
Annals of Pure and Applied Logic 60 (1993) 193-206 

North-Holland 

193 

Every recursive boolean algebra is 
isomorphic to one with incomplete 
atoms 

Rod Downey* 
Mathematics Department, Victoria University, P.O. Box 600, Wellington, New Zealand 

Communicated by A. Nerode 

Received 2 September 1992 

Abstract 

Downey, R., Every recursive boolean algebra is isomorphic to one with incomplete atoms, 

Annals of Pure and Applied Logic 60 (1993) 193-206. 

The theorem of the title is proven, solving an old question of Remmel. The method of proof 

uses an algebraic technique of Remmel-Vaught combined with a complex tree of strategies 

argument where the true path is needed to figure out the final isomorphism. 

1. Introduction 

In this paper, we solve an old question of Remmel [lo, 111 by proving that for 
any recursive boolean algebra B, there is a recursive boolean algebra B1 
isomorphic to B. such that the atoms of B, are Turing incomplete. This result 
should be seen in the context of theoretic studies looking at the behavior under 
isomorphism of distinguished relations in recursive models, going back to, for 
instance, Ash and Nerode [l]. Remmel (10, 111 had earlier proven that if a 
boolean algebra B, has a recursive presentation with an infinite recursive set of 
atoms, then for any given r.e. degree, B. had a recursive copy whose atoms had 
degree d. 

Modifying the difficult coding argument of Feiner [5,6], Remmel, however, 
also showed that there exists a recursive boolean algebra B0 whose atoms are 
intrinsically nonlow. That is, if B, is a recursive boolean algebra isomorphic to 
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B0 then the atoms of B1 form a nonlow Ir: set, and in particular are not 
recursive. Every recursive boolean algebra is the interval algebra of a recursive 
linear ordering. If B = Intal(L), then the atoms of B correspond to the 
successivities of L. It is not difficult to show that if L is a linear ordering with an 
infinite recursive set of successivities, then there is a recursive L’ isomorphic to L 

such that the successivities of L’ have degree d. Using this sort of reasoning many 
theorems concerning boolean algebra can be deduced by manipulating results on 
linear settings. 

Our result cannot be so deduced. In [4] Downey and Moses constructed a 
recursive linear ordering L whose successivities were intrinsically complete; that 
is, all recursive linear orderings isomorphic to L have complete successivities. 

Our result is proven by a tree of strategies priority argument. A crucial 
ingredient is Remmel’s extension (from [lo, 111) of Vaught’s theorem. We discuss 
such preliminaries in Section 2 and prove the main result in Section 3. We remark 
that the combination of an isomorphism construction with the Remmel-Vaught 
lemma has other applications. In particular, Carl Jockusch and the author [3] 
used this technique to prove that all low boolean algebras are isomorphic to 
recursive ones, thereby solving a question dating back to Feiner’s 1967 thesis [5]. 

Notation is standard and follows Soare [12], Downey [2] and Monk [9]. 

2. Preliminaries 

Let B be a recursive boolean algebra. It is well known that B is recursively 
isomorphic to a recursive subalgebra of 0, the atomless boolean algebra. This is 
shown in, for instance, Remmel [lo, Theorem 1.21. The same proof also shows 
that there is a recursive linear ordering L so that B is recursively isomorphic to 
Intal(L), the interval subalgebra of left closed right open intervals of L. We will 
suppose that our boolean algebras are so presented as subalgebras of 0 given an 
interval algebra of recursive suborderings of the rationals. Furthermore, for 
convenience, we shall suppose that the orderings have endpoints. 

We will need the following result of Remmel that extends one of Vaught. 

2.1. Theorem (Remmel-Vaught [lo, Theorem 2.11). Let A LX a subalgebra of 0 

and suppose the atoms of B are infinite in number. Let Atom(B) = {d,, d,, . . . }_ 

For each i, suppose e’,, . . . , ei, are pairwise disjoint elements of 0 with 

di = r\f~, ei. Let C be the subalgebra of Q generated by B together with all the ej. 

Then C is isomorphic to B. 

For our purposes, we work with orderings. Let S(L) denote the collection of 
successivities (or adjacencies) of L. 
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2.2. Corollary. Let L, and L2 be suborderings of Q with infinitely many 
successivities. Suppose that there is an injective mapping g : L1-, L2 which is order 
preserving and has the property that if y $ rag then there exist c, d in ra g such that 
][c, d]] < 03 and [g-‘(c), g-‘(d)] is a successivity of L,. 

Then Intal(Z,,) is isomorphic to Intal(L,). 

3. The proof 

In view of Lemma 2.2, to prove our main result, it will suffice to consider a 
recursive subordering A = {a;: i E o} of Q and to construct a recursive linear 
subordering B of Q together with an isotone injection f :A+ B with the property 
of Lemma 2.2 which we restate here for convenience. 

3.1. Zf b 4 ra f then there exist c, d E ra f such that c < b =C d, ][c, d]] < 00 and 

]f -‘(c), f -‘WI is a successivity in A. 

Let S(L) denote the collection of pairs that constitute successivity of L. We 
build an r.e. set D and meet the requirements 

R2t7: eSCB) # D. 

Here we use e to represent the eth Turing procedure, and will similarly in the 
construction let at stage s, eDs denote e?. We shall use a Fredberg type strategy 
to meet R,: We pick a follower x, wait till 

I(e, s) = max{x: (Vy <x)(eSCB~‘(x) = D,(x) = 0)) 

and then act to diagonalize and preserve S(B,) = S(B). There may be infinitely 
many attacks on this requirement, through infinitely many x, but if this is the case 
then the requirement will meet by divergence. (More on this later.) 

The most difficult part of the construction will be controlling the definition off. 
In fact f will be defined in a Ai way via the ‘true path’ of the construction. While 
this phenomenon is not unique (see e.g. Downey [2]), it is quite unusual. So we 
shall in fact construct a tree of partial injections with f (a;) = lim, f&ai) where 6 
denotes the initial segment of the true path (TP) of the construction devoted to 
a,. Hence to our list of requirements we add the additional ones: 

R 2e+l: If e(6) = 2e + 1 and 6 E TP then lim f&(a,) =b(a,) exists. 

Furthermore we must ensure that the function f (ai) =h(ai) for e(6) = 2e + 1 and 
6 G TP satisfies 3.1. 

To discuss the method whereby we achieve the goals above, we consider the 
situation for satisfying an RZe in isolation, but in the ‘a-correct’ environment 
within which it will be working. Now R2e, from some point onwards, will be living 
in an environment where there will be a finite number of points Ci<...<C, 
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(including al, . . . , a,) of A such that, as far as Rze is concerned, f(q) is fixed. 
That is if 6 is the correct node devoted to solving Rze, then at &stages s (i.e., 
when (r looks correct) it will be the case that B, must respect exactly the 
commitments: 

(i) fa,s(~i) = bj, (bj; fixed), and 
(ii) (This will actually be implicit from (i), as we see.) If [q, r] is declared to be 

a preserved block by some y devoted to some Rzk of higher priority than 6, then 
6 is committed to keeping [q, r] to be the same size in B,,, as it is in B,. 

Diagram 1 below might be helpful for visualizing (i) and (ii) above; in a typical 
situation at a &stage s. 

In Diagram 1, the lined arrows must be respected by Rze, but the dotted ones 
can be shifted. Note also that the pullback of [q, r] in B is a successivity in A,. 
The idea here is that [q, r] would be, in a manner we will see, devoted to meeting 
RZk for some k. 

As we noted earlier, the basic idea used to meet the Rze is to use a Friedberg 
procedure. So we would like to pick an X, wait till eSCBs)(x)J = 0, put x into D and 
ensure that S(B,) = S(B). Unfortunately, ensuring that S(B,) = S(B) is a very 
difficult task, when combined with the isomorphism property. For instance, if we 
need to ensure for the sake of higher priority isomorphism conditions that c1 --, bj, 

and c2+ bi, then if [cr, c2] is, say dense, then [bj,, bj,] in B must be dense too. 
Now if at a finite step s we try to preserve some successivity in [b,,, bjJs we will 
fail. We need to guess at the behavior of A relative to the fixed points. 

To make the description simpler, we now concentrate upon only one interval, 
namely [cr, c2]. Essentially we will try to guess the behavior and existence of 
successivity in A between cr and c2. At the least refined level, we will need an 
outcome guessing that, at some s, I[cr, c2]/ = ([cr, c2] in A,(. We write [cr, c& for 
‘[q, c2] in A,'. This outcome is guessing that [c,, c2] is finite in A. 
Now if this finite outcome f is truly the correct one then S(B) contains all 
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consecutive pairs in S([c,, c2]). If eS@) (x) = D(x), then in this case we must see at 
some stage s a computation eScBa’(x) = OS(x) where S(B,) = S(B) on the interval 
[ci, c2] = [cl, c&. Hence a version of Rz, guessing this outcome f will believe that 
[c,, c& = [cl, c,]. As a consequence, on f([c,, c2]), RZe guessing f believe that 
S(B,) = S(B) (essentially). 

All other versions of RZe equipped with other guesses will wait for certain 
successivity to be killed in [ci, c2] before they will be prepared to believe that 

S(R) = S(B). 
The remaining cases depend on whether [cr, c2] contains a successivity, and 

whether neither, either or both [c,, x,] or [x2, c2] is a successivity for some x1, x2 
in A. The reason that this is important can be seen considering the case of a 
version of RZe guessing that [c,, c2] is dense (outcome d). In this case this version 

of Rze will never believe a computation which relies on (x, y) E S(B,) with 
f(cJ GX <y of. Th e reader should note that ‘[ci, c2] dense’ is II2 behavior. 
We can play the outcome d when this ‘appears correct’. In this case one way to do 
this is to use a test set which we call test(c,, c2, d, s). At some stage S, we put all 
the current elements of [c,, cJS into test(c,, c2, d, s). We keep test(c,, c2, d, t) = 

test(c,, cz, d, s) until a stage s1 > s occurs where for all elements x < y in 
test(c,, cz, d, s,) ( = test(c,, c2, d, s)) there is an element z = z(x, y) with 
z E [ci, cJS, and x <z <y. At stage sl we could then play outcome d for [c,, c2] 
and reset the test set as test(c,, c2, d, SJ = [cl, c&,. Clearly if we play outcome d 
infinitely often, then [c,, c,] is dense. Note that if [cr, c2] is dense, at the end 
there will be an isomorphism between [c,, c2] and {z E B 1 f(cl) c z of}. 

For the remaining outcomes which are stronger than f, but weaker than d, the 
strategy is more intricate, and depends not only on the existence of successivities 
in [c,, c2] but their overall location. Note that, as above, it is U2 to determine if 
c1 and/or c2 are limit points from respectively the right and/or the left. Namely 
for ci, for instance, we will have a test set limit(cl, s). This contains at a stage s 
the successor of c, at stage s. We issue another chip to the outcomes that believe 
c, is a limit point in [cr, c2] if limit(c,, s) # limit(ci, s + 1). 

We will arrange the outcome in the following order of ascending priority. 

f - the finite outcome that [cl, c2] is finite, 
(cl, c2) - that c, and c2 are not limit points 
(c,, 03) - c2 is a limit point but c1 is not, 
(a, c2) - c1 is a limit point but c2 is not, 
(a, ~0) - both cl and c2 are limit points but [ci, c2] contains a successivity, 
d - [c,, c2] is dense. 

We can consider the outcomes between f and d as suboutcomes of s the outcome 
that believes there is a successivity in [ci, c2]. 

The (c,, c,)-strategy. The (c,, c,)-strategy comes equipped with a current guess 

(x I,S? x~,~) as to the successors of c1 and c2 respectively. We play this outcome 
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when d does not look correct, but a new element z enters [cl, czlS+r - [cr , czls 

and z is not in [cr, ~r,~) U (x~,~, c2]. For this situation, an eSCBS)(x) computation 

will only be believable if, upon [cr, cJS the members of S(B,) are partitioned into 

two disjoint sets with no common endpoints, and including f(cr) and f(cZ). A 

typical situation is given in Diagram 2 above. 

The consistency condition for S(B,) is that for all pairs (p, q) of the form 

(f(c,), q), (zi, zj) (i > i) or (zi, f(cZ)) or (f(c,), f(c*)) with Godel numbers below 

u = u(e”; x) = 0, we can believe o = S(B,) iff 

(i) #(p, q) E CJ iff (p, q) E S(K) for #(p, q) s u, and 
(ii) for some i, #(q, zi+r) > u. 

The reason for (ii) is that we are, after all believing that I[c,, c2]I = w and hence 

if the outcome is (cr, c2) then there will need to be infinitely many ‘splitting’ 

elements entering between f(cr) and f(cz). 

The idea is to now force S(B) to extend o (should this be the correct outcome). 

To do this we find the least i with #(z;, Zi+r) > u and map x~,~ to zi and x2,S to 

zi+r. Adding I[cr , c2]1 - 4 new elements (with large Godel numbers) between z, 

Diagram 3. 
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and z4 to serve as images for the remaining elements of [c,, c2]. (See Diagram 3 in 

the case c = 2.) 

The reader should note that the elements zi are no longer in the range offs. If it 

is indeed the case that xi = ~i,~ and x2 = qs then the fact that the z, are no longer 

in the range of f is fine since, in essence, all we are doing is splitting the 

successivities [ci, xi] and [x2, c2] finitely. Thus we get a temporary win by 

restraining the definition offs as above (and so keeping S(B,) extending a) and 

>utting x into D, causing a disagreement. The strategy above can only be injured 

if at least one of the stage s successivities ([c,, XJ and [x~,~, cz]) contain a 

nonsuccessivity in B. So we cancel the maps above if there occurs a number (L 

entering [c,, cZlt - [ci, cJs with a splitting one of [c,, .x~,~] or [..q+ ~1. After this 

entry of a occurs, to make the cominatorics simpler, we agree that we won’t play 

the [cl, c2] infinite outcome till ][c,, czlV] > I[f (c,), f (c2)]J. 

The (cl, a> strategy. This is of course similar to the above. It is played at a 

‘Cc,, c2] infinite’ stage where we have seen qs change since the last such stage. To 

be (c,, m) believable, an esCB’) computation needs to include [f (c,), z,] as a 

successively (if #[f (cl), z,] is below its use), it cannot believe [q, f (cZ)] is a 

successivity and the computation must be consistent with the current information. 

We preserve such a situation by mapping ~i,~, to z, with [z,, f (c,)], a successivity. 

For the situation in Diagram 2, if instead of it being a (c,, c,)-stage it was a 

(c,, 03) stage we would not get Diagram 2, rather we would get Diagram 4 below. 

Again note the addition of [[cl, c2] - 3) new points between z, and fr and f (c2), 
to serve as images to the ‘uncovered’ elements of [c,, c2]. As with the previous 

action, this action can only be injured if its premise is falsified; that is, [c,, x~,~] is 

split at some later s stage t. Again we agree that we would play the infinite 

outcome after stage t until we get [c,, czlv z= [[f (cl), f (cJ]J. 

The (~0, 00) strategy. This strategy is the most involved of all. A string o 

(potentially S(B)) is (m, w) correct if 

(i) for all zi, Zj if #(z~, Zj) < u(e9 X) then a(#(~,, zj)) = 1 iff (z,, zj) E S(B,), 

I./ 
f(Cl) z1 z2 z3 z4 25 ‘6 f (c,) 

Diagram 4 
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(ii) if Wf(cd, J z <U e”; X) then CT(#(~(C~), zi)) = 0, and ( 
(iii) if #(Zi, f(cZ)) < u(e”; x) then a(#(~~, f(q))) = 0. 
The idea is that we try to preserve o by mapping the block [zr, z,] to the least 

candidate for a successivity in [cr, c2] consistent with all the outcomes so far. 
After all, since we are not playing outcome d it must be that for at least some of 
the S(A,) successivities are still in test(c,, c *, d, s). For a typical situation, in 
Diagram 5 below, we will indicate by [di, di+,] the possible successivities of 
[c,, c2] if it is the case that test(c,, c2, d, s) = lim, test(c,, c2, d, s). That is, some 
real successivity is already present. The action will be to map the whole of [zr, z,] 
to the least [di, di+J. In Diagram 5, we suppose #[di, di+,] < #[di+l, di+*], etc. 
Again we need to add new points to get consistency. 

The situation above can only be injured if we find out [d,, d2] is not a 
successivity. Suppose this occurs at stage t, that is [dI, d2] is split in A,. If we 
don’t wish to play outcome d, it must be the case that at stage t, either [d3, d4] or 
[d4, d5] is still a successivity of A,. Suppose for a typical situation [d3, d4] has 
been destroyed also so that only [d4, ds] remains. For simplicity, let y2,r denote 
the current predecessor of f(c2), and let y,,, denote the current successor of f(c,). 
The action is the same as the one for Diagram 5 except we can use Y,,~ in place of 
t, and y2,r and d5 to a y3,r add new points to the rest, and attempt to preserve the 
block [~r,~, Y~,~]. Diagram 6 below typifies this situation. 

Finally, if we discover that all of the members of test(c,, c2, d, s) are not 
successivities in A (so in our situation [d4, d5] gets split), we will play the outcome 
d. Again we wait till I[ Cl, Ctlvl ’ I[f(cJ~f(c2>ltJl = I[f(CAf(c2M~ 

The general R2, strategy. The above discussion is for a single pair cr, c2. In 
general, R, will need to be believe a number of b-fixed points, c~,~, . . . , c,(,),,. It 

will need to play the appropriate [ci, ci+r] strategy for each interval, and similarly 
need strategies to work in the ends. For simplicity we suppose that A has end 
points p1 and p2 so that c~,~ = p1 and c,(,),, =p2, at all stages. The guesses will be 
represented as n-tuples of the form (s, i, CL) corresponding to the belief at stage 

s, Cl,s, . . . 7 G(e),, stabilized (i.e., at all &stages >s, ci,s = ci,r and n(e)(s) = 

12 (e)(t)) and in the interval [Ci, Ci+r] the outcome is ,U E {f, (cl, c,), 
(Cl, co), (03, 4, (03, w), 4. 

The &+I strategy. Presented with the above, R2e+l will request that fs(ai) map to 
the least element in (or added to) B, consistent with the higher priority requests. 
Again, this can cause some interval I[a, b],l to no longer match I[f (a), f(b)],. 
This is only a worry if I[a, b],l < I(f (a), f (b)lsl so that new elements have been 
added. This causes no grief since either [a, b] is a finite block so that the 
Vaught-Remmel theorem applies, or eventually enough points will appear in 
[a, b] to cover things. 

We now turn to the formal details. The priority tree T is generated in stages by 
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associating the Ri on paths in order. Suppose we have generated T on a string o 

and &.+r is the requirement of highest priority not as yet dealt with. For 
convenience we shall add extra ‘layers’ to the outcome. First for each canonical 
finite set D, and for each s EN we wish an outcome (s, 0,) of u. We order these 
lexicographically. The intention here is that s is the stage where we are never left 
of u again, all higher priority actions are known, and D, codes the fixed points we 
must respect. Moreover, we only consider D, with the property that i, j E D,, i <j 
iff qi < qj where qk denotes the kth rational. TO each such o-(s, 0,) we associate 
the outcomes of the form r = ( rl, . . . , qDxl+l) where G E (~0, f> and zl, 
T,~~,+, = m, which are ordered lexicographically with m <J. An outcome z with 
ri = m is meant to encode the belief that l[qi_l, qi]l = m. 

Finally, we expand each outcome r into its appropriate suboutcomes. So for 
each ri in r with rj = m, we have outcomes {d, (m, m), (m, cz), (c,, m), (cl, cJ} 

ordered from left to right, and so to each string r we associate by lexicographical 
ordering outcomes p = ( pI, . . . , pcD,,+,) such that ,U~ =f iff ri =f and pi E 

(4 (9 m), (m, c,), (c1, m), (cl, c2)} otherwise. This is where we begin to play 
R 2e+l. We assign RB to each string of the form q = a-(~, D,)-t-y and write 
e(r) = 2e + 1. 

To each stage r] we associate Rze’s outcomes i with i E (0, 1). We associate 
R,,, with the outcomes of Rze, and hence to a string of the form y = 
a-(~, D,)-t-p-i. The outcomes of R 2e+l are Q = {qi: i E co} representing the 
possible choices for f(a,). We assume a_, = 0 and f : O+ 0 so b._, = 0. 

Construction 

Stage s. We perform the following substages t for 0 <t s s + 1. We refer to 
substage t of stage s + 1 as stage (s, t). We append a subscript t to a parameter to 
indicate its value at the end of stage (s, t). As with all other stages, we will define 

f(4 = &I ( = a,), as without loss of generality, we can assume 0 <a, so we will 
be concerned with test sets involving cl = 0, and c2 = a,. At substage 0 of stage 0, 
we set test(c,, c2, d, 0) = limit(c,, 0) = limit(O, c2) = {c,, cz}. At stages s > 0 these 
sets will already be defined at a previous stage. Let fixed(il, s) = {c,, c2}. 

Substage t 
Case 1. We are considering a string u with ICI] = 0 or u is an outcome of some 

Rzj+l. Also we will have defined a set fixed(u, s), denoting the fixed points 
generated by the above. Let fixed(u, s) = {c,, . . . , c2} in the A-coding, and let 
D, be the corresponding finite set coding fixed(u, s). Let t c s be the least u-stage 
such that tixed(u, s) = fixed(u, u) for all u with t < u CS. Declare s to be a 
a-( t, D,)-stage. 

Now for each subinterval [ci, ci+l] see if I[ci, ci+,],j > I[ci, ci+l]ql where q is the 
largest u-stage Gs with q 3 t. Let r = rl, . . . , tk+, be the string with ri E {f, m}, 
r1 = rk+, = m (we can assume that both (m, c& and [ck, m), have increased in 
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size) and ‘t= M iff ][ci, c~+~]~] > J[ci, c~+~]~], otherwise. Declare s to be a 
a-(t, D,)^r-stage. Now for each zi with zi = a, we need to determine the 
appropriate outcome. 

For each subinterval of the form zj = [ci, ci+r] adopt the case below. 

Case 1. Each [d;, d;,,] in test(c,, c2, d, s - 1) is split in A,. 

Action. Then reset test(c,, c2, d, s) to be {[q,, q2], . . . , [qP, qPcl]} where 

[Xl, 4 = (41, . . . 7 qP+1} in A-order of magnitude. In this case declare that 
pi = d. 

Case 2. Not Case 1, and both limit(c,, s) and limit(s, ci+,) have been reset since 
the last o-(t, &)-~-stage. 

Action. Declare that pi = (00, a). Initialize limit(q, s), limit(s, cicl) to their 
current apparent values (i.e., limit(ci, S) = {[c,, d2]} where d2 is the successor of 
ci in A,, for instance). 

Case 3. Neither Case 1 nor Case 2 apply, and limit(c,, S) has changed since the 
last o^(t, D,)“t-stage. 

Action. Declare pi = (m, Ci+l) and ini ia tze limit(ci, s) to its current apparent t 1’ 
value. 

Case 4. As with Case 3, except for (ci> w). 

Case 5. Otherwise. Declare that pi = (ci, Ci+l). 

Now we can similarly deal with intervals of the form (w, cr] and [ck, co), except 
they can only have I of the form d, (03, m), (m, c,) or (c,, m). With this 
modification we generate pL1 and pk+r. We then declare that s is a cr’ = 
a-(t, D,)-z-p-stage where ,U = ,~r, . . . , ,u~+~ where ,U~ =f iff ti =f and pi is 
generated by the above if ti = ~0. Initialize all y for y &_ (T+, where s,_ denotes 
the standard lexicographical ordering. 

Now we deal with Rze+, where e(o+) = 2e + 1. We assume first that RZe+, is 
not as yet declared satisfied. If it does not yet have a follower with guess G+, give 
it one, say (0+, s), and declare that s is a (T+- O-stage. Otherwise we can assume 
it has a follower x =x(0+, S) not yet in 0,. As with discussion preceding the 
construction, we can decide if a computation 

e?(x) = 0 

is compatible with y being an initial segment of S(B) according to the guess u+. 
Let u(y) be the use of such a computation. Then for all z < u(y) we need that if z 
is the code a pair (p, q) then (i) and (ii) below hold. 

(i) [p, q] not a successivity in B, iff y(z) = 0. 
(ii) If [p, q] is a successivity in B, then find i with [p, q] E (~0, cilS, or 

[P, 41 E rci, Ci+J or [P, 41 5 [Ck, WI. 
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Without loss of generality we suppose [p, s] c_ [c;, ci+r]. We ask that y is 
consistent with ,u~, as with the discussion before the construction. So we ask that 
pi #d. If ,ui = (m, ~0) then p # ci and 4 # Ci+r. If pi = (~0, c2) then p f ci. And if 

pi = (~1, w) then 4 Z ci+r. 
If we see a string y coding successivities of B, compatible with o+, then we 

declare that Rs+l is satisfied (at o+), and declare that s is a o+-l-stage. We 
enumerate x into D. Now we will restrain y to preserve this win. Again we follow 
the technique of the basic module, now on each interval [ci, ci+J, (m, ci] and 

Lci+l, ~0). Again we only look at [cl, ci+l]. 
If yi = d, then there is nothing to restrain for y. If yi = (~0, co), define 

restrain(a+, [Ci, Ci+l],S)=[Z1, Z,] where fa([ci, ci+lls) = {.fo(ci)7 zl, . * - P Zn, 
fo(Ci+l)} in B-order. Find the least j such that [djt dj+l] E test(a, ci, ci+l, S) 
and [dj, dj+l] is a successivity in A,. Define fo+,,(dj) = z1 and f,+,,(dj+l) = z,. 
Put dj and dj+l into fixed(o+, s). The cases (~0, c~), (cr, co), (c,, c2) are treated 
similarly. 

Now for the case that R2+1 has been declared satisfied at guess CJ+, for each i 

with ,ui = (00, m ) find the least j with [djt dj+1] E test(o, ci, c~+~, S) and with 
[dj, dj+l] still a successivity in A,. Define fO+,s as above. (This may or may not 
change f,,+ since the last a+-stage.) 

If none of the above apply declare that s is a a+-O-stage. 

Case 2. u is devoted to Rze. We wish to define f&a,). Let fixed(a, s) = 

{c*t f . . , ck} and let a, E [ci, ci+l]s without loss of generality, end points being 
treated similarly. If a’, E {cl, . . . , ck} we need do nothing. If a, $ {c,, . . . , ck} 

find the least bj, if any, with bj E [fa,s(ci), fo,S(~i+l)] and bj $ restrain(t, s) for any 
r sL U. If bj exists, define fO,s = bj and declare that s is a o-bj-stage. If no such bj 
exists find a new rational bk with Giidel numbering bigger than s, such that bk is 
consistent with f&c,), . . . , fo,Jck) as well as respecting all of restrain( r, s) for 
r $_ u. Define fo,Jae) = bk. 

Now at substage t = s, initialize all r with r &_ u and where s is a u-stage. 
End of construction 

Verification. Let /? be the true path. Let /3(e) denote the node on p devoted to 
R,. We prove by simultaneous induction that R2e+l only receives attention finitely 
often at P-stages, and hence lim, restrain(r, s) = r(u) exists for all u G 6, and 
lim, fsck,,Jae) = fscz,,(a,) exists, and has the desired properties. 

First we argue for the Rze+,. Let s0 be a stage where we are never again left of 
/3(2e + 1) and all the Rj for j < 2e + 1 have ceased activity. Then fixed@(2e), s) 
has come to a limit. It is easy to see that it suffices to show that if R2e+l receives 
attention after stage s0 at /3(2e + l), this action will succeed. If R2e+l does not 
again receive attention, no string y is compatible with the (true) guess /3(2e + 1) 
exists with eY(x)J = 0, and hence R,,,, is met by nonagreement. Suppose that 
R2e+l receives attention via y. It suffices to argue that for each interval [ci, Ci+l] in 
fixed(P(2e + l), s) = fixed(P(2e + 1)) we succeed with restraint(P(2e + l), s). 
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Now this restraint is successful at all b-stages s >s, where 6 E p by choice of sg 
(for the Rj for i < 2e + 1) and by the fact that Rzk of lower priority than R,,, 
must respect restraint(fi(2e + l), s), due to the fact that the end points are in the 
fixed point set of (/3(2e + l), q) for all stages q 3s. We are now again left of 
P(2e + 1) by choice of so. 

So suppose we move right of P(2e + 1) at stage t as. The only possible injury 
to the restraint set is due to the action of an Rzn+], while such a requirement can 
define fb to differ from fO(2e+l), we claim that restrain(6, t) 2 restrain(p(2e + 

l), s). 
To see this we need some case analysis. Let P(2e + 1) = a-(s, D,)-r-~. We 

argue locally on pi for each i. If pi = d, [c;, ci+l] has no elements of 

restrain(p(2e + l), s). If pi = (m, w), since we are never again left of ,u~ one of the 
apparent successivities at stage s is a real successivity. Since we adjust the map to 
the apparent successivity at each stage, we can presume that in fact restrain(pj, s) 
is the image of a real successivity of A, say [d,, d2]. This implies that the 
restrain&, s) is well defined and is never reset. Since the placement of new 
points b, must respect higher priority restraints, it follows that no bj is added 
between the least and greatest element of restrain(vj, s). The other cases are 
similar. 

Finally, we need to argue that f works. Clearly lim, fD,Ja,) =fp(a,) exists for all 
a,. Furthermore the mapping is isotone and l-l by construction. Suppose bj E /3 
and bj 4 rafa. We claim that either there is a o E p such that for almost all stages 
b, E restrain(a, s), or for some k, fp(uk) = bj, or bj ~fa[~;, ci+l] and I(ci, c~+,][ <m. 

Suppose that this claim is valid for all bd with d <J and s(, be the stage witnessing 
the truth of the claim for all d <i. That is for all such bd, either bd E 
restrain(a(d)) = restrain(a(d), s) or f&a&) = bd henceforth. Let 6 G p be the 
guess by which all such bd are resolved. We may assume bj E B,. Let fixed(6, s) = 

{Cl, . . . , ck} = fixed(a). N ow for some i, bj E~S([C~, ci+l]). If it is the case that 
][cj, ci+,]) <w, there is nothing to prove. So suppose otherwise. Let a, be the 
least element to enter [ci, ci+,] after stage s. Now let t be the first 6- and p-stage 
with p G /3 and p denoted by Rzm. We might as well suppose that 6 E p. Let tl > t 

be the least p-stage where all of the restrain(r, tl) for rsL p are now fixed, we 
are never again left of p, and all fixed(t, tl) are final. Now if we define 
f&a,) = bj then we are done since this map will be refined to all p-stages > t,. 

The only reason we would not define fp,Ju,) = b, would be because bj E 
restrain(r, t,) for some z si_ p. But then it follows that since restrain(t, fi) = 
restrain(t), for some q with q c p and rsL q, it will be the case that 
bj E restrain(q). By construction this means that if restrain(q) = [z,, zJ, then 

K’(4 f-w41 is a successivity in A. This concludes the proof. 
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