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Abstract

In this note, we point out an error in the proof of Theorem 4.7 of [P.N. Achar, A. Henderson, Orbit
closures in the enhanced nilpotent cone, Adv. Math. 219 (1) (2008) 27–62], a statement about the existence
of affine pavings for fibres of a certain resolution of singularities of an enhanced nilpotent orbit closure. We
also give independent proofs of later results that depend on that statement, so all other results of that paper
remain valid.
© 2011 Elsevier Inc. All rights reserved.
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The paper [1] carries out the determination of orbit closures in the enhanced nilpotent cone
V × N and their local intersection cohomology. A key role is played by a certain resolution of
singularities of the orbit closure Oμ;ν , denoted by πμ;ν .

In [1, Theorem 4.7], we asserted that each fibre π−1
μ;ν(v, x) of this resolution has an affine

paving. Regrettably, our proof of this statement was wrong: the error comes four lines after
Eq. (4.9), where we assumed without justification that x(Vk) � Udk

. We have not found either
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a correct proof or a counterexample, so the existence of an affine paving for π−1
μ;ν(v, x) is an open

problem in general.
When v = 0, the fibre π−1

μ;ν(v, x) is a generalized Springer fibre of type A, and an affine paving
can be constructed by induction on the length of the partial flag, as shown by Spaltenstein [5].
A similar method works whenever v ∈ ker(x), but not for general (v, x), as the example given
before [1, Theorem 4.7] shows. The methods of [3] also appear insufficient.

In the remainder of [1], the affine pavings were used only in the proof of Corollary 4.8(1) and
Eq. (5.7). We will now give an independent proof of these consequences, so that all results stated
in [1] other than [1, Theorem 4.7] remain valid.

We use the same notation as in [1]. The result we must prove (an amalgamation of [1, Corol-
lary 4.8(1)] and [1, (5.7)]) is as follows.

Theorem 1. Let (ρ;σ), (μ;ν) ∈ Qn. There is a polynomial Π
ρ;σ
μ;ν (t) ∈ N[t], independent of F,

satisfying the following two properties.

(1) For any (v, x) ∈ Oρ;σ ,

∑
i

dimH 2i
(
π−1

μ;ν(v, x),Q�

)
t i = Π

ρ;σ
μ;ν (t), and

Hi
(
π−1

μ;ν(v, x),Q�

) = 0 for i odd.

(2) If F is the algebraic closure of Fq , then for any (v, x) ∈ Oρ;σ (Fq),

∣∣π−1
μ;ν(v, x)(Fq)

∣∣ = Π
ρ;σ
μ;ν (q).

Even though it relies superficially on Eq. (5.7) which we are trying to prove, the result [1,
Proposition 5.6] is still available to use: we need only replace each occurrence of an expres-
sion of the form Π

ρ;σ
μ;ν (q) with the expression which was actually used in the proof, namely

|π−1
μ;ν(v, x)(Fq)| for (v, x) ∈ Oρ;σ (Fq).
We first prove a weaker form of Theorem 1. Note the change from N[t] to Z[t].

Proposition 2. Let (ρ;σ), (μ;ν) ∈ Qn. Suppose F is the algebraic closure of Fq . There is a

polynomial Π
ρ;σ
μ;ν (t) ∈ Z[t], independent of F, which satisfies property (2) of Theorem 1.

Proof. This could be proved by induction on the length of the partial flag as in [5], but it is
quicker for us to imitate the proof of [1, Proposition 5.7]. Recall that R denotes the ring of all
functions g : Z>0 → Q� of the form

g(s) =
∑

i

ci(ai)
s with ci ∈ Z and ai ∈ Q� (a finite sum),

and K denotes its fraction field. We identify Z[t] with a subring of R via the map which sends a
polynomial p(t) to the function s �→ p(qs/2).

We can define an element π
ρ;σ
μ;ν ∈ R by the rule

π
ρ;σ

(s) = ∣∣π−1 (v, x)(Fqs )
∣∣,
μ;ν μ;ν
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where (v, x) ∈ Oρ;σ (Fq). Then [1, Propositions 5.5 and 5.6] together imply that equation [1,
(5.5)] holds in the field K , where the left-hand side (which, as stated, involves the polynomials
Π

ρ;σ
μ;ν (t)) is replaced by

∑
(τ ;υ)∈Qn

λ(τ ;υ)π
τ ;υ
μ;ν π

τ ;υ
μ′;ν′ .

As in the proof of [1, Proposition 5.7], the uniqueness in [1, Theorem 5.4] implies that π
ρ;σ
μ;ν

is an element of Q(t), and hence of Q(t) ∩ R = Z[t, t−1]. Since π
ρ;σ
μ;ν is Z-valued, it must lie

in Z[t]. Moreover, uniqueness shows that π
ρ;σ
μ;ν is unchanged under t �→ −t , so it actually lies

in Z[t2]. Let Π
ρ;σ
μ;ν (t) ∈ Z[t] be the polynomial such that Π

ρ;σ
μ;ν (t2) is identified with π

ρ;σ
μ;ν . Then

by definition we have

π
ρ;σ
μ;ν (s) = Π

ρ;σ
μ;ν

(
qs

)
, for all s ∈ Z>0.

Uniqueness also implies that π
ρ;σ
μ;ν , and hence Π

ρ;σ
μ;ν (t), is independent of the prime power q used

to define it. This proves the claim. �
We next prove a purity result, by a standard method. Recall that if X is a projective variety with

a Frobenius morphism F relative to the finite field Fq , the cohomology of X is said to be pure if
the eigenvalues of F on Hi(X,Q�) are algebraic numbers all of whose complex conjugates have
absolute value qi/2.

Proposition 3. Let (ρ;σ), (μ;ν) ∈ Qn. Suppose that F is the algebraic closure of Fq , and let
(v, x) ∈ Oρ;σ (Fq). Then the cohomology of π−1

μ;ν(v, x) is pure.

Proof. Since πμ;ν is a resolution of singularities of Oμ;ν , the derived push-forward complex
R(πμ;ν)∗Q� is pure of weight 0 by [2, Remarque 5.4.9]; we must show that it is pointwise pure.
This will follow from the general principle [4, Proposition 2.3.3], if we can show the existence
of a transverse slice S to the orbit Oρ;σ at (v, x) and a 1-parameter subgroup ϕ : F× → G × F×
which contracts S to (v, x).

Here we have enlarged the action of G = GL(V ) on the enhanced nilpotent cone V × N to
G × F×, where F× has the obvious scaling action on V and on N . It is clear from [1, Section 2]
that the (G × F×)-orbits in V × N are the same as the G-orbits.

By [1, Proposition 2.3], there exists a normal basis {vij } of V for (v, x). Let λ = ρ + σ be the
Jordan type of x. Recall from [1, Proposition 2.8] that Ex = {y ∈ gl(V ) | [y, x] = 0} has basis

{
yi1,i2,s

∣∣ 1 � i1, i2 � �(λ), max{0, λi1 − λi2} � s � λi1 − 1
}
,

where

yi1,i2,svij =
{

vi2,j−s , if i = i1, s + 1 � j � λi ,
0, otherwise.

Let U be the subspace of gl(V ) with basis
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{
zi1,i2,s

∣∣ 1 � i1, i2 � �(λ), max{0, λi1 − λi2} � s � λi1 − 1
}
,

where

zi1,i2,svij =
{

vi1,s+1, if i = i2, j = 1,
0, otherwise.

We clearly have

tr(yi1,i2,szi′1,i′2,s′) =
{

1, if i′1 = i1, i′2 = i2, s′ = s,
0, otherwise.

So the trace form restricts to a perfect pairing Ex × U → F. In other words, the subspace U is
complementary to [gl(V ), x], which is the subspace perpendicular to Ex for the trace form.

Let T be the subspace of V spanned by {vij | 1 � i � �(σ ), ρi + 1 � j � ρi + σi}. By [1,
Proposition 2.8(5)], T is complementary to Exv. It follows immediately that T ⊕ U is comple-
mentary to {(yv, [y, x]) | y ∈ gl(V )} in V ⊕ gl(V ). Hence

S = (v + T ) × (
(x + U) ∩ N

)

is a transverse slice in V × N to the orbit Oρ;σ at (v, x).
Let ϕ′ : F× → G be the 1-parameter subgroup defined by the rule

ϕ′(t)vij = tj−ρi−1vij .

Define ϕ : F× → G × F× : t �→ (ϕ′(t), t). Then by definition, ϕ(F×) fixes v = ∑
vi,ρi

and acts
with strictly positive weights on T . From the fact that xvij equals either vi,j−1 or 0, it follows
that ϕ(F×) fixes x. Finally, we have

ϕ(t)zi1,i2,s = tρi2 −ρi1 +s+1zi1,i2,s ,

where the exponent is positive by the assumptions on s. So ϕ(F×) acts with strictly positive
weights on U also. Hence it contracts S to (v, x) as required. �

We can now give the proof of Theorem 1.

Proof. Suppose first that F is the algebraic closure of Fq . Define the polynomial Π
ρ;σ
μ;ν as in

Proposition 2. By the Grothendieck Trace Formula,

Π
ρ;σ
μ;ν

(
qs

) =
∑

i

(−1)i tr
(
F s

∣∣ Hi
(
π−1

μ;ν(v, x),Q�

))
for all s � 1.

Proposition 3 ensures that no Frobenius eigenvalue can occur in more than one cohomology
group. We can conclude that every Frobenius eigenvalue arising in the right-hand side is an
integer power of q . By Proposition 3 again, every eigenvalue of F on Hi(π−1

μ;ν(v, x),Q�) must

equal qi/2, with Hi(π−1
μ;ν(v, x),Q�) vanishing if i is odd. This proves that the polynomial Π

ρ;σ
μ;ν

satisfies property (1) of Theorem 1, and hence has nonnegative coefficients.
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Finally, the fact that property (1) holds when F is an algebraic closure of any finite field
implies that it must hold in general, by the well-known principles of [2, Section 6.1]. �
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