperative languages [62],
we have identified three main strategies for automated debugging: verification with respect
to specification, checking with respect to language knowledge, and filtering with respect
to the error symptom. The veri$ication strategy compares the actual program with some
specification of the intended program. The checking strategy looks for suspicious places
which do not comply with some explicit knowledge of the programming language. The
jiltering strategy filters out parts of the code which cannot be responsible for the error
symptom. To these three strategies we have added a section on automated generation of test
data, as executing programs with appropriate test data happens to be the most commonly
used testing strategy in practice.

6.1. VeriJcation with Respect to SpeciJication

In the context of logic programming, the most active trend in verification is algorithmic
program debugging, based on the initial work of Shapiro [1681. It compares the execution
of a program against its specification. It assumes that there is such a complete specification.
As it is, in general, impossible to have a complete formal specification of a program, it
is actually assumed that the user can complement the formal specification and act as an
“oracle.” Algorithmic debugging, in its simplest form, runs an actual computation; at each
computation step, the assertions derived from this computation are presented to the user,
who decides whether they hold. If the program is incorrect, and if the user can correctly
answer all the questions, then an erroneous component is found. It is the part of the program
whose behavior is incorrect, but whose components all exhibit a correct behavior.

Following Shapiro’s work, a number of studies have been made for Prolog [76, 1231.
Algorithmic debugging is used in tutoring systems [1251. As the number of queries may
be rather large, some systems use heuristics to ask users more relevant questions first
[15 1,28, 27,92, 1521. Another way to reduce the number of queries is to use partial formal
specifications as partial oracles [57,56].

Algorithmic debugging has been extended to concurrent logic programming [96, 180,
120, 741, concurrent constraint logic programming [81], deductive databases [1691, and
Godel [121. Some preliminary work has been done to automatically fix programs when
complete specifications are available [48, 1161. Although this assumption seems a bit
unrealistic for real programs, this work could be useful for tutoring systems. Algorithmic
debugging has also being adapted to imperative languages [100, 1661 and lazy functional
languages [141, 1451.

Algorithmic debugging is an interesting technique. The current implementations, how-
ever, lack some user support. For example, users may make mistakes while acting as oracles.
There must therefore be some sort of checking of their answers to validate the diagnosis of

the algorithm.
Type and mode checking are other important incarnations of the verification strategy

[143, 110, 18, 1531.

LOGIC PROGRAMMING ENVIRONMENTS 369

6.2. Checking with Respect to Language Knowledge

The checking strategy systematically parses programs and searches for language-dependent
errors. The knowledge of some aspects of the language is represented by consistency rules
which model how these aspects should be implemented or should behave. These rules
capture well-formedness knowledge which could not be encoded in the compiler. Some of
the rules may assume that programming conventions are adhered to. This technique checks
program sources and program executions against the consistency rules. The parts of the
program which do not conform are suspicious. The rules used to detect the errors provide
some explanation of the mistake.

The larger the programs, the more likely it is that they will deviate from stereotyped
programming styles, even if coding standards are adhered to. Hence, an important issue
for this technique is to choose the sensitivity of the checking: how much should a part of
a program deviate from a rule to be suspected? If the technique is too sensitive, it will be
oversuspicious; if it is not sensitive enough, it will miss many errors.

In general, the suspicious code is not necessarily erroneous. Furthermore, some errors
cannot be detected by a system which only uses language knowledge. Last but not least,
there is no criterion to evaluate the completeness of the set of checking criteria. Therefore,
there is no limit on the number of aspects to be checked. This can result in the bad situation
where none of the errors has been detected while most of the program is suspicious with
respect to several criteria. In such a case, the programmer would have to analyze a lot of
warnings to no avail.

As already mentioned, all the analyses performed by abstract interpretation could be
applied here. The most typical examples are type and mode inference; see, for example,
[23, 461. They are very often thought of for optimization purposes, but they can be very
useful for debugging. The same applies to optimization analyses for concurrent and parallel
languages, e.g., [38].

Stereotyped bug recognition has been studied for Prolog [70, 179, 125,721. For concur-
rent languages, deadlocks have been the main type of problem investigated [97,98].

6.3. Filtering with Respect to the Error Symptom

Once a symptom of error has been detected, the filtering strategy assumes the correctness
of the program components which cannot have produced the error symptom (or which are
unlikely to produce it). This strategy does not suspect any code, but is aimed at reducing
the amount of code which has to be examined by users.

The most important filtering technique is slicing, which is a symptom-driven dependency
analysis [1921. So far, it has been addressing two symptoms: “wrong valued output variable”
and “wrong control sequence.” Slicing prunes out the parts of the program which the wrong
value, respectively the wrong control sequence, does not depend on. What remains from
the program is called a slice. Slicing according to a wrong valued variable uses a dataflow
analysis, and slicing according to a wrong control sequence uses acontrol-flow analysis. The
slice can be computed symbolically using the program source only, or it can be computed
on the particular program behavior which has exhibited the symptom under study. A slice
does not always contain the erroneous statement [1051, but it is always informative.

At present, there exists no slicing algorithm for Prolog or any other logic programming
language. There are enough flow analyses so that this could be done promptly; see, for
example, [46]. Slicing algorithms for imperative languages can be found in [192, 155, 61.
Slicing for concurrent and parallel imperative languages has also been studied [68,35,51].

370 M.DLJCASS6ANDJ.NOYfi

Heuristic filtering consists of making a priori hypotheses about parts of the program
which may not have caused the detected symptom in order to restrict the search space
for further investigations. This technique is only acceptable if there is a possibility of
backtracking over the hypotheses when further analysis does not succeed in finding the error.
Pereira and Calejo have applied some heuristic filtering to logic programs, in complement
with algorithmic debugging [150,281.

4.4. Test Cases

A restrictive definition of testing is given by [1381: Testing is the process of executing a
program with the intent offinding errors. There are testing strategies other than simply ex-
ecuting the program. Verification and language checking as defined earlier are good means
to detect errors. However, even powerful verification and checking tools are incomplete.
Executing programs with appropriate test data cannot be avoided. Therefore, support is
needed to generate systematic test data.

Test cases should ensure that as many errors as possible are detected. It should integrate
several techniques, and should be able to tell users what has been tested so far, and what
confidence on which part can be assumed.

Software testing is a flourishing field of software engineering, and logic programming
is used as a basis for testing other languages [86, 129, 1761. However, work on testing
methodologies applied to logic programming languages is just starting [lo].

Testing methodologies and techniques are essential for the acceptance of Prolog and other
logic programming programs as “real” programming languages. For example, program
mutation [47] should be investigated . Program mutation consists of changing small parts
of a program and seeing whether the program still behaves correctly (or incorrectly).

7. PRESENTATION AND VISUALIZATION OF INFORMATION

Once program specifications, sources, and executions have been analyzed and properties
derived, the results have to be presented to the user. In this section, we present some

ergonomical presentation and visualization concepts.

We consider both textual and graphical presentation means. Indeed, some people have
poor abilities to decipher 3D diagrams. It has been shown that these people are penalized
when browsing through hypertext systems [30]. Therefore, environments should provide
both textual and graphical tools to accommodate all kinds of users.

In the following, we distinguish two types of visualization: application independent
and application dependent. We believe that the issue is really to provide the support for
application-dependent visualization. For example, 80% of the code written for CHIP [52]
applications is typically dedicated to visualization,

7.1. Application-Zndependent Visualization

We review in this section the general visualization tools.

7.1.1. TEXTUAL PRESENTATION. A straightforward and mandatory help is to display
both source and trace at the same time, emphasizing their connection. For example, source-
oriented tracers move pointers in the source code to show where the execution currently is
[154, 156,291. Source code, therefore, gives some context to understand execution traces.
A next step is to use hypertexts as in the thesis of Calejo [27, chapter 61.

LOGIC PROGRAMMING ENVIRONMENTS 371

7.1.2. GRAPHICAL PRESENTATION. Quite a number of graphical paradigms exist. These
paradigms are at the end of the chain; they do not help any automation, but are instead aimed
at users. Enhanced proof trees have been used in the context of sequential systems. OR-
parallel systems usually rely on representations of the search tree. Concurrent logic systems
favor process-oriented views. Some representations are static, giving a global view, or rig-
nature, of the execution. Some change over time, leading to either histories or animations.

There is actually no best representation; each representation gives a different view, and is
useful in some cases and not so useful in others. Elaborate systems combining different
representations, together with new tools based on more powerful analyses, are emerging.

Execution trees and graphs. In the context of sequential systems, most graphical
systems are based on proof tree representations, which give an immediate picture of the
proof structure and are easy to match to the clause structure of the source code, as well as to
the implementation. The problem with proof trees, however, is that the information related
to backtracking is lost. Ferguson diagrams [184, 501 and Aorta diagrams of the Transpar-
ent Prolog machine [71] are enhanced proof trees which retain part of the backtracking
information.

In parallel systems, the focus is more on the amount and exploitation of the available par-
allelism. In OR-parallel systems, the focus has therefore been on the incremental building
of the search tree in WAMTRACE [53], Must [1771, and Par-Trace [55]. Alhough a proof
tree (or procedure invocation tree) can be used to represent an AND-parallel execution, as in
VISTA [18 I], a graph structure has to be used to represent the synchronization induced by
the parallel execution of AND branches. VisAndOr [33] uses such a structure in a generic
way; it has been designed in order to accommodate different basic execution models (OR-
parallelism, restricted AND-parallelism, and determinate-dependent AND-parallelism), as
well as to explore representations for combinations of these models.

The static call graph is another means used to graphically give some context to a com-
putation. In [I 121, Lazzeri first builds a static call graph and, as source-oriented tracers,
points to nodes of this graph as the execution proceeds.

A process-oriented view. Switching from the standard left to right computation rule
of Prolog to coroutining [140] introduces the idea of goals “communicating” data back
and forth, and suggests visualizing a logic program as a dynamic network of processes
communicating via shared variables, i.e., visualizing the so-called process reading of logic
programs [1861. Such a representation has been mainly used in the context of concurrent
logic languages [74, 183, 127,411.

Histories, animations, and program signatures. There are many ways to look at the
above-mentioned representations. Two basic choices are between a dynamic versus a static
view and a local versus a global view. Each view has its advantages.

For instance, the animation of the search tree offered by OR-parallel systems is a sophis-
ticated browsing mechanism which turns out to be very good for observing the instantaneous
state of a system, but is not able to capture patterns of behavior over time.

Such global patterns can be better analyzed from static program signatures such as the
ones generated by VisAndOr and VISTA. An interesting feature of VISTA is that procedure-
invocation trees of concurrent logic programs are displayed by using radial coordinates and

372 M. DUCA?& AND .I. NOY6

condensation. This indeed makes it possible to better use the space on the screen, and gives
global pictures of executions which are still reasonably “readable” in spite of the number
of nodes displayed.

In [41], Conlon .and Gregory present a set of local views on query variables, shared
variables between processes (channels), and processes, which facilitates the debugging of
Parlog programs. In particular, the instantiation of shared variables can be displayed either
in film format or in snapshot format. The film format is an animation of the successive
variable instantiations. As animation in general, it does not make it easy to follow the
history of the variable over time. When this is necessary, the snapshot format, listing a
history of the variable states, can be used. The same kind of idea is also applied to tracing
individual processes.

A better representation for parallel and concurrent executions is a process (or agent)-
oriented view. The sequential parts are abstracted away and the communication parts are
emphasized.

Integration and abstraction. More powerful environments can be built by combining
the above-mentioned visualizations and better integrating them in the overall environment.
For instance, the programming environment of the OR-parallel system MUSE integrates,
together with a built-in statistics and benchmarking package, animation and global view
by combining Must and VisAndOr [1011. This direction is also followed by its competitor
system, Aurora [126]. For the time being, visualization is performed, in both systems,
off-line. A further step would be to use, as suggested above, execution replay techniques
to synchronize visualization and an execution replay.

A key to a better use of visualization is also the provision of higher-level analyses. This
is illustrated by the work on ParSee [1081 which, in the context of performance debugging,
is able to characterize a predicate by a single colored line combining three abstract measures
related to granularity and scheduling.

Graphical languages. Following strict visual requirements, a graphical representation
of Prolog predicates is used as a basis for a graphical language [1091. It can be animated
[160].

Also based on predicate representation, a graphical programming language is underway
for concurrent constraint logic programming [99]. It is used for writing, animating, and
debugging programs.

7.2. Application-Dependent Visualization

As with explanations, the main issue of visualization is actually to support the end-users of
the applications. We believe that the problem is not so much to provide nice representations
at the level of the programming language, but to provide customization mechanisms and
basic graphical packages to help programmers provide appropriate graphic representations
of their applications. A survey of the topic can be found in [1371.

For example, the KEATS system provides graphical explanations for knowledge-based
systems [54]. In [37], mechanisms are introduced to enable customization of the graphics.
In [15, 1071, parameterization is a general design concept.

Graphical packages that have a proper interface to the environments are essential. Two
such packages for Prolog are PCE [194, 1951 and the graphic facilities of YAP [113, 1141.

LOGIC PROGRAMMING ENVIRONMENTS 373

h usual source of data
~ -b unusual source of data

FIGURE 4. Current tools waste resources.

8. GENERAL PROGRAMMING ENVIRONMENT ISSUES

In this section, we discuss two general problems, namely, integration mechanisms and
evaluation criteria.

8.1. Integration Mechanisms

A major issue in programming environments in general (not only for logic programming) is
to design integration mechanisms. How can we integrate, in a user-friendly and sound way,
so many tools based on so many techniques? Part of the problem is that, at the moment,
not all the sources of data are used by the tools. As illustrated by Figure 4, (partial)
specifications, source code, and (traces of) executions are not used at their full potential.
The three sources of data about a program should be used in synergy if a strategy requires
it. The problem is also that tools are artificially partitioned, and that they do not benefit
from each other. Users want more than a list of tools, as illustrated by Figure 5.

Regarding integration, one very important requirement is flexibility. As programming
environment tools are aiming at accommodating human weaknesses, they have to be flexible.
No two people are the same and need exactly the same support at the same time. Some
elements of solution are proposed in [60]. The analysis component provides a programming
language, namely, Prolog, so that static and dynamic analysis can be jointly programmed.
These programs can be neatly integrated into the debugging environment thanks to an
extension handler which ensures some consistency in the visibility of the extensions. In
particular, on-line help and insertion in the graphical interfaces are provided (almost) for

374 M. DUCASSk AND 1. NOYI?

FIGURE 5. Ideal view of programming environments.

free. However, much work remains to be done. The integration mechanisms of the FIELD
environment for Unix should give some hints [1581.

8.2. Evaluation and Validation

It is difficult to draw evaluation criteria of programming environments. Since the tools are
user oriented, it is not enough to measure their performance. What should be measured is
their usability. The ideal way is to set up inquiries as done by Bergantz and Hassel [l l]
and Mulholland [136]. Such measurements are very costly. They are nevertheless very
instructive. Cooperation with cognitive scientists should be reinforced to try to establish a
list of criteria for the evaluation of (logic) programming environments.

Cognitive validation is a long-term objective. In the meantime, a common basis should
be established to test and validate the ideas at least on the same ground. In the same way that
the implementation community benefited from the setting up and circulating of benchmark
suites, a library of important buggy and correct programs should be set up and shared among
the logic programming community.

9. CONCLUSION

In this survey, we have given a focused and maybe unusual point of view of logic program-
ming environments. A large number of references related to logic programming environ-
ments are gathered, which show that the field, although maybe scattered, is active. We
have given a framework which separates environment tools into extraction, analysis, and
visualization. It emphasizes that program analysis, both static and dynamic, is the central
issue in programming environments. This point of view helps to analyze existing tools and
should give some guidelines for forthcoming ones.

We have listed the achievements in logic programming, pointed out some techniques
developed for other languages which should be adapted to logic programming environments,
and drawn some trends for further research. Among the main achievements are algorithmic
debugging, tracing for sequential Prolog, and abstract interpretation. The main techniques
still missing are slicing, test case generation, and program mutation. The perspectives we
see are integration, evaluation, and above all, automated static and dynamic analysis.

Programming environments are essential, however good a programming language. As
program analysis is the key issue of programming environments, languages with a clean

LOGIC PROGRAMMING ENVIRONMENTS 375

semantics which enables analysis have an indisputable superiority in the long term. Logic
programming languages have this advantage: even Prolog with its well-known weaknesses
is better than imperative languages in this area. Environments are therefore a major argument
in favor of logic programming. Research on logic programming environments should
therefore be mobilized as part of the marketing effort required for logic programming
[185].

The authors would like to thank Joachim Schimpf for his input on the “Compiled code instrumentation”

section. Steven Prestwich helped with the partial evaluation issues. Pascal Brisset, Tony Kusalik, Olivier
Ridoux, Mark Wallace, and the anonymous referees gave fruitful comments on this and earlier drafts of the
paper. Luke Hornof and Steven Prestwich helped with the English.

The idea of using “double quotes” to implement a simple ground representation was suggested by Lee
Naish in a discussion in the newsgroup camp . lang .prolog.

TheProloglibraryofthe AIAI atEdinburghcanberetrievedbyanonymousftp(aiai _ edinburgh. ac .
uk).

This work was partly done while the authors were at the European Computer-Industry Research Centre,

Munich, Germany. During this period, Mireille Ducasst was partly supported by the ESPRIT Project 5291

CHIC.

REFERENCES

5.

6.

7.

8.

9.

10.

11.

12.

13.

Abramson, H., and Rogers, M. H. (eds.), Meta-Programming in Logic Programming,
META’88, MIT Press, 1989.
Aikawa, S., Kamiko, M., Kubo, H., Matsuzawa, F., and Chikayama, T., ParaGraph: A
Graphical Tuning Tool for Multiprocessor Systems, in: FGCS’92 [78], pp. 286-293.
ESPRIT P973 ALPES Final report, New University of Lisbon, Portugal, 1989.
Arora, T., Ramakrishnan, R., Roth, W. G., Seshadri, P., and Srivastava, D., Explaining
Program Execution in Deductive Systems, in: Ceri, Tanaka, and Tsur (eds.), Proceedings
of the Deductive and Object-Oriented Databases Conference, no. 760 in Lecture Notes in
Computer Science, Springer-Verlag, Dec. 1993.
Av-Ron, E., Top-Down Diagnosis of Prolog Programs, Master’s thesis, Weizmann Institute
of Science, Israel, 1984.
Ball, T., and Horwitz, S., Slicing Programs with Arbitrary Control Flow, in: Fritzson
[80], AADEBUG’93.
Barker-Plummer, D., Cliche Programming in Prolog, in: Bruynooghe [20], pp. 247-271,
META’90.
Barklund, J., What is a Meta-Variable in Prolog? in: Abramson and Rogers [l], pp.
383-398, META’88.
Baron, U., Chassin de Kergommeaux, J., Hailperin, M., Ratcliffe, M., Robert, P., Syre,
J.-C., and Westphal, H., The Parallel ECRC Prolog System PEPSys: An Overview and
Evaluation Results, in: FGCS’88 [77], pp. 841-850.
Belli, F., and Jack, O., A Product Assurance Environment for Prolog, in: Ducasst et al.
[63], LPE’93.
Bergantz, D., and Hassell, J., Information Relationships in Prolog Programs: How do
Programmers Comprehend Functionality? International Journal of Man-Machine Studies
35:313-328 (1991), Academic Press.
Binks, D., Declarative Debugging of Abstract Data Types in Giidel, in: Fritzson [80],
AADEBUG’93.
Bough, L., Choquet, N., Fribourg, L., and Gaudel, M.-C., Test Sets Generating from
Algebraic Specifications Using Logic Programming, JournaE of System and Software
6(4):343-360 (1986).

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

M. DiJCASS6 AND 1. NOY6

Bowles, A. W., and Wilk, P. F., Tracing Requirements for Multi-Layered Meta-
Programming, in: Abramson and Rogers [1], pp. 383-398, META’88.

Brayshaw, M., An Architecture for Visualizing the Execution of Parallel Logic Programs,
in: Proceedings of the International Joint Conference in Artijcial Intelligence, Morgan
Kaufmann, 1991, pp. 870-876.
Brayshaw, M., and Eisenstadt, M., Adding Data and Procedure Abstraction to the Trans-
parent Prolog Machine (TPM), in: Kowalski and Bowen [1061, pp. 532-547, JICsLP’88.
Breuer, P., Reverse Engineering in Prolog, in: Fuchs et al. (ed.), Logic Programming
in Action, vol. 636 of Lecture Notes in Artijkial Intelligence, Springer-Verlag, 1992, pp.
290-302.

Bronsard, E, Lakshman, T. K., and Reddy, U. S., A Framework of Directionality for
Proving Termination of Logic Programs, in: Apt (ed.), Proceedings of the Joint Interna-
tional Conference and Symposium on Logic Programming, Washington, DC, Nov. 1992,
pp. 321-335, MIT Press, JICSLP’92.

Bruffaerts, A., and Henin, E., Proof Trees for Negation as Failure: Yet Another Prolog
Meta-Interpreter, in: Kowalski and Bowen [1061, pp. 343-358, JICSLP’88.
Bruynooghe, M. (ed.), Proceedings of the Second Workshop on Meta-Programming in
Logic, Department of Computer Science, K.U. Leuven, Belgium, 1990, META’90.
Bruynooghe, M., A Practical Framework for the Abstract Interpretation of Logic Programs,
Journal of Logic Programming 10(2):91-124 (1991).

Bruynooghe, M., Special Issue on Abstract Interpretation, Journal ofLogic Programming,
13 (July 1992).
Bruynooghe, M., and Janssens, G., An Instance of Abstract Interpretation Integrating
Type and Mode Inference, in: Kowalski and Bowen [1061, pp. 669-683, JICSLP’88.
Bruynooghe, M., and Wirsing, M. (eds.), International Symposium on Programming
Language Implementation and Logic Programming, vol. 63 I of Lecture Notes in Computer
Science, PLILP’92, Springer-Verlag, Aug. 1992.
Bundy, A., Pain, H., Brna, P., and Lynch, L., A Proposed Prolog Story, D. A. I. Research
Paper 283, Department of Artificial Intelligence, University of Edinburgh, 1986.
Byrd, L., Understanding the Control Flow of Prolog Programs, in: Tknlund (ed.), Logic
Programming Workshop, Debrecen, Hungary, 1980.
Calejo, M. C., A Framework for Declarative Prolog Debugging, Ph.D. thesis, New
University of Lisbon, Portugal, Mar. 1992.
Calejo, M. C., and Pereira, L. M., Declarative Source Debugging, in: Proceedings of the
5th Portuguese AI Conference, vol. 541 of Lecture Notes in Computer Science, Springer-
Verlag, 1991.
Callebaut, A., and Demoen, B., Program Sources as Model for Debugging in Prolog, in:
DucassC et al. [64], LPE’90.
Campagnoni, F. R., and Ehrlich, K., Information Retrieval Using a Hypertext-Based Help
System, SIGIR Forum, June 1989, pp. 212-220, Proceedings of the 12th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval.
Canfora, G., Cimitile, A., and de Carlini, U., A Logic-Based Approach to Reverse Engi-
neering Tools Production, IEEE Transactions on Software Engineering 18(12): 1053-1064
(Dec. 1992).
Carlsson, M., Lusk, E., and Szeredi, P., Smoothing Rough Edges in Aurora, in: Proceed-
ings of the First COMPULOG-NOE Area Meeting on Parallelism and Implementation
Technology, Technical University of Madrid, Spain, May 1993.
Carro, M., Gomez, L., and Hermenegildo, M., Some Paradigms for Visualizing Parallel
Execution of Logic Programs, in: D. S. Warren (ed.), Proceedings of the International
Conference on Logic Programming, Budapest, Hungary, 1993, MIT Press.
Casson, A., Event Abstraction Debuggers for Layered Systems in Prolog, in: Proceedings
of the UK Logic Programming Conference, Association for Logic Programming, UK
Branch, Mar. 1990.

LOGIC PROGRAMMING ENVIRONMENTS 377

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Cheng, J., Slicing Concurrent Programs, in: Fritzson [80], AADEBUG’93.

Cherniak, C., Undebuggability and Cognitive Science, Communications of the ACM

31(4):402412 (Apr. 1988).
Cochard, J.-L., A Graphical Representation Environment for Complex Prolog Structures,
in: Ducasse et al. [64], LPE’90.
Codish, M., Dams, D., and Shapiro, E., Automatic Detection of Reply Variables in
Concurrent Logic Programs, in: Bruynooghe [20], pp. 325-338, META’90.
Codognet, C., Codognet, P., and Corsini, M., Abstract Interpretation of Concurrent Logic
Programs, in: Debray and Hermenegildo [45], pp. 215-232, NACLP’90.
Cohen, J., and Carpenter, N., A Language for Inquiring about the Run-Time Behavior of
Programs, Software-Practice and Experience 7:445460 (1977).
Conlon, T., and Gregory, S., Debugging Tools for Concurrent Logic Programming, The
Computer Journal 35(2): 157-169 (1992), Wiley.
Coombs, M. J., and Alty, J., Expert Systems: An Alternative Paradigm, in: Coombs (ed.),
Developments in Expert Systems, Academic Press, London, 1984, pp. 135-157.
Coombs, M. J., Hartley, R. T., and Stell, J. G., Debugging User Conceptions of Interpreta-
tion Processes, in: Proceedings ofthe AAA1’86, Morgan Kaufmann, 1986, pp. 303-307.
Chassin de Kergommeaux, J., Peterson, D., Rapp, W., and Westphal, H., The Imple-
mentation of PEPSys on a MX-500 Multiprocessor, Technical Report CA-38, ECRC,
1988.
Debray, S. K., and Hermenegildo, M. (eds.), Proceedings ofthe North American Confer-
ence on Logic Programming, NACLP’90, Austin, TX, MIT Press, 1990.
Debray, S. K., Static Inference of Modes and Data Dependencies in Logic Programs, ACM
Transactions on Programming Languages and Systems 11(3):418-450 (July 1989).
DeMillo, R. A., McCracken, W. M., Martin, R. J., and Passafiume, J. F., Software Testing
and Evaluation, Benjamin/Gumming, Menlo Park, 1987.
Dershowitz, N., and Lee, Y., Deductive Debugging, in: SLP’87 [171], pp. 298-306.
Deville, Y., and Lau, K.-K., Logic Program Synthesis, Journal ofLogic Programming 19,
20:321-350 (1994). Also, Research Report RR 93- 19, Universite Catholique de Louvain,
Unite d’Informatique.
Dewar, A. D., and Cleary, J. G., Graphical Display of Complex Information within a
Prolog Debugger, International Journal of Man-Machine Studies 25(5):503-521 (Nov.
1986), Academic Press.
Diehl, C., Jard, C., and Rampon, J.-X., Reachability Analysis on Distributed Executions,
in: Gaudel and Jouannaud (eds.), Proceedings of the International Conference on The-
ory and Practice of Software Development (TAPSOFT’93), vol. 668 of Lecture Notes in
Computer Science, Springer-Verlag, 1993, pp. 629-643.
Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., and Berthier, F., The
Constraint Logic Programming Language CHIP, in: FGCS’88 [77].
Disz, T., and Lusk, E., A Graphical Tool for Observing the Behavior of Parallel Logic
Programs, in: SLP’87 [1711, pp. 46-53.
Domingue, J., and Eisenstadt, M., A New Metaphor for the Graphical Explanation of
Forward-Chaining Rule Execution, in: Proceedings of the International Joint Conference
on Artificial Intelligence, Morgan Kaufmann, 1989, pp. 129-134.
Dorochevsky, M., and Xu, J., ElipSys Parallel Execution Tracer, Internal Report 91-7i,
ECRC, Feb. 1992.
Drabent, W., Nadjm-Tehrani, S., and Maluszynski, J., The Use of Assertions in Algorith-
mic Debugging, in: FGCS’88 [77], pp. 573-58 1.
Drabent, W., Nadjm-Tehrani, S., and Maluszynski, J., Algorithmic Debugging with As-
sertions, in: Abramson and Rogers [11, pp. 383-398, META’88.
DucassC, M., Abstract Views of Prolog Executions in Opium, in: Saraswat and Ueda
[162], pp. 18-32, ILPS’9I.
DucassC, M., Analysis of Failing Prolog Executions, in: Proceedings of the ICLP’91

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

M.DlJCASSfiANDJ.NOYk

Workshop on Logic Programming Environments, Paris, June 1991, Technical Report
LIFO N 9 l-6 1, University of Orleans, France.

Ducasse, M., An Extendable Trace Analyser to Support Automated Debugging, Ph.D.
thesis, University of Rennes I, France, June 1992, European Doctorate.
DucassC, M.; A General Trace Query Mechanism Based on Prolog, in: Bruynooghe and
Wirsing [24], pp. 400-414, PLILP’92.
DucassC, M., A Pragmatic Survey of Automated Debugging, in: Fritzson [80], AADE-

BUG’93.
DucassC, M., Le Charlier, B., Lin, Y.-J., and Yalcinalp, U. (eds.), Proceedings of ILPS’93
Workshop on Logic Programming Environments, LPE’93, Vancouver, Oct. 1993, Publi-
cation IRISA, Campus de Beaulieu, 35042 Rennes, France,
Ducasst, M., Emde, A.-M., Kusalik, T., and Levy, J. (eds.), Proceedings of ICLP’90
Workshop on Logic Programming Environments, LPE’90, Eilat, June 1990, Technical
Report, ECRC IR-LP-3 l-25, European Computer-Industry Research Centre.
DucassC, M., and Ferrand, G. (eds.), Proceedings oflCLP’91 Workshop on Logic Program-
ming Environments, LPE’91, Paris, June 1991, Technical Report, University of Orleans,
France, LIFO N 9 l-6 1.
Ducasst, M., Lin, Y.-J., and Yalcinalp, L. U. (eds.), Proceedings of IJCSLP’92 Workshop
on Logic Programming Environments, LPE’92, Washington, Nov. 1992, Technical Report
TR 92-143, Case Western Reserve University, Cleveland.
DucassC, M., and Noye, J., Tracing Compiled Prolog Code, Publication IRISA, In
preparation, 1994.
Duesterwald, E., Gupta, R., and Soffa, M. L., Distributed Slicing and Partial Reexe-
cution for Distributed Programs, in: Proceedings of the Fifth Workshop on Languages
and Compilers for Parallel Computing, vol. 589 of Lecture Notes in Computer Science,
Springer-Verlag, 1992.
Eisenstadt, M., A Powerful Prolog Trace Package, in: Proceedings of the 6th European
Conference on Artificial Intelligence, North-Holland, 1985, Sept. 1984.
Eisenstadt, M., Retrospective Zooming, A Knowledge Based Tracing and Debugging
Methodology for Logic Programming, in: Proceedings of the 9th International Joint
Conference on Artijcial Intelligence, Morgan Kaufmann, 1985.
Eisenstadt, M., and Brayshaw, M., The Transparent Prolog Machine (TPM): An Execution
Model and Graphical Debugger for Logic Programming, Journal of Logic Programming
5(4):277-342 (1988).
Emde, A.-M., and DucassC, M., Automated Debugging of Non-Terminating Prolog Pro-
grams, in: Proceedings of the ICLP’90 Workshop on Logic Programming Environments,
June 1990, Technical Report, ECRC IR-LP-31-25.
Eriksson, A., and Johansson, A.-L., Neat Explanation of Proof Trees, in: Proceedings
of the 9th International Joint Conference on Arttficial Intelligence, Morgan Kaufmann,
1985, pp. 379-38 1.
Feldman, Y., and Shapiro, E., Temporal Debugging and Its Visual Animation, in: Saraswat
and Ueda [162], pp. 3-17, ILPS’91.
Fernandez, M. J., Carro, M., and Hermenegildo, M., IDeal Resource Allocation (IDRA): A
Technique for Computing Accurate Ideal Speedups in Parallel Logic Languages, Technical
Report FIM26.3/AI/92, Computer Science Faculty, Technical University of Madrid, Sept.
1992.
Ferrand, G., Error Diagnosis in Logic Programming, An Adaptation of E.Y. Shapiro’s
Method, Journal of Logic Programming 4: 177-198 (1987).
Proceedings of the International Conference on Fifth Generation Computer Systems,
Tokyo, Japan, Dec. 1988, ICGT.
Proceedings of the International Conference on Fifth Generation Computer Systems,
Tokyo, Japan, June 1992, ICOT.

LOGIC PROGRAMMING ENVIRONMENTS 379

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.
97.

98.

99.

Fidge, C., Logical Time in Distributed Computing Systems, IEEE Computer 28-33 (Aug.
1991).
Fritzson, P. (ed.), Proceedings of the First Workshop on Automated and Algorithmic

Debugging, vol. 749 of Lecture Notes in Computer Sciences, Linkoeping, Sweden, May
1993, Springer-Verlag, AADEBUG’93.
Fromherz, M. P. J., Declarative Debugging of Concurrent Constraint Programs, in:
Fritzson [80], AADEBUG’93.
Fuchs, N. E., Specifications Are (Preferably) Executable, Software Engineering Journal
323-334 (Sept. 1992), IEE Publications. Also, Technical Report 91.10, Department of
Computer Science, University of Zurich.
Gaifman, H., Maher, M. J., and Shapiro, E., Replay, Recovery, Replication and Snap-

shots of Nondeterministic Concurrent Programs, in: Proceedings of the International
Conference in Principles OfDistributed Computing, Montreal, Canada, 1991, ACM Press.
Gallagher, J., Transforming Logic Programs by Specialising Interpreters, in: 7th European
Conference on Artzficial Intelligence, North-Holland, 1986, pp. 109-122.
Gorlick, M. M., and Kesselman, C. F., Timing Prolog Programs without Clocks, in:
SLP’87 [1711, pp. 42-32.
Gorlick, M. M., Kesselman, C. F., Marotta, D. A., and Parker, D. S., Mockingbird: A
Logical Methodology for Testing, The Journal of Logic Programming 8(1 and 2):95-120
(Jan./Mar. 1990).
Graham, S. L., Kessler, P. B., and McKusick, M. K., gprof: A Call Graph Execution
Profiler, in: Proceedings of the SIGPLAN ‘82 Symposium on Compiler Construction,
June 1982, pp. 120-126, SIGPLAN Notices 17(6).
Hanus, M., and Josephs, B., A Debugging Model for Functional Logic Programs, in:
M. Bruynooghe and J. Penjam (eds.), Proceedings of the Programming Language Imple-
mentation and Logic Programming Symposium, vol. 714 of Lecture Notes in Computer
Science, Springer-Verlag, 1993.
Hermenegildo, M. V., Abstract Interpretation and Its Applications, Tutorial presented at
JICSLP’92, Nov. 1992, Technical University of Madrid, Spain.
Hill, P. M., and Lloyd, J. W., The GGdel Programming Language, Technical Report
CSTR-92-27, Department of Computer Science, University of Bristol, Oct. 1992.
Hill, P. M., and Lloyd, J. W., Analysis of Meta-Programs, in: Abramson and Rogers [l],
pp. 23-5 1, META’88.

Hirunkitti, V., and Hogger, C. J., A Generalised Query Minimisation for Program Debug-
ging, in: Fritzson [80], AADEBUG’93.

Hoffman, D., and Strooper, P., Automated Module Testing in Prolog, IEEE Transactions
on Sofrware Engineering 17(9):934-943 (Sept. 1991).
Hook, K., Taylor, J., and du Boulay, B., Redo “TRY ONCE and PASS”: The Influence of
Complexity and Graphical Notation on Novices’ Understanding of Prolog, Instructional
Science 19:337-360 (1990), Kluwer Academic Publishers.
Hook, K., Wmrn, A., and Pain, H., Possible Extensions to the Byrd Box Tracer Aimed
at Experts, Poster presented at the Workshop of the Psychology of Programming Interest
Group, UK, Jan. 1992.
Huntbach, M. M., Algorithmic Parlog Debugging, in: SLP’87 [171], pp. 288-297.
Inamura, Y., and Onishi, S., A Detection Algorithm of Perpetual Suspension in KLl, in:
Warren and Szeredi [191], pp. 18-30, ICLP’90.
Ishida, S., and Chikayama, T., Programming Environment of PIMOS, in: DucassC et al.
[66], pp. 48-54, LPE’92.
Kahn, K. M., Concurrent Constraint Programs to Parse and Animate Pictures of Concurrent
Constraint Programs, in: FGCS’92 [78].

380 M. DUCASSi? AND 1. NOYti

100.

101.

102.

103.

104.

10.5.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

Kamkar, M., Shahmehri, N., and Fritzson, P., Bug Localization by Algorithmic Debugging
and Program Slicing, in: Deransart and Maluszynski (eds.), Proceedings ofthe Program-
ming Language Implementation and Logic Programming Symposium, vol. 456 of Lecture
Notes in Computer Science, Linkoeping, Sweden, Aug. 1990, Springer-Verlag.
Karlsson, R., A High-Performance OR-Parallel System, Ph.D. thesis, The Royal Institute
of Technology, Stockholm, Sweden, Mar. 1992.
Klint, P., Reps, T., and Snelting, G., Programming Environments, Report on an Interna-
tional Workshop at Dagstuhl Castle, ACM SIGPLAN Notices 27(11):90-96 (Nov. 1992).
Komorowski, J., Partial Evaluation as a Means for Inferencing Data Structures in an Ap-
plicative Language: A Theory and Implementation in the Case of Prolog, in: Proceedings
of the Symposium on Principles of Programming Languages, ACM, 1982, pp. 2X-267.
Komorowski, J. (ed.), Proceeedings of the Workshop on Prolog Programming Environ-
ments, Sweden, 1982, University of Linkoeping.
Korel, B., Identifying Faulty Modifications in Software Maintenance, in: Fritzson [80],
AADEBUG’93.
Kowalski, R. A., and Bowen, K. A. (eds.), Proceedings of the Joint International Confer-
ence and Symposium on Logic Programming, JICSLP’88, Seattle, WA, Aug. 1988, MIT
Press.
Kusalik, A. J., and Oster, G. M., Towards a Generalized Graphical Interface for Logic
Programming Development, Technical Report 93-2, University of Saskatchewan, Canada,
1993.
Kusalik, A. J., and Prestwich, S. D., Programmer-Oriented Visualisation of Parallel Logic
Program Execution, in: DucassC et al. [63], LPE’93.
Ladret, D., and Rueher, M., Vlp: A Visual Logic Programming Language, Journal of

Visual Langunges and Computing 2: 163-188 (1991), Academic Press.
Lakshman, T. K., and Reddy, U. S., Typed Prolog: A Semantic Reconstruction of the
Mycroft-O’Keefe Type System, in: Saraswat and Ueda [162], pp. 202-220, ILPS’91.
Lamport, L., Time, Clocks, and the Ordering of Events in a Distributed System, Commu-
nications of the ACM 21(7):558-565 (July 1978).
Lazzeri, S. G., Vizzprol: A Tool for Visualizing Prolog Programs, in: DucassC and
Ferrand [65], LPE’91.
Leal, J. P., The Ytoolkit: A Prolog Approach to a User Interface, in: Ducasst et al. [64],
LPE’90.
Leal, J. P., Damas, L., and Moreira, N., An History Based Interface, in: DucassC and
Ferrand [65], LPE’91.
Leblanc, T., and Mellor-Crummey, J., Debugging Parallel Programs with Instant Replay,
ZEEE Transactions on Computers C-36(4):471-481 (Apr. 1987).
Lee, Y.-J., and Dershowitz, N., Debugging Logic Programs Using Specifications, in:
Fritzson [80], AADEBUG’93.
Leu, E., and Schiper, A., Execution Replay: A Mechanism for Integrating a Visualization
Tool With, in: Boug6, Cosnard, Robert, and Trystram (eds.), Proceedings of the 2nd Joint
international Conference on Vector and Parallel Processing, vol. 634 of Lecture Notes in

Computer Science, Springer-Verlag, Sept. 1992, pp. 55-66.
Leu, E., Schiper, A., and Zramdini, A., Efficient Execution Replay Technique for Dis-
tributed Memory Architectures, in: Bode (ed.), Proceedings of the 2nd European Confer-
ence on Distributed Memory Computing, vol. 487 of Lecture Notes in Computer Science,

Springer-Verlag, 1991, pp. 315-324.
Levi, G., and Martelli, M. (eds.), Proceedings of the International Conference on Logic
Programming, ICLP’89, Lisbon, Portugal, June 1989, MIT Press.
Lichtenstein, Y., and Shapiro, E., Abstract Algorithmic Debugging, in: Kowalski and
Bowen [106], JICSLP’88.
I_im, P., and Stuckey, P. J., Meta Programming as Constraint Programming, in: Debray
and Hermenegildo [45], pp. 4 16-430, NACLP’90.

LOGIC PROGRAMMING ENVIRONMENTS 381

122.

123.

124.
125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

Lingenfelder, C., Structuring Computer Generated Proofs, in: Proceedings of the I I th

International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 1989, pp.
378-383.
Lloyd, J. W., Declarative Error Diagnosis, New Generation Computing 5(2): 133-154
(1987), Springer-Verlag.
Lloyd, J. W., Directions for Meta-Programming, in: FGCS’88 [77], pp. 609-617.
Looi, C.-K., Analysing Novices’ Programs in a Prolog Intelligent Teaching System, in:
Proceedings of the European Conference on Artijcial Intelligence, Munich, Aug. 1988,
pp. 314-319, Pitman.
Lusk, E., Mudambi, S., Overbeek, R., and Szeredi, P., Applications of the Aurora Parallel
Prolog System to Computational Molecular Biology, in: Miller (ed.), Proceedings ofthe

International Logic Programming Symposium, ILPS’93, Vancouver, Canada, Oct. 1993,
pp. 353-369, MIT Press.
Maeda, M., Implementing a Process Oriented Debugger with Reflection and Program
Transformation, in: FGCS’92 [78], pp. 961-968.
Malony, A., Hammerslag, D., and Jablonowski, D., Traceview: A Trace Visualization
Tool, IEEE Software 19-28 (Sept. 1991).
Marre, B., Toward Automatic Test Data Set Selection Using Algebraic Specifications and
Logic Programming, in: Furukawa (ed.), Proceedings ofthe International Conference on

Logic Programming, Paris, France, 1991, pp. 202-219, MIT Press.
McDowell, C. E., and Helmbold, D. P., Debugging Concurrent Programs, ACM Computing

Surveys 21(4):593-622 (Dec. 1989).
Meier, M., Aggoun, A., Chan, D., Dufresne, P., Enders, R., Henry de Villeneuve, D.,
Herold, A., Kay, P., Perez, B., van Rossum, E., and Schimpf, J., SEPIA-An Extendible
Prolog System, in: Proceedings of the IFIP ‘89, 1989.

Mellish, C., Abstract Interpretation of Prolog Programs, in: Abramsky and Hankin (eds.),
Abstract Interpretation of Declarative Languages, Ellis Horwood Limited, 1987, ch. 8,
pp. 181-198.
Miller, Cl. A., The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information, Psychological Review 63:81-97 (1956).

Monteiro, L., and Porto, A., Contextual Logic Programming, in: Levi and Martelli [1191,
pp. 284-299, ICLP’89.
Moroshita, S., and Numao, M., Prolog Computation Model BPM and Its Debugger
PROEDIT2, in: Proceedings of the 5th Logic Programming Conference, Tokyo, June
1986, pp. 147-158, Springer-Verlag.
Mulholland, P., The Effect of Graphical and Textual Visualisation on the Comprehension
of Prolog Execution by Novices: An Empirical Analysis, Human Cognition Research
Laboratory, Open University, Milton Keynes, UK, 1993.
Murray, B. S., and McDaid, E., Visualizing and Representing Knowledge for the End User:
A Review, International Journal of Man-Machine Studies 38:2349 (1993) Academic
Press.
Myers, G. J., The Art of Software Testing, in: Business Data Processing, Wiley, 1979,
ISBN 0-471-04328-l.
Nadathur, G., and Miller, D. A., An Overview of AProlog, in: Kowalski and Bowen [106],
pp. 810-827, JICSLP’88.
Naish, L., Negation and Control in Prolog, vol. 238 of Lecture Notes in Computer Science,
Springer-Verlag, 1986.
Naish, L., Declarative Debugging of Lazy Functional Programs, in: DucassC et al. [66],

pp. 29-34, LPE’92.
Naish, L., Types and the Intended Meaning of Logic Programs, in: Pfenning [153], ch. 6,
pp. 189-216, ISBNO-262-16131-1.
Naish, L., Dart, P. W., and Zobel, J., The NU-Prolog Debugging Environment, in: Levi
and Martelli [1191, ICLP’89.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.
154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

M. DUCAS.36 AND 1. NOYk

Nakashima, H., Tomura, S., and Ueda, K., What is a Variable in Prolog? in: Proceedings
of the International Conference on Fifth Generation Computer Systems, ICOT, 1984, pp.
327-332.
Nilsson, H., and Fritzson, P., Algorithmic Debugging of Lazy Functional Languages, in:
Bruynooghe and Wirsing [24], pp. 385-399, PLILP’92.
NoyC, J., An Overview of the Knowledge Crunching Machine, in: Abdelguerfi and
Lavington (eds.), Emerging Trends in Database and Knowledge-base Machines, IEEE
Computer Society Press, 1994.
Olsson, R. A., Crawford, R. H., and Ho, W. W., A Dataflow Approach to Event-Based
Debugging, Software-Practice and Experience 21(2):209-229 (Feb. 1991), Wiley.
Osterweil, L., and Clarke, L. A., A Proposed Testing and Analysis Research Initiative,
IEEE Sofware 89-96 (Sept. 1992).
Paris, C. L., Generation and Explanation: Building an Explanation Facility for the Ex-
plainable Expert Systems Framework, in: Paris, Swartout, and Mann (eds.), Natural
Language Generation in Artificial Intelligence and Computational Linguistics, Kluwer,
Boston, 1991, pp. 49-81.
Pereira, L. M., Rational Debugging in Logic Programming, in: Shapiro (ed.), Proceed-
ings of the International Logic Programming Conference, vol. 225 of Lecture Notes in
Computer Science, London, UK, July 1986, pp. 203-210, Springer-Verlag.
Pereira, L. M., and Calejo, M. C., A Framework for Prolog Debugging, in: Kowalski and
Bowen [1061, JICSLP’88.
Pereira, L. M., Damasio, C. V., and Alferes, J. J., Debugging by Diagnosing Assumptions,
in: Fritzson [80], AADEBUG’93.
Pfenning, F. (ed.), Types in Logic Programming, MIT Press, 1992, ISBN O-262-16131-1.
Plummer, D., Coda: An Extended Debugger for Prolog, Technical Report AI87-54,
University of Texas at Austin, Apr. 1987.
Podgurski, A., and Clarke, L. A., The Implications of Program Dependences for Software
Testing, Debugging, and Maintenance, in: Kemmerer (ed.), Proceedings of the Third

Symposium on Software Testing, Analysis and Verification (TAV3), ACM-SIGSOFI’, Dec.
1989, pp. 168-178, Software Engineering Notes 14(8).
Rajan, T., Apt: A Principled Design of an Animated View of Program Execution for
Novice Programmers, in: Bullinger and Shackel (eds.), Human-Computer Interaction-
INTERACT’87, IFIP, Sept. 1987, pp. 291-296.
Raynal, M., About Logical Clocks for Distributed Systems, Operating Systems Review
(ACMSIGOPS) 26(1):411t8 (Jan. 1992).
Reiss, S. P., Connecting Tools Using Message Passing in the FIELD Program Development
Environment, IEEE Sofmare 57-66 (July 1990).
Rousset, M. C., and Safar, B., Negative and Positive Explanations in Expert Systems,
Applied Artificial Intelligence 1 (1987), Hemisphere Publishing Corporation.
Rueher, M., Revisiting Capabilities of Graphic for Logic Programming, in: Ducasse and

Ferrand [65], LPE’9I.
Safra, S., and Shapiro, E., Meta Interpreters for Real, in: Kugler (ed.), Information
Processing, Dublin, Ireland, 1986, pp. 271-278, North-Holland,
Saraswat, V., and Ueda, K. (eds.), Proceedings of the International Logic Programming
Symposium, ILPS’91, San Diego, CA, Oct. 1991, MIT Press.
Saurel, C., Contribution aux Systemes Experts: Dtveloppement d’un Cas Concret et Etude
du Probleme de la Generation d’Explications Negatives, Ph.D. thesis, ENSAE, Toulouse,

Dec. 1987.
Schleiermacher, A., and Winkler, J. F. H., The Implementation of ProTest, A Prolog
Debugger for a Refined Box Model, Sofhyare-Practice and Experience (1990), Wiley.
Sehr, D. C., and Kale, L. V., Estimating the Inherent Parallelism in Prolog Programs, in:

FGCS’92 [78], pp. 783-790.

LOGIC PROGRAMMING ENVIRONMENTS 383

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

Shahmehri, N., Generalized Algorithmic Debugging, Ph.D. thesis, Department of Com-
puter Science, Linkoeping University, Sweden, 1991, Dissertation no. 297.
Shapiro, E., The Family of Concurrent Logic Programming Languages, ACM Computing
Surveys 21(3):413-510 (Sept. 1989).
Shapiro, E., Algorithmic Program Debugging, MIT Press, Cambridge, MA, 1983, ISBN
O-262-19218-7.
Shmueli, O., and Tsur, S., Logical Diagnosis of LDL Programs, in: Warren and Szeredi
[191], pp. 112-129, ICLP’90.
Silverman, W., Hirsch, M., Houri, M., and Shapiro, E., The Logix System User Manual,
in: Shapiro (ed.), Concurrent Prolog: Collected Papers, MIT Press, 1987.
Proceedings of the Symposium on Logic Programming, San Francisco, CA, Sept. 1987,
IEEE Computer Society.
Specht, G., Generating Explanation Trees Even for Negations in Deductive Database
Systems, in: Ducasse et al. [63], LPE’93.
Sterling, L., and Beer, R. D., Incremental Flavor-Mixing of Meta-Interpreters for Expert
System Construction, in: Proceedings of the 3rd Symposium on Logic Programming, Salt
Lake City, 1986, pp. 20-27.
Sterling, L., and Shapiro, E., The Art ofprolog, MIT Press, Cambridge, MA, 1986, ISBN
O-262-69 105 1.
Sterling, L., and Yalcinalp, L. U., Explaining Prolog Based Expert Systems Using a Lay-
ered Meta-Interpreter, in: Proceedings of the International Joint Conference on Artificial
Intelligence, Morgan Kaufmann, 1989.
Strooper, P., and Hoffman, D., Prolog Testing of C Modules, in: Saraswat and Ueda
[162], pp. 596-610, ILPS’91.
Svensson, C., and Sundberg, J., MUSE Trace. A Graphic Tracer for Or-Parallel Prolog,
Technical Report T90003, SICS, Sweden, 1990.
Swartout, W. R., Nordin, H., Paris, C., and Smoliar, S. W., Toward a Rapid Prototyping
Environment for Expert Systems, in: Proceedings of the 13th German Workshop on

Artificial Intelligence, Springer-Verlag, 1989.
Takahashi, H., and Shibayama, E., Preset-A Debugging Environment for Prolog, in:
Logic Programming Conference, vol. 221 of Lecture Notes in Computer Science, Tokyo,
Japan, 1985, pp. 90-99, Springer-Verlag.
Takeuchi, A., Algorithmic Debugging of GHC Programs and its Implementation in GHC,
in: Shapiro (ed.), Concurrent Prolog: Collected Papers, MIT Press, Boston, 1987, pp.
180-196.
Tick, E., Visualizing Parallel Logic Programs with VISTA, in: FGCS’92 [78], pp. 934-
942.
Tobermann, G., and Beckstein, C., What’s in a Trace: The Box Model Revisited, in:
Fritzson [80], AADEBUG’93.

Trehan, R., A Process Based Tracer for KLl on PIM, in: DucassC and Ferrand [65],
LPE’91.

van Emden, M. H., An Interpreting Algorithm for Prolog Programs, in: Proceedings of
the First International Conference on Logic Programming, Marseille, France, Sept. 1982.
van Emden, M. H., Marketing for Logic Programming, Newsletter of the Association for
Logic Programming 6(1):34 (Feb. 1993).
van Emden, M. H., and de Lucena, G. J., Logic Programming, in: Clark and Tarnlund
(eds.), Logic Programming, chapter Predicate Logic as a Language for Parallel Program-
ming, Academic Press, 1982, pp. 189-198.
van Harmelen, F., Definable Naming Relations in Meta-Level Systems, in: Pettorossi
(ed.), Proceedings of the Meta-Programming in Logic, Third International Workshop,
META-92, Uppsala, Sweden, June 1992, vol. 649 of Lecture Notes in Computer Science,
Springer-Verlag, 1992, pp. 89-104.

384 M. DUCASS6 AND J. NOYh

188.

189.

190.

191.

192.

193.

194.

19.5.

196.

197.

van Rossum, E., Implementation d’un Debugger Prolog, Master’s thesis, Facultts Uni-
versitaires Notre Dame de la Paix, Namur, Belgique, 1989.
Van Someren, M. W., Beginner’s Problems in Learning Prolog, Memo 54, University of
Amsterdam, 1985.
Walker, A., Prolog/Exl, An Inference Engine Which Explains Both Yes and No Answers,
in: Proceedings of the International Joint Conference on Artificial Intelligence, Morgan
Kaufmann, 1983, pp. 526-528.
Warren, D. H. D., and Szeredi, P. (eds.), Proceedings of the International Conference on
Logic Programming, ICLP’90, Jerusalem, Israel, June 1990, MIT Press.
Weiser, M., Program Slicing, IEEE Transactions on Software Engineering SE-10(4):352-
357 (July 1984).
Wieland, C., Two Explanation Facilities for the Deductive Database Management System
DeDex, in: Kangassalo (ed.), Proceedings of the 9th Conference on Entity-Relationship
Approach, 1990, ETH Zurich, pp. 189-203.
Wielemaker, J., and Anjewierden, A., PCE-4 Functional Overview, SWI, University of
Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands, 1992.
Wielemaker, J., and Anjewierden, A., Programming in PCE/Prolog, SWI, University of
Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands, 1992.
Yalcinalp, L. ii., Meta-Programming for Knowledge Based Systems in Prolog, Ph.D.
thesis, Case Western Reserve University, Cleveland, OH, Aug. 1991, Technical Report
TR 91-141.
Yalcinalp, L. ii., and Sterling, L., An Integrated Interpreter for Explaining Prolog’s
Successes and Failures, in: Abramson and Rogers [11, META’@.

