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a  b  s  t  r  a  c  t

An  integrated  experimental  and  modeling  approach  for the  design  of high  productivity  protein  A chro-
matography  is  presented  to  maximize  productivity  in  bioproduct  manufacture.  The  approach  consists  of
four  steps:  (1)  small-scale  experimentation,  (2)  model  parameter  estimation,  (3)  productivity  optimiza-
tion and  (4)  model  validation  with  process  verification.  The  integrated  use  of  process  experimentation
and  modeling  enables  fewer  experiments  to be  performed,  and  thus  minimizes  the  time  and  materials
required  in  order  to gain  process  understanding,  which  is  of  key  importance  during  process  develop-
ment.  The  application  of  the  approach  is  demonstrated  for  the  capture  of  antibody  by a  novel  silica-based
ntibody capture
roductivity
ntegrated process experimentation and

odeling

high  performance  protein  A adsorbent  named  AbSolute.  In  the  example,  a series  of  pulse  injections  and
breakthrough  experiments  were  performed  to  develop  a  lumped  parameter  model,  which  was  then  used
to  find  the  best  design  that  optimizes  the  productivity  of  a  batch  protein  A  chromatographic  process
for  human  IgG  capture.  An  optimum  productivity  of  2.9  kg L−1 day−1 for  a column  of  5 mm  diameter  and
8.5  cm  length  was  predicted,  and  subsequently  verified  experimentally,  completing  the  whole  process
design  approach  in only  75  person-hours  (or  approximately  2  weeks).
. Introduction

Protein A chromatography is a platform technology for the cap-
ure of antibody in the biopharmaceutical industry because of its
igh selectivity and ease of operation afforded [1,2]. Despite these
enefits, protein A chromatography is fast becoming the process
ottleneck in the manufacture of antibodies due to its high associ-
ted adsorbent cost and limited capacity to handle the escalating
pstream titer and market demand [3,4]. To improve this schedul-

ng, novel protein A adsorbents with improved capacity are being
roposed. However, the improved performance of these adsor-
ents cannot be fully exploited if the process is poorly designed,

.e. is operated at suboptimal conditions. Process optimization is
herefore particularly important during the process development
f protein A chromatography to ensure that the capture of anti-
ody is both efficient and cost effective. The traditional approach

o achieve this end is extensive experimentation, sometimes sup-
orted by empirical modeling or parameter estimation. Such an

∗ Corresponding author. Tel.: +44 20 7679 2374; fax: +44 20 7209 0703.
E-mail address: d.bracewell@ucl.ac.uk (D.G. Bracewell).
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approach is not only time consuming and costly, but also unlikely
to find the true or global optimum.

Numerous commercially available protein A adsorbents have
been studied experimentally in the literature [5–11]. These stud-
ies have improved process understanding on many aspects of
the performance of protein A chromatography, such as packing
quality, adsorption equilibrium and adsorption kinetics. Detailed
chromatographic models, such as the ideal model [9], the sur-
face layer model with pore diffusion [6] and the heterogeneous
binding model [10], have been developed to predict breakthrough
and dynamic binding capacity of protein A chromatography for
the capture of antibody. These models, however, have not been
employed directly for the optimal design of protein A chromatogra-
phy due to their complexity. Instead analytical solutions, as used in
[7,8,11], and empirical relationships, e.g. logarithmic [5] and hyper-
bolic [6] models, together with suitable pressure drop constraints
modeled by e.g. the Blake-Kozeny equation [6] or the Carman-
Kozeny equation [8,11],  are applied to optimize the productivity
based on a given value of breakthrough. The main drawback of
such an approach is the lack of flexibility to predict and consider
process yield and purity as direct constraints in the optimiza-

Open access under CC BY license.
tion problem. This is only possible if a detailed chromatography
model is applied for elution as well as loading, as for instance
in the process development of ion exchange and mixed-mode
chromatography [12–14].

dx.doi.org/10.1016/j.jchromb.2012.05.010
http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
mailto:d.bracewell@ucl.ac.uk
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http://creativecommons.org/licenses/by/3.0/
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Fig. 1. Integrated experimental and modeling approach for optimal chromatogra-
phy design.

Table 1
Physical properties of AbSolute.a

Property Units Value

Average particle diameter, dp �m 44
Pore  diameter Å 1000
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Specific surface area m2 g−1 65

a Data obtained from the manufacturer.

In the following, we demonstrate the use of an integrated
xperimental and modeling approach (Fig. 1) using the example
f antibody capture by AbSolute, a novel silica-based high per-
ormance protein A adsorbent (Table 1). The procedure followed
n this work brings together experimental protein A adsorbent
haracterization for model development with model-based pro-
uctivity optimization. For a given process model and optimization
trategy, the main steps of the approach (Fig. 1) consist of: (1) small-
cale experimentation to characterize the protein A adsorbent, (2)
arameter estimation based on the experimental data to determine
ey model parameters, (3) mathematical process optimization by
pplying the model developed and the chosen optimization strat-
gy, and (4) model validation with experimental verification of
he optimized process. The approach developed is general and can
e applied to other chromatographic processes, e.g. ion exchange
hromatography and hydrophobic interaction chromatography,
nd will allow quicker, less expensive and more accurate process
ptimization by the integration of carefully designed experiments
ith appropriate process modeling. Furthermore, model validation

nd experimental verification of the optimized process are incor-
orated into the approach to ensure that the model is accurate and
he optimized process performance is achievable in practice. Typi-
ally model validation is performed before further applications, but
ere model validation was performed at the optimized batch con-
itions to reduce the overall experimentation efforts, and thus the
ime and costs, required for the approach.

. Theory
For the optimal design of protein A chromatography in this
ork, the transport-dispersive model and an optimization strategy

ased on the maximization of process productivity were selected.
he transport-dispersive model is a lumped parameter model that
. B 899 (2012) 116– 126 117

considers diffusion, which is often the rate-limiting step in protein
separation [9,12].  The mathematical model and the optimization
strategy proposed in this work are summarized in Figs. 2 and 3,
respectively.

2.1. Chromatography model

The transport-dispersive model describes the mass transfer
inside the column, assuming isothermal adsorption, radial homo-
geneity and lumped coefficients for axial dispersion and mass
transfer resistances [16]. The model comprises a mass balance for
the mobile phase (Eq. (1)) and a kinetic equation for the stationary
phase adsorption (Eq. (2)):

∂C

∂t
+ 1 − εT

εT

∂q

∂t
+ u

εT

∂C

∂z
= DL

∂2C

∂z2
(1)

∂q

∂t
= km(q∗ − q) (2)

where C and q are the solute concentrations in the mobile and
stationary phases, respectively, t is the time coordinate, z is the
axial coordinate, εT is the total porosity, u is the superficial veloc-
ity, DL is the apparent axial dispersion coefficient, km is the lumped
mass transfer coefficient, and q* is the solute concentration in the
stationary phase at equilibrium as defined by the adsorption equi-
librium isotherm. The driving force in Eq. (2) [16] distinguishes
the transport-dispersive model from the equilibrium-dispersive
model, which assumes instantaneous equilibrium between the
mobile and stationary phases (i.e. q = q*).

The apparent axial dispersion coefficient, DL, is in this work
defined by an empirical correlation [16]:

DL = uL

2N
(3)

where N is the theoretical plate number as correlated to the linear
velocity, u, by Eq. (4) [16] and the modified van Deemter expression
in Eq. (5) [17]:

h = L

Ndp
(4)

h = A + Bu (5)

where h is the reduced plate height, dp is the particle diameter, and
A and B are the van Deemter coefficients for the eddy diffusion and
the mass transfer resistances, respectively. The two terms in Eq. (5)
were assumed to be additive despite their different dependences
on the linear velocity. Longitudinal diffusion was  assumed to be
negligible.

The lumped mass transfer coefficient, km, in the transport-
dispersive model (Eq. (2))  was assumed to be a variable following
the empirical correlation proposed in Eq. (6):

km = kmax

[
S1 + (1 − S1)

(
1 − qR

qmax,R

)S2
]

, where 0 ≤ S1 ≤ 1 and S2 > 0 (6)

kmax is the maximum lumped mass transfer coefficient, qR is
the sum of all the retained solute concentrations in the stationary
phase, qmax,R is the maximum binding capacity of all the retained
solutes from the adsorption equilibrium isotherm, and S1 and S2 are
the saturation dependent kinetic constant and order, respectively.

The column is assumed to be initially empty of solutes in both
the mobile and stationary phases. At the column inlet, the axial
concentration change depends on the difference between the feed
and column inlet concentrations. At the column outlet, it is assumed
that there is no axial concentration change. These initial and Danck-

wert’s boundary conditions are given in Eqs. (7)–(10) [18]:

C(t = 0, z) = 0 (7)

q(t = 0, z) = 0 (8)
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εT in Eq. (1),  A and B in Eq. (5),  kmax, S1 and S2 in Eq. (6),  qmax, KA
and n in Eq. (11), and H in Eq. (12). The model, consisting of Eqs.
(1)–(6) and Eqs. (11) and (12) with initial and boundary conditions
given by Eqs. (7)–(10), was  discretized by orthogonal collocation
Fig. 2. Modeling strategy indicating experiments requ

∂C

∂z

∣∣∣∣
z=0

= u

εT DL
(C(t, z = 0) − Cf ), where Cf /=  0 for 0 < t < tL

(9)

∂C

∂z

∣∣∣∣
z=L

= 0 (10)

Different adsorption isotherms can be used in this approach. For
he process example considered in this work of IgG capture by pro-
ein A chromatography, the components involved were assumed to
ehave as two pseudo-components: IgG and impurities. Here, IgG

s the product and refers to all the retained materials during pulse
njections under loading conditions, whereas impurities refer to all
he non-retained materials under the same conditions. For IgG, a
angmuir adsorption isotherm considering pH as a modifier [19]
Eq. (11)) was selected. The impurities were assumed to follow a
inear adsorption isotherm (Eq. (12) [16]).

∗
IgG = qmaxKA(pH/pHref )nCIgG

1 + KA(pH/pHref )nCIgG
(11)

∗
imp = HCimp (12)

IgG is the IgG concentration in the mobile phase, q∗
IgG is the IgG

oncentration in the stationary phase at equilibrium, qmax is the

aximum binding capacity, KA is the association equilibrium con-

tant, pHref is the reference pH (in this work, of the loading zone),
 is the pH dependent equilibrium order, Cimp is the impurity con-
entration in the mobile phase, q∗

imp
is the impurity concentration
r modified transport-dispersive model development.

in the stationary phase at equilibrium, and H is the linear isotherm
constant.

In total, there were ten parameters in the selected transport-
dispersive model (in bold in Fig. 2) which needed to be estimated:
Fig. 3. Productivity optimization strategy indicating experiments required.
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n finite elements [20,21] and solved in C++ using the implicit
ifferential-algebraic (IDA) solver in the suite of nonlinear and dif-
erential/algebraic equation solvers (SUNDIALS) [22].

.2. Optimization strategy

The objective function considered in this work is to maximize
he productivity, PR,  (Eq. (13)) subject to the constraints given by
qs. (14)–(16):

ax
ũ

PR (13)

min ≤ Y ≤ 1 (14)

urmin ≤ Pur ≤ 1 (15)

 ≤ �P  ≤ �Pmax (16)

here ũ is the vector containing the decision variables (in this work,
olumn length, flow rates and volumes for load, wash, elution,
egeneration and equilibration) to be determined by the optimizer,

 is the product yield, Pur is the product purity, and �P  is the column
ressure drop.

Productivity, yield, purity and column pressure drop are defined
s follows:

R = CLVLY

tcycVcol
(17)

 = CEVE

CLVL
(18)

ur = CE

CT
(19)

�P

L
= �u (20)

here CL, CE and CT are the loaded product, eluted product and total
luted concentrations, VL and VE are the load and elution volumes,
cyc is the cycle time, Vcol is the column volume, L is the column
ength, � is the apparent friction factor that needs to be fitted exper-
mentally (Fig. 3), and u is the linear velocity of the mobile phase in
he column.

Productivity, PR,  (defined in Eq. (17)) was used as the objec-
ive function for optimization as it provides a reasonable indication
f process economics and detailed cost data is often not avail-
ble. Since protein A adsorbents are expensive and contribute
ignificantly towards the total process costs, the process with the
aximum productivity requires the least amount of adsorbents to

rocess a given batch, which corresponds to the lowest adsorbent
osts, and thus implies the best process economics. Throughput,
hr = PR Vcol, is another process attribute and is related to the opti-
ized productivity, PR,  through the column volume, Vcol. Yield, Y,

Eq. (18)) is important because protein A chromatography capture
s normally the first purification step and therefore influences the
verall product recovery in bioproduct manufacture. Purity, Pur,
Eq. (19)) is concerned with product quality and also affects the
ubsequent manufacturing steps. Column pressure drop, �P,  (Eq.
20)) is an operational constraint for practical process applications
nd cannot exceed a maximum value for safety reasons.

In this work, the optimization problem consisting of Eqs.
13)–(20), and based on the selected transport-dispersive model
escribed earlier, was solved in Delphi 7 using constrained opti-

ization by linear approximation [23], which is a sequential

rusted-region algorithm that maintains a regular-shaped simplex
ver the iterations by linear approximations of the objective func-
ion and constraints.
. B 899 (2012) 116– 126 119

3. Materials and methods

The experimental details described below are for the process
example based on a novel silica-based high performance protein
A adsorbent called AbSolute. Three types of experiment were per-
formed for parameter estimations as outlined in the following.

3.1. Materials

All components except those listed below were obtained from
Sigma–Aldrich Chimie SARL (Lyon, France). The protein A adsorbent
AbSolute was obtained from Novasep Process (Pompey, France).
The feed used was  a mixture of human IgG and bovine serum.
Human polyclonal IgG in the form of lyophilized powder was
obtained from Equitech Bio, Inc. (Kerriville, Texas, US) and bovine
serum was  obtained from Eurobio (Courtaboeuf, France). Glycine,
sodium chloride and disodium phosphate were obtained from
Merck Santé SAS (Lyon, France), hydrochloric acid was  obtained
from Fisher Scientific Labosi (Elancourt, France), and glacial acetic
acid, phosphoric acid and acetonitrile were obtained from Carlo
Erba Reactifs (Val de Reuil, France).

VacuCap 90 PF filter units were obtained from Pall Life Sci-
ences (Saint-Germain-en-Laye, France). Tricorn 5/50 columns were
obtained from GE Healthcare (Uppsala, Sweden). A Poros A 20
pre-packed column (4.6/50) was  obtained from Life Technologies
(Cergy-Pontoise, France) for protein A high performance liquid
chromatography (HPLC).

The experimental setup comprises a typical HPLC system: an
Alliance HPLC Bio System bioseparations module (2796) with
multiple inlets, pumps, a pressure detector, an autosampler, an
injection system and a column holder, together with a photodi-
ode array detector (2996) of path length 1.0 cm from Waters SAS
(Saint-Quentin En Yvelines, France) and a combined module of pH
and conductivity detectors (pH/C-900) from GE Healthcare (Upp-
sala, Sweden) at the column outlet. The HPLC system was used for
both the small-scale experiments and the HPLC assays for IgG yield
and purity [5,24].  The combined module of pH and conductivity
detectors was optional but useful in monitoring protein A chro-
matography, the zones (i.e. loading, wash, elution, regeneration and
equilibration) of which are principally characterized by pH.

3.2. Pressure-flow and pulse injection experiments

Pressure-flow and pulse injection experiments were performed
to determine the hydrodynamics of AbSolute (total porosity, εT, in
Eq. (1),  van Deemter coefficients, A and B, in Eq. (5),  and apparent
friction factor, � , in Eq. (20)).

Pulses of acetone (10 �l) were injected into the system with
and without the column at linear velocities, u, of 100, 150, 300, 600
and 1500 cm h−1 with water as the mobile phase to determine the
total porosity (εT in Eq. (1))  and the van Deemter coefficients (A
and B in Eq. (5)). The peaks were measured at the column outlet by
absorbance at 280 nm.

A pressure-flow curve of AbSolute was obtained from the man-
ufacturer to determine the apparent friction factor (� in Eq. (20)).
Column pressure drops (the differences between the system pres-
sures with and without the column) were measured for a column
of 5 mm  diameter and 20 cm length, L, using phosphate buffered
saline (PBS), pH 7.4, at linear velocities, u, of 60, 120, 150, 240, 300,
450, 600, 750 and 900 cm h−1.

3.3. Breakthrough experiments
Three sets of breakthrough experiments were performed in
small-scale Tricorn columns of 5 mm diameter and 5 cm length at
conditions listed in Table 2 to determine the adsorption properties
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Table 2
Breakthrough experimental conditions.

Experimental condition Set 1 Set 2 Set 3

Human IgG
concentration (g L−1)

1, 2, 5, 10 1 1

Linear velocity (cm h−1) 300 100, 300, 600, 1500 200, 600
Equilibration (CV) 5 5 5
Load (CV) 200 200 40, 30
Wash (CV) 10 10 3
Elution (CV) 5 5 5
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Regeneration (CV) 5 5 4
Equilibration (CV) 5 5 4

f AbSolute (kmax, S1 and S2 in Eq. (6),  qmax, KA and n in Eq. (11), and H
n Eq. (12)). PBS, pH 7.4, was used for equilibration and wash. 0.1 M
lycine–HCl, pH 3, and HCl, pH 1.5, were used for elution and regen-
ration, respectively. All buffers were degassed by sonication prior
o use. The feed containing dissolved human IgG, bovine serum or
oth in PBS, pH 7.4, was filtered at 0.8/0.2 �m using VacuCap 90 PF
lter units to remove undissolved particulates and kept in an ice
ath. Solute concentrations were measured at the column outlet
y absorbance at 280 nm,  or 300 nm in the case of signal saturation
t 280 nm,  for which linear IgG calibration curves were observed
data not shown).

.4. Assay

Protein A HPLC was used to determine the experimental per-
ormance (yield, Y, in Eq. (18) and purity, Pur,  in Eq. (19)) of the
ptimized batch by measuring IgG concentrations in the feed and
he various pools (flowthrough, wash, eluate, regenerate and equili-
ration). Each analysis took 4.5 min  using a Poros A 20 pre-packed
rotein A analytical column of 4.6 mm diameter and 5 cm length
ith 20 �m particles. Samples of 30 �l were injected at 2 ml  min−1

nd peak areas were measured at 280 nm.  After injection, the
olumn was washed with buffer A (100 mM sodium phosphate,
50 mM sodium chloride, pH 6.3) for 1 min. Bound IgG was  eluted
y a gradient of 100% buffer A to 100% buffer B (2% acetic acid,
0 mM glycine, pH 2.5) over 1 min. After the hold at 100% buffer B
or 0.5 min, the column was regenerated with buffer C (0.1% phos-
horic acid, 20% acetonitrile) for 1 min  before equilibrating with
uffer A for 1 min.

. Results and discussion

The results obtained for the process example on AbSolute fol-
owing the integrated approach in Fig. 1 are organized as followed:
xperimental results and parameter estimations (steps 1 and 2);
odel-based process productivity optimization (step 3); and model

alidation with optimized process verification (step 4).

.1. Experimental results and parameter estimations

Experimentation is essential for proper model development to
ain better understanding of the chromatographic process perfor-
ance and to estimate accurate model parameters. By selecting

 lumped parameter model, as opposed to a general rate model,
he number of key model parameters to be estimated, and thus the
xperimentation effort for parameter estimation, can be drastically
educed whilst still ensuring sufficient model accuracy [15].

In total, 11 parameters were identified from the proposed pro-
ess model and optimization strategy (Figs. 2 and 3). A series of

arefully designed experiments were therefore performed at small
cale to minimize the resources required to obtain these model
arameters (step 1 in Fig. 1). The experimental results for AbSolute,
long with the estimation of the key model parameters (step 2 in
. B 899 (2012) 116– 126

Fig. 1), will be presented next and discussed as follows: total poros-
ity, axial dispersion and friction, adsorption equilibrium, and mass
transfer. The estimated model parameters and the corresponding
experiments are summarized in Table 3. Errors in the estimated
model parameters were determined statistically and are only avail-
able for the parameters estimated by a least squares’ method.

4.1.1. Total porosity, axial dispersion and friction
The total porosity, εT, was estimated from the pulse injection

experiments using Eq. (21) [16]:

εT = t0u

L
(21)

where t0 is the column dead time that was calculated as the dif-
ference between the retention times from pulse injections into the
system with and without column, and L is the column length. The
estimated value of the total porosity was the average value obtained
at three flow rates. A total porosity (εT) of approximately 0.8 ± 0.1
was  estimated for AbSolute. The data at 1500 cm h−1 was omitted
due to the high error associated with retention times of less than
1 s.

The peaks that were obtained from the pulse injection experi-
ments with the column were used to calculate the reduced plate
height, h, using Eqs. (4) and (22) [15]:

N = 5.54

(
tR

ω1/2

)2

(22)

where tR is the retention time, which requires extra-column cor-
rections except if the extra-column volume is less than 10% of the
peak volume [25], and ω1/2 is the peak width at half maximum
peak height. The van Deemter coefficients (A and B) were then esti-
mated by linearly fitting the reduced plate height, h, versus the
linear velocity of the mobile phase, u, using Eq. (5),  as shown in
Fig. 4A.

For the equipment used, extra-column contribution to the van
Deemter coefficients was  negligible considering the peak volume
and the extra-column volume that were determined by pulse injec-
tions into the system with and without the column, respectively.
The van Deemter coefficients for the eddy diffusion and the mass
transfer resistances of AbSolute (A and B) were estimated to be
4.8 ± 0.1 and 17 ± 1 s cm−1, respectively. The small errors of these
fitted parameters and the high correlation coefficient of 0.996 for
Fig. 4A indicate that longitudinal diffusion is negligible for AbSolute
at flows greater than 100 cm h−1.

The apparent friction factor, � , is necessary for the optimiza-
tion to ensure that the column pressure drop constraint is satisfied
at all times. The value of the apparent friction factor, � , was esti-
mated from the pressure-flow experiments by linearly fitting the
normalized column pressure drop, �P/L, against the linear velocity
of the mobile phase, u, using Eq. (20), as illustrated in Fig. 4B. Only
data in the linear pressure-flow region, where columns are gener-
ally operated, were fitted. A minimum of two, and preferably five,
pressure-flow data in the linear region is required. In Fig. 4B, linear
pressure-flow was observed for Absolute at linear velocities up to
1000 cm h−1. This confirms that AbSolute is rigid and incompress-
ible, as only shorter linear pressure-flow ranges up to 600 cm h−1

have previously been reported for compressible matrices [8,11,26].
The apparent friction factor, � , for AbSolute was estimated to
be (1.25 ± 0.01) × 10−4 bar h cm−2. This estimated value is in the
same order of magnitude as that reported for Prosep-vA Ultra

(0.4 × 10−4 bar h cm−2), another silica-based protein A adsorbent,
by McCue et al. [6] when considering the difference in the average
particle sizes (44 �m for AbSolute versus 100 �m for Prosep-vA
Ultra).
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Table 3
Estimated model parameters from experimental data for AbSolute.

Parameter Symbol Experiment Eq. Units Valuea

Total porosity εT Pulse injection (1) 0.8 ± 0.1
van  Deemter eddy diffusion coefficient A Pulse injection (5) 4.8 ± 0.1
van  Deemter mass transfer resistances coefficient B Pulse injection (5) s cm−1 17 ± 1
Apparent friction factor � Pressure-flow (20) bar h cm−2 (1.25 ± 0.01) × 10−4

Maximum binding capacity qmax Breakthroughb (11) g L−1 73 ± 3
Association equilibrium constant KA Breakthroughb (11) L g−1 6.1 ± 2.9
Linear  isotherm constant H Breakthroughb (12) 1.6 ± 0.0
Maximum lumped mass transfer coefficient kmax Breakthroughc (6) s−1 1.6
Saturation dependent kinetic constant S1 Breakthroughc (6) 0.26
Saturation dependent kinetic order S2 Breakthroughc (6) 4.0
pH  dependent equilibrium order n Breakthroughd (11) 16.6

a Errors where given are ±1 standard deviation.

4
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t
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5
c
p

b Breakthrough at various concentrations.
c Breakthrough at various residence times.
d Partial breakthroughs at various residence times.

.1.2. Adsorption equilibrium
An adsorption equilibrium isotherm describes the solute con-

entration in the stationary phase at equilibrium (or equilibrium
inding capacities, q*) as a function of the solute concentration

n the mobile phase (C). The column uptake approach based on
reakthrough experiments was selected for the measurement of
he equilibrium binding capacities to avoid the need for additional

xperimental setup in batch stirred tanks and further errors from
he measurement of the amount of adsorbent. Hence such a column
ptake approach is generally more accurate than a batch stirred
ank uptake approach [27]. The equilibrium binding capacities of

ig. 4. (A) Column efficiency-flow curve for AbSolute using a column of
 mm D × 50 mm L with water as mobile phase with a R2 of 0.996. (B) Pressure-flow
urve for AbSolute using a column of 5 mm D × 200 mm L with PBS, pH 7.4, as mobile
hase with a R2 of 0.997 (courtesy of Novasep).
the solute were estimated by area integration of the breakthrough
curves [8],  rather than by interpolation of the breakthrough curves
at 50% breakthrough [5,7], to obtain more realistic estimates as
breakthrough curves for protein A adsorbents are typically asym-
metric [5–10]. Area integration of the breakthrough curves was
approximated by the trapezium rule. The equilibrium binding
capacity data was  then fitted to Eqs. (11) and (12) to estimate the
isotherm constants (qmax and KA in Eq. (11) and H in Eq. (12)).

The Langmuir adsorption isotherm (Eq. (11)) was  used because
it is the most commonly used representation of the non-linear
adsorption equilibrium for protein A chromatography [6–10]. The
consideration of pH as a modifier [19] enabled the IgG adsorption
equilibrium under various pHs to be described with only one addi-
tional parameter. The impurities were assumed to follow a linear
adsorption isotherm (Eq. (12)) for model simplicity and to ease
experimentation for parameter estimation.

In the example, two  plateaus were expected in the absorbance
signal during the loading of AbSolute, due to the flowthrough of
human IgG3, IgG-unrelated materials, or both (Fig. 5). These non-
retained materials were regarded as impurities, and thus the first,
earlier plateau (10% of the feed concentration) was used to estimate
the linear isotherm constant, H in Eq. (12), and the second, later
plateau (90% of the feed concentration) was considered to estimate
the Langmuir isotherm constants, qmax and KA in Eq. (11). The effect
of pH on the IgG adsorption equilibrium, i.e. n in Eq. (11), was deter-
mined later using the desorption curves during elution in the third
set of the breakthrough experiments.

For AbSolute, the equilibrium binding capacities of IgG and the
impurities were estimated from the first set of the breakthrough
experiments (Table 2). A linear velocity of 300 cm h−1 was selected
to minimize the experimental time without significantly compro-
mising the breakthrough curve accuracy. A load of 200 g (L bed)−1

was  used to obtain breakthrough over 90%. The experimental con-
centration range for isotherm determination should be as wide as
possible to obtain accurate isotherm parameters [28]. The stan-
dard deviation for the estimated IgG equilibrium binding capacities
(q∗

IgG), based on breakthrough at the same conditions but using two

individual columns, was less than 0.01 g L−1. A maximum binding
capacity, qmax, of 73 ± 3 g L−1 and an association equilibrium con-
stant, KA, of 6.1 ± 2.9 L g−1 were obtained for IgG adsorption up to
9 g L−1 by AbSolute. It should be noted that the estimated maxi-
mum binding capacity of 73 g L−1 for AbSolute is higher than those
previously reported in the literature for IgG adsorption, which gen-
erally fall within 37–69 g L−1 [6–8,10]. This may  be related to the

large specific surface area of AbSolute particles (65 m2 g−1) for lig-
and coupling. The association equilibrium constant for AbSolute
is in the low range of those found for other protein A adsorbents,
which is around 3.2–72 L g−1 [6–8,10]. This can be explained by the
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Fig. 5. Experimental (dotted) and fitted (dashed) breakthrough curves of 0.9 g L−1
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gG for AbSolute using a column of 5 mm D × 50 mm L with PBS, pH 7.4, as mobile
hase flowing at (A: ©,  – –) 100 cm h−1, (A: �, —) 300 cm h−1,  (B: �, - - -) 600 cm h−1

nd (B: ♦, – - -) 1500 cm h−1, measured at an absorbance of 280 nm.

xperimental data range used to estimate the isotherm, the low-
st IgG concentration being 0.9 g L−1 for practical reasons and to be
n keeping with the working range for the simulations. Therefore
ny uncertainty in the association equilibrium constant would not
ave a significant impact in the operating ranges of interest. A linear

sotherm constant, H, of 1.6 ± 0.0 was estimated for the adsorption
f impurities up to 0.9 g L−1 by AbSolute.

.1.3. Mass transfer
The lumped mass transfer coefficient, km, in the transport-

ispersive model (Eq. (2)) is typically assumed to be a constant.
his, however, is not appropriate when the breakthrough curves
re asymmetric. Consequently, we introduced a variable lumped
ass transfer coefficient (Eq. (6))  where the effects of adsorption

n kinetic limitations were considered empirically using a power
aw based on the fraction of free sites available, 1 − qR/qmax,R. The
se of Eq. (6) enables more accurate breakthrough predictions in
he absence of a complex model (such as the surface layer model
ith pore diffusion [6] and the heterogeneous binding model [10]).
dsorption kinetics was assumed to be the same for both IgG and

he impurities as the impurities consist of a range of solutes that
nclude non-retainable IgG.

The kinetic parameters (kmax, S1 and S2 in Eq. (6))  were esti-
ated simultaneously from the second set of the breakthrough

xperiments (Table 2) by fitting the breakthrough curves at various
inear velocities, u, to the whole model with the other parameters

tted so far using constrained optimization by linear approxima-
ion [23] to minimize the error between the experimental and
imulated curves, see the example shown in Fig. 5. Constrained
ptimization by linear approximation was used because this
. B 899 (2012) 116– 126

algorithm is derivative-free, and thus easier to use than gradient-
based algorithms. The concentration of human IgG for this set of
breakthrough experiments was selected such that it is similar to
that used for optimization later. The model without the pH depen-
dent Eq. (11) (i.e. q∗

IgG = qmaxKACIgG/(1 + KACIgG)) was  sufficient for
fitting the breakthrough curves at the reference pH, pHref.

For AbSolute, the maximum lumped mass transfer coefficient,
kmax, saturation dependent kinetic constant, S1, and order, S2, were
estimated to be 1.6 s−1, 0.26 and 4.0, respectively. The determi-
nation of these kinetic parameters required a total of 42 min  CPU
time on two Intel Xeon E5520 processors of 2.26 GHz with 24.0 Gb
memory. The fitted breakthrough curves in Fig. 5 deviate some-
what from the experimental curves that were overlaid together,
especially for the breakthrough at 100 cm h−1. This suggests that
the fitted kinetic parameters are inappropriate for the prediction
of breakthrough behavior at flow rates below 300 cm h−1. Packed
bed behavior towards equilibrium, i.e. for breakthrough above 60%,
was  poorly fitted, as expected from the use of a lumped parameter
model instead of a more complex, general rate model. However,
only the early breakthrough behavior is important for the design
of a batch process, where breakthrough of 10% or lower is usually
applied [5,6,11].

As reported for almost all protein A adsorbents [8,10],  difficulties
in reaching complete column saturation are observed as can be seen
in Fig. 5. High flow rate IgG breakthrough curves are asymmetric as
can be clearly seen in Fig. 5B. Possible causes for these observations
have been suggested and include molecular stretching and changes
in transport mechanism upon adsorption [8].  Other effects include
broad particle size distribution, competition between monomers
and aggregates, and the polyclonal nature of the IgG used. These fac-
tors were not assumed to have had any effect as AbSolute has a very
narrow particle size distribution and furthermore the same behav-
ior as that seen in Fig. 5 was  also observed by Perez-Almodovar and
Carta [10] for the breakthrough of purified monoclonal antibody
without aggregates. Hence, the main cause for the incomplete and
asymmetric saturation is therefore likely to be kinetic limitations
that are adsorption related.

One final parameter needed to be fitted: the pH dependent
equilibrium order, n, in Eq. (11), which predicts the IgG adsorp-
tion equilibrium at low pH. This parameter, n, must be estimated
from the third set of the breakthrough experiments (Table 2) after
the determination of kinetic parameters. This is because the des-
orption curves observed during elution are dynamic and generally
saturated, and thus the estimated amount of IgG desorbed during
elution, which provides an estimate of the IgG adsorption equilib-
rium at low pH, depends on mass transfer inside the column given
by the kinetic parameters. Again, the error between the exper-
imental and simulated curves was  minimized using constrained
optimization by linear approximation [23].

Fig. 6 shows the chromatograms that were obtained from the
partial breakthrough (or batch) runs. Only the unsaturated exper-
imental signal, i.e. within 2 AU at 280 nm,  was considered for
parameter fitting due to the unreliability of the saturated signal.
Since simulation is not limited by signal saturation, the simulated
elution curves provide more reliable projections of IgG desorp-
tion at low pH than the experimental elution curves (Fig. 6). The
pH dependent equilibrium order, n, for AbSolute was estimated
to be 16.6. This value confirms that IgG adsorption by AbSolute is
drastically reduced with decreasing pH, as expected.

4.1.4. Performance of lumped parameter model

A lumped chromatography model has been presented above

which predicts IgG adsorption by AbSolute based on a combina-
tion of empirical correlations and curve fitting of the experimental
results. Table 3 summarizes the estimated model parameters
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Fig. 6. Experimental (©) and simulated (—) breakthrough (left, 1) and desorption
(right, 2) curves of 0.9 g L−1 IgG for AbSolute using a column of 5 mm D × 50 mm L
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Fig. 7. Predicted performance of protein A chromatography for IgG capture by AbSo-
ith PBS, pH 7.4 (wash), and 0.1 M glycine–HCl, pH 3 (elution), as mobile phases
owing at (A) 200 cm h−1 and (B) 600 cm h−1 as measured at an absorbance of
80  nm.  Experimental UV signal > 2 AU is unreliable due to signal saturation.

total porosity, van Deemter coefficients, apparent friction factor,
dsorption isotherm coefficients, and kinetic coefficients) and the
orresponding experiments (pulse injections, pressure-flow exper-
ments, and breakthrough experiments) that were performed. A
otal of approximately 70 person-hours were required for the com-
letion of steps 1 and 2 in Fig. 1. Approximately 80% of this time
as spent on the experimentation (step 1) and the remaining 20%

n model fitting (step 2). Model validation is usually performed
s part of model development to ensure that the model is fit for
urpose [6,8–10,12–14]. In this work, however, the model was val-

dated after optimization and not before. This is because process
ptimization using a lumped parameter model is quick and validat-
ng the model at the optimized conditions can reduce the overall
xperimentation effort, and thus the time and costs, required for the
pproach. As all the assumptions made during the model develop-
ent were valid for the experimental data obtained, we proceeded

o step 3 with our completed model.

.2. Model-based process productivity optimization

In this work, productivity, PR,  was optimized mathematically
y varying the decision variables on the load, wash and elution
olumes (VL, VW and VE), at pre-defined column lengths (L) and a
onstant column diameter (D) of 5 mm based on a feed contain-
ng 1 g L−1 IgG to satisfy a minimum of 95% yield (Ymin) and 98%
urity (Purmin) while operating within a column pressure drop of
ither 1.0 or 2.5 bar (�Pmax) assuming 24 h operation. The regen-
ration and equilibration volumes (VR and VQ) were kept constant
t 4 CV to simplify the optimization problem, as they are practi-

ally independent of the flow rates (data not shown). A constant
uperficial velocity for all the zones (i.e. loading, wash, elution,
egeneration and equilibration) was calculated from Eq. (20) based
n the maximum column pressure drop, �Pmax, (1.0 or 2.5 bar) and
lute,  showing (A) productivity and (B) throughput at various column length for a feed
containing 1 g L−1 IgG and a column diameter of 5 mm based on 95% yield and 98%
purity and a maximum column pressure of (©) 1.0 bar and (�) 2.5 bar.

the estimated apparent friction factor, � , of 1.25 × 10−4 bar h cm−2

(Table 3).
The productivity of a batch process based on the lumped param-

eter model developed earlier was  optimized using constrained
optimization by linear approximation [23] as described earlier with
a precision of 10−6. The optimization was  run for different column
lengths and the optimum productivity was found for each column
length. The optimization problem for each column length was com-
pleted in an average of 1 min  CPU time on two Intel Xeon E5520
processors of 2.26 GHz with 24.0 Gb memory.

4.2.1. Optimized batch process conditions
Fig. 7 shows the predicted performance of antibody capture by

AbSolute. In the figure, there are clear optimum column lengths
for each of the productivity (PR) and the corresponding throughput
(Thr) curves given a particular column pressure drop. At shorter and
longer column lengths, limitations are either dominated by kinet-
ics or operational constraints. It is known that IgG breakthrough
behavior is effectively identical at constant residence time indepen-
dent of column dimensions [6,7,10], which is a direct consequence
of mass transfer limitations. Considering this and that a shorter col-
umn  length at a given column pressure drop corresponds to a higher
flow rate, i.e. a shorter residence time, it is no surprise that pro-
cess performance is worse at shorter column lengths. As flow rate

decreases with increasing column length, residence time increases
and process performance improves as the load approaches the max-
imum binding capacity. However, flow rate becomes increasingly
restricted by the column pressure drop at longer column lengths.
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Table 4
Batch process operating conditions for IgG capture by AbSolute based on a feed
containing 1 g L−1 IgG for an optimized productivity of 2.9 kg L−1 day−1.

Operating parameter Symbol Units Value

Column length L mm 85a

Column diameter D mm 5b

Linear velocity u cm h−1 2000a

Load volume VL CV 15.3a

Wash volume VW CV 2.8a

Elution volume VE CV 3.3a

Regeneration volume VR CV 4.0b

Equilibration volume VQ CV 4.0b
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Fig. 8. Comparison of (©) experimental and (—) simulated chromatograms for the
optimized batch run of IgG capture by AbSolute in a column of 5 mm D × 85 mm L
based on (A) a feed of human polyclonal IgG, and (B) a model feed of human
a Optimized.
b Pre-defined.

his significantly lengthens the cycle time and consequently pro-
ess performance declines.

As can be seen from Fig. 7A, the maximum productivity is
.9 kg L−1 day−1 regardless of the column pressure drop. This cor-
esponds to a column length within the range of 5–8.5 cm,  where
horter columns enable operation at lower pressure to achieve the
aximum productivity. For example, with a column length of 6 cm

he maximum productivity can be achieved at 1.0 bar but not at
.5 bar due to increased mass transfer limitations from the elevated
ow rate. Column lengths shorter than 5 cm were not considered

or practical reasons. As for throughput (Fig. 7B), a maximum of
.2 g day−1 appears when a column of 5 mm  diameter and 10 cm

ength is operated at 2.5 bar. As expected, the maximum through-
ut strongly depends on column pressure drop and a much lower
alue was observed at 1.0 bar. This is because, unlike productivity,
hroughput is not normalized by the column volume.

Since protein A adsorbents are expensive, the optimum oper-
ting conditions (Table 4) were selected based on the maximum
roductivity for the most economic operation given a maximum
olumn pressure drop of 2.5 bar, which corresponds to the pro-
ess with a column of 5 mm diameter and 8.5 cm length. A similar
roductivity can also be achieved with a column of 6 cm length.
owever, a shorter column length (6 cm versus 8.5 cm)  means a
ider column diameter (19% increase) given a specific amount of

dsorbent to process a particular batch and this can lead to diffi-
ulties in column distribution and packing at large scale.

.3. Model validation with optimized process verification

The process model needs to be validated and it is preferable
o verify the optimized batch process experimentally (step 4 in
ig. 1) to ensure that the model is reliable and that the predicted
rocess performance is achievable in practice. This was  done by
alidating the model at the optimum conditions (Table 4) using
he same buffers as those used for the breakthrough experiments.
he experimental yield and purity were calculated from Eqs. (18)
nd (19) using the concentrations that were measured by protein

 HPLC, which was chosen for analysis for its short analysis time.
hese experimental values of yield and purity were then compared
o the targeted values.

For the example in this work, two separate feeds were consid-
red: human polyclonal IgG, and a model feed of human IgG and
ovine serum, each containing 1 g L−1 IgG. The addition of bovine
erum increases the concentration of the impurities, and thus rep-
esents a more realistic crude feed providing further challenge to
he capture of IgG. The yield and purity obtained for the exper-
mental run with human polyclonal IgG were 99.4% and 99.6%,

espectively, whereas those for the experimental run with the
odel feed were 97.7% and 98.1%, respectively. The constraints

f yield (95%) and purity (98%) in the optimization problem were
learly fulfilled by both runs.
polyclonal IgG and bovine serum, each containing 1 g L−1 IgG. Experimental UV
signal > 2 AU is unreliable due to signal saturation.

Higher yields were obtained in the experimental batch run than
in the simulation. This can be explained by the overestimated
IgG breakthrough, i.e. overestimated product loss during loading
(Fig. 8). This overestimation could have been anticipated consid-
ering the progressively more pessimistic breakthrough prediction
with increasing flow in Fig. 5 and the high linear velocity that was
optimized for the batch process. This prediction error arose from
the high sensitivity of the early breakthrough (around 10%) on the
linear velocity, which does not pose a major problem in the current
example as it provides added safety to the model and the optimized
batch process. If, however, the sensitivity of the early breakthrough
on the linear velocity does pose a problem, then an adjustment
factor can be added manually to the process conditions by com-
promising the productivity, e.g. by reducing the load volume by
10%. The adjusted process conditions must be verified experimen-
tally to ensure process feasibility in practice (Fig. 1). Alternatively,
an adjustment factor can be added to the model parameters, e.g.
to the maximum binding capacity as in [9],  before validating the
new model using a different set of experimental conditions that
was  not used for parameter estimation and the initial model vali-
dation. Column pressure drop during the experimental batch runs
was  measured at approximately 2.5 bar, which was  around the pre-
defined maximum. Therefore, the predicted optimum productivity
of 2.9 kg L−1 day−1 is feasible for the capture of IgG by AbSolute in
practice.

As seen in this work, the optimal operating conditions for the
capture of human IgG by AbSolute were identified quickly and accu-
rately using the integrated experimental and modeling approach
presented in Fig. 1. Expensive and labor intensive experimenta-

tion, and thus time and costs, required for process optimization
were drastically reduced by an estimate of two  to five folds. The uti-
lization of a lumped parameter model instead of a complex model
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educed the computation time required for optimization, whilst
till capturing the main characteristics of the dynamic packed bed
ehavior and providing the flexibility to incorporate yield and
urity constraints into the optimization problem. Based on these
esults, it can be concluded that the proposed integrated exper-
mental and modeling approach can be very useful for protein A
hromatography.

. Conclusion

In this work, an integrated experimental and modeling approach
or the design of protein A chromatography for bioproduct manu-
acture was presented. The approach focuses on the integration of
rocess modeling and experimentation for the design of protein A
hromatography as a means to fully exploit the potentials of protein

 adsorbents for the capture of antibody in meeting the industry’s
eeds to handle increasing upstream titer and market demand.
n integrated approach enables quick, accurate and flexible pro-
ess optimization, which is otherwise difficult, if not impossible,
sing a traditional approach based on extensive experimentation.

n the integrated approach, small-scale experimentation (step 1 in
ig. 1) is applied to determine the required model parameters (step
) quickly and inexpensively. The model developed can then be
sed for model-based process optimization (step 3), the results of
hich must be verified experimentally to ensure model accuracy

nd process feasibility in practice (step 4).
The proposed approach was demonstrated through an exam-

le of the capture of IgG by a novel silica-based high performance
rotein A adsorbent called AbSolute. In the example, a transport-
ispersive model and an optimization strategy based on process
roductivity were selected. The productivity of AbSolute was  opti-
ized at a column length of 8.5 cm based on a maximum column

ressure drop of 2.5 bar. This result was verified experimentally and
igh performance of 2.9 kg L−1 day−1, 97.7% yield and 98.1% purity
ere found for the capture of human IgG (from a model feed of

.93 g L−1 human polyclonal IgG and 1.1% (v/v) bovine serum con-
aining 1 g L−1 IgG) by AbSolute in a column of 5 mm  diameter and
.5 cm length.

Overall, the proposed approach enabled the capture of antibody
y AbSolute in a batch column to be optimized in 75 person-hours.
his illustrates the ease and accuracy of the proposed approach in
acilitating the process design of protein A chromatography during
rocess development of bioproduct manufacture. The approach is
eneral and therefore also applicable for other chromatographic
rocesses although the chromatography model and optimization
trategy may  then differ from those that have been used in the
xample in this work. For example, the optimization strategy can
e improved by varying the loading and elution flow rates from
hose of the other zones (i.e. wash, regeneration and equilibration)
or greater process flexibility, e.g. to cope with kinetics and viscosity
ifferences between zones.

omenclature

 van Deemter eddy diffusion coefficient
van Deemter mass transfer resistance coefficient (s cm−1)
solute concentration in the mobile phase (g L−1)

E eluted product concentration (g L−1)
f feed concentration (g L−1)
IgG IgG concentration in the mobile phase (g L−1)

imp impurity concentration in the mobile phase (g L−1)
L loaded product concentration (g L−1)
T total eluted concentration (g L−1)

 column diameter (cm)
. B 899 (2012) 116– 126 125

DL apparent axial dispersion coefficient (cm2 s−1)
dp particle diameter (�m)
H linear isotherm constant
h reduced plate height
KA association equilibrium constant (L g−1)
km lumped mass transfer coefficient (s−1)
kmax maximum lumped mass transfer coefficient (s−1)
L column length (cm)
N theoretical plate number
n pH dependent equilibrium order
pHref reference pH
PR productivity (kg L−1 day−1)
Pur purity
q solute concentration in the stationary phase (g L−1)
q* solute concentration in the stationary phase at equilib-

rium (g L−1)
q∗

IgG IgG concentration in the stationary phase at equilibrium

(g L−1)
q∗

imp
impurity concentration in the stationary phase at equilib-

rium (g L−1)
qmax maximum binding capacity (g L−1)
qmax,R maximum binding capacity of all the retained solutes

(g L−1)
qR sum of all the retained solute concentrations in the sta-

tionary phase (g L−1)
S1 saturation dependent kinetic constant
S2 saturation dependent kinetic order
t time coordinate (s)
t0 column dead time (min)
tcyc cycle time (min)
Thr throughput (g day−1)
tL loading time (min)
tR retention time (min)
u linear (superficial) velocity (cm h−1)
ũ vector containing the decision variables for optimization
Vcol column volume (ml)
VE elution volume (ml)
VL load volume (ml)
VQ equilibration volume (ml)
VR regeneration volume (ml)
VW wash volume (ml)
Y yield
z axial coordinate (cm)

Greek symbols
�P  column pressure drop (bar)
εT total porosity
� apparent friction factor (bar h cm−2)
ω1/2 peak width at half maximum peak height
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