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Abstract

In practical optimization, applying evolutionary algorithms has nearly become a matter of course. Their theoretical analysis,
however, is far behind practice. So far, theorems on the runtime are limited to discrete search spaces; results for continuous search
spaces are limited to convergence theory or even rely on validation by experiments, which is unsatisfactory from a theoretical point
of view.

The simplest, or most basic, evolutionary algorithms use a population consisting of only one individual and use random
mutations as the only search operator. Here the so-called (1+1) evolution strategy for minimization in Rn is investigated when
it uses isotropically distributed mutation vectors. In particular, so-called Gaussian mutations are analyzed when the so-called
1/5-rule is used for their adaptation.

Obviously, a reasonable analysis must respect the function to be minimized, and furthermore, the runtime must be measured
with respect to the approximation error. A first algorithmic analysis of how the runtime depends on n, the dimension of the search
space, is presented. This analysis covers all unimodal functions that are monotone with respect to the distance from the optimum.
It turns out that, in the scenario considered, Gaussian mutations in combination with the 1/5-rule indeed ensure asymptotically
optimal runtime; namely, Θ(n) steps/function evaluations are necessary and sufficient to halve the approximation error.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Finding an optimum of a given function f : S → R is one of the fundamental problems — in theory as well as in
practice. Methods for solving continuous optimization problems, essentially S = Rn , are usually classified into first-
order, second-order, and zeroth-order methods, depending on whether they utilize the gradient (the first derivative) of
the objective function, the gradient and the Hessian (the second derivative), or neither of both. A zeroth-order method
is also called derivative-free or direct search method. Note that here “continuous” relates to the search space rather
than to f . Newton’s method is the example of a second-order method; first-order methods can be (sub)classified into
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quasi-Newton, steepest decent, and conjugate gradient methods. Classical zeroth-order methods try to approximate the
gradient and to then plug this estimate into a first-order method. Finally, amongst the “modern” zeroth-order methods,
evolutionary algorithms (EAs) come into play. EAs for continuous optimization, however, are usually subsumed under
the term evolution(ary) strategies (ESs).

When information about the gradient is not available, for instance if f relates to a property of some workpiece and
is given by simulations or even by real-world experiments, first-order (and also second-order) methods just cannot
by applied. As the approximation of the gradient usually involves Ω(n) f -evaluations, a single optimization step of
a classical zeroth-order method is computationally intensive, especially if f is given implicitly by simulations. In
practical optimization, especially in mechanical engineering, this is often the case, and particularly in this field EAs
are becoming more and more popular. However, the enthusiasm in practical EAs has led to an unclear variety of very
sophisticated and problem-specific EAs. Unfortunately, from a theoretical point of view, the development of such
EAs is solely driven by practical success, whereas the aspect of a theoretical analysis is left aside. In other words,
(concerning EAs) theory has not kept up with practice, and thus, we should not try to analyze the most sophisticated
EA en vogue, but concentrate on very basic, or call them “simple”, EAs to build a sound and solid basis for EA-theory.1

For discrete search spaces, essentially {0, 1}
n , such a theory has been started successfully in the mid-1990s ([10],

cf. [17] and [5]). There first results for non-artificial, but well-known problems have been obtained recently (namely
for the maximum matching problem by Giel and Wegener [6] and for sorting and the shortest path problem by
Scharnow et al. [15]). As mentioned above, the situation for continuous evolutionary optimization is different. Here,
the vast majority of the results are based on empiricism, i.e., experiments are performed and their outcomes are
interpreted. Also convergence properties of EAs have been studied to a considerable extent (cf. [14] and [2]). Before
we take a closer look at such convergence results, however, we return to the zeroth-order optimization scenario and
take a look from the complexity-theoretical point of view.

When f is given to the optimization algorithm as an oracle for f -evaluations (zeroth-order oracle) and the cost
of the optimization (the runtime) is defined as the number of queries to this oracle, we are in the so-called black-
box optimization scenario. Nemirovsky and Yudin ([11] p. 333) state in their book Problem Complexity and Method
Efficiency in Optimization: “From a practical point of view this situation would seem to be more typical. At the
same time it is objectively more complicated and it has been studied in a far less extend than the one [with first-
order oracles/methods] considered earlier”. After 20 years there still seems to be some truth in their statement; yet
to a smaller extent, though. For discrete black-box optimization, just recently a complexity theory has been started
(cf. [4] and [18]). Here lower bounds on the number of f -evaluations (black-box complexity) are proved with respect
to classes of functions when an optimization heuristic, for instance an EA, knows about the class of functions to
which f belongs, but nothing about f itself. The benefits of such results are obvious: They can prove that an allegedly
poor performance of an apparently simple EA on f is not due to its simpleness, but due to the inherent black-box
complexity of f .

In the mathematical programming community, however, it is common to describe the performance of an
optimization method by means of convergence theory. As an example, let us take a closer look at “linear convergence”.
Let x∗ denote the optimum of a unimodal function and xk the approximate solution after k optimization steps. If strong
convergence is meant, i.e. convergence in the search space,2 then we have

d(x∗, xk+1)

d(x∗, xk)
→ c < 1 as k → ∞

where d(·, ·) denotes the distance between two points in the search space. From a computer scientist’s point of view,
the first rub with such a result is that we do not know when k is large enough to ensure d(x∗, xk+1) ≤ c′

·d(x∗, xk) for
some constant c′ < 1. The second rub is that there seems to be no connection to n, the dimension of the search space.
Only if c is an absolute constant, there is true independence of n; yet in general, the convergence rate c depends on n.
When we are interested in, say, the number of steps necessary to halve the approximation error (the distance from
the optimum), the order of this number with respect to n precisely depends on how c depends on n. If for instance
c = 1 − 0.5/n, we need Θ(n) steps; if c = 1 − 0.5/n2, however, we need Θ(n2) steps — when k is large enough,

1 in the sense of mathematics, rather than physics
2 as apposed to weak convergence which means convergence in the objective space
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respectively. Thus, the order of convergence (“linear” in the example above) tells us something about the “final speed”
of the optimization, but in general nothing about the n-dependence of the number of steps necessary to ensure a certain
approximation error. 3

Regarding the approximation error, for unconstrained optimization it is generally not clear how the runtime can be
measured solely with respect to the absolute error of the approximation. In contrast to discrete and finite problems
(like CLIQUE), the initial error is generally not bounded (for CLIQUE the trivial solution consisting of a single vertex
is an approximation with bounded error). Hence, the question how many steps it takes to get into the ε-ball around x∗

does not make sense without specifying the starting conditions. This cannot be solved inconsiderately by restricting
ourselves to the search space, say, [−w, w]

n
⊂ Rn for some w (which might depend on n). Obviously, such an

assumption would put constraints on the originally unconstrained optimization problem. Hence, we must consider the
runtime with respect the relative improvement of the approximation.

The simple optimization problems we will consider result in a somehow homogeneous optimization which enables
us to measure the performance of the algorithm by the number of steps necessary to halve the approximation error,
i.e. the Euclidean distance from the optimum. Starting at distance δ > 2ε then gives an additional factor of log2(δ/ε)

for the number of steps necessary for an ε-approximation, i.e. d(x∗, xk) ≤ ε. We will come back to the point why it
makes sense (in our investigations) to consider the approximation error in the “strong” sense, i.e. with respect to the
search space, rather than in the “weak” sense, i.e. with respect to the objective space.

1.1. The algorithm

As mentioned in the abstract, we will concentrate on the (1+1) evolution strategy ((1+1) ES), which dates back
to the mid-1960s (cf. [12]). This simple EA uses solely mutation due to a single-individual population, where here
“individual” is just a synonym for “search point”.4 Let c ∈ Rn denote the current individual. Given a starting point,
i.e. an initialization of c, the (1+1) ES performs the following evolution loop:

(1) Choose a random mutation vector m ∈ Rn , where the distribution of m may depend on the course of the
optimization process.

(2) Generate the mutant x ∈ Rn by x := c + m.
(3) If f (x) ≤ f (c) then x becomes the current individual (c := x), otherwise x is discarded (c unchanged).
(4) If the stopping criterion is met then output c else goto 1.

Each execution of the loop is called a step, and if the mutant is discarded, the mutation/mutant is said to be rejected,
otherwise accepted. Also extensions of this algorithm exist: The (1+λ) ES generates λ mutants per step and (one of)
the best of them competes with c. The (1,λ) ES also generates λ mutants, yet (one of) the best of them replaces c
regardless of whether it is better than c or not. Finally, a population consisting of µ > 1 individuals can be used,
which leads to (µ+λ) ES or (µ,λ) ES (cf. [16]). Since a worse mutant (with respect to the function to be minimized) is
always discarded, the (1+1) ES is a randomized hill climber, and the selection rule is called elitist selection.

Note that by choosing a different, namely an appropriately randomized selection rule, the (1+1) ES may resemble
the Metropolis algorithm or simulated annealing (i.e., with a fixed resp. a monotone decreasing probability the mutant
is accepted irrespective of whether it is better than c). Some of the results we will present hold also for such selection
rules; in fact, these results hold for any selection rule. This will be stated explicitly in each case.

For a concrete application of the (1+1) ES, the stopping criterion and the distribution of the mutation vectors
must be specified. Obviously, the stopping criterion is crucial in practical optimization. However, we investigate the
(1+1) ES as an infinite process since we are interested in the random variable S f overN defined as the number of steps
the (1+1) ES performs until a predefined (relative) approximation error is realized. In particular, we are interested in
E
[
S f
]

and in P
{

S f ≤ k
}

for a given number of steps k.

3 Unless c is an absolute constant; then it takes a constant number of steps to halve the distance from x∗ independently of n.
4 In general, an individual may contain additional information (which might influence the optimization process) or even more than one search

point.
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1.2. Gaussian mutations and the 1/5-rule for their adaptation

Fortunately, for the type of results we are after, we need not define a reasonable stopping criterion. How the
mutation vectors are generated must be specified, though. Originally (cf. [12]), the mutation vector m ∈ Rn

is generated by firstly generating a so-called Gaussian mutation (vector) m̃ ∈ Rn each component of which is
independently standard normal distributed; subsequently, this vector is scaled by the multiplication with the so-called
mutation strength, a scalar s ∈ R>0, i.e. m = s · m̃. In practice, Gaussian mutations are the most common type of
mutations (for the search space Rn).

The question that naturally arises is how the scaling factor s is to be chosen. Obviously, the smaller the
approximation error is, i.e., the closer c is to an optimum, the shorter m needs to be for a further improvement of
the approximation to be possible. Unfortunately, the algorithm does not know about the current approximation error,
but can utilize only the knowledge obtained by f -evaluations. Based on experiments and rough calculations for two
function scenarios (namely SPHERE and a corridor function), Rechenberg proposed the 1/5-(success-)rule. The idea
behind this adaptation mechanism is that in a step of the (1+1) ES the mutant should be accepted with probability 1/5.
Hereinafter, a mutation that results in f (x) ≤ f (c) is called successful, and hence, when talking about a mutation,
success probability denotes the probability that the mutant x = c + m is at least as fit as c. Obviously, when elitist
selection is used, the success probability of a step equals the probability that the mutation is accepted in this step.
If every step was successful with probability 1/5, we would observe that on average one fifth of the mutations are
successful. Thus, the 1/5-rule works as follows: The optimization process is observed for n steps without changing s;
if more than one fifth of the steps in this observation phase have been successful, s is doubled, otherwise, s is halved.
The number of steps for observation varies in the literature, but is almost always Θ(n). Also the choice of the constants
for the adaptation of s, here 2 and 1/2, seems somewhat arbitrary. In fact, one result we will obtain is that – for the
function scenario considered – the asymptotic runtime is “robust” with respect to the concrete instantiation of the
1/5-rule. Namely, any 1/5-rule that performs the s-adaptation every Θ(n) steps using any two constants for the
scaling of s that are greater resp. smaller than 1 results in the same asymptotic runtime; even the 1/5 can be replaced
by any positive constant smaller than 1/2 in our function scenario without affecting the order of the runtime.

1.3. The function scenario

As mentioned in the abstract, we concentrate on unimodal functions that are monotone with respect to the distance
from the minimum. More formally, a function f : Rn

→ R belongs to this class if

(1) a minimizer x∗
∈ Rn exists, i.e. f (x∗) is minimal, and

(2) d(x∗, x) < d(x∗, y) ⇒ f (x) < f ( y) for any two points x, y ∈ Rn .

The crucial property of such a function with respect to the (1+1) ES is that any mutant that is closer to the minimum is
accepted, whereas any mutant that is farther away is discarded. In other words, a reduction of the approximation error
is always accepted, whereas an increase is always rejected. We do not know, however, whether a mutant having the
same distance from the optimum as c is accepted; yet this does not matter as we will see. All in all, when starting with
the same initial approximation error, the stochastic process induced by the (1+1) ES depends on the class-defining
properties, but not on the function itself.

In particular, the so-called sphere function defined by SPHERE(x) :=
∑n

i=1 x 2
i belongs to our class, where

x = (x1, . . . , xn) ∈ Rn . Presumably, SPHERE, which is merely the L2-norm squared, is the most investigated
and discussed function in the field of ES [12,13,2,3], and it is easy to see that a function f = g ◦ L2 belongs to
our class if g : R≥0 → R is monotone increasing and bounded from below. With respect to the search space, the
optimization process is independent of g; the progression of the approximation with respect to the objective space,
however, crucially depends on g; consider for instance g(x) = x2, i.e. f = SPHERE, as opposed to g(x) = 2x .
Results with respect to g can easily be obtained from ones with respect to the search space, and hence, it makes sense
to concentrate on the later. Some of the results to be presented, however, hold independently of this function scenario;
this will be stated explicitly in each case.

In the next section we are going to investigate some general properties of isotropic mutations, and in Section 3 we
will see what the consequences of these properties are with respect to our concrete scenario. In the two succeeding
sections these results will be used to obtain a lower bound (Section 4) and an upper bound (Section 5) on the (expected)
runtime of the (1+1) ES for our function scenario. Finally, we finish with some concluding remarks in Section 6.
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2. A closer look at isotropic mutations in general

The reason why we are going to have a closer look at isotropically distributed mutation vectors is that isotropy is
just the crucial property of a Gaussian mutation in our analysis. Before we start with a formal definition of isotropy,
however, a few notions and notations are introduced.

Definition 1. A probability p(n) is exponentially small in n if for a constant ε > 0, p(n) = exp(−Ω(nε)). An event
A(n) happens with overwhelming probability (w. o. p.) with respect to n if 1 − P{A(n)} is exponentially small in n.

For a vector x ∈ Rn , |x| denotes the L2-norm of the vector, i.e. its length in Euclidean space, and xi ∈ R its i th
component. Furthermore, for instance “n-volume” abbreviates “n-dimensional volume”.

Definition 2. For a random vector x ∈ Rn let x̂ := x/ |x| denote the normalized vector. The distribution of x is
isotropic if

(1) x̂ is uniformly distributed upon the unit hyper-sphere {u ∈ Rn
| |u| = 1},

(2) |x| is independent of x̂.

Obviously, if x is isotropically distributed, the distribution of s · x for s ∈ R>0 is also isotropic. Thus, to prove
that a scaled Gaussian mutation vector is isotropically distributed, we must merely show that the distribution of m̃
(cf. Section 1.2) is isotropic. As each component of m̃ is independently standard normal distributed, the density at
the point x ∈ Rn equals

∏n
i=1 exp(−xi

2/2)/
√

2π = exp(− |x|
2 /2)/

√
2π . In other words, the distribution of m̃

is invariant with respect to orthonormal transformations, and it is easy to see that this implies the isotropy of the
distribution:

Proposition 3. A scaled Gaussian mutation vector is isotropically distributed.

In less formal words, for an isotropically distributed vector, all directions are equiprobable (in fact “equidense”), and
furthermore, the distribution of its length is independent of its direction. This enables us to assume that an isotropically
distributed vector m is generated in two independent steps: First ` is chosen according to the distribution of |m| (which
is well defined due to the isotropy); subsequently, by a deferred decision, m is chosen uniformly upon the hyper-sphere
S` := {x ∈ Rn

| |x| = `}. This decomposition will turn out very useful in our investigations of a mutation. After ` is
chosen according to the distribution of |m| in a step of the (1+1) ES, the mutant x = c + m is only partially random
since we know that it will be located in the hyper-sphere Sc,` := {x ∈ Rn

| d(x, c) = `}. Namely, under the condition
{|m| = `} the mutant x is uniformly distributed upon Sc,`.

Let Ac := {x ∈ Rn
| f (x) ≤ f (c)} (the lower level set of c with respect to f ). Then the success probability of

a step equals the mass of Ac with respect to the probability measure induced by the distribution of the mutant. For
instance, we could also chose Ac to denote the set containing all points that are at least ∆ > 0 closer to the optimum
than c. Then the mass of Ac would give us the probability that the approximation error of the mutant is by at least ∆
smaller than the one of c. In the following, Ac may denote an arbitrary set so that the knowledge of P{c + m ∈ Ac}
helps us with the analysis of the (1+1) ES.

A direct algebraic computation of this hitting probability, i.e. the mass of Ac with respect to the probability
measure induced by the distribution of m, has turned out to be very difficult (cf. [2]) even for simple situations.
This is usually the point where simplifications of the model are conceded, which leads to the undesirable need for
experimental validations of whether the results obtained in this simplified model really predict the behavior of the
true algorithm well.5 Thus, we are going to take a “less is sometimes more” approach here: We will be comfortable
with less accuracy, namely with asymptotic estimates of probabilities, and by this, we will gain more insight into the
asymptotic n-dependence of the runtime of the (1+1) ES.

As we have seen above, if the mutation vector takes the length `, the mutant is uniformly distributed upon Sc,`, in
other words:

P{c + m ∈ Ac | |m| = `} =
(n−1)-volume of Sc,` ∩ Ac

(n−1)-volume of Sc,`
.

5 Unfortunately, in most works a formal definition of the measure for “well” is omitted and experiments are not validated statistically.
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In general, even the algebraic computation of the volume of Sc,` ∩ Ac might be tricky or a closed formula might
not exist at all. However, if we can pick a hyper-plane H that separates Ac from c, we obtain an upper bound on
the (conditional) hitting probability (given that {|m| = `}). Let Cc,`,H ⊂ Sc,` denote the hyper-spherical cap whose
boundary is given by H ∩ Sc,` and which lies in the half-space containing Ac. If d(H, c) := infx∈H d(x, c) > `,
then the hyper-plane and the hyper-sphere do not intersect, and consequently, the set Cc,`,H is empty and the mutation
cannot hit Ac. If d(H, c) = ` then Cc,`,H is a singleton, i.e. degenerated, and is hit only with zero probability. Finally,
if d(H, c) < ` then Cc,`,H has a positive (n−1)-volume, and thus:

P{c + m ∈ Ac | |m| = `} ≤
(n−1)-volume of Cc,`,H

(n−1)-volume of Sc,`
.

On the other hand, if we can pick a hyper-plane G such that each point in the cap also lies in Ac, i.e. Cc,`,G ⊆ Ac,
then we obtain a lower bound on the conditional hitting probability:

P{c + m ∈ Ac | |m| = `} ≥
(n−1)-volume of Cc,`,G

(n−1)-volume of Sc,`
.

Needless to say, these bounds might by arbitrarily weak depending on the shape of the hyper-surface Ac ∩ Sc,`. When
applying these bounds, however, H and G should be chosen such that d(H, c) is as large as possible and d(G, c) as
small as possible.

The considerations just presented are not limited to Gaussian mutations and our function scenario, they are only
specific to generating a mutant by adding an isotropically distributed vector. In fact, for our function scenario it turns
out that we can choose H = G, i.e., the lower and the upper bound meet. Therefore, we now concentrate on the ratio
of the hyper-surface area of a hyper-spherical cap to the one of the hyper-sphere it is cut off by the intersection with
some hyper-plane J . In particular, we are interested in how this ratio depends on the height of the cap and on n, the
dimension of the search space.

In the following, polar/spherical coordinates are used: Let r denote the distance from the origin o, α the azimuthal
angle with range [0, 2π), and β3, . . . , βn the remaining angles with range [0, π]. Here, for a given x ∈ Rn

\ {o}, βi is
the angle between (the positive half of) the xi -axis and the half-line starting at o and passing through x. Let ρ denote
an arbitrary permutation on {3, . . . , n}. Fixing r in n-space, but none of the angles, defines an n-sphere S(n)

r with
radius r ; additionally fixing βρ(n) results in an (n−1)-sphere S(n−1)

r ⊆ S(n)
r having radius r sin βρ(n); fixing βρ(n−1)

in addition to r and βρ(n) results in an (n−2)-sphere S(n−2)
r ⊆ S(n−1)

r ⊆ S(n)
r with radius r sin βρ(n) sin βρ(n−1), and

so on (cf. [9]). Thus, assuming ρ = id for notational convenience, the hyper-surface area of an n-sphere with radius r
is given by∫ π

βn=0

∫ π

βn−1=0
· · ·

∫ π

β3=0

∫ 2π

α=0
(r sin βn · · · sin β3dα)(r sin βn · · · sin β4dβ3) · · · · · · (r sin βndβn−1)(rdβn).

Regrouping the factors and solving the α-integral, namely
∫ 2π

0 dα = 2π , yields

rn−1
· 2π ·

n−2∏
i=1

∫ π

0
(sin β)i dβ

for the area of an n-sphere with radius r . Naturally, we could have looked up the formula for the hyper-surface area
of an n-sphere in a formulary, but we also need a formula for the cap. The formula for the cap can easily be derived
from the one above — yet only if one knows about the derivation of the later.

The area of an n-dimensional spherical cap is calculated by adjusting the upper limit on βρ(n) appropriately. In the
figure on the right, the interdependence between the upper limit (γ ) on βρ(n) and the height (h) of a spherical cap is
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shown (where the sheet this figure is drawn on corresponds to the x1–xρ(n)-plane when α = 0). Consequently, the
area of a hyper-spherical cap with radius r and height h = r · (1 − cos γ ) ∈ [0, 2r ] is given by

rn−1
· 2π ·

(∫ γ

0
(sin β)n−2dβ

)
·

(
n−3∏
i=1

∫ π

0
(sin β)i dβ

)
.

All in all, in n-space, n ≥ 3, the ratio of the hyper-surface area of a spherical cap with height h ∈ [0, 2r ] to the one of
the sphere with radius r the cap is cut off reduces to∫ γ

0 (sin β)n−2dβ∫ π

0 (sin β)n−2dβ
with γ = arccos(1 − h/r).

Let g := r − h denote the distance between the center of the sphere and the cutting hyper-plane, i.e. the hyper-plane
containing the boundary of the cap. Then γ = arccos(g/r). In the bounds on the conditional hitting probability
P{m ∈ Ac | |m| = `}, the radius r is given by `, and g is given by the distance between c and H resp. G.

We use the abbreviation Ψk(α) :=
∫ α

0 (sin β)kdβ. In Appendix A it is shown that for n ≥ 4√
2π

n − 1
<

∫ π

0
(sin x)n−2dx = Ψn−2(π) <

√
2π

n − 2
,

and hence, Ψn−2(π) = Θ(1/
√

n). Unfortunately, solving Ψn−2(γ ) algebraicly results in a formula that does not reveal
the n-dependence of the integral’s value. With respect to the 1/5-rule which we want to analyze, it is particularly
interesting which situation results in a hitting probability of 1/5. Obviously, when |m| = `, this is the case if
Ψn−2(arccos(d(J, c)/`)) = Ψn−2(π)/5 (recall that J denotes the cutting hyper-plane such that c is located in the
one half-space and the cap in the other one); yet this implicit result does not help much.

To estimate the probability that an isotropic mutation (which takes the length `) hits a certain cap, we will now
transform the formula just derived into one which makes such an estimation simple and which will turn out useful also
in the forthcoming analysis of the spatial gain towards the optimum. Namely, we will concentrate on the probability
density of hitting the boundary of the cap. With the help of this density, we will obtain an alterative formula for the
probability of hitting a cap.

The distance between c and J , namely g, can be interpreted as the minimum spatial gain (measured perpendicular
to J ) which a mutation m with |m| = ` yields when it hits this cap. Therefore, let G denote the random variable given
by the spatial gain of an isotropic mutation m measured parallel to a fixed direction under the condition |m| = `, i.e.,
the distance between c and the hyper-plane that contains its mutant c+ m and lies perpendicular to the direction. Then

P{G ≤ g} = 1 − P{G > g} = 1 −
Ψn−2(arccos(g/`))

Ψn−2(π)
.

In other words, for x ∈ [−`, `]

Fn(x) := 1 −
Ψn−2(arccos(x/`))

Ψn−2(π)

is the probability distribution of G over [−`, `] in n-space. As Ψk is continuous, the probability density of G at
g ∈ [−`, `] is given by F ′

n(g) =
dFn(x)
dx (g),

F ′
n(x) =

−1
Ψn−2(π)

·
dΨn−2(arccos(x/`))

dx

=
−1

Ψn−2(π)
·

d
dx

∫ arccos(x/`)

0
(sin β)n−2dβ.

Since sink is continuous, let Sink denote its anti-derivative, i.e. Sin′

k = sink , such that Sink(0) = 0. Then

d
dy

∫ arccos(y)

0
(sin β)kdβ =

dSink(arccos y)

dy
= Sin′

k(arccos y) · arccos′ y

= (sin arccos y)k
· arccos′ y,
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and since sin arccos y =

√
1 − y2 and arccos′ y = −1/

√
1 − y2, we have for k ≥ 2

d
dy

Sink(arccos y) =

(
1 − y2

)k/2
·

−1√
1 − y2

= −1 ·

(
1 − y2

)(k−1)/2
.

By applying the chain rule, we finally obtain the probability density of G at g ∈ [−`, `] in n-space, n ≥ 4:

F ′
n(g) =

−1
Ψn−2(π)

·
−1
`

· (1 − (g/`)2)(n−3)/2
=

1
Ψn−2(π) · `

(
1 − (g/`)2

)(n−3)/2
.

This density function can now be used to derive the announced alternative formula for the conditional probability
that a certain cap is hit by an isotropic mutation:

P
{

m ∈ Cc,`,J | |m| = `
}

=
Ψn−2(arccos(d(J, c)/`))
Ψn−2(π)

= P{G ≥ d(J, c)}

=

∫ `

d(J,c)
F ′

n(g)dg

=

∫ `

d(J,c)

1
Ψn−2(π) · `

(1 − (g/`)2)(n−3)/2dg

(x substitutes g/`) =
1

Ψn−2(π)

∫ 1

d(J,c)/`
(1 − x2)(n−3)/2dx .

Note that, by definition, the height of Cc,`,J is smaller than ` since c lies in the one half-space (with respect to J ) and
the cap in the other one.

Obviously, for a fixed condition |m| = ` > 0, if d(J, c) → 0, then the cap becomes a hyper-hemisphere and
the hitting probability approaches 1/2. With respect to the 1/5-rule, which we want to investigate, it is of particular
interest when a cap is hit with probability 1/5. By the alternative formula just derived, we obtain the following results.

Lemma 4. Let m ∈ Rn be isotropically distributed. Then

(1) for any constant κ with 0 < κ < 1/2, for instance κ = 1/5,

P
{

m ∈ Cc,`,J | |m| = `
}

= κ ⇒ d(J, c) = Θ(`/
√

n );

(2) there exists a constant δ > 0 such that

d(J, c) = Θ(`/
√

n ) ⇒ δ ≤ P
{

m ∈ Cc,`,J | |m| = `
}

≤ 1/2 − δ

for n sufficiently large6;
(3) for any constant ε > 0

d(J, c) = Ω(` · nε−1/2) ⇒ P
{

m ∈ Cc,`,J | |m| = `
}

is exponentially small in n.

Proof. Note that (1 − 1/n)n < exp(−1) < (1 − 1/n)n−1 for n > 1. Using the formula just derived, to prove the first
two claims it is sufficient to show that for d(J, c) = Θ(`/

√
n ) both∫ d(J,c)/`

0
(1 − x2)(n−3)/2dx as well as

∫ 1

d(J,c)/`
(1 − x2)(n−3)/2dx

are Ω(Ψn−2(π)), i.e. Ω(1/
√

n), respectively. Therefore, let β be such that β/
√

n = d(J, c)/` = Θ(1/
√

n), i.e.,
β = Θ(1). Since (1 − x2)(n−3)/2 is non-increasing on [0, 1], for n ≥ 4 and 2β/

√
n ≤ 1, i.e., for n ≥ max{4, 4β2

}∫ β/
√

n

0
(1 − x2)(n−3)/2dx ≥ (β/

√
n) · (1 − (β/

√
n)2)(n−3)/2

= Θ(1/
√

n) · (1 − Θ(1/n))Θ(n)

= Θ(1/
√

n) · exp(−Θ(1))

6 That is, a constant n0 exists such that the statement holds for n ≥ n0; here n0 depends only on the concealed constants in Θ(`/
√

n).
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and ∫ 1

β/
√

n
(1 − x2)(n−3)/2dx ≥

∫ 2β/
√

n

β/
√

n
(1 − x2)(n−3)/2dx

≥ (β/
√

n) · (1 − (2β/
√

n)2)(n−3)/2

= Θ(1/
√

n) · (1 − Θ(1/n))Θ(n)

= Θ(1/
√

n) · exp(−Θ(1)).

To prove the third claim it suffices to show that
∫ 1

d(J,c)/`(1 − x2)(n−3)/2dx is exponentially small if d(J, c) =

Ω(` · nε−1/2) for a positive constant ε. Since d(J, c) ≥ ` results in the degeneration of the cap, w. l. o. g. ε ≤ 1/2.
Thus, d(J, c)/` ≥ β · nε−1/2 for a positive constant β ≤ 1 such that 0 < β · nε−1/2

≤ 1, and∫ 1

β·nε−1/2
(1 − x2)(n−3)/2dx ≤ (1 − β2n2ε/n)(n−3)/2

· (1 − β · nε−1/2)

= exp(−Ω(n2ε)) · Θ(1)

completes the proof. �

These results on the probability of hitting a cap of a certain height when |m| = ` will now be used to investigate
the spatial gain which a step of the (1+1) ES yields. Recall that hitting a cap of height h ∈ [0, `] (defined by a hyper-
plane J ) is just the same as obtaining a spatial gain of g = ` − h ≥ 0 parallel to a predefined direction (for instance
perpendicular to J ).

The spatial gain towards a fixed point x∗ is given by d(x∗, c) − d(x∗, c + m). Now, note this simple, but crucial
geometric fact: If the spatial gain towards x∗ is non-negative then this gain is upper bounded by the respective gain
measured parallel to the line passing through c and x∗. Thus, the third claim of the preceding lemma directly yields
the following result.

Corollary 5. The spatial gain of an isotropic mutation m ∈ Rn towards a predefined point in the search space, for
instance the/an optimum, is for any constant ε > 0 w. o. p. O(|m| · nε−1/2).

When we optimistically assume that a mutation that reduces the approximation error was always accepted and that
a mutation that increases the approximation error was always rejected, we obtain the following result.

Corollary 6. Let the (1+1) ES optimize an arbitrary function using an arbitrary selection rule. The spatial gain
towards a predefined point in the search space in a step, in which the mutation vector m ∈ Rn is isotropically
distributed, is for any constant ε > 0 w. o. p. O(|m| · nε−1/2).

Also the efforts to derive the density function of hitting the boundary of a cap pay off now. With the help of this
density we obtain a bound on the expected spatial gain towards a fixed point.

Lemma 7. Irrespective of the function that is optimized and of the selection rule, the expected spatial gain towards a
predefined point in the search space in a step of the (1+1) ES, in which m is isotropically distributed, is upper bounded
by |m| /

√
2π(n − 1), i.e., it is O(|m| /

√
n).

Proof. Optimistically assume that a negative gain is always rejected and that a positive gain is always accepted. Using
the respective “parallel spatial gain” as an upper bound, when m takes the length ` the expected spatial gain is upper
bounded by∫ `

0
g · F ′

n−2(g)dg =
`

Ψn−2(π)

∫ 1

0
y ·

(
1 − y2

)(n−3)/2
dy

=
`

Ψn−2(π)
·

[
1

n − 1

(
1 − y2

)(n−1)/2
]1

0

<
` ·

√
n − 1

√
2π

·
1

n − 1

since Ψn−2(π) >
√

2π/(n − 1) for n ≥ 4 (cf. Appendix A). �
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Note (again) that the results obtained in this section are specific to isotropic mutations, but not to the function that
is optimized nor to the selection rule that is used. In the next section we return to the function scenario described in
the introduction and obtain more concrete results.

3. Isotropic mutations and the 1/5-rule in the concrete scenario

As mentioned above, we are now going to turn our attention to the function scenario described in the introduction.
The situation is shown in the figure on the right. The left sphere F := {c′

∈ Rn
| d(c′, o) = d(c, o)} will be called

fitness sphere since the properties of f imply that all points inside this fitness sphere are better than the current search
point c, and that all points outside are worse. Consequently, due to the elitist selection, in our scenario a mutant that
is closer to the optimum than c, i.e. a positive spatial gain towards the optimum, is accepted, whereas a mutant that is
farther away, i.e. a negative spatial gain towards the optimum, is rejected. The potential mutants when the mutation
vector m takes the length ` form the mutation sphere M := {x ∈ Rn

| d(x, c) = `}. Obviously, the intersection
I = F ∩ M ⊂ Rn of these two spheres is empty if ` > 2 · d(c, o), and it is a singleton if ` = 2 · d(c, o). The
interesting case which we will focus on in the following is when ` < 2 · d(c, o). Then, if the mutant is accepted in
a step, this step yields a non-negative spatial gain towards the optimum, and the question is: How large is this gain
and for which ` is it maximum? As we want to investigate the 1/5-rule for the adaptation of |m|, it is particularly
interesting what the gain is when a mutant is accepted with probability 0.2.

Since for all i, j ∈ I , d(i, c) = d( j , c) as well as d(i, o) = d( j , o), I is a subset of a hyper-plane which is
perpendicular to the line passing through the optimum o and the current search point c. Let P denote this hyper-plane
and p ∈ P the point where the line penetrates the hyper-plane. Let C∪̇I ∪̇D = M , i.e., C and D are hyper-spherical
caps the missing boundary of each of which is I ; let C denote the cap inside the fitness sphere. According to the
function scenario, if a mutant having distance ` from the current search point hits C then it is accepted, and if it hits
D, it is rejected. If this mutant hits I , however, our assumptions on the properties of f tell us nothing about whether it is
accepted or not, yet this is no problem: This event has zero probability since I , an (n−1)-sphere, has no (n−1)-volume.
Following the argumentation presented in the preceding section, for the function scenario considered we have:

P{mutation is accepted | |m| = `} =
(n−1)-volume of Cc,`,P

(n−1)-volume of Sc,`
.

The ratio on right has already been investigated in the preceding section; to use the results obtained there, we must
know the height of the cap C which is given by ` − d(P, c). Note that the distance between the cutting hyper-plane P
and the current search point, namely d(P, c), equals d( p, c). Due to Pythagoras, when d(c, p) ≤ d(c, o) then for any
i ∈ I

d(o, i)2
− d(o, p)2

= d(i, p)2
= d(c, i)2

− d(c, p)2.

Since d(o, i) = d(o, c), d(o, p) = d(o, c) − d(c, p), and d(c, i) = `,

d(o, c)2
− ( d(o, c) − d(c, p))2

= `2
− d(c, p)2,

and solving for d(c, p) yields d(c, p) = `2/(2 · d(o, c)) for the distance between c and P . A similar argumentation
yields that this equality holds also for d(c, o) < d(c, p) ≤ 2 · d(o, c), i.e., if the optimum o and the current search
point c are not separated by P , but lie in the same half-space.

Now that we know how the distance of the cutting hyper-plane and the current search point depends on ` (the
length of the mutation vector) and on d(o, c) (the current approximation error) we can apply Lemma 4.
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Lemma 8. In the scenario considered, when a suboptimal search point c is mutated using an isotropically distributed
vector m then under the condition |m| = `

(1) if the mutation is successful with a constant probability κ , 0 < κ < 1/2, then ` = Θ(d(o, c)/
√

n);
(2) if ` = Θ(d(o, c)/

√
n), then a positive constant δ exist such that for sufficiently large n the mutation is successful

with a probability in [δ, 1/2 − δ];
(3) if ` = Ω(d(o, c) · nε−1/2) for a positive constant ε, then m /∈ C w. o. p., i.e., the success probability is

exponentially small.

Proof. According to Lemma 4, d(P, c) = Θ(`/
√

n) and according to the preceding argumentation specific to our
scenario d(P, c) = `2/(2 · d(o, c)). Thus, we have `2/(2 · d(o, c)) = Θ(`/

√
n), i.e., ` = Θ(d(o, c)/

√
n).

For the proof of the third claim we have d(P, c) = `2/(2 · d(o, c)) = ` · Ω(nε/
√

n) so that the third part of
Lemma 4 completes the proof. �

The preceding lemma says that in our scenario the length of the mutation vector is by a factor of Θ(1/
√

n) smaller
than the current approximation error if the 1/5-rule is able to ensure a success probability close to 1/5 in the respective
step. Thus, we investigate the (expected) spatial gain towards the optimum in this situation next.

Therefore, assume |m| = ` = Θ(d(o, c)/
√

n). Then

d(P, c) = `2/(2 · d(o, c)) = ` · Θ(1/
√

n) = Θ(d(o, c)/n),

i.e., the distance between the current search point c and the hyper-plane P that separates the cap C (which contains
only acceptable mutants) from the cap D (which contains only mutants that are rejected) is an Θ(1/n)-fraction of
the current approximation error. Just as in the proof of the preceding lemma, Lemma 4 tells us that C is hit by the
mutation with probability Ω(1). Now consider the hyper-plane P ′ that is parallel to P and by d(P, c) closer to the
optimum than P , i.e., d(P ′, c) = 2 · d(P, c). Let C ′

⊂ C ⊂ M denote the cap defined by P ′. Then any point x ∈ C ′

is at least d(P ′, P) = d(P, c) = Θ(d(o, c)/n) closer to the optimum than a point i ∈ I = F ∩ M ⊂ P . Since i
has the same distance from the optimum as c, a point in C ′ is in fact by Ω(d(o, c)/n) closer to the optimum than the
current search point c. Furthermore, the cap C ′ is also/still hit with probability Ω(1) because d(P ′, c) is Θ(`/

√
n).

All in all, we have proved the following result.

Lemma 9. In the function scenario considered, when a suboptimal point c is mutated by an isotropic mutation vector
that has length ` = Θ(d(o, c)/

√
n), then the spatial gain of this mutation towards the optimum is Ω(d(o, c)/n) with

probability Ω(1).

When we additionally take in account that elitist selection is used, this result can easily be extended with respect to
the expectation of the spatial gain in a step of the (1+1) ES.

Lemma 10. Let the (1+1) ES use isotropic mutations end elitist selection to minimize a function in the considered
scenario. If in a step the mutation vector takes a length ` = Θ(d(o, c)/

√
n), then the expected spatial gain towards

the optimum in this step is Θ(d(o, c)/n), i.e., the approximation error is expected to decrease by a Θ(1/n)-fraction.

Proof. Due to elitist selection, in our function scenario a negative spatial gain towards the optimum, i.e. c+m ∈ D, is
always rejected. Thus, the expected spatial gain is lower bounded by Ω(1) · Ω(d(o, c)/n) according to the preceding
lemma. That it is also O(d(o, c)/n) directly follows from the general upper bound given in Lemma 7. �

In the results just shown, we have assumed that the length of the mutation vector is Θ(d(o, c)/
√

n) since this
is the idea behind the 1/5-rule as we have seen. When the length of the mutation vector is considerably smaller,
then the general upper bound on the expected spatial gain (Lemma 7) also yields a smaller bound on the expected
spatial gain in our concrete scenario. For instance, if |m| = Θ(d(o, c)/n), the expected spatial gain towards the
optimum is O(d(o, c)/n1.5). Naturally, the next question one might ask is whether a mutation vector with a length
that is considerably larger than Θ(d(o, c)/

√
n) leads to an expected gain towards the optimum that is larger than

Θ(d(o, c)/n). The general upper bound does not give the answer.
Since for |m| > 2 · d(o, c) the spatial gain towards the optimum is negative (and therefore rejected when elitist

selection is used in our scenario), we assume |m| ≤ 2 · d(o, c) in the following. For the general upper bound, in fact,
we computed the expectation of the spatial gain measured parallel to some fixed direction under the restriction that
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this gain is positive (we zeroed out negative gains). In our concrete function scenario, as we have seen, the spatial gain
measured parallel to the line passing through o and c must be at least d(P, c) = `2/(2 · d(o, c)) for the spatial gain
towards the optimum to be non-negative. If a mutation does yield a positive gain towards the optimum, however, then
the respective parallel spatial gain is again an upper bound on the gain towards the optimum. Let G denote the spatial
gain towards the optimum, yet this time with respect to our concrete function scenario. Then by the same arguments
which have been used in the proof of Lemma 7, we obtain for n ≥ 4∫ `

`2/(2·d(o,c))
g · F ′

n−2(g) dg =
`

Ψn−2(π)
·

[
1

n − 1

(
1 − y2

)(n−1)/2
]1

`/(2·d(o,c))

<
`

√
2π

√
n − 1

·

(
1 −

(
`

2·d(o,c)

)2
)(n−1)/2

as an upper bound on E[G], the expected spatial gain towards the optimum in the concrete scenario. Obviously, in the
rightmost expression the quotient on the left increases with `, whereas the power on the right decreases with ` (recall
that ` ≤ 2 · d(o, c)). Now we merely need to maximize this upper bound with respect to ` to obtain an upper bound
on the expected gain towards the optimum that is independent of |m|, or in other words, that holds even when |m| is
chosen optimally (with respect to the expected gain).

Let x := `/(2 · d(o, c)) and n ≥ 4. Then

E[G] <
`

√
2π

√
n − 1

(
1 −

(
`

2·d(o,c)

)2
)(n−1)/2

=
2 · d(o, c)

√
2π

√
n − 1

· x · (1 − x2)(n−1)/2,

and since 0 ≤ ` ≤ 2 · d(o, c), we have x ∈ [0, 1]. Since

d
dx

x · (1 − x2)(n−1)/2
= (1 − x2)(n−1)/2

− x2
· (n − 1) · (1 − x2)(n−1)/2−1

= (1 − x2)(n−1)/2−1
·

(
(1 − x2) − x2

· (n − 1)
)

= (1 − x2)(n−1)/2−1
· (1 − x2

· n),

x · (1 − x2)(n−1)/2 takes its maximum at 1/
√

n for x ∈ [0, 1], and hence,

E[G] <
2 · d(o, c)

√
2π

√
n − 1

·
1

√
n

·

(
1 −

1
n

)(n−1)/2

<

√
2 · d(o, c)

√
π · (n − 1)

· (3/4)3/2.

Note that in the preceding calculations we again optimistically assumed that a positive gain towards the optimum is
always accepted, whereas a negative one is always rejected. Consequently, the upper bound obtained is subject to our
function scenario, yet it holds irrespective of the selection rule used. Hence, finally using

√
2/π · (3/4)3/2 < 0.52, we

have proved the following result.

Lemma 11. Let the (1+1) ES minimize a function in the considered function scenario using an arbitrary selection
rule. When in a step a suboptimal point c ∈ Rn is mutated by adding an isotropic mutation m ∈ Rn , then – even if
|m| were chosen optimally – for n ≥ 4 the expected spatial gain towards the optimum o ∈ Rn in this step is smaller
than 0.52 · d(o, c)/(n − 1), i.e., it is O(d(o, c)/n).

This result shows that if the 1/5-rule is able to adapt the length of the mutation vector such that the mutant is accepted
with a probability close to 0.2, and elitist selection is used, then the expected spatial gain towards the optimum, i.e. the
expected reduction of the approximation error, has indeed optimal order (with respect to our scenario; cf. Lemma 10).

4. Analyzing the runtime: Lower bound

Since the upper bound on the expected spatial gain towards the optimum in a single step, which we have just proved,
holds even when the length of the mutation vectors is adapted optimally, we can easily proof a lower bound on the
expected runtime of the (1+1) ES when it minimizes a function in our function scenario, for instance the well-known
SPHERE function. Therfore, we simply assume that in each step the length of the mutation vector is chosen such that
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the expected spatial gain in this step is maximal. It is easy to see that this “greedy” assumption in fact maximizes the
expected total gain of a sequence of steps. For our lower bound, however, we need not prove this explicitly; rather we
are going to apply the following plausible fact about the sum of a sequence of random variables.

Lemma 12. Let X1, X2, . . . denote random variables with bounded range and S the random variable defined by
S = min{ s | X1 +· · ·+ Xs ≥ g} for a given g > 0. If E[S] exists and E[X i | S ≥ i] ≤ u for i ∈ N, then E[S] ≥ g/u.

The proof of this lemma, which essentially follows the one of Wald’s equation, can be found in Appendix B since it
could not be found in the literature (although it is surely there).

The application of this lemma is obvious: S denotes the number of steps that the (1+1) ES needs to ensure a certain
approximation error; namely, g denotes the reduction of the approximation error we are interested in. For instance,
when the optimization is started at a ∈ Rn

\{o}, then choosing g := d(o, a)/2 yields a bound on the expected number
of steps to halve the approximation error. Finally, X i denotes the spatial gain towards the optimum in the i th step of
the (1+1) ES, and the upper bound on E[X i | S ≥ i], namely u, has just been proved in the previous section. Note that
in our scenario the condition “S ≥ i” corresponds to the event that the aspired reduction of the approximation error
has not already been realized within the steps 1, . . . , i − 1.

Theorem 13. Let the (1+1) ES minimize a function f : Rn
→ R in the considered function scenario using isotropic

mutations and elitist selection. Furthermore, let S denote the number of steps, i.e. the number of f -evaluations, to
halve the approximation error. Then irrespective of how the mutations are adapted

(1) E[S] > 0.96 · (n − 1), i.e., E[S] = Ω(n),
(2) for any constant ε > 0, w. o. p. S = Ω(n1−ε).

Proof. If E[S] is not defined (due to improper mutation adaptation), one may informally reason that “E[S] = ∞ =

Ω(n)” since S is positive.
Hence, we assume that E[S] exists. Due to elitist selection and our function scenario, X i ≥ 0, and consequently, the

initial approximation error, d(o, a), is an upper bound on the approximation error in each step. Hence, X i ≤ d(o, a).
In other words, the X i are bounded, respectively. Furthermore, due to Lemma 11, we have E[X i | S ≥ i] <

0.52 · d(o, a)/(n − 1) =: u, and with this, Lemma 12 finally yields

E[S] ≥
g
u

=
d(o, a)/2

0.52 · d(o, a)/(n − 1)
> 0.96 · (n − 1).

For the proof of the second claim, assume that for some constant ε > 0, O(n1−ε) steps suffice to halve the initial
approximation error of d(o, a). Then at least in one step the spatial gain would have to be Ω(d(o, a)/n1−ε) =

d(o, a) · Ω(nε)/n. Since a mutation yields a spatial gain of |m|·Ω(nε/2)/
√

n only with exponentially small probability
(cf. Corollary 6), in this step |m| would have to be larger than

d(o, a) · Ω(nε)

n

/
Ω(nε/2)

√
n

= d(o, a) · Ω(nε/2−1/2)

for the probability of the necessary spatial gain not to be exponentially small per se. The success probability of such
a step, however, is exponentially small according to Lemma 8 (3). Hence, whatever the length of m may be, a step
yields a spatial gain of Ω(d(o, a)/n1−ε) only with exponentially small probability. Finally, the probability that in at
least one of O(n1−ε) steps such a gain is realized is still exponentially small. �

Our choice to investigate the runtime that is necessary to halve the approximation error was somehow arbitrary as
we could have chosen a different g for the application of Lemma 12. However, after the approximation error is halved,
the theorem can be applied anew, and hence, we obtain the main lower-bound result.

Theorem 14. Let the (1+1) ES minimize a function f : Rn
→ R in the considered function scenario using isotropic

mutations and elitist selection. Then the expected runtime, i.e. the expected number of f -evaluations, to reduce the
initial approximation error to an α-fraction is Ω(log(1/α) · n) for 0 < α ≤ 1/2 (where α may decrease in n).

As we assume that in each single step the mutation vector is adapted optimally, the lower bounds on the (expected)
runtime we have proved in this section hold independently of how the mutation adaptation chooses the distribution of
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|m| in a step. Consequently, they particularly hold when Gaussian mutations are used and the 1/5-rule is applied for
their adaptation. The upper bound on the runtime, which we are going to prove in the next section, is subject to this
scenario, which has already been described in the introduction.

5. Analyzing the runtime: Upper bound

In the calculations above we assumed that the isotropic mutation vector m would take the length `. For the upper
bounds on the (expected) spatial gain of a step, we additionally assumed that a positive gain is always accepted,
whereas a negative one is always rejected, and that ` would be the optimal choice for the length of the mutation
vector. In other words, we assumed that in each step the mutation adaptation magically chooses a distribution for |m|

that is concentrated on an optimal value, respectively.
Obviously, for an upper bound on the runtime we must take into account that Gaussian mutations are used and that

their adaptation is managed by the 1/5-rule. In addition to isotropy, the following properties of Gaussian mutations
will turn out useful for an analysis.

Lemma 15. For a scaled Gaussian mutation m over Rn , the expectation `E := E[|m|] exists, and moreover,
P
{∣∣ |m| − `E

∣∣ ≥ δ · `E
}

≤ δ−2/(2n − 1).
Let m1, . . . , mn denote independent copies of m, respectively. Then for any constant κ < 1, two positive constants

aκ and bκ exist such that for the cardinality of I := {i | aκ · `E ≤ |mi | ≤ bκ · `E}, w. o. p. #I ≥ κ · n.

Proof. Recall that m = s · m̃, where s ∈ R>0 and each component of m̃ ∈ Rn is independently standard normal
distributed. Then the random variable |m̃| is χ -distributed (with n degrees of freedom; cf. [1]), and hence,

E[|m̃|] =
√

2 ·
Γ (n/2 + 1/2)

Γ (n/2)
= Θ(

√
n).

Since |m̃|
2 is χ2-distributed, E

[
|m̃|

2]
= n, and consequently,

Var[|m̃|] = E
[
|m̃|

2
]

− E[|m̃|]2
= n − 2 ·

(
Γ (n/2 + 1/2)

Γ (n/2)

)2

.

Furthermore, Var[|m̃|] tends to 1/2 from below as n → ∞, i.e., Var[|m̃|] ≤ 1/2, and consequently, E[|m̃|]2
≥ n−1/2.

If for a random variable Y , E
[
Y 2] exists and E[Y ] > 0, then Chebyshev’s inequality yields that for any δ > 0:

P
{∣∣Y − E[Y ]

∣∣ ≥ δ · E[Y ]
}

≤
Var[Y ]

(δ · E[Y ])2 .

Since E[|m|] = s · E[|m̃|] and Var[|m|] = s2
· Var[|m̃|], applying this bound to the random variable |m| yields

P
{∣∣ |m| − `E

∣∣ ≥ δ · `E
}

≤
s2

· 1/2(
δ · s · E[|m̃|]

)2 ≤
1

δ2 · (2n − 1)
.

Finally, we consider n i. i. d. scaled Gaussian mutations. Since |m| = Θ(E[|m|]) with probability 1 − O(1/n) as
we have just seen, E[#I ] = n − O(1) and applying Chernoff bounds completes the proof. �

Recall that the 1/5-rule (as defined in the introduction) reads: The scaling factor s is adapted after every nth
step; it is halved if less than n/5 of the respective last n steps have been successful, and otherwise doubled. The
asymptotic calculations we are going to present, however, are valid for any 1/5-rule keeping s unchanged for Θ(n)

steps, respectively, and using any two positive constants (one greater and one smaller than 1) for the scaling of s.
A run of the (1+1) ES is virtually partitioned into phases each of which lasts n steps such that in each phase E[|m|]

is constant. Let si denote the scaling factor used throughout the i th phase and `i the corresponding E[|m|]. A phase
after which s is doubled is symbolized by “×” and a phase after which s is halved by “÷”. Furthermore, let di denote
the distance from the optimum, i.e. the approximation error, at the beginning of the i th phase; hence, di − di+1 equals
the spatial gain realized in the i th phase, i.e. the change of the approximation error in this phase.

The next result tells us that if the scaling factor, and with it E[|m|], has the right order at the beginning of a phase,
then this phase reduces the approximation error w. o. p. by a constant fraction. Furthermore, we will see that if the
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1/5-rule decides to double the scaling factor after a phase, it is very unlikely that in this phase the scaling factor (and
with it the expected length of the mutation vectors) has been too large. If the scaling factor is halved after a phase,
however, it is very unlikely that the expected length of the mutation vector is too small in the following phase.

Lemma 16. Let the (1+1) ES minimize a function in the considered scenario using Gaussian mutations adapted by
the 1/5-rule and elitist selection. Then

(1) if `i = Θ(di/
√

n), then w. o. p. di+1 = di − Ω(di ), i.e., w. o. p. the approximation error is reduced by a constant
fraction in the i th phase;

(2) if s is doubled after the i th phase, then `i = O(di/
√

n) w. o. p.;
(3) if s is halved after the i th phase, then `i+1 = Ω(di+1/

√
n) w. o. p.

Proof. Assume that the total spatial gain of the i th phase is not Ω(di ). Then the distance from the optimum is Θ(di )

in each step of the phase (recall that the distance is non-increasing). Lemma 15 yields that w. o. p. |m| = Θ(di/
√

n)

in 0.9n steps, and according to Lemma 9, in each such step the spatial gain is Ω(di/n) with probability Ω(1). Hence,
the expected number of steps in each of which the distance is reduced by Ω(di/n) is Ω(n). By Chernoff bounds,
the number of such steps is Ω(n) w. o. p. Since negative gains are rejected in the considered scenario, our initial
assumption contradictorily implies that the total spatial gain of the i th phase is Ω(di ) w. o. p.

For the proof of the second claim, assume that `i is not O(di/
√

n). Since the distance from the optimum is non-
increasing, `i is not O(d(o, c)/

√
n) in each step of the i th phase. Lemma 15 yields that |m| is not O(d(o, c)/

√
n)

in 0.9n steps w. o. p. According to Lemma 8, the success probability of each such step is o(1). Hence, the expected
number of unsuccessful steps is lower bounded by 0.9n − o(n). By Chernoff bounds, w. o. p. more than 0.8n steps are
unsuccessful; in other words, w. o. p. less than 1/5 of the steps in the phase are successful. Thus, the assumption “`i
is not O(di/

√
n)” contradictorily implies that s is halved w. o. p., and not doubled.

Assume `i+1 is not Ω(di+1/
√

n) for the proof of the third claim. Since si = 2si+1, also `i = 2`i+1. As the distance
from the optimum is non-increasing in our scenario, the assumption implies that `i is not Ω(d(o, c)/

√
n) in each step

of the i th phase. Following the proof of the second claim with symmetric arguments, in the i th phase w. o. p. more than
0.8n steps are successful — contradictorily implying that s is doubled after the i th phase w. o. p., and not halved. �

The preceding lemma tells us that the 1/5-rule does what it is supposed to do, and we can deal with sequences of
phases in a run of the (1+1) ES now, making an algorithmic analysis of the (1+1) ES possible.

Lemma 17. Let the (1+1) ES minimize a function in the considered scenario using Gaussian mutations adapted by
the 1/5-rule and elitist selection. If the 1/5-rule causes a sequence ÷×

k of phases, k = nO(1), then w. o. p. the distance
from the optimum is k times reduced by a constant fraction in these phases.

Proof. Let the ÷-phase be the i th one. By Lemma 16, `i+1 = Ω(di+1/
√

n) w. o. p. Since the adaptation yields
`i+w ≥ `i+1 for 1 ≤ w ≤ k and the distance from the optimum is non-increasing, w. o. p. `i+w = Ω(di+w/

√
n)

for 1 ≤ w ≤ k. Lemma 16 also yields that w. o. p. `i+w = O(di+w/
√

n) for 1 ≤ w ≤ k. Consequently, w. o. p.
`i+w = Θ(di+w/

√
n) for 1 ≤ w ≤ k, and finally, again according to Lemma 16, in each of the k ×-phases the

distance is reduced by a constant fraction w. o. p. �

The preceding proof has been easy since increasing the scaling factor surely decreases the success probability in
subsequent steps (as the distance from the optimum cannot increase). Decreasing the scaling factor, however, need not
necessarily result in a larger success probability. This depends on the decrease of the distance from the optimum, i.e.,
on how fast the approximation error is reduced. Thus, the symmetric situation is more complicated.

Lemma 18. Let the (1+1) ES minimize a function f : Rn
→ R in the considered scenario using Gaussian mutations

adapted by the 1/5-rule and elitist selection. If the 1/5-rule causes a sequence ×÷
k of phases, k = nO(1), then w. o. p.

the distance from the optimum is k times reduced by a constant fraction in these phases.

Proof. Let the ×-phase be the i th one. For k = 1 assume that the total spatial gain of the i th and the (i+1)-th
phase is not Ω(di ). According to Lemma 16, w. o. p. `i = O(di/

√
n) and w. o. p. `i+2 = Ω(di+2/

√
n). Hence,

`i = Θ(di/
√

n) as well as `i+1 = Θ(di+1/
√

n) (recall that the distance from the optimum is non-increasing), and
Lemma 16 contradictorily implies that in each of the two phases the distance is reduced by a constant fraction w. o. p.
Consequently, w. o. p. the two phases result in di+2 = di − Ω(di ).
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For k ≥ 2, the adaptation yields si+w = si 22−w
= 4 · si/2w for 1 ≤ w ≤ k, and according to Lemma 16,

for 2 ≤ w ≤ k w. o. p. `i+w = Ω(di+w/
√

n). If di+w ≤ di/2w, then a simple accounting argument yields that
after the (i+w)th phase di+w+1 ≤ di+w ≤ di/2w

≤ di/κ
w+1 for a constant κ ≥

√
2 so that we were done.

Therefore, assume di+w > di/2w. Since `i+w = 4 `i/2w, in this case “w. o. p. `i = O(di/
√

n)” implies that w. o. p.
`i+w = O(di+w/

√
n). Since `i+w is also Ω(di+w/

√
n), again Lemma 16 yields that the (i+w)th phase reduces the

distance by a constant fraction w. o. p.
All in all, after the first two phases w. o. p. di+2 = di − Ω(di ), and for 2 ≤ w ≤ k, either the distance from the

optimum is reduced by a constant fraction in the (i+w)-th phase w. o. p., or after this phase di+w+1 ≤ di/κ
w+1

≤

2(w+1)/2 even if the ( j+w)th phase did not yield any spatial gain at all. �

Finally, for our scenario the three preceding lemmas together enable a matching upper bound on the runtime, the
number of steps the (1+1) ES needs to realize a predefined reduction of the approximation error, which is given by the
distance from the optimum in the search space.

Theorem 19. Let the (1+1) ES minimize a function f : Rn
→ R in the considered function scenario using Gaussian

mutations adapted by the 1/5-rule and elitist selection. Given that the initialization ensures d1/s1 = Θ(n), the
runtime/number of f -evaluations until the approximation error is no more than α · d1 is w. o. p. O(log(1/α) · n),
where 1/2 ≥ α = exp(−nO(1)).

Proof. First note that log(1/α) = nO(1) due to the lower bound on α.
When the sequence of phases starts with ×÷ or with ÷×, then the two preceding lemmas yield that the number of

phases such that d(o, c) ≤ α ·d1 is w. o. p. O(log(1/α)) because w. o. p. each of the phases reduces the approximation
error by a constant fraction (so that a polynomial number of phases suffice; by summing up a polynomial number of
“error probabilities” each of which is exponentially small, we get around the problem of dependencies and still end
up with a total error probability which is exponentially small).

If the sequence starts with ×
k or with ÷

k for k ≥ 2, however, it remains to show that in these phases the distance is
w. o. p. reduced k times by a constant fraction. Here the assumption on the initialization of the scaling factor comes into
play; namely, the assumption d1/s1 = Θ(n) ensures that in the first phase `1 = E[|m|] = Θ(

√
n) · s1 = Θ(d1/

√
n)

(cf. Lemma 15) and the same argumentation as for ÷×
k (resp. ×÷

k) applies (yet without the preceding ÷-phase
(resp. ×-phase)). Hence, also in such situations the number of phases until the current search point c is such that
d(o, c) ≤ α · d1 is O(log(1/α)) w. o. p. �

For other starting conditions, the number of steps, j , until the theorem’s assumption is met, namely d j−1/s j−1 =

Θ(n), must be estimated before the theorem can be applied — for instance by estimating the number of steps until the
scaling factor is halved and doubled at least once, respectively. This is a rather simple task when utilizing the strong
results presented in Lemma 16.

6. Conclusion

For the first time, the (expected) runtime of a simple, but fundamental evolutionary algorithm for continuous
optimization in Rn is rigorously analyzed — rather than a simplifying model of it. In particular, this algorithmic
analysis shows that for the considered function scenario Gaussian mutations adapted by the well-known 1/5-rule
indeed results in asymptotically optimal runtime. Since the analysis covers a wide range of realizations of the 1/5-rule,
it additionally yields an interesting by-product: Fine tuning the parameters of the 1/5-rule actually does not affect the
order of the runtime. This result can be interpreted as an indicator for the robustness of the (1+1) ES; yet it is proved
only for the investigated function scenario. Moreover, the results show that, in our scenario, even choosing a different
type of isotropic mutation and/or a different adaptation rule cannot significantly decrease the order of the runtime.

Besides the concrete results on the (expected) runtime in the considered scenario, the estimates and, especially,
the methods developed for their proofs, obtained for isotropically distributed mutation vectors can be reused in
forthcoming analyses. They can be used to analyze the (1+1) ES for other function scenarios; yet they might also serve
as a tool in the analyses of more complicated ES which use isotropic mutations, for instance, to mutate an individual
obtained by recombination. That (in the considered function scenario) the upper bound and the lower bound on the
runtime meet shows the strength of the estimates and of the methods presented.
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For further reading
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Appendix A. Bounding Ψk(π) =
∫ π

0 (sin x)kdx

By the definition of the beta function (cf. [1]), namely

B(m + 1, n + 1) = 2 ·

∫ π/2

0
(cos x)2m+1(sin x)2n+1 dx ,

for k ∈ N∫ π/2

0
(sin x)k dx =

1
2

· B
(

1
2
,

k + 1
2

)
.

As B(m, n) = Γ (m) · Γ (n)/Γ (m + n) and Γ (1/2) =
√

π ,

∫ π

0
(sin x)k dx = 2 ·

∫ π/2

0
(sin x)k dx = B

(
1
2
,

k + 1
2

)
=

√
π ·

Γ
(

k
2 +

1
2

)
Γ
( k

2 + 1
) .

Using

Γ (n + 1/2)

Γ (n)
=

√
n
(

1 −
1

23n
+

1
27n2 +

5
210n3 −

21
215n4 + O(n−5)

)
([7], p. 576), we obtain for k ≥ 2√

2
k + 1

<
Γ
(

k
2 +

1
2

)
Γ
( k

2 + 1
) <

√
2
k
.

Altogether, for k ≥ 2√
2π

k + 1
<

∫ π

0
(sin x)k dx = Ψk(π) <

√
2π

k
,

and consequently,
∫ π

0 (sin x)k dx = Θ(1/
√

k).

Appendix B. Proof of Lemma 12

Claim: “Let X1, X2, . . . denote random variables with bounded range and S the random variable defined by
S = min{ s | X1+· · ·+ Xs ≥ g} for a given g > 0. If E[S] exists and E[X i | S ≥ i] ≤ u for i ∈ N, then E[S] ≥ g/u.”

Obviously S ≥ 1, and the condition S ≥ i ≥ 2 is equivalent to X1 + · · · + Xk < g for 1 ≤ k < i . Since the X i are
bounded, E[X1 + · · · + X S] also exists if E[S] exists. The proof follows the one of Wald’s equation (up to the point
where the upper bound on E[X i | S ≥ i] is utilized rather than the original assumption that the X i are i. i. d.).

g ≤ E[X1 + · · · + X S]

=

∞∑
t=1

P{S = t} · E[X1 + · · · + X t | S = t]
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=

∞∑
t=1

P{S = t} ·

t∑
i=1

E[X i | S = t]

=

∞∑
t=1

t∑
i=1

P{S = t} · E[X i | S = t]

since the series converges absolutely due to the boundedness of the X i

=

∞∑
i=1

∞∑
t=i

P{S = t} · E[X i | S = t]

=

∞∑
i=1

∞∑
t=i

P{S = t | S ≥ i} · P{S ≥ i} · E[X i | S = t]

=

∞∑
i=1

P{S ≥ i} ·

∞∑
t=i

P{S = t | S ≥ i} · E[X i | S = t]

since t ≥ i, S = t implies S ≥ i

=

∞∑
i=1

P{S ≥ i} ·

∞∑
t=i

P{S = t | S ≥ i} · E[X i | S = t ∧ S ≥ i]

since t < i implies P{S = t | S ≥ i} = 0

=

∞∑
i=1

P{S ≥ i} ·

∞∑
t=1

P{S = t | S ≥ i} · E[X i | S = t ∧ S ≥ i]

=

∞∑
i=1

P{S ≥ i} · E[X i | S ≥ i]

≤

∞∑
i=1

P{S ≥ i} · u

= E[S] · u �
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