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In [D. de Caen, E.R. van Dam, Fissioned triangular schemes via the

cross-ratio, European J. Combin. 22 (2001) 297–301], de Caen and

van Dam constructed a fission scheme FT(q + 1) of the triangular

scheme on PG(1, q). This fission scheme comes from the naturally

induced action of PGL(2, q) on the 2-element subsets of PG(1, q).
The group PGL(2, q) is one of two infinite families of finite sharply

3-transitive groups. The other such family M(q) is a “twisted” ver-

sion of PGL(2, q), where q is an even power of an odd prime. The

group PSL(2, q) is the intersection of PGL(2, q) and M(q). In this

paper, we investigate the association schemes coming from the ac-

tions of PSL(2, q), M(q) and P�L(2, q), respectively. Through the

conic model introduced in [H.D.L. Hollmann, Q. Xiang, Association

schemes from the actions of PGL(2, q) fixing a nonsingular conic, J.

Algebraic Combin. 24 (2006) 157–193], we introduce an embedding

of P�L(2, q) into P�L(3, q). For each of the three groups mentioned

above, this embedding produces two more isomorphic association

schemes: one on hyperbolic lines and the other on hyperbolic points

(via an orthogonal parity) in a 3-dimensional orthogonal geometry.

This embedding enables us to treat these three isomorphic associa-

tion schemes simultaneously.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a finite set with cardinality n ≥ 2 and R = {R0, R1, . . . , Rd} be a set of binary relations on

X . X = (X, R) is called an association scheme with d classes (a d-class association scheme, or simply, a

scheme) if the following axioms are satisfied:
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(i) R is a partition of X × X and R0 = {(x, x) | x ∈ X} is the diagonal relation.

(ii) For i = 0, 1, . . . , d, the inverse tRi = {(y, x)|(x, y) ∈ Ri} of Ri is also among the relations:
tRi = Ri′ for some i′ (0 ≤ i′ ≤ d).

(iii) For any triple of i, j, k = 0, 1, . . . , d, there exists an integer pkij such that for all (x, y) ∈ Rk ,

|{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}| = pkij.

The integers pkij are called the intersection numbers. The integer ki = p0
ii′ is called the valency of Ri. In

fact, for any x ∈ X , ki = |{y ∈ X| (x, y) ∈ Ri}|.
If pkij = pkj i for all i, j, k, X is called commutative. A relation Ri is said to be symmetric if Ri = tRi. The

scheme X is called symmetric if all relations Ri are symmetric. A partition�0, �1, . . . , �e of the index

set {0, 1, . . . , d} is called admissible [13] if �0 = {0}, �i �= ∅ and �′
i = �j for some j (1 ≤ i, j ≤ e),

where �′ = {α′|α ∈ �}. Let R�i
= ∪α∈�i

Rα . If Y = (X, {R�i
}ei=0) is an association scheme, it is

called a fusion scheme of X, and X is called a fission scheme of Y.

We mention a typical example of association scheme (see [1, Section 2.1] for details). If group G

acts transitively on a finite set X , then the orbits of the induced diagonal action of G on X × X form

an association scheme, denoted by X(G, X). For any x ∈ X , the orbits of Gx on X are in one-to-one

correspondence with those of G on X × X , where Gx is the stabilizer of x in G. The scheme X(G, X)
is commutative if and only if the permutation representation of G on X is multiplicity-free, and it is

symmetric if and only if G acts generously transitively on X .

By a theorem of Zassenhaus [18, Section 7.1], there are two infinite families of finite sharply 3-

transitive groups, and both are subgroups of the projective semilinear group P�L(2, q). If G is a sharply

3-transitive group of permutations on a finite set X , then X can be identified with the projective line

PG(1, q) for some prime power q and G is one of the following:

(1) G is the projective general linear group PGL(2, q) in its natural action on PG(1, q).
(2) q = p2f for some odd prime p and a positive integer f , and if σ is the unique involution in

Aut(Fq), then G is the group M(q) = S ∪ T , where

S =
{

λ 	→ aλ + b

cλ + d
,

∣∣∣∣∣ ad − bc is a square in F
∗
q

}
,

T =
{

λ 	→ aλσ + b

cλσ + d
,

∣∣∣∣∣ ad − bc is a non-square in F
∗
q

}
.

In this paper, we shall investigate the association schemes determined by the following subgroups

of the symmetric group Sym(q + 1):

Sym(q + 1)

P�L(2, q)

M(q)

�����
PGL(2, q)

������

PSL(2, q)

�����
������

These groups are permutation groups on PG(1, q) and they acts transitively on �, the collection of

2-element subsets of PG(1, q). Hence, each of these groups determines an association scheme on �.

Sym(q+1) determines the triangular scheme T(q+1), and PGL(2, q) determines a symmetric fission

schemeof T(q+1). De Caen and vanDam [5] describedX(PGL(2, q), �) via the cross-ratio. See Section
2.3. The association schemes from the actions of the remaining three groups are themain object of the

present paper.
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The isomorphism PGL(2, q) � SO(3, q) introduces a conic model (see Section 2.1). The action

PGL(2, q) on � is equivalent to that of SO(3, q) on the set of hyperbolic lines L+ in a 3-dimensional

orthogonal geometry. This model has been used heavily in [6,7,9,24]. This conic model allows us to

use an embedding ρ of P�L(2, q) into P�L(3, q) and the image of this embedding fixes this conic as a

set. As a result, the image of PSL(2, q) acts transitively on the hyperbolic linesL+ and so do the images

of M(q) and P�L(2, q).
The conic above also introduces a (orthogonal) polarity ⊥ such that the action of any subgroup

of P�L(2, q) on the hyperbolic lines L+ is equivalent to that of its embedded image on the hyper-

bolic points L⊥+; see Section 2.4. Therefore, we do not need to distinguish actions on hyperbolic lines

and points in certain calculation. The advantage of this conic model allows us to treat (isomorphic)

association schemes on �, L+ and L⊥+ all at once.

This paper is organized as follows. In Section 2, we introduce the conic model, the polarity and the

embedding of P�L(2, q) into P�L(3, q)mentioned above, and establish a few results on transitivity. In

Section 3, we determine three fission schemes of the triangular scheme T(q + 1) via their isomorphic

association schemes.

We refer to [1] for undefined terms and the basic theory of association schemes and to [4,21,23]

for missing definitions and notation about various groups in this paper.

2. The 3-dimensional orthogonal geometry and an embedding of P�L(2, q)

In this section, we introduce the 3-dimensional orthogonal geometry, a conic model, and various

groups related to this conic.

2.1. The 3-dimensional orthogonal geometry

LetFq beafinitefieldwithqelements. LetV = F
3
q bea3-dimensional vector spaceoverFq equipped

with a non-degenerate quadratic form Q . The general orthogonal group GO(V) is the isometry group of

V with respect to Q :

GO(V) = {A ∈ GL(V) | Q(A(x0, x1, x2)
T ) = Q(x0, x1, x2)}.

The special linear orthogonal group SO(V) is the intersection of GO(V) and SL(V). It is also standard to

write GO(3, q) for GO(V), and SO(3, q) for SO(V) when the underlying field is Fq.

The projective plane PG(2, q) on V has as points the 1-dimensional subspaces of V and as lines (hy-

perplanes) the 2-dimensional subspaces. Any point P is spanned by a nonzero vector v = (v0, v1, v2).
Another vector u = (u0, u1, u2) spans P if and only if v = ξu for some ξ ∈ F

∗
q . Sowe use (v0 : v1 : v2)

to denote the point P. A point (v0 : v1 : v2) is called singular if Q(v0, v1, v2) = 0.

In the rest of this paper, we fix the quadratic form Q(x0, x1, x2) = x21 − x0x2. Let

O = {(ξ 2 : ξ : 1) | ξ ∈ Fq} ∪ {(1 : 0 : 0)}. (1)

Then O is a conic. Let ∞ = (1 : 0 : 0). We use Pξ and P∞ to denote the points (ξ 2 : ξ : 1) and

(1 : 0 : 0), respectively. No three distinct points of O can be on a line. Therefore, any line 
 intersects

O at most 2 points. Accordingly, 
 is called hyperbolic or secant if |
 ∩ O| = 2, tangent if |
 ∩ O| = 1,

or elliptic or exterior if |
 ∩ O| = 0. We denote by L+, L0 and L− the set of all hyperbolic, tangent and

elliptic lines, respectively.

The following result is well known (e.g., see [21, Theorem 11.6]), from which Theorem 2.2 follows

immediately.

Theorem 2.1. If V is an orthogonal geometry of dimension 3 and Witt index 1 over Fq, then GO(V) �
{±1} × SO(V), SO(V) � PGL(2, q), and SO(V) acts triply transitively on the set of all singular points.

Theorem 2.2. The group SO(V) acts generously transitively on Lε for ε ∈ {+, 0}.
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We remark that SO(V) also acts generously transitively on L−; see [19]. Therefore, the action

(SO(V),Lε) determines a symmetric association scheme, denoted by X(SO(3, q),Lε), ε = 0, ±.

2.2. An embedding of P�L(2, q) into P�L(3, q)

In this subsection, we describe an embedding of P�L(2, q) into P�L(3, q), which gives an isomor-

phism PGL(2, q) � SO(3, q) mentioned in Theorem 2.1 (cf. [4, Section 6.1] and [11, Section 3]). While

this is a folklore, a detailed account is provided here to prepare for later sections.

We first describe the action of P�L(2, q) on the projective line PG(1, q). Let

PG(1, q) = {(ξ : 1) | ξ ∈ Fq} ∪ {(1 : 0)}
and F

∪{∞}
q = Fq ∪ {∞}, the union of Fq and {∞}. Now we may identify PG(1, q) with F

∪{∞}
q by

the map: (ξ : 1) ↔ ξ , (1 : 0) ↔ ∞. The group �L(2, q) is the wreath product of GL(2, q) and

Aut(Fq), and P�L(2, q) is the group induced on the projective line PG(1, q) by �L(2, q). Each element

of P�L(2, q) is induced by a pair (A, τ ) with A =
⎛
⎝a b

c d

⎞
⎠ ∈ GL(2, q) and τ ∈ Aut(Fq), which acts on

PG(1, q) as follows:

ξ 	→ A(ξ τ ) := aξτ + b

cξτ + d
for all ξ ∈ F

∪{∞}
q .

The expressions involving ∞ are evaluated by standard limit rules: e.g., ∞τ = ∞, A(∞) = a/c if

c �= 0 and A(∞) = ∞ if c = 0.

Consider the vector spaceW of quadratic forms on F
2
q: q(x, y) = ux2 + vxy+wy2. So, dimW = 3.

The group �L(2, q) acts on W as follows: for each (A, τ ) in �L(2, q),

q(x, y) 	→ q(A(xτ , yτ )T ) for all q ∈ W . (2)

For brevity, we write q(A(xτ , yτ )) = q(A(xτ , yτ )T ). If A =
⎛
⎝a b

c d

⎞
⎠ ∈ GL(2, q), then

q(A(xτ , yτ )) = u(axτ + byτ )2 + v(axτ + byτ )(cxτ + dyτ ) + w(cxτ + dyτ )2

= x2τ (ua2 + vac + wc2) + xτ yτ (2uab + v(ad + bc) + 2wcd)

+ y2τ (ub2 + vbd + wd2)

=
(
x2τ xτ yτ y2τ

)
⎛
⎜⎜⎜⎝
a2 2ab b2

ac ad + bc bd

c2 2cd d2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
u

v

w

⎞
⎟⎟⎟⎠ .

Let

ρ(A) =

⎛
⎜⎜⎜⎝
a2 2ab b2

ac ad + bc bd

c2 2cd d2

⎞
⎟⎟⎟⎠ . (3)

Since det ρ(A) = det(A)3, it can be verified that (2) induces a homomorphism from �L(2, q) to

�L(3, q). In particular, if τ is the identity automorphism, ρ is a homomorphism of GL(2, q) into

GL(3, q). The kernel of ρ is {±I}, where I is the 2 × 2 identity matrix . Let Z = {cI|c ∈ F
∗
q}. Since

PGL(2, q) = GL(2, q)/Z , ρ embeds PGL(2, q) into PGL(3, q). By abuse of notation, we also use ρ to

denote the homomorphism induced by (2). Thus, ρ embeds P�L(2, q) into P�L(3, q).
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Since⎛
⎜⎜⎜⎝
a2 2ab b2

ac ad + bc bd

c2 2cd d2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
ξ 2τ

ξ τ

1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(aξτ + b)2

(aξτ + b)(cξτ + d)

(cξτ + d)2

⎞
⎟⎟⎟⎠ , (4)

(ρ(A), τ )maps (ξ 2 : ξ : 1) to
((

aξτ +b

cξτ +d

)2
,
aξτ +b

cξτ +d
: 1

)
if cξτ +d �= 0 and to (1 : 0 : 0) if cξτ +d = 0.

Similarly, (ρ(A), τ ) maps (1 : 0 : 0) to (1 : 0 : 0) if c = 0, and to ((a/c)2, a/c, 1) if c �= 0. Therefore,

ρ(P�L(2, q)) fixes the set O .

Nowwe equip the spaceW with the quadratic form Q(u, v,w) = v2 − uw. By (2), GL(2, q) acts on
W . Note that

Q(q(A(x, y)) = det(A)2Q(q(x, y)),

i.e.,Q is multiplied by a factor det(A)2 by the action of ρ(A). Hence, we find a subgroup of GO(3, q)
which is isomorphic to SL±(2, q)/{±I}, where SL±(2, q) is the group of matrices with determinant

±1. In general, PSL(2, q) � P�(3, q) and they are simple if q > 3. As a matter of fact, ρ(PSL(2, q)) =
P�(3, q).

Note that SL±(2, q)/{±I} and PGL(2, q) have the same size. For q even, SL±(2, q)/{±I}=SL(2, q)=
PGL(2, q). For q odd, SL±(2, q)/{±I} and PGL(2, q) are not isomorphic. In this case,ρ(SL±(2, q)/{±I})
is a subgroup PGO(3, q) of index 2, but it is not isomorphic to PSO(3, q).

Define a map f from PG(1, q) to O as follows:

f (∞) = ∞ and f (ξ, 1) 	→ (ξ 2 : ξ : 1) for all ξ ∈ Fq.

We have

f (A(ξ)) = ρ(A)f (ξ)T . (5)

The action of PGL(2, q) on PG(1, q) is equivalent to that of SO(3, q) on O .

2.3. FT(q + 1) and X(SO(3, q),Lε)ε=±

The triangular scheme T(n) comes from the action of Sym(n) on the collection of 2-element subsets

of an n-set (n ≥ 4): for any such subsets x, y, (x, y) ∈ Ri if their intersection has size 2 − i. T(n) is

a 2-class Johnson scheme. It is well known that PGL(2, q) acts sharply 3-transitively on PG(1, q). So
PGL(2, q) acts generously transitively on the collection of 2-element subsets of PG(1, q) and thus this

action determines a symmetric association scheme. In the paper [5], de Caen and van Dam described

this scheme as a fission scheme of the triangular scheme on PG(1, q) using the cross-ratio, denoted

by FT(q + 1).
We know from the previous subsection that the action PGL(2, q) on PG(1, q) is equivalent to that

of SO(3, q) on O . So the schemes FT(q + 1) is isomorphic to the scheme coming from the action of

SO(3, q) on the 2-element subsets of O . By definition, the hyperbolic lines L+ are in one-to-one cor-

respondence with the 2-element subsets of O . Hence, FT(q + 1) is isomorphic to X(SO(3, q),L+).
In [11], Hollmann and Xiang investigated X(SO(3, q),Lε) for ε = ± using the cross-ratio. In fact,

they studied the coherent configuration from the action of PGL(2, q) (� SO(3, q)) on L+ ∪ L−. For

the case q being a power of 4, they calculated the intersection numbers for this coherent configu-

ration and constructed another coherent configuration on L+ ∪ L− by merging certain relations. In

this new coherent configuration, the fiber L+ supports a 4-class scheme and L− supports a 3-class

scheme.

The 4-class scheme on L+ has an interesting history. Its existence as a fusion scheme of FT(q + 1)
was first conjectured by de Caen and van Dam [5]. Tanaka [20] proved this conjecture with character-

theoretic method. Ebert et al. proved it with a geometric interpretation in [6] and with a direct calcu-

lation of intersection numbers in [7]. Xiang gave a summary of this work in [24].
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The 3-class scheme is also very interesting. H. Tanaka observed that this 3-class scheme onL− gives

a family of primitive schemes having the same parameters as the first infinite family of Q-polynomial

but not P-polynomial association schemes by Penttila and Williford [17]. (The reference to Hollmann

and Xiang is incorrectly cited in [17], and it should be [11]. )

We conclude this subsection with a description of FT(q + 1) following [5]. It has as vertices all

2-element subsets of PG(1, q) and its relations are as follows:

R0 =
{
({ξ, γ }, {ξ, γ }) | ξ, γ ∈ F

∪{∞}
q

}
R1 =

{
({ξ, γ }, {ξ, β}) | ξ, γ, β ∈ F

∪{∞}
q

}
R−1 =

{
({ξ, γ }, {α, β}) | ξ, α, γ, β ∈ F

∪{∞}
q , cr(ξ, γ ; α, β) = −1

}
Rr =

{
({ξ, γ }, {α, β}) | ξ, γ, α, β ∈ F

∪{∞}
q , cr(ξ, γ ; α, β)

= r or r−1
}
, r ∈ Fq \ {0, ±1}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

where cr(x, y; z,w) = (x−z)(y−w)
(x−w)(y−z)

is the cross-ratio. R1 has valency 2(q − 1), and R−1 has valency

(q − 1)/2, which is half of that of Rr .

2.4. The case q odd

Throughout this subsection, q will be an odd prime power. The quadratic form Q(x0, x1, x2) =
x21 − x0x2 polarizes to the symmetric bilinear form

B((x0, x1, x2), (y0, y1, y2)) = 2x1y1 − x0y2 − x2y0.

The form B (or the conic O) defines the following polarity on PG(2, q):

⊥: (x0 : x1 : x2) 	→ (x0 : x1, x2)⊥ := {(y0 : y1 : y2) | B((x0, x1, x2), (y0, y1, y2)) = 0}. (7)

Denote by Lξ,γ the hyperbolic line to O through distinct points Pξ and Pγ for ξ, γ ∈ F
∪{∞}
q . It is

not difficult to check the following:

L⊥ξ,γ =
{
(γ ξ : (ξ + γ )/2 : 1) if ξ, γ ∈ Fq, ξ �= γ

(2ξ, : 1 : 0) if ξ ∈ Fq, γ = ∞,

Q(L⊥ξ,γ ) =
(

γ−ξ
2

)2
and Q(L⊥ξ,∞) = 1.

(8)

A point P = (x0 : x1 : x2) is called hyperbolic (respectively elliptic) if (x0, x1, x2)
⊥ is a hyperbolic

(respectively elliptic) line. Because of (8), hyperbolic (elliptic) points are also referred to as square

type (non-square type) in the literature. Since there are q(q + 1)/2 secant lines, there are q(q + 1)/2

hyperbolic points in total. Note that 
⊥ is a elliptic (respectively singular) point if 
 is an elliptic

(respectively tangent) line.

Denote by L⊥
ε the set of all hyperbolic, singular and elliptic points for ε = +, 0, and −, respec-

tively. Then the action of SO(3, q) on L⊥
ε determines a symmetric association scheme, denoted by

X(SO(3, q),L⊥
ε ). We have the following result.

Theorem 2.3. Let q be odd. Then X(SO(3, q),Lε) is isomorphic to X(SO(3, q),L⊥
ε ).

To our best knowledge, X(SO(3, q),L⊥
ε ) for ε = ± was first constructed by Shen [19]. In fact,

he studied association schemes coming from the action of SO(n, q) on hyperbolic and elliptic points

in PG(n − 1, q)(also cf. [2]). Kwok [16] calculated the character tables of X(SO(3, q),L⊥
ε )ε=±. We

mention in passing that X(SO(3, q),L0) is a 2-class symmetric scheme.
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3. Three fission schemes of T(q + 1)

This section we are concerned with the three fission schemes of T(q + 1) mentioned in Section 1.

The next theorem holds for PSL(2, q) regardless the parity of q (e.g., [21, Theorem 4.1]).

Theorem 3.1. The group PSL(2, q) acts doubly transitively on PG(1, q). Hence, P�(3, q) acts doubly

transitively on O .

Recall that � denotes the collection of 2-element subsets in PG(1, q). By the above theorem,

PSL(2, q) acts transitively on �, and thus the action determines an association scheme, denoted by

X(PSL(2, q), �). This is a fission scheme of FT(q + 1).
In the rest of this paper, we shall describe association schemes from the actions of PSL(2, q), M(q)

and P�L(2, q) on�. In Section 2,we give a one-to-one correspondence of�withL+ (andL⊥+ via polar-

ity) andanembeddingρ ofP�L(2, q). As result, for any transitive subgroupofP�L(2, q)on�,weobtain

three isomorphic association schemes, e.g., X(PSL(2, q), �), X(P�(3, q),L+) and X(P�(3, q),L⊥+) in

the case of PSL(2, q). So we shall use the action on L⊥+ in subsequent calculation.

3.1. The association scheme X(P�(3, q),L+)

In this subsection, we consider the association scheme from the action of P�(3, q). Namely, we

shall prove the following result.

Theorem 3.2. The association scheme X(P�(3, q),L+) is non-symmetric with (3q + 5)/4 classes if

q ≡ 1 mod 4 and (3q + 3)/4 classes if q ≡ 3 mod 4.

Consider the stabilizer of L⊥0,∞ in P�(3, q),which is denotedbyP�(3, q)0,∞.Weknow fromSection

2.2 that P�(3, q) is induced by elements of form (3) with ad − bc = 1. Since L⊥∞,0 has coordinates

(0 : 1 : 0) by (8),⎛
⎜⎜⎜⎝
a2 2ab b2

ac ad + bc bd

c2 2cd d2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0

1

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

2ab

ad + bc

2cd

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

λ

0

⎞
⎟⎟⎟⎠

for some λ in F
∗
q . Since ad − bc = 1, we must have a = d−1, b = c = 0, or a = d = 0, b = −c−1.

So G := P�(3, q)0,∞ is induced by the following elements⎛
⎜⎜⎜⎝
a2

1

a−2

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

b−2

−1

b2

⎞
⎟⎟⎟⎠ , a, b ∈ F

∗
q . (9)

For each relation R in (6), let

R{0,∞} =
{
Lξ,γ | (L0,∞, Lξ,γ ) ∈ R

}
.

These R{0,∞} are all orbits of SO(3, q) on L+. Since P�(3, q) is a subgroup of SO(3, q) of index 2. So

any orbit of SO(3, q) either splits into a pair of orbits or remains to be an orbit of P�(3, q).
In the rest of this paper, z is a fixed non-square element inFq, s denotes a square element not in {0, ±1},

and t denotes a non-square element in Fq. Let F
∗2
q be the set of all nonzero square elements in Fq. So zF∗2

q

consists of all non-square elements of Fq.

By (8), the hyperbolic points come in with two forms:

(2ξ : 1 : 0) with ξ ∈ Fq, or (γ ξ : (ξ + γ )/2 : 1) with ξ, γ ∈ Fq, ξ �= γ . (10)
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First, we settle the G-orbits on (2ξ : 1 : 0). It is trivial that �0 = {L0,∞} is a G-orbit. Now assume

ξ �= 0. Note that⎛
⎜⎜⎜⎝
a2

1

a−2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

2ξ

1

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

2a2ξ

1

0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

a−2

−1

a2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

2ξ

1

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

−1

2a2ξ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

−1

2a2ξ

1

⎞
⎟⎟⎟⎠ , (11)

where the last equality follows from that these two vectors represent the same (projective) point.

Recall that hyperbolic points are in one-to-one correspondence with 2-element subsets in O , which

are again in one-to-correspondence with those of PG(1, q). Note that (2a2ξ : 1 : 0) is determined by

{a2ξ, ∞}, and (0 : −1

2a2ξ
: 1) by {0, −(a2ξ)−1}. For a fixed square (respectively non-square) ξ in F

∗
q ,

if −1 ∈ F
∗
q
2
, then both a2ξ and −(a2ξ)−1 range over F

∗
q
2
(respectively zF∗2

q ). On the other hand, if

−1 /∈ F
∗
q
2
, then a2ξ ranges over F

∗
q
2
while −(a2ξ)−1 ranges over zF∗2

q . Hence, R
{0,∞}
1 splits into two

orbits of length q − 1 each:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�
+
1 =

{
L0,ξ , L∞,ξ | ξ ∈ F

∗
q
2
}

�
−
1 =

{
L0,ξ , L∞,ξ | ξ ∈ zF∗2

q

}
if q ≡ 1 mod 4

�
+
1 =

{
L0,ξ , L∞,γ | ξ ∈ F

∗
q
2, γ ∈ zF∗

q
2
}

�
−
1 =

{
L0,ξ , L∞,γ | ξ ∈ zF∗

q
2, γ ∈ F

∗
q
2
}

if q ≡ 3 mod 4.

(12)

The remaining hyperbolic points are (γ ξ : (ξ + γ )/2 : 1) with ξγ �= 0. Note that⎛
⎜⎜⎜⎝
a2

1

a−2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

γ ξ
ξ+γ
2

1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

γ1ξ1
ξ1+γ1

2

1

⎞
⎟⎟⎟⎠ if and only if {a2γ, a2ξ} = {γ1, ξ1} (13)

and ⎛
⎜⎜⎜⎝

b−2

−1

b2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

γ ξ
ξ+γ
2

1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

γ1ξ1
ξ1+γ1

2

1

⎞
⎟⎟⎟⎠ if and only if

{ −1

b2γ
,

−1

b2ξ

}
= {γ1, ξ1}. (14)

If γ /ξ = −1, R
{0,∞}
−1 remains to be a G-orbit for q ≡ 3 mod 4 and it splits into two orbits for

q ≡ 1 mod 4:⎧⎨
⎩ �−1 =

{
Lξ,−ξ | ξ ∈ F

∗
q

}
if q ≡ 3 mod 4

�
+−1 =

{
Lξ,−ξ | ξ ∈ F

∗
q
2
}
, �

−−1 =
{
Lξ,−ξ | ξ ∈ F

∗
q \ F

∗
q
2
}

if q ≡ 1 mod 4.
(15)

The orbit length is (q − 1)/2 in the first case and (q − 1)/4 in the second case.

Now suppose r = γ /ξ /∈ {0, ±1}. We claim that R
{0,∞}
γ becomes the following G-orbit(s):⎧⎨

⎩ �r =
{
Lξ,rξ | ξ ∈ F

∗
q

}
if −1/r is non-square

�+
r =

{
Lξ,rξ | ξ ∈ F

∗
q
2
}
, �−

r =
{
Lξ,rξ | ξ ∈ zF∗

q
2
}

if −1/r is square.
(16)

The orbit length is (q − 1) in the first case and (q − 1)/2 in the second case.

Nowsuppose thatγ = rξ andγ1 = rξ1. If ξ and ξ1 are both squares (non-squares), set a2 = ξ1ξ
−1.

By (13), Lξ,rξ and Lξ1,rξ1 are in the same G-orbit. Suppose that ξ is a square and ξ1 is a non-square. If
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−1/r is a non-square, set b2 = −1
rξξ1

. Then Lξ,rξ and Lξ1,rξ1 are in the same G-orbit. On the other hand,

if −1/r is a square, then {ξ1, rξ1} =
{ −1

b2ξ
, −1

b2rξ

}
if and only if r = ±1. As r �= ±1, Lξ,rξ and Lξ1,rξ1

fall into different orbits. We prove the above claim.

Each orbit � determines a relation R of X(P�(3, q),L+), and vice versa. So we may equip R with

the same subscript/superscript of �, e.g., R−1, R
+
r , etc. We will adopt this convention for the other two

fission schemes to follow.

Now we determine the non-symmetric relations of X(P�(3, q),L+). As an example, we illustrate

with R+
s . We shall use PSL(2, q), instead of P�(3, q). Take (L0,∞, L1,s) ∈ R+

s . Note the function x 	→
x−1
x−s

maps {1, s} to {0, ∞}. Now suppose that det

⎛
⎝1 −1

1 −s

⎞
⎠ = 1− s is a non-square, say z. The function

x 	→ x−1
z(x−s)

is in PSL(2, q). This function carries {1, s} to {0, ∞}, and {0, ∞} to { 1
z
, 1
sz

}. The hyperbolic
line corresponding to { 1

z
, 1
sz

} is in �−
s and thus tR

+
s = R−1

s . We can handle other relations in a similar

way.

Suppose that q ≡ 1 mod 4. Then tR
+
−1 = R

−−1 if 2 is a non-square in Fq, and
tR

+
s = R−1

s if

1 − s is a non-square. It is well known that 2 is a square in Fq if and only if the Legendre symbol(
2
q

)
=

[
(−1)

p2−1
8

]m
= 1, where q = pm for some odd prime p (e.g., see [12, Section 6.1]). Suppose

that q ≡ 3 mod 4. Then tR
+
1 = R

−
1 , and tR

+
t = R

−1
t if 1 − t is a square.

By counting orbits in (12), (15) and (16), we see that X(P�L(q),L+) has the asserted class number.

The proof of Theorem 3.2 is complete.

3.2. The association scheme X(M(q),L+)

In this subsection, we describe the association scheme X(M(q),L+), which is a fusion scheme of

X(P�(3, q),L+). Now we prove the following result.

Theorem 3.3. Let q be an even power of an odd prime. The following holds:

(i) For q > 9, X(M(q),L+) is a non-symmetric association scheme with (3q + 5)/8 classes.

(ii) X(M(9),L+) is a symmetric P-polynomial association scheme.

Now consider the stabilizer M(q)0,∞ of L⊥0,∞ in M(q). Under the embedding ρ of P�L(2, q) into

P�L(3, q) in Section 2.2, ρ(S) = P�(3, q). The stabilizer of L0,∞ in M(q) is the union of P�(3, q)0,∞
and ρ(T)0,∞, where ρ(T)0,∞ consists of elements in ρ(T) that fix L0,∞. Then ρ(T)0,∞ is induced by

all the semilinear transformations of the following matrices and the unique involution σ :⎛
⎜⎜⎜⎝
a2

z

a−2z2

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

b2

−z

b−2z2

⎞
⎟⎟⎟⎠ , (17)

where a, b ranges over F
∗
q .

For typographical convenience, we write x̃ = xσ . Since x̃ = x for any x in the fixed field Fix(σ ) of
σ , we can check that, for any points (2θ : 1 : 0) and (γ θ : (θ + γ )/2 : 1),⎛

⎜⎜⎜⎝
a2

z

a−2z2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
2θ̃

1

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
2a2θ̃z−1

1

0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

b2

−z

b−2z2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
2θ̃

1

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

−b2

2zθ̃

1

⎞
⎟⎟⎟⎠ . (18)

We remark that Fix(σ ) has
√

q elements.
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Note a transformation in (18) maps �
+
1 to �

−
1 , and vice versa. So M(q)0,∞ combines �

+
1 and �

−
1 :

�1 = �
+
1 ∪ �

−
1 .

The following equations shall be used in determining the remaining orbits of M(q)0,∞:

⎛
⎜⎜⎝
a2

z

a−2z2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

γ̃ θ̃
(θ̃+γ̃ )

2

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a4γ̃ θ̃

z2

a2(θ̃+γ̃ )
2z

1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

b2

−z

b−2z2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

γ̃ θ̃
(θ̃+γ̃ )

2

1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

b4

θ̃ γ̃ z2

− (θ̃+γ̃ )b2

2θ̃ γ̃ z

1

⎞
⎟⎟⎟⎟⎠ . (19)

We can deduce from (19) that M(q)0,∞ combines �
+−1 and �

−−1:

�−1 = �
+−1 ∪ �

−−1.

Note that �1 and �−1 have lengths 2(q − 1) and (q − 1)/2, respectively.
Now we consider the orbits of M(q)0,∞ on the remaining points (θγ : (θ + γ )/2 : 1) with

γ + θ �= 0. Let r = θ/γ. These orbits depend on whether r̃ is in {r, r−1} or not. Note if r̃ = r

(respectively r−1) , then r
√

q−1 = 1 (respectively r
√

q+1 = 1) and thus r is a square in Fq. In this case,

we obtain (
√

q − 3)/2 (respectively (
√

q − 1)/2) orbits of length (q − 1) each. Now change r to s. So

we can deduce from (19) that M(q)0,∞ combines �+
s and �−

s if s̃ = s or s−1:

�s = �+
s ∪ �−

s .

If s ∈ F
∗2
q and s̃ /∈ {s, s−1}, then we can deduce again from (19) that M(q)0,∞ combines �+

s and

�
−
s̃

(respectively �−
s and �

+
s̃
):

�+
s = �+

s ∪ �
−
s̃

, �−
s = �−

s ∪ �
+
s̃

.

We obtain
(
√

q−3)(
√

q−1)

4
orbits of length q − 1.

If t is a non-square in Fq, then M(q)0,∞ combines �t and �t̃:

�t = �t ∪ �t̃ .

In this case, we obtain (q − 1)/8 orbits of length 2(q − 1) each.
Now we write the relations of X(M(q),L+) according to these �. If q �= 9, X(M(q),L+) is non-

symmetric: tR
+
s = R−

s . So we prove (i) of Theorem 3.3. X(M(9),L+) is a symmetric scheme; see

Example 3.1 below. In fact, it is a P-polynomial scheme on 45 vertices from a generalized octagon of

order (2, 1) [3, p. 419]. We complete the proof of Theorem 3.3.

Remark 1. Limited computation with Gap [10] indicates that X(M(q),L+) is not commutative for

q > 25. It is not symmetric but commutative for q = 25.

3.3. The association scheme X(P�L(2, q),L+)

In this subsection, we consider an association scheme that is a fusion scheme of both FT(q+1) and
X(M(q), �). Since both PGL(2, q) and M(q) are subgroups of P�L(2, q), the action of P�L(2, q) on �

determines this fusion scheme.

The stabilizer of ρ(P�L(2, q))0,∞ of L⊥0,∞ induced by all the semilinear transformation of the

following matrices associated with an automorphism τ of Fq:⎛
⎜⎜⎝
a2

ad

d2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

b2

bc

c2

⎞
⎟⎟⎠ , (20)
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where a, b, c, d range over F
∗
q , and τ ranges over Aut(Fq) .

The group ρ(P�L(2, q))0,∞ acts on L⊥+ similarly to that in (18) and (19) with ˜ replaced with τ .
By a similar argument employed in the previous subsection, ρ(P�L(2, q))0,∞ has the following orbits

on L+:

�0 = {L0,∞}, �1 = {L0,ξ , L∞,ξ | ξ ∈ F
∗
q}, �−1 = {Lξ,−ξ | ξ ∈ F

∗
q},

�r = {Lξ,γ | ξ/γ ∈ {rτ , r−τ | τ ∈ Aut Fq}}, (r ∈ F
∗
q \ {±1}). (21)

Now we can write down the corresponding relations of X(P�L(2, q),L+):

R0 = {(Lξ,γ , Lξ,γ ) | {ξ, γ } ⊂ F
∪{∞}
q },

R1 = {(Lξ,γ , Lξ,β) | {ξ, γ, β} ⊂ F
∪{∞}
q },

R−1 = {(Lξ,γ , Lα,β) | {ξ, γ, α, β} ⊂ F
∗
q , cr(ξ, γ ; α, β) = −1},

Rr =
{
(Lξ,γ , Lα,β) | {ξ, γ, α, β} ⊂ F

∗
q , cr(ξ, γ ; α, β) ∈ {rτ , r−τ | τ ∈ Aut Fq}

}
,

r ∈ F
∗
q \ {±1}.

Theorem 3.4. X(P�L(2, q),L+) is a symmetric association scheme with the above relations.

Remark 2. Note that the relation R1 is an original relation in T(q+1). For q = 9,X(P�L(2, q),L+) has
4 classes. It has the P-polynomial property given by R−1 but not theQ-polynomial property. For q = 25

and 49, X(P�L(2, q),L+) has 9 and 16 classes, respectively. These schemes don’t have polynomial (P

or Q ) property. For the general case, the class number of X(P�L(2, q),L+) is reduced to counting the

number of orbits of Aut(Fq) on the collection {{rτ , r−τ } | r ∈ F
∗
q \ {±1}, τ ∈ Aut(Fq) }. However,

we are unable to give an explicit formula for this number.

Example 3.1. In this example, we illustrate the four fission schemes of T(10) for q = 9. Let g be a prim-

itive element of F9. We have X(P�L(2, 9),L+) = X(M(9),L+). The relations of FT(10), X(PSL(2, 9),
L+) and X(M(9),L+) are shown in the following diagram:

R1

��
�� ��

��
R−1

��
�� 		

		
Rg2






 ���

�
Rg Rg3

R
+
1 R

−
1 R

+−1 R
−−1

R
+
g2

R
−
g2

Rg Rg3

R1

���� ����
R−1

				 ����
Rg2

���� 




Rg ∪ Rg3

�����







The top, middle and bottom rows are the relations of FT(10), X(PSL(2, 9),L+) and X(M(9),L+),
respectively.

Remark 3. A general method for computing the rank and subdegrees for a (transitive) permutation

representation was outlined in the survey paper [8] via the use of so-called Burnside marks. In fact,

this method was developed in two papers by A.A. Ivanov et al. [14] and A.A. Ivanov [15]. F.L. Tchuda

used this method to investigate the primitive representations of PSL(2, q) in his thesis [22].
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