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Abstract. We show that no finite union of congruence classes [w], w being an arbitrary elemen: of
the free monoid {a, b}* with unit 1, is a context-free language if the congruence is defined by the
single pair (abbaab, 1). This congruence is neither confluent nor even preperfect. The monoid
formed by its congruence ciasses is a group which has infinitely many isomorphic proper subgroups.

1. Introduction

Semigroups and monoids are closely related to the theory of formal languages,
especially to regular and context-free languages. The book by Lallement [5]is a good
introduction to these kinds of connections.

Like groups, monoids can be nicely defined by presentations (A; {w; = v;|i e I}),
where A is a finite (or infinite) set of generators, and I is a (not necessarily finite)
index set for the defining relations w; = v, each w;, v; being an element of the free
monoid A*. The monoid M defined by such a presentation is the quotient monoid of
A* by the finest congruence containing all the pairs (w;, v;), i€ L.

For example, (a, b; ab = 1) is a presentation of the bicyclic menoid.

Another way of looking at finitely presented monoids, in the case A and I are finite
scts. is to consider such a presentation as a definition of a finite Thue system. This is
done in [2, 3], where different classes of finite Thue systems, such as confluent,
preperfect, Church~Rosser, and similar systems, are studied. Sufficient conditions
are developed there which assure that a Thue system defines deterministic context-
free languages as finite unions of congruence classes. This also shows how the word
problem for some of these classes of finitely presented monoids can be decided in
linear time. :

For a more detailed study of congruences and their relation to context-free
languages, the reader is referred to [2, 3] and the literature cited there, as well as tc

[5].
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According to [1] we will call a monoid which has a finite presentaton with clefining
relations w; = 1, i € I, a special monoid, where 1 is the unit element, i e., the empty
word of the free moncid. In [2] the finite Thue systems determined by preseiitations
of special monoids are called unitary, in [3] they are called trivial. Fo- examyle, the
set [1]< {a, b}* of words congruent to 1 with respect to the congruer:.ce defined by
(ab, 1), i.e., [1] is the unit element of the bicyclic monoid, is exactly the restricted
Dyck language over one pair of brackets, which is deterministic context free.

There exist special monoids which have an undecidable word problem [1], or
whose congruence classes do not define context-free langaages [2, 3]. Special
monoids with only one defining relation have a decidabie word problem [1], but it is
still not known whether an arbitrary monoid given by a single defining relaticn has a
decidable word probiem. The word problem in groups with one defining r2lation,
however, is decidable [6].

Here we show first that no finite union of congruence classes of the special -nonoid
M defined by (a, 5; abbcab = 1) is a context-free language.

In order to obtain this result we use simple calculations as well as a deep result in
combinatorial group theory, the so-called ‘Freiheitssatz’ of Magnus [6]. The basic
knowledge about context-free languages which is necessary for our purpose is
sufficiently contained in the book of Lallement [5].

We then show that the monoid M does not have a finite preperiect or finite
confluent preszntation. According to the notion of [2, 3] we call 2 monoid oresen-
tation confluent or preperfect if the Thue system determined by it. dzfining relations
is confluent cr preperfect. This counter-intuitive result is established by mapping M
homomorphically into a group of matrices.

We also include results about the structure of the monecid M, which is in fact a
group, showing that this monoid has infinitely many isomorphic proper submonoids.

2. Notation

We use the notation of [S] and [6] and herewith recail the basic definitions we will
need.

Given an alphabet X, let X denote the free monoid on X. X* is the set of all
words, inciuding the empty word 1, under the monoid operation of concatenaticn.

If two words u, v € X* coincide symbol by syrabol, we write u = v. Thus = denotes
equality in the free monoid X™ and is distinguished from the usual equality = in
groups or other monoids. A monoid M is said to have the presentation (}; {w; =
vi|i € I}), if M is the quotient monoid of X* by the finest congruence containing all
the pairs (w;, v;), w;, v;€e X*, i€l

If the sets T and X are finite, then M is said to be finitely presented. The r=lations
wi = v, i € I, are called defining relations and the elements of X are called genrators.

According to [1] we shall call a monoid M special if all its defining relations a1e of the
form w; =2 1,iel
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If two words u, v € X* are in the same class modulo the congruence given by the
defining relations of a monoid presentation for M, we shall write 4 = v and say that u«
is congruent to v in M. Thus the relation = coincides with the Thue congruence «*
used in [2, 3]. For any word w € X*, [w] := {u|u = w} = X* denotes the congruence
class of w and is a language in the sense of formal language :neory. The definition of
regular (or rational, respectively) context-free (or algebraic) languages can be found
in[5].

As done for Thue systems in [2, 3], we define the notion of confluent and
preperfect monoid presentations.

Let P=(X; {w;=v;|i € I}) be a monoid presentation. For all words w, v € X* we
write w - v (respectively, w — v) iff there exists a defining relation w; = v; in P such
that w =aw;8, v =av;8, a, B € X* and ig(w)>1g(v) (respectively, lg(w) =1g(v)),
where Ig(w) denotes the length of the word w. By -* (respectively, —>*) we mean the
reflexive, transitive closure of the relation - (respectively, ).

Note that the Thue congruence = is the symmetric, reflexive, and transitive closure
of the relation .

Now we call the presentation P above confluent (respectively, preperfect) if for all
w =0, w, v € X¥*, there exists ze X™* such that w »* z and v »* z (respectively,
w—* z and v »* 2).

If X={xy,...,x,} is an alphabet, then X ' :={x7,...,x,'} will bec a new
alphabet.

The monoid M presented by

(XX G{w=vliellu{aa;' =1|1<j<n}

viaj'a;=1|1<j=<n}))

is called the group G with generators x; € X and defining relations w; = v;, i € I. The
relations a;2;" =aj'a; =1 are called trivial relations and are uniquely determined
by the alphabet X. Thus, as usually done, we write the presentation of the group G
shortly as (X; {w; = v;|i € I}), making clear by the context that we mean the group
and not the monoid, which would be different from the monoid M above.

Note that in the presentation of a group, the defining relations may contain
symbols from the alphabet X ~'. Any word w € (X U X ~")* which defines the identity
element 1 of such a group, i.e., w =1, is called a relator. A word we (X v X s
cyclically reduced if the symbols x{ and x;°, p = =1, x; € X, neither occur consecu-
tively nor as both the first and the last letter in w. For example, x "' yxyx is not
cyclically reduced, whereas xyxy ~'x is cyclically reduced.

3. No element of the special monoid {a, b; abbaab = 1) is a context-free language

A series of easy-fo-prove lemmas will give us a specific subset of words which are
congruent to 1 in the specia! monoid M presented by {a, b; abbaab = 1). Using the
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‘Freiheitssatz’ we then show that words of the form (ba)" are not congruent to 1in M
unless k = 0. Finally, these two results will show that neither [1] nor any finite union
of congruence classes of M is a context-free language. Throughout the rest of this
paper M will always be the above-defined monoid.

Lemma 3.1. The fcllowing equations are true in M :

abbaab = bbaaba = baabab = aababb = atabl:a = babbaa =1,

bbaa = abab,

abba = baab.
Proof. Applying the relation abbaab =1 to the word abbaabbaab, either at the
left-hand side or at the right-hand side (indicated by ™ ; respectively, | ))

yields the equation abba = baab. Applying this equation to abbcab we get abhaab =
baahab = ababba = 1. Now using these equations we find bbaa = abab by inspecting

la:bab‘ba,bbaaéaabao;.

Lemma 3.1 shows that M is cancellative, and in fact a group, since for ¢ and b
there exist words u, u', v, v’ €{a, b}*,such that au =u'a =bv=v'b=1.

Lemma 3.6 will show that the six words of length six in Lemma 3.1 ~.re the only
words of this length which are equal to 1 in M.

Lemma 3.2. Vn =0: (bbaa)*"*" = b(ba)" a.

Proof. The iemma is trivially true for n = 0, so assuine the lemma is true for 2 fixed
m =0, Then

(bbaa)*™**" ' = bbaabbaa(bbaa)*"*" = bbagbbaab(ba)""a
=bba(ba)™"'a=b(ba)"a,

so that the result follows by induction.
Lemma 3.3. Vn =0: bb(bbaa)"aa = (bbaa)""*".

Proof. From Lemma 3.1 we know abab = bbaa, which shows (ba)*"*' =b(ah)*"a =
b(bbaa)"a, n =0. Using Lemma 3.2 we then obtain bb(bbaa)"aa = b(ba) "*'a =
(bbaa)*"*.

Lemma 3.4. Vn =0: (bb)"(aa)" = (bbaa)’™, where f(n) = (4" —1)/3.

Proof. The 'emma is certainly true for n = 0, so let us assume the lemama to be true
for a fixed m =0.

Then  (66)™"'(aa)™"' ' =bo(bb)"(aa) aa = bb(bbaa) " aa = (bbaa)* "™*' =
(bbaa)"*V, where we apply Lemma 3.3.
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Now let us define for every w € {a, b}* the regular language
R,, = {wHbb}*{aa}*{ba}*
and the language

L, =[w]nR,..

Lemma 3.5. n=0: (bb)"(aa)"(ba) e L,.

Proof. Since by Lemma 3.1 bbaaba = 1, we have (bbaa) "(ba)"™ = 1, which shows
(bb)"(aa)”(ba)™™ =1 by Lemma 3.4. Thus,

{(Bb)"(aa)" (ba)’™|n = 0} = [1]~ {bb}*{aa}{ba}* =[1]" R, =L..

It will be shown that for all w €{a, b}*,
L. ={w}-{(bb)"(aa)" (ba) " |n =0}

holds. First we have to show that certain words, namely those of the form (baj*,
cannot be congruent to 1 unless k =0.

Lemma 3.6. (ba)“ =1 if and only if k = 0.

Proof. If we are able to show that (ba)* =1 iff k = 0 is already true for the group G
presented by (a, b; abbaab = 1), then the statement of Lemma 3.6 is also true for the
monoid M.

In order to successfully apply the ‘Freiheitssatz’ [6, Theorem 4.10], we change the
presentation {(a, b; abbaab = 1) of the group G into a more suitable presentation by
means of Tietze transformations. Tietze transformations do not ckange the group G
defined by the different presentations, and are explained in great detail in [6].
Specifically we introduce the new generator x = ab, which step by step gives the
following different presentations for the very same: group G:

(a, b; abbaab =1); {a. b, x; x = ab, xbax =1);
(a,b,x;b=a'x,xbax=1);  (a,x;xa 'xax=1).

Obviously (ab)* =1 in G iff x*=1 in the group presented by the single relator
xa " xax. This relator is a cyclically reduced word, and we can apply Theorem 4.10 of
[6] which for our example reads as follows: If we{c, d,c™',d '}* is cyclically

“réduced and contains at least one of the symbois ¢ and ¢~* as well 25 one of the
symbols d and d 4"1; in which case we say ‘w involves ¢ and d’, then ev=rv nontrivial
relator v in the group presented by {c, d; w = 1) also involves ¢ and d. This in our case
means that x* = 1 is true iff k = 0, since otherwise x© would be a relator not involving
a. Since (ba)< =1 implies (ab)* =1, the lemma is rompletely proved.
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As it turns out we are able to prove Lemma 2.6 by an entirely different method,
well known in group theory. This method of using a suitable homomorphic image of
M by means of matrices will later be used to prove the nonexistence of finite
preperfect presentations for M. However, in case of semi-group prese itations with
one defining relation the result of Magnus [6] seems to be more general and
sometimes easier to use, since it can be difficult to find the proper homomorphism.

We now prove the main reslts of this section.

Theorem 3.7. For each w €{a, b}*,

L. ={w¥(®b)"(aa)" (ba) ™ in =0}.

Proof. Choose w arbitrary in {a, b}*. From Lemma 3.5 we can conclude that
{wH(bb)"(aa)" (ba)*|r =0} < L,. Now let veL, be arbitrary, then v = w, since
L., c{w]and v =w(bb)"(aa)"*(ba)"™ for some n,, #,, n3=0,since L,, <: R,,. Since M
is cancellative we derive 1 =(bb)"(aa)"*(ba)", which forces 1, = r, since any word
which is congruent to 1 in M must contain the same number o’ occurrences of a and
b, Now (bb)"1(act)"(ba)™=1 and (bb)"(aa)™(ba)’ "’ =1 imply (ba)"™ = (ba)’"",
and finally give (ba)'"a" “Dl = 1, which by Lemma 3.6 shows n3 = f(n,). Thus indeed,
v e L,, implies v € {w}{(hb)" (aa)" (ba)"™|n =0}, which proves the theorem.

Theorem 3.8. For any finite set S <{a, b}* the lerguage Ms =\, .s[w] is not
context-free.

Proof. If Ms were context-free, then the language Ls := Mg (U, .5 R.) would be
context-free too, since Mg is intersected with a regular set (compare [5, Proposition
2.2). Now Lg=\J,_sLw, thus Ls n{wHa, b}* = L,, would also be context-free for
each w € S. But the characterization of L,, in Theorem 3.7 together with the pumping
lemma for context-free languages [5, Proposition 1.7] finaiy shows that L,, and
therefore Mjs, cannot be a context-free language.

4. Non-existence of preperfect or confluent presentations

Results from [2, 3] show that there cannot exist finite special presentations for the
monoid M which in addition are confluent, since the conzruence classes would then
be context-free languages, contradicting Theorem 3.8. However, it is easy to see that
there does not exist a finite confluent presentation for M at all: we already know that
ubba = baab, but none of these words can be equal to some word v of shorter length,
otherwise vab =1 would yield a word equal to 1 but not of length six. Even though
this result is also an immediate corollary of Theorem 4.6 below, we state this as

Lemma 4.1 The monoid M cannot have a finite confluent presentation.
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In order to prove the more general result that the monoid M cannot have a finite
preperfect presentation, we need the fellowing technical result about certain valid
equations in M.

Lemma 4.2. Yn=0: a"b"ba=bc “." and a"b"ab = aba"b".

Proof. We first show a"b"ba = baab" by induction on n.
This equation is obviously true for n =0 and n = 1. Let us assume that the above
equation holds for all 0<k <, m = * fixed. Then

m+lygm+1 — ,m+l s = m+1;m — m-i; m-1
a’'’m b" baa=a"" b tssa=a" b"abab=aaa™ "b™  bapab

=1y i1 - - - .
=aabaa™ "b™ " bap = aababaa™ '™ b = abbaaa "™
) L ) .

m+1bm+1

mpm me m -
= baabaa"b" = baaa™ b "'ba = baa a,

where the underlined subwords are the ones to which already prover equalities are
applied.

Now, since M is a group, a™" 6™ baa = baa™ " 'b™ "' a shows by cancelling the
symbol a at the right-hand side that the equality in question is also true for
k=m+1.

The second equality of the lemma, a"b"ab = aba"b", is certainly true for n =0 and

=1 and, for n =1, can be reduced to the first equality as follows:

a"b"ab=aa""'b" 'bab = abac" 'b" " 'b=aba"b".

As an immediate consequence of Lemma 4.2 we sce that the presentation
P :=(a, b;{abbaab = 1, abba = baab, bbaa = abab}) for M is not preperfect, since
none of the defining relations in P can be applied to either word of the equation
aabbba = baaabb without increasing their length.

In order to generalize this observation let us first show how the exister:ce of a finite
preperfect presentation for M implies a certain equality of words. We will then show
later that no such equality can be valid.

i.emma 4.3. If the monoid M has a finite preperfect presentation, then there existn =1
and a word w# a"b" such that 1g(w)=2n and w=a"b".

Proof. Assume that S =(a, b; {w; = v;|1<i<k})is a preperfect presentatior. for M.
Let r be the length of the longest word involv:zd in the defining relations of S. From
Lemma 4.2 we know a’b’ba = baa'b’, and sincz § is preperfect there exists a defining
relation w =v in S, such that r =1g(w)=1Ig(v) and w is a subword of a'bba. Since
w e {a}* as well as w € {b}* implies w =: v there are only two nontrivial possibilities
for the form of w.

Case 1. w = b'a. In order that w = v be a nontrivial defining relation, we must have
v =b"ab® for some s =1, k +s = t. But this implies ab’ = b°a and therefore a’b* =
a’‘ab* = a* 'b%a = b*a", as stated.
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Case 2. w=a"b™ for some n, m =1. This shows a"""b" " =a"wb" =a"vb". If

1g(» j = lg(v), then this is the statement of the lemma; otherwise, lg(w) =1g{v) +6 - &
for some k =1, so that a"*™b"*™ = a™vb" (abbaab)" satisfies the sta.cment.

Lzt us now define the tw0 matrices

1
(2 0) — (“2 3).
A.—(O 1 and B = o 1)

It is easy to verify that the matrix product ABBAAB is equal to the identity matrix,
so that the following result is immediate.

Lemma 4.4 If h i the homomorphism defined by h(a) = A, h(b) : = B, then w =10
implies h(w) = h(v).

Lemma 4.4 now yields the second proof for Lemma 3.6: (ba)* = 1 would imply

oar-(} )

-vhich is not true for k # 0, since
1 3 . k 1 3 M k
BA _(0 1) yields (BA) —(3 ) )
We now proceed towards the r ain theorem of this section, and show the followir g
lemma.

Lemma 4.5. If a"b" = w for some w#a"b", then 1g(w)>-2n.

Proof. The following equalities are proved easily by induction on n=0.

(T ()

Thus, it A(a) = A, h(b) = B is the homomorphism from Lemma 4.4 and g is the
function defined for any integer z by g(z) = (-2)°, then

h(a"bm) A B (g(m l’l) g(—n)_-g(m_n)).
0 , 1
Now consider an arbitrary word w e{a, b}*, then w =a™b™q"2p™ . oo @"™p™ with
k,na...,nemy, ..., Fi1=1and ny, m, =0. It is stralghtforward to calculate

n=(f ).
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where ,
k‘—l k
F=g(M,—Ny), G:= ZO 8(M;—Nj.1)— .Zl g(M;—N,),
i= i=
; .
Mo=0, My=Ym and N =3 n
i=1 i=1
for 1 <j=<k. The entry G in h(w) can be rewritten as
k-1
G=g(-N)+ T [g(M;~Nyo1) ~ g (M~ N)]-F.
i
Now, if a"b" = w, then N; = M, follows from counting the number of symbols a

(respectively, b) in w, and

1 g(-n)- 1) _ (F G

h(a’b )=(o 1 0 1

)=how)
by Lemma 4.4. Thus F =1 and (G +1) - g(n) = 1. If we further assume that Ig(w) <
2n, then N; = M, < n so that

1=(G+1)g(n)

k-1
=8(n)g(=N)+g(n)- X [¢(M;~N;u1)~g(M; =~ N))]

k-1
=g(n—Ny)+ _;1 [g(n +M;—Nj.1)—g(n+M;—N))].

Since n=N; forali 1<j<k and M;=1forall 1<j<k -1, we find that each term
under the summation symbol is an even integer, so that the total sum can be equal to
1 only if g(n —N,) is odd. But this can happer: only if N; = n; = n, in which case
g(0)=1, k=1, and therefore only if w=a"?". Thus, if we assume a"h" = w but
w#a"b", then certainly Ig(w)>2n.

Putting Lemma 4.3 and Lemma 4.5 together gives the main result of this section.

Theorem 4.6. The monoid M carnot F:ave a finite preperfect presentation.

S. Some structural preperties of the monoid M

Let us first mention that the mapping h,, defined for each integer x by

1

hf(a):= (:)2 (1,) and h.(b) = (';)2 )lc)’

induces a homomorphism from A/ into a group of matrices, since h,(abbaab) is
always equal to the identity matrix. Moreover, we believe that h, is indeed an
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isomorphism unless x = 0. So far we do not have a proof for this conjecture. In crder
to develop more properties of the monoid (or group) M, we must agair use equalities
in M instead of matrix calculations. For instance, if A, is indeed an isc morphism, we
could immediately show that wv = vw for all words w and v, each of which has the
sarne number of occurrences of the symbols a and b, i.e., w and v are elements of the
unrestricted Dyck set, which is the unit element [1] of the monoid pres >nted by (a, b;
{ab=1, ba = 1}).

Using Lemma 4.2 we are however able to show that a iarge number oi words, cther
than ab and ba, also commute in M.

Lemma 5.1. Vn, k =0: a"b"b*a* =b*a*a"p".
Proof. If k =1, then this equation is true by Lemma 3.1.
If k =2ris even, r=1, then
a"b"b*a* = a"b"(abab)"” (by Lemma 3.4)
=(abab)’”a™b" (by Lemma4.2)
=b"a”a"h ,

where f(r) := 3(4"—1) as in Lemma 3.4.
If x=2r+1isodd, r=1, then

anbﬂb27+la27+1 = anbnbera2ra
=a"b"b(abab)Va (byLemma 3.4)
Eanbn(ba)z-f(r)-‘-l
=(ba)* " a"p" (by Lemma 4.2)
=b2r+la2r+lanbn
Lemma 8.2, Vn, k =0: a"b"a*“b* =a*b*a"b" and b"a' b*c* =b*a“p"a".
Proof. We only ve:ify ihe first equality; the second one can be similarly shown.

The equality a"t"a‘b* = a*b*a"b" is obviously true for n =k, n=1and k= 1.
Thus we assume n #k, n =k +r, r =1 (the case k = n +r is symmetric). Now

a"b"a*b* =a*a’b'b*a*b"* = a*b*a*a’b’b* = a*b*a"b".
We summarize the previous results by

Theorem 5.3. wo =vw forall w, ve{a"b", b"a", (ab)", (ba)" |n=1}.

As an applicaticr: ¢f Theorem 5.3 we will show that the monoid M contains
infinitely many proper submonoids which are isomorphic to M, Since we know that
M is in fsct a group, we will freely use inverse elements.
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Lemma 5.4. Vwe{a"b", b"a", (ab)", (ba)" |n =0}: wa 'waw =1.
Proof. If w=(ab)", then (ab)"a"(ab)"a(ab)" = (ab)" (ba)" (ab)" = (abab)" (42)" =
1, using Lemma 4.2. If w= (ba)*, then
(ba)*a"'(ba)*alba)* = (ba)*'b(ba) a(ba)* =b(ab) ' (ba)*(ab) a
=b(ab)* (ba)*'(ab)* ‘abbaa = babbaa = 1.

If the lemma is true for w=a"b", then a"b"a 'a"p"aa"p" =1 implies 1=
b"a"'a"b"aa"b"a" =b"a"a 'b"a"ab"a", so that the lemma would also be true for
w=)"a". Now assume the lemma to be true for w=a"b"™. Then

1 = ababba = abaa™b"a™ 'b"a™ " 'b"pba

=abaa™b™a™ 'b"a™ ' b"bba = aa™b™baa™ 'b™a™" b bba

m+lbm+1ambmam+1bm+10a:= am+1bm+1amb

m+lbm+la—1am+1bm+l

m+1bm+|

=q "baa

m+1bm+1

=a aa

Therefore, by induction, the lemma is true for all w=a"5", n =0.

Theorem 5.5. The monoid M contains infinitely many proper submonoids isomorpk.ic
to M,

Proof. For each n =1 we define a homomorphism 4, :{a, b}* - {a, b}* by h.(a) = q,
ha(b) = a"b""'. We find

ha(a™") = h,(bbaab)=a"b""'a"b" 'aaa"p"**
=a"b"baa" 'b" ‘bbaaa"b"b
=a"b"a""'b" " 'baa"b"bbaab = bbaab =a ",

so that h,(a”") and a™! define the same element. Also, for all x, y €{a, b}*, xy
implies h,(x)# A,(y). From Lemina 5.4 we concludc that x =y iff ,(x) = h.(y), so
that h, induces a one-to-one homomorphism g, from M into M by
gn([w)) = [h,(w)] for each w € {a, b}*.

Note that the set of words 4,.([w]) does not necessarily coincide with the set
[h.(w)], since h,(ba)=a"b"ba = baa"b" # h,(w) for any word w € {a, b}* and n = 1.

Lemma 5.4 shows that the group presented by (v, a; {va 'vav = 1}), with v=
h.(ab), is isomorphic 10 M under the mapping g, and is a subgroup oi M.

If n # m, then g,(M) and g..(M) are different subgroups of M, since g.([ab])=
[a"*'b"*"])and g, ([at]) =[a™ " b™* "] are different elements of M. For, if we assume

a"™p" = g™ 1p™* then there exists k >1 such that a6 = 1. But this would
mean b*a* =1 and 50 b**a?* = (bbaa)’™® = (ab)*’ fik) —: 1 which contraclicts Lemma
3.6, This shows that the monoxd (or group) M contains infinitely many isomorphic
submonoids.
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To verify that infinitely many submonoids of M are proper, consider the mapings
g3k-1: M - M for all k = 1. We shall see that the element [5] of M is not an element
of gi-1(M) for every k=1. Suppose there exists a word w €{a, £}*, such that
¢ = h3r—1(w). Now the number x of occurrences of the symbol b in the v ord A3, (w)
raust be of the form x = 31+ 1 for some / = 0. On the othcr hand, by definitior: of k.,
we know that x = 3k - y, where y =1 is the number of occurrences of the symtol b in
.. This gives us the equation

3.k-y=3.f,+1

which is not irue for any choice of integers k, y, and [.

6. Concluding remarks

Despite some unscived questions about the special monoid M preseated here, we
think that the method of applying group theoretical results to certain semigroup
presentations (or equivalently, Thue systems) has been shown to be quite powerful
and might be useful for other examples as well. For, if § and §’ are two presen:ations
of th:: same semigroup, then § and S’, considered now as group presenrtatior:s, also
definz the same group. The converse, however, is not true.

We do not know whether methods like this are powerfu! enough to solv: open
questions like: Is it decidable whether a finitely presented semigroup has somz: finite
confitent presentation? Is it decidable whether a given semigroup presentztion is
preperfect? What is the complexity of the word problem in special semigroups with
singl. defining relation w =17

Also, too little is known about the relationships between context-free languages or
grammars and semigroup or group presentations. The recent work in [4] shiows a
different approach in this direction.

Let us finally add scme remarks on the use of terminology which is not consistent in
the literature. Thue systems with rclations only of the form (w, 1) have been called
‘unitary’ in. [2] and ‘trivial’ in [3]. Since our results showed that even trivial-looking
Thue systems of this form can have a very special and nontrivial structure, we
propose to call thcse Thue systems ‘special’, according to tlie early notion for
semigroup presentations used in [1] and several other places. Sometimes special
Thue systems are also called Dyck systems, and we want to emphasize that thi:; miglt
be misleading if the Thue congruence is not confluent, since it then can be the case
that the congruence classes are not context-free languages.
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