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a b s t r a c t

This paper proposes a dynamic model for a multiple continuum arm robot inspired
by live octopuses. The kinematics and dynamics for a single arm are analyzed and
formulated including the longitudinal muscles, radial muscles, isovolumetric constraints,
and interaction between suckers and an object. The single arm model is then expanded to
a multiple arm system that is capable of generating archetypal locomotion patterns such
as crawling and swimming. A hierarchical controller based on octopus neurophysiology
is used to achieve simple and reliable control of the multiple continuum arm system.
Simulations for single arm movements and multiple arm locomotions are presented. The
results of this work can be used in the study of control schemes for multiple continuum
arm robots and live octopuses.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the amazing features of octopuses have received more and more attention from the robotic community.
Octopuses have entirely soft bodies without an internal or external skeleton. An octopus arm is capable of elongating,
shortening and bending at any point along its length. Biologists have found that this dexterity is due to the special
muscular structure, composed of longitudinal, radial and oblique muscle fibers [1]. In addition, octopus arms are muscular
hydrostats, meaning, the volume of the arm remains constant during movements. Flexible arms such as these can operate
in highly constrained environments by significantly changing their shapes to bypass obstacles and squeeze through narrow
holes [1,2].

Inspired by an octopus arm, the concept of continuum arms for use in robotic systems has been proposed and studied.
Continuum arms have a large number of actuated degrees of freedom (DOF) and are therefore well suited for operations in
highly constrained environments. They can also be designed to have great robustness with respect to individual actuator
faults. The implementation of continuum arms may consist of truly flexible components [3,4], or a large number of rigid
links that attempt to approximate a continuous morphology [5,6]. In either instance, due to their unique design and high
degree of non-linearity, the development of control and motion planning algorithms for continuum robotic arms requires
kinematically and dynamically accurate modeling techniques.

There have been several attempts to dynamically model continuum arms. Mochiyama and Suzuki presented a
3-dimensional dynamic model for a constant length continuum manipulator [7]. Tatlicioglu et al. developed an improved
model for an extensible manipulator [8]. Chirikjian established a dynamic model for a hyper-redundant manipulator using
‘‘backbone curves’’ [9]. Kang et al. presented a 3-dimensional dynamicmodel for a continuum armusing parallel mechanism
theory [10]. However, thesemodels do not consider the radialmuscles and isovolumetric constraints present in live octopus.
Yekutieli and Zheng proposed a 2-dimensional and a 3-dimensional octopus arm model respectively, considering both
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Fig. 1. Octopus arm anatomy.

isovolumetric properties andwater drag force [11–13]. However, thesemodels do not consider the force interaction between
arm suckers and surrounding objects. Therefore, there are limitations when applying the above models to the study of the
behavior of live octopus arms and biologically inspired continuum arms.

In this paper a 3-dimensional continuum arm model, inspired by octopus arm anatomy, is proposed. This model
utilizes 20 segments with parallel actuation structure to mimic continuum armmorphology. Radial muscles, isovolumetric
constraints, hydrodynamic forces and force interaction between arm suckers and surrounding objects are taken into account.

This single arm model is then expanded to a multiple arm system. To date, a number of papers have discussed the
kinematics and dynamics of a single continuum arm. However, in literature there is no paper concerned with multiple
continuum arm cases in the context of robot control. The proposed multiple-arm model is then combined with a bio-
inspired controller developed by Branson et al. [14], and is shown through simulation to exhibit various biologically plausible
motions. The results of this work can be used to study biological control theory on live octopuses, and to assist in controller
design for highly dexterous robots with continuum arms.

The paper is organized as follows: in Section 2 the biological features of a real octopus are briefly introduced; in Sections 3
and 4 the kinematics and dynamics of a continuum arm are analyzed; in Section 5 the external forces applied to an octopus
arm from its aquatic environment are discussed; in Section 6 the multiple arm model is proposed; in Section 7 the arm
controller based on octopus neurophysiology is presented; and in Sections 8 and 9 the simulation results and conclusions
are presented.

2. Biological insights of an octopus

The purpose of this paper is to develop a bio-inspired dynamic model for a multi-armed ‘‘octopus-like’’ robot. Therefore
the biological features of a real octopus are briefly introduced in this section.

2.1. Arm anatomy

Octopus arm dexterity is based on an isovolumetric muscular structure composed of three muscle types (Fig. 1):
longitudinal (axially running along the length of the arm), radial (transversal) and oblique muscles (diagonally surrounding
the arm) [2]. The longitudinal and radial muscles are divided into four groups spreading around the central connective
tissues. These muscles generate antagonistic forces to enable the arm to elongate, shorten and bend. The oblique muscles
produce torsion. Since we do not consider the twist motion at this time the oblique muscles are not included in the model.
Numerous suckers are aligned along the ventral side of an octopus arm and are capable of grasping nearby objects.

2.2. Types of locomotion

Octopuses exhibit diverse locomotion patterns such as crawling and swimming [1]. Crawling is the most common form
of ground locomotion for octopus. It is reported that during crawling octopuses can use two ormore arms to push and pull in
any direction. Swimming is an alternative method of movement. In this case the octopus locomotes 8 arms simultaneously
to generate propulsion forces on the body [1,15]. In this paper the proposed multiple arm model is utilized to demonstrate
crawling and swimming locomotions.

3. Single arm kinematics

An octopus-like prototype robot with 8 continuum arms is currently under development. To develop control methods
for the final robot prototype, it is necessary to first kinematically model single armmovements. In this section the geometry
and kinematics of a single continuum arm are first defined and analyzed.
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Fig. 2. Geometry of (a) a single segment (b) multiple segments.

From previous work by Kang et al. each continuum arm is composed of a number of segments with parallel actuation
mechanisms [10,16]. The geometry of a single segment is shown in Fig. 2(a). It is composed of a fixed base, amoving platform,
a central strut, and 4 longitudinal and radial ‘‘muscles’’. The longitudinal and radial muscles are considered equivalent to
linear piston/cylinder systems and can use any form of suitable actuators. The longitudinal muscles are modeled as being
attached to the moving platform with spherical joints and to the base with universal joints. These muscles can adjust the
height and orientation of the moving platform through activation of the individual muscle elements. The radial muscles are
actuated in unison, and are therefore identical in length. They are used to determine the radius of the moving platform.

The central strut provides kinematic constraints that prevent shearmotion between the base and themoving platform. It
consists of a passive prismatic joint fixed to the center of the base, and connects to the center of the moving platform using
a universal joint. The moving platform consists of 2 rotational DOF, about axes u and v, and 1 translational DOF, along the
axis z. This redundant actuation helps to increase the stiffness and avoids kinematic singularities [16].

Two Cartesian coordinate systems A(x, y, z) and B(u, v, w) are assigned to the base and to the moving platform
respectively.With reference to Fig. 2(a), each longitudinalmuscle is identified by a position vector di that can be obtained by:

di = p + bi − ai, (1)

where p = AB = [0 0 h]T is the position vector of the centroid B, h is the length of the central strut, bi = BBi is the position
vector of Bi, and ai = AAi is the position vector of Ai. All these vectors are expressed in the fixed frame A.

The orientation of the moving platform is defined by two Euler angles α and β about the axes v and u respectively. Thus,
bi is obtained by:

bi =
ARB

Bbi (2)

where ARB is the Euler rotation matrix and Bbi is the position vector of Bi expressed in frame B.
Substituting Eq. (2) into Eq. (1) yields:

di = p +
ARB

Bbi − ai. (3)

The muscle length Li is obtained by the dot product of di:

Li = (p +
ARB

Bbi − ai)
T
· (p +

ARB
Bbi − ai). (4)

Eq. (4) relates longitudinal muscle length, Li, and the moving platform posture including its position, p, and orientation, ARB.
A homogeneous matrix j−1Tj (j = 1, 2, . . . , n) is then defined to transform the coordinate systems from segment j to

j − 1, where n is the total number of the segments (Fig. 2(b)). The matrix contains both rotational and translational terms
as follows:

j−1Tj =


j−1Rj

j−1pj
0 1


(5)

0Tn =
0T1

1T2 . . .
n−1Tn. (6)

4. Single arm dynamics

Computing the dynamics for single arm movements is also important for future control development. This section
formulates the dynamics for a single continuum arm including consideration of the radial muscles and isovolumetric
constraints.
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Fig. 3. Free body diagram of (a) a longitudinal muscle (b) the central strut.

4.1. Dynamics of a single segment

As a single arm is composed of multiple segments the dynamics of a single segment is first analyzed.

4.1.1. Longitudinal muscle dynamics
Fig. 3(a) shows the free body diagram of an actuated muscle where the longitudinal muscles are modeled as a linear

piston/cylinder actuator. Since gravity is considered as an external force acting on the entire segment it does not show up
here butwill be discussed in Section 6. As an addition to themodel presented previously by Kang et al. [10], an isovolumetric
constraint force, ξvi, is applied to the longitudinalmuscles. The linearmovement along themuscle axis is then formulated as:

ξci + ξvi − fBLzi = MplL̈i + CvlL̇i + Ksl(Li − Lo), (7)
where ξci is the actuation force, ξvi the isovolumetric constraint force that will be explained further in Eq. (18), fBLzi the
component force at joint Bi acting on the piston and along the muscle i, Li the actual length of muscle i, Lo the initial length
of the muscle i,Mpl the mass of the piston, Cvl the damping coefficient, and Ksl the stiffness coefficient.

The rotation of the longitudinal muscles is formulated in frame A as:

İiωli + Iiω̇li = di × fBLxyi, (8)
where fBLxyi is the component force at joint Bi acting on the piston and perpendicular to muscle i, Ii is the inertia moment of
muscle i, and ωLi is the corresponding angular velocity of muscle i given by:

ωLi = di × vBi (9)
where vBi is the velocity of Bi expressed in frame A.

In order to connect several segments serially, the reaction forces between the longitudinal muscles and the base, FALi,
must be calculated. These reaction forces can be obtained by:

FALi = Mclv̇li1 + Mplv̇li2 − FBLi, (10)
where FALi is the joint force on Ai,Mcl is the mass of the cylinder, FBLi is the joint force on Bi, vli1 is the velocity of the center
of mass of the cylinder, and vli2 is the velocity of the center of mass for the piston. The calculation of FBLi, vli1 and vli2 can be
found in [10].

4.1.2. Central strut dynamics
Fig. 3(b) shows the free body diagram of the central strut. The central strut has only one DOF, passive translation along

its axis. As it is connected to the moving platform by a universal joint and vertically fixed to the base there are constraint
torques acting on both points A and B.

The equation of the piston linear motion is:

fBCz = Mplḧ + Cvlḣ + Ksl(h − ho), (11)
where fBCz is the component force on joint Bi acting on the piston and along the strut axis, h is the actual distance between
point A and B, and ho is the initial distance.

Applying Newton’s law to the central strut yields:

FAC + FBC = Mpl[0 0 ḧ]T , (12)
where FAC is the reaction force acting on the strut, and FBC is the joint force of B acting on the strut as:

FBC = fBCzp + fBCxy. (13)
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Fig. 4. Free body diagram of the (a) radial muscle (b) moving platform.

Applying Newton’s law to the rotation of the central strut about point A yields:

TAC + TBC + p × FBC = 0, (14)

where TAC is the reaction torque acting on the strut, TBC is the constraint torque due to the universal joint B, and p is the
position vector of Bwhere ∥p∥ = h.

4.1.3. Radial muscle dynamics
Like the longitudinal muscles, the four radial muscles are considered as linear piston/cylinder actuators. They are equally

spaced around point B on the u − v plane. Fig. 4(a) shows the free body diagram of a radial actuator. The linear motion of
the piston is described as

δci + δvi − FCLi · ubi = Mpr R̈ti + Cvr Ṙti + Ksr(Rti − Ro), (15)

where δci is the actuation force, δvi is the isovolumetric constraint force, FCLi = −FBLi is the joint force acting on the platform,
ubi = bi/Rti is the unit vector of bi, Ro is the initial radius of the moving platform, Mpr is the mass of the piston, Cvr is the
damping coefficient, and Ksr is the stiffness coefficient.

4.1.4. Moving platform dynamics
Fig. 4(b) shows the free body diagram of the moving platform (upper plane of each segment). The platform has 3 DOF,

1 translational DOF along the axis of the central strut and 2 rotational DOF about axes u and v in frame B. The equation of
translation for frame A is:

Mplat [0 0 ḧ]T = FCL1 + FCL2 + FCL3 + FCL4 + FCC + Fex, (16)

where FCC = −FBC is the joint force of B acting on the moving platform, and Fex is the external force.
To simplify the inertia matrix of the platform, the rotation is formulated in frame B as:

4
i=1

Bbi ×
ART

B FCLi +
BTCC +

BTex =
BIplat [β̈ α̈ 0]T , (17)

where BTCC =
ART

B (−TBC ) is the constraint torque at joint B acting on the moving platform. BTex is the external torque acting
on the platform, and BIplat is the inertia matrix of the platform.

4.1.5. Isovolumetric constraints
Octopus arms are isovolumetric due to their muscular hydrostat structure. In such structures an increase in length will

result in a corresponding reduction in cross-sectional area and vice versa. This is one of themost important and fundamental
features of an octopus arm. In this model opposing forces are applied to the longitudinal and radial muscles to guarantee
the isovolumetric constraints where

ξvi = Kl|δci − FCLi · ubi|(Vo − Vc) (18)

δvi = Kr

 4
i=1

ξi + Fex · up

 (Vo − Vc)+ FCLi · ubi (19)

Vc is the actual volume of a single segment, Vo is the initial volume of this segment, Kl is the constraint force gain for
longitudinal muscles, and Kr is the constraint force gain for radial muscles.

In Eq. (18) the obtained ξvi is applied to the longitudinal muscles to cancel the volume change caused by forces in the
radial direction. In Eq. (19) the first term on the right-hand side is used to cancel the volume change caused by the forces in
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Fig. 5. Modular dynamic model for a single segment.

Fig. 6. Modular dynamic model for multiple-segment arm.

the longitudinal direction, and the second term is used to compensate for joint forces acting on the radial muscles. In this
way the four radial muscles have the same length and the segment can be treated as a truncated cone whose volume is:

V = πh(R2
t + RtRb + R2

b)/3, (20)

where Rt and Rb are the radius of the platform and base.

4.2. Dynamics of a single arm

In this section a modular modeling method is used to develop a multiple segment model. Fig. 5 shows the schematic
of a single segment including all the kinematic and dynamic equations mentioned previously. This schematic can be
implemented MATLAB/Simulink. Each segment has a number of input/output ports used to transfer forces, torques and
kinematic information to nearby segments. The base of segment j + 1 is also the moving platform of segment j. Thus the
reaction forces and torques generated by segment j+ 1 are considered as the external forces acting on the moving platform
of segment j.

To form a complete arm the individual segments are connected serially (Fig. 6). The dynamic forces and torques are solved
from the arm tip to the base while the kinematic transformation matrices are solved from the arm base to the arm tip.
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Fig. 7. Schematic of sucker–object interaction (a) arrangement of the suckers (b) interaction force between a sucker and object.

5. External forces

Typical external forces on an octopus arm are gravity, buoyancy and hydrodynamic forces. Additionally, the interaction
force between a sucker and object is considered in this model. These forces are calculated for each segment as an external
force

Fexj = Fgj + Fbj + Fdj + Flj + Fsj, (21)

where Fexj is the total external force acting on segment j, Fgj the gravity force, Fbj the buoyancy force, Fdj thewater drag force,
Flj the water lift force, and Fsj the reaction force from sucker j.

5.1. Buoyancy and gravity

The direction of buoyancy always opposes gravity. Thus, the resulting force due to gravity and buoyancy is:

Fgj + Fbj = (ρo − ρw)Vcjgugj = ρoVcjgeugj, (22)

where ρw is the density of water, ρo is the density of octopus arm, Vcj is the volume of segment j, ugi is the direction of gravity
for segment j, g is the gravity constant, and ge is the equivalent gravity constant defined as:

ge =


1 −

ρw

ρo


g. (23)

5.2. Hydrodynamic forces

The hydrodynamic forces on an octopus arm during movement through a liquid medium are drag force and lift force.
For segment j the drag force, Fdj, has the same direction as the fluid velocity, Uj, and the lift force, Flj, is perpendicular to Uj
according to

Fdj =
1
2
CdArjρwU2

j

Flj =
1
2
ClArjρwU2

j ,

(24)

where Cd and Cl are the drag and lift coefficients respectively, and Arj is the area of orthographic projection for segment j on
the plane perpendicular to the direction of motion [17]. The relationship between the flow incidence angle θj and the drag
and lift coefficients, Cd and Cl, are detailed in [10,18].

5.3. Interaction force between a sucker and object

The interaction behaviors between a sucker and object can be described by the spring–damper system shown in Fig. 7.
The interaction force acting on segment j is

Fsj =

Kc


KsjKo

Ksj + Ko
Dsoj


1 −

sj
∥Dsoj∥


+

CsjCo

Csj + Co
Ḋsoj


, ∥Dsoj∥ < Ad

0, ∥Dsoj∥ ≥ Ad,

(25)

where Kc is the control gain, Ksj is the stiffness of sucker j, Ko is the stiffness of the object, Dsoj is the position vector from the
centroid of segment j to the object, sj is the height of sucker j, Csj is the damping coefficient of sucker j, Co is the damping
coefficient of the object, and Ad is the activation distance of the sucker. When ∥Dsoj∥ < Ad, the sucker force, Fsj, is activated
and the object will be held by the arm. To release the object, the controller will set the sucker force to zero using Kc .
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Fig. 8. Geometry of multiple continuum arm model.

6. Multiple continuum armmodel

This section combines eight continuum arm models with a body to form an octopus-like multiple arm system. A body
coordinate system C(xc, yc, zc) is defined at the centroid of the robotwith 8 arms radiating from the central structure (Fig. 8).
The base of each arm is described in frame C by a yaw angle, ψm, about the axis zc and a pitch angle, ϕm, about the xc − yc
plane wherem = 1, 2, . . . , 8 is the number of the arm.

Arm motions are used to generate reaction forces that can cause body motion in the global frame G. The body is then
considered to be rigid, and therefore its dynamics are formulated as:

8
m=1

FA0,m = MbẌ + CbẊ (26)

8
m=1

TA0,m = IbΦ̈ (27)

where Mb is the mass of the body, X the position vector of the body, Cb is the damping coefficient relative to body shape
and fluid viscosity, Ib is the inertia matrix of the body, Φ is the Euler angle from frame G to C , and FA0,m and TA0,m are the
reaction forces and torques coming from the base segments of the 8 arms. Thus, two additional homogeneous transformation
matrices are applied to Eq. (6) for each arm to express the arm position and orientation in frame G as:

GTn,m =
GTC (X,Φ)CT0,m(ϕm, ψm)

0T1,m
1T2,m . . .

n−1Tn,m. (28)

7. Multiple arm control architecture

Typically, robotic controllers are developed for systems containing relatively fewDOF [16,19–21]. However, the proposed
arm model is capable of a much larger number of DOF. Additional challenges are present in that the entire structure
can undergo elastic deformations, and that traditional control schemes often require individual feedback control for each
actuated DOF.

To achieve simple and computationally light control of a continuum arm systemwithout the need for individual element
feedback, a controller presented previously by Branson et al. [14] was implemented on the arm model. This controller is
based on neurophysiological insights from Octopus vulgaris, whose neurophysiology centers on the need to robustly control
a body structure with virtually infinite DOF. The resulting controller is organized into a hierarchical structure composed of a
central nervous system (CNS) that cascades commands to a peripheral nervous system (PNS) located on each arm, Fig. 9 [14].

In this control architecture the CNS is a higher level planning controller located in the brain of the octopus that needs only
send desired stereotyped information onmotion and completion time to individual PNS controllers located on each arm. The
PNS achieves lower level control by converting this information to induce time-based selectivemuscle activation [14,22–24].
Table 1 gives a summary of the resulting longitudinal and radial muscle activation strategies for stereotyped arm motions
to elongate, shorten, bend, and reach. The control utilized in this paper is open-loop in nature, and future work will look at
the implementation of a closed-loop controller with proprioceptive and exteroceptive feedback.

8. Numerical simulation

To approximate the shape of an octopus arm20 segments are connected serially in the simulation. The use of 20 segments
provides satisfactory precision while delivering a reasonable computational time cost. The arm parameters are obtained
from biological tests [25,26]. The simulation was carried out using the 4th order Runge–Kutta integrator [27,28].
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Fig. 9. Open-loop control structure for the multiple arm system.

Table 1
Resulting PNS stereotyped muscle structures for given commands.

Command type Longitudinal muscles Radial muscles

Elongate All relaxed All contracted
Shorten All contracted All relaxed
Bend Within the bend region one or more muscles are contracted Within the bend region the radial muscles are contracted
Reach Stiffening of the muscles starting from the shoulder and

extending outwards over time
Stiffening of the muscles starting from the shoulder and
extending outwards over time

8.1. Single arm motions

A single arm model is capable of elongating, shortening and bending at any point along its length. Each of these
basic motions can occur separately, or simultaneously resulting in more complicated movements such as reaching and
fetching [1,10,23]. By including radial muscles, isovolumetric constraints and suckers, this armmodel exhibitsmore realistic
behaviors than the previous models presented in [10,13].

8.1.1. Reaching and fetching
Reachingmovement is obtained by first generating a bendnear the base that curves the arm to a starting position (Fig. 10).

The controller then propagates muscle contractions on both longitudinal and radial muscles from the arm base to tip. It was
found that hydrodynamic forces slowed down the movement of the arm tip and generated the whipping effect commonly
seen in live octopus.

Fetching movement is a combination of elongating, shortening and bending at different portions of the arm. It is an
extension of the reaching action so that the octopus can retrieve an object to its mouth (Fig. 11) [23,29,30].

From Figs. 10 and 11, it can be seen that the armmodel developed in this paper has similar dynamics in comparison to a
live octopus for movements such as reaching and fetching. Differences are mainly due to the timing issue in the controller.

8.1.2. Isovolumetric property
To evaluate isovolumetric effects, arm elongation is achieved by simultaneously contracting the radial muscles and

relaxing the longitudinal ones. Reversing these muscle actions results in arm shortening (Table 1). It can be seen that the
longitudinal muscles extend during elongation, and the radial muscles expand during shortening (Fig. 12). The arm volume
remains constant.

8.1.3. Picking-up and throwing
Fig. 13 shows how the continuum arm picks up an object and then throws it away. The arm is first commanded to move

towards the object. Once the distance between the object and sucker is less than Ad, Eq. (25) is activated and the sucker
attaches to the object. To throw the object the arm moves to a release point and then the sucker force is set to zero by the
controller. The object here has a mass of 0.05 kg which is an estimation of the weight of octopus’ food.
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Fig. 10. Reaching movement, the arrows indicate the bend point.

Fig. 11. Fetching movement, the arrows indicate the object position.

Fig. 12. Results of elongation (left) and shortening (right) commands applied to the relaxed arm (middle).
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Fig. 13. Picking-up (1–2–3) and throwing (4–5–6) motions.

8.2. Multiple-arm locomotions

The coordination of eight arms can result in more complicated motions such as crawling and swimming.

8.2.1. Crawling
Crawling locomotion is composed of several primitive arm motions used in series (Fig. 14(a)). Firstly, three rear arms

are bent and attached to the ground by the suckers from segments 17 to 19. Then these arms are returned to the straight
position and in this way the body is pushed forward. In this simulation the ground is considered as an object with infinite
mass so only the octopus will move. The direction, speed, and distance of the motion are set by the CNS controller.

8.2.2. Swimming
Swimming is achieved by repeatedly bending and returning the 8 arms. During the bending motion, the arms strongly

push against the water and the generated hydrodynamic forces react on the body (Fig. 14(b)). Future work will consider the
effects of the octopus mantle and more complex movements on swimming locomotion.

9. Conclusions

This paper describes the dynamic modeling of a multiple continuum arm system inspired by live octopuses. Each arm
is composed of 20 segments with parallel mechanisms. The interaction behaviors between the arm and the surrounding
environment are taken into account for hydrodynamic forces and suckers. In addition, the effects of radial muscles
and isovolumetric constraints are included. To simplify the control strategy a hierarchical controller based on octopus
neurophysiology was applied to the dynamic arm model.

Simulation results show that the obtained model is capable of producing highly dexterous single and multiple arm
motions that are similar to live octopus movements. This work can be used to study the biological control scheme of live
octopuses, and assist in the controller design of a multiple continuum arm robot currently under development.
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Fig. 14. Locomotions of (a) crawling and (b) swimming.
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