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Abstract--This paper deals with the questions of existence, uniqueness, and finite element approx- 
imation of solutions to the equations of steady-state magnetohydrodynamics with mixed boundary 
conditions, posed on a bounded, three-dimensional domain. The boundary conditions for the velocity 
equations are of Dirichlet, Neumann, and mixed type. These boundary conditions are important when 
considering free boundary value problems, problems on artificially truncated domains, and control 
problems which are governed by these equations. 

1. INTRODUCTION 

In this paper, we study the equations of stationary, incompressible magnetohydrodynamics with 
mixed boundary conditions. Namely we consider boundary conditions on the velocity (Dirichlet 
type boundary conditions), boundary conditions on the stress (Neumann type boundary condi- 
tions), and mixed boundary conditions. These are useful when dealing with free boundary value 
problems, control problems governed by the equations of stationary incompressible magnetohy- 
drodynamics (considered in a forthcoming paper), and when dealing with artificially truncated 
computational domains where one needs to prescribe boundary conditions on these artificial 
boundaries (inflow and outflow boundary conditions). We mention that these equations model 
phenomena such as flow of liquid metals in the presence of magnetic fields, and plasmas. Thus 
these equations have direct applications to nuclear reactor technology, magnetic propulsion de- 
vices, and design of electromagnetic pumps. 

In this paper, we are only interested in problems posed on three-dimensional domains, the 
analysis for lower dimensional domains is similar and simpler. 

In Section 2, we introduce some notation, function spaces, and state some preliminary results. 
Section 3 is devoted to a description of the boundary conditions, and Section 4 is devoted to 
the description of the weak form employed. The main results of this paper are in Section 5, an 
existence and uniqueness result, and in Section 6, a finite element analysis. 

We also mention that for the Stokes equations some stress type boundary conditions have been 
considered in [1,2], while for the Navier Stokes equations some stress type boundary conditions 
have been considered in [3,4]. For a general overview of possible boundary conditions for the 
Stokes and Navier Stokes equations we refer the reader to [5]. The equations of magnetohydro- 
dynamics with different boundary conditions have been studied in [6], here we detail the analysis 
only when it is substantially different due to the different boundary conditions. 

2. EQUATIONS, AND FUNCTION SPACES 

In this section we describe the equations governing the flows under consideration, introduce 
notation, and give references to some results that will be needed later. 

I would like to thank Georg Hetzer and Paul Schmidt here at Auburn and Max Gunzburger at Virginia Tech for 
many stimulating discussions. 
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14 A.J. MEIR 

We consider the equations posed on a bounded, simply connected, domain f~ c R 3 which is 
of class C 1,1 or is a convex polyhedron, see [7,8] (we mention that the following analysis can be 
extended to include multiply connected domains using the techniques in [9]). 

The equations governing the flows under consideration are: in the domain f~, 

M 
Vp ~ ( V x B )  x f, (2.1) 

1 1 
2 V.I)(u) + ~ (u.  V)u + - B = 

V-u = 0, (2.2) 
1 

V x ( V x B ) -  V x ( u  x B) -- 0, (2.3) 
P~ 

and 
V.B = 0. (2.4) 

Here u the velocity, p the pressure, and B the magnetic field, are the unknowns. A body force f is 
given, and M, N, and P ~  (the Hartmann number, interaction parameter, and magnetic Reynolds 
number, respectively) are non-dimensional constants that characterize the flow. The notation 
:P(u) stands for (Vu + (Vu) t) (note that V.:D(u) = Au whenever V.u = 0). For additional 
discussion and derivation of these equations see [6,10], and the references therein. Also let T 
denote the stress tensor which is given by ~-~T)(u) - pI (here I is the identity tensor). 

Let Ofl = r l  U F2 U r3 u [0 4 where each of the F~'s is regular, open, with a finite number of 
connected components, and F i n  Fj -- 0 if i ~ j .  Also let n denote the unit, outward pointing, 
normal vector to ~t. 

Boundary conditions for the velocity can be of different types. For instance, boundary condi- 
tions can be of Dirichlet type (given velocity) on some part of the boundary F1, i.e., 

ulrl = h i ,  (2.5) 

of Neumann type (given stress) on some other part of the boundary r2, i.e., 

(Tn)lr2 = g2, (2.6) 

or of mixed type (given normal velocity and tangential stress, or tangential velocity and normal 
stress) on other parts of the boundary r3, and Fa, i.e., 

(u. n)Irs = h 3 and [~vn - (nTn)n]Ir s = g3, (2.7) 

and 
[u- (u. n)n][r4 = h4 and (nTn)[r4 = g4. (2.8) 

If Of/= rl U rs, then the boundary data for the velocity must satisfy the compatibility condition 
frl hl- r, dx -{- frs h3 dx = 0, moreover, if ~ and F33 or ~ and r~4 have common points, then 
the boundary conditions at these points must be compatible. For the magnetic field we use the 
boundary conditions 

n)[an=l with / Idx=0, (2.9) (B. 
Ja n 

and 

For the physical interpretation of these see [6,10]. Moreover gs, 114, and k must satisfy some 
additional compatibility conditions, which will be detailed later. An explanation of these com- 
patibility conditions, and why they are necessary for existence of a solution will be given later 
(and may also be found in [6,10]). At this time we also point out that the boundary conditions 
hl, As, h4, and I will be the essential boundary conditions while g2, g3, g4, and k will be the 
natural boundary conditions. 
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We now introduce some function spaces and their associated norms, along with some related 
notation (for details see [7]). Let Hm(f~) (m a nonnegative integer) be the usual mth order 

Sobolev space equipped with the norm ]loilm, and let I-Im(f~) := (Hm(f~)) 3 with norm I]olim be 
its vector-valued counterpart. On Hl(f~) we use the norm 

Ilwlt~ = (llwllg + IlVwllg) ~/2 

Clearly, H°(f~) = L2(f~). Two particular subspaces of Hl(f~)-functions that  satisfy specific 
boundary conditions are needed; they are 

H~(f~) := ( w  E H I ( ~ )  : 

H~(~)  := ( T  e Hl(f~) : 

w i t ,  = o, ( w - n ) l r 3  = o, 

( T .  n)lo~ = 0~. J 

[w - (w .  n)n]lr 4 = 0},  

Note that  H~(f~) and H~(~)  are closed subspaces of Hl(f~) under the usual Hl (~) -norm,  thus 
we use this norm on these subspaces. We will also make use of the product spaces 

}/Y(fl) := Hl(fl)  x Hl(fl),  

YYbn(f~) := H~(fl) × H~(~) ,  

which we will equip with the usual product norm. Note that  H~(f~) x H~(f~) C YVbn(~). We 
also define a subspace of L2(~) 

L20(~):=(qEL2(f~):~qdx=O 1. 
On this subspace, and in general on subspaces, we will use norms induced by the original spaces. 
We also let 8(f~) denote Lo2(f~) if O f / =  F1 U F3, otherwise S(~)  denotes L2(~). 

Certain trace spaces will also be needed. In particular, 

H1/2(0~~) := (wioD : w E HI(~~)}, 

H1/2(0~) := {wlon : ~,  e H1/2(0~), w =  (wx,w2,w3)), 

H-1/2(0~) := (H1/2(0~)) * , and H-1/2(0~~):= (H1/2(0~'~))* , 

which are equipped with the usual norms. 
We end this section with a few results whose proof may be found in [7,8,11]. If f~ is bounded 

and has a Lipschitz continuous boundary (these are the kinds of domains under consideration 
here), Sobolev's embedding theorem yields that  H l(f~) ~-*,-* L4(f~), where ~-*~-. denotes compact 
embedding. Obviously a similar result holds for the spaces H I ( ~ )  and L4(f~). For domains as 
above and for functions w E H~(f~) we have a Poincard type inequality, i.e., there exist a 
constant c such that  

Ilwllo < c ( l lVxwfl~ + IIV-wllo2) x/2 , 

moreover on Hl ( f l ) ,  (l lVx(.)l lo 2 + IIV.(.)llo ~ + II.flo2) x/2 is a norm equivalent to I1"111; this im- 

plies that  on Hl~(fl), (llV×(.)llo ~ + IlV.(.)llo2) 1/2 is an equivalent norm to II°lh. For details see 
[6,8,10,111. 

3. B O U N D A R Y  C O N D I T I O N S  

In this section we state the precise conditions (and regularity) which the boundary conditions, 
and right hand side must satisfy, in order to guarantee existence of a solution to our problem. We 
also explain why these boundary conditions must satisfy some compatibility conditions alluded 
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to earlier. We assume that f • Hl(f~) *. In the case that the domain f~ is of class C 1,1 we assume 
the given boundary conditions for the velocity and the stress, hi,  g2, hs, gs, h4, and g4 satisfy 

and 

hi • H1/2(F,), (3.1) 
g2 • H-i /2(r2) ,  (3.2) 

h3 • H1/2(F3), (3.3) 

g3 • H-i/2(F3) with g3" n = 0 a.e. on F3, (3.4) 

h4•H1/2(Fa)  with h 4 . n = 0  a.e. on r4, (3.5) 

g4n • H-1/2(r4). (3.6) 

The compatibility condition on g3 and h4 arises from the fact that both gs and h4 should be 
tangent to the boundary. As stated earlier, if 0t2 = r l  LJ F3, then the velocity boundary data 
must satisfy the additional compatibility condition 

~r h l . n d x - t - f r  h3dx=O, 
1 3 

(3.7) 

which arises from the fact that the velocity is solenoidal (divergence free). In addition, i f~nPss  
0, or F1 N F4 ~ 0, then hi and h3, or hi and h4 need to be compatible so that they are a trace 
of an H I (~)-function. 

The magnetic field boundary conditions l and k are assumed to satisfy 

IEH1/2(O~) with ~ l d x = 0 ;  (3.8) 

here the compatibility condition arises from the fact that the magnetic field is solenoidal, and 

k E H - 1 / 2 ( 0 ~ )  with k . n = 0  a.e. on 0f~, 

<k, 1 ) 0 n = 0 ,  and <k,V¢lon)on=O VCEH2(fl).  (3.9) 

Here <., • / denotes duality pairing. The compatibility conditions on k arise from the fact that 
equation (2.3) must be satisfied, and that for T E HI(~)  and ¢ E H2(f~), we have the following 
identity 

f (V×T)-  V¢ dx = -< (T x n)10n,V¢ion)on, 

and if V x T  = 0 (i.e., if T is irrotational) then 

0 = / n  ( V x T ) .  1 dx = - < ( T  x n)lon, l>on. 

If the domain ~ is of class C 1'1 and the given boundary data satisfies (3.1)-(3.9), there exists 
an extension (u0, B0) E ~V(f~), of the essential boundary data into the domain f~; moreover one 
may choose this extension so that V.u0 = 0. In case the domain f~ is only a convex polyhedron we 
must require that the data satisfy additional conditions in order to guarantee that one may find an 
extension (u0, B0) as above. One such condition is that hsn E H1/2(F3) and that In e H1/2(0f~) 
(this condition guarantees compatibility of the boundary data along the edges and at the vertices 
of the domain). The existence of these extensions can be shown using the methods of [6,10] and 
also cf. Section 5. 
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4. WEAK FORMULATION 

We introduce the following forms. For (u, B), (v, L), (w, T) E PP(f/), q G 8(f/) 

a((u,B), (v,L)) := V(u):  ~(v) + ~-~ 

c((u, B), (v, L), (w, T)) := ~ (u. V)v. w dx 

b((v,L),q) := - ~ qV.v dx, 

and 

F((v,L)) := < f ,v)n  + <g2,v[r~ )r2 + (ga, v[rs )rx 
1 

+ <g4n, v[r, )r, + w--<k, Ll~ )~, 
/wn - 

where : denotes the scalar product on R 3x3, • denotes the scalar product on R 3, and x denotes 
the vector product on R 3. 

We are now prepared to introduce the weak form of the equations with mixed boundary 
conditions: find 

((u,B),p) e )V(~) × S(n) 

such that 

and 

(u,B) - (uo,Bo) E PP.(f/), (4.1) 
a((u, B), (v, L)) + c((u, B), (u, B), (v, L)) + b((v, L),p) = F((v, L)), 

V(v, L) e PPbn(f/), (4.2) 

b((u, B), q) = 0 Vq E 5if/). (4.3) 

PROPOSITION 4.1. Equations (4.1)-(4.3) are a weak formulation of equations (2.1)-(2.4) and 
boundary conditions (2.5)-(2.10). 

PROOF. This proposition is proved in a standard fashion, i.e., using integration by parts and a 
judicious choice of test functions, and the identity 

+ ~ ( u .  V)u- v d x -  [(VxB) x B .  v -  (VxL) x B .  u] d x -  pV.v ax 

- < ( T n ) i ~ , , ' l ~ ) ~ -  ~ < [  (VxS)  x n -  (u × B) x n ] ) ~ , L l ~ > ~ ;  
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for details see [5,6,10]. We point out that,  since v[r~ = 0, (v.  n)[rs = 0, and Iv - (v.  n)n][r4 = 0, 
we get 

((Tn)[on,vlon >on = < (Tn)lr~,Vlr~)r: + < (Tn)lr,,Vlr,)r~ + < (Tn)lr~,V[r~)r~ 
= < (Tn)ir=,vlr=)r= + < (Tn)lr~, [v - (v.  n)n]lr3 >r3 

+ ((Tn)ir4, [v - ( v -n )n  + (v.  n)n]lr 4 )r4 
-- < (Tn)lr=, vlr~ >r~ + ( (Tn)lr~, vlr~ )r~ - < (nTn)ir~,  (v .  n)lr~ )r~ 

+ ((nTn)lr4 , (v. n)ir4 >r4 
= ((7"n)lr~,vlr~)r~ + ([:rn - (nT"n)n][r~,vlr 3 )r~ 

+ ([(nTn)n]ir4,vlr4 >r4. II 

5. E X I S T E N C E  AND U N I Q U E N E S S  

We are now in a position to consider existence and uniqueness of a solution to problem (4.1)- 
(4.3). We begin by stating some preliminary results, then we turn our attention to a linear 
problem (associated with the original nonlinear problem) and finally we treat  the nonlinear 
problem (4.1)-(4.3). Throughout this section we assume that  f and the boundary conditions 
satisfy the hypotheses and conditions stated in Section 3. 

For a, b • R 3, define wa,b : fl ~ R 3 by Wa,b(X) := a + b x x. Let 

)2(~) := span {Wa,b : a , b  • Rs, ]al = Ibl = 1}. 

LEMMA 5.1. There exists a constant c such that  for a/1 w • H I ( ~ ) / V ( ~ )  

IIw]l 2 < c  L ~M2T)(w):  V ( w ) d x .  (5.1) 

PROOF. The result follows from Korn's second inequality (see [12,13]), i.e., the existence of a 
constant c such that 

Liw ,  +w.w} Vw • H 1(~), 

from the fact that  if D(w)  -- 0, then w • V(~), and from the Peetre Tartar Lemma (see [8] for 
the Peetre Tartar Lemma). | 

In the analysis that  follows we assume, for simplicity, that  f~ and the partition of a ~  into the 
F~s is such that  ])(n) N H~(~)  = {0}. Conditions that  guarantee that  V(~) A H~(~)  = {0} are 
that  F1 # 0, or that  r s  = 0~  and ~ does not have an axis of symmetry (see [2]). If this is not 
the case the following analysis carries over with Hbl(~) replaced by H ~ ( n ) / P ( ~ ) .  

L~MMA 5.2. The forms a(., .), c( . , . ,  .), b(.,*), and F( . )  are continuous, i.e., there exist con- 
stants ha, ~c, ~b, and ~F such that 

]a((u, B), (v, L)) I <_ ,~aH(u,B)IIwI[(v,L)I[w, V(u,B), (v,L) • VV(fl), (5.2) 
]c((u,B), (v,L), (w,T))] < ~c[[(u,B)[[wH(v,L)]Jw[[(w,T)[[~, 

(5.3) 
V(u, B), (v, L), (w, T) • BY(f/), 

Ib((v,L),q)l <_ ~bll(v,L)liWllqllo, V(v,L) e W(f/),q • 8(f~), (5.4) 

and 

le(( , , ,L))l  < ~FIi(v,L)II~, V(v,L) • W(n). (5.5) 
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PROOF. The proof follows from the definition of the forms and is based on an application of 
Hhlders inequality and the fact that  Hl(f~) ¢--*¢--* L4(f~); see [6,10] for details. | 

LEMMA 5.3. The bilinear form a(, ,o)  is coercive on YYbn(f~) and the form b(o,o) satisfies the 
inf-sup condition (Ladyzhenskaya-Babu$ka-Brezzi Condition, see [5,8,14]) on VPbn (~2) x S ( ~  ), i.e., 
there exist positive constants a and ~ such that 

a((,~,B),  (,~,B)) > ~ll(,~,B)ll~v, V(fi,/+) • W ~ ( ~ ) ,  (5.6) 

and 
inf sup b((fi,13),p) > f~. 

p~8(n) <~,~)~+=(m II(~, ~)ll~llPllo - 
(5.7) 

PROOF. The first inequality follows from Lemma 5.1 and from the existence of a Poincar4 type 
inequality for the functions in H~(f~) (mentioned in Section 2). In the case S(12) = L02(~) (i.e., 
if 0 ~  = F1 tA 1"3) the inf-sup condition, (5.7) follows from the classical result that  the divergence 
operator maps H~(f~) onto L02(f~), (see [8]), i.e., there exists a/3 such that 

inf sup b((ft, _> ~, 
PELo ~(f~) (fi,I~)EHol(a)×{O} II(~, B)llwllPllo 

and since H~(f~) × {0} C ~4;bn(~), we have that 

b((~, ~),p) b((~, ~) ,p) 
inf sup > inf sup 

p~Lo+¢m " ~,B)~V+, ( ~ ) -  II(~, /+)ll~v llPllo - p E _ . L p ) ( ~ )  (fi,]~)6Hot (~) m {0} ll(+t, ~)IIwlIPlI0 
>f~. 

In the case 8(12) = L2(f~) (i.e., if 0f~ # F1 U F3), using a slight modification to the arguments 
used in [1], we can show that  

inf sup b((fi, B),p)~_ _> f~, 
PfiL2(f]) (fi,l~)EH~(n)×{0} II( 1~1, B) l lwl lP l lo  

and since H~(f~) x {0} C YYbn(f~), we have that 

b((~,~),p) b((C,, ~) ,v)  
inf sup > inf sup 

p~L~(n) <Q,~)~-m)  I1(~, B)llwllpllo - PEL2(~)(fi, l~)EH~(n)×{O} H( 1~1, B)llwllPllo 
> ~ .  | 

Next we turn our attention to a linear version of the problem. We first prove an existence and 
uniqueness result for this linear problem; this in turn will allow us to prove an existence and 
uniqueness result for the original nonlinear problem under consideration. 

The regularity of the essential boundary conditions and the compatibility on these, stated in 
Section 3 ensure the existence of an extension (u0, B0) 6 W(f~), with V.u0 = 0, of the essential 
boundary data  into the domain f~. These conditions guarantee the existence of Ul • H1(f~) such 
that  

Ul[r, -- hi ,  (Ul" n)[rs = h3, and [u 1 -- (U 1 " n)n][r4 = h4. 

Let u2 6 H~ (~) satisfy 
V.u2 = - V . U l .  

The existence of u2 follows from (5.7), see [8]; then uo = ul  + u2. Likewise the above mentioned 
conditions guarantee the existence of B0 6 H I ( ~ )  such that 

(Bo" n)ion =/ .  
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Using the extensions of the essential boundary data into the domain (uo, Bo), we can write 

(u, B) = (uo, B0) + (fz, B), 

where (fi,]3) E Wbn(fl). 
Consider the linear problem: find 

((u,B),p) E W(n) x S(a),  

such that 

(u,B) - (uo, Bo) e Wb.(fl), 
a((u, B), (v, L)) + b((v,L),p) = F((v ,L)) ,  V(v ,  L) E W b . ( n ) ,  

(5.8) 
(5.9) 

and 

b((u, B), q) = O, Vq 6 S(12). (5.1o) 

Since V.uo = 0, this problem is obviously equivalent to the problem: find 

( (a ,~) ,p)  ~ Wb,,(fl) x s (a ) ,  (5.11) 

such that 

a((fl, I3), (v,L)) + b((v,L),p) = F((v ,L))  - a((uo, B0), (v,L)), 
V(v, L) E PVb~(fl), 

(5.12) 

and 

b((fi, I~), q) = O, Vq E 3(fl). (5.13) 

THEOREM 5.4. The linear problem (5.11)-(5.13) has a unique solution ((fi, l~),p) E Wbn(f/) x 
S(f~). Moreover, 

I I (a ,~) l lw - ~-~-' + s-" I I (~ ,Bo) l lw,  (5.14) 
o~ o¢ 

and therefore 

II(u,B)IIW < I¢-E-F + (1 + -~)II(Uo, Bo)IIW, 
Ot 

(5.15) 

and 

/~F /£a Ilpllo ~ -#- + -ff I I (u,B)llw, (5.16) 

where (u, B) = (Uo, B0) + (fa, I3). 
PROOF. The proof is just an application of the well known Babu~lka-Brezzi theory (for details 
see [5,8,14]) using the estimates established in Lemm& 5.2 and L e m m a  5.3. F~stimate (5.14) is 
obtained by setting (v, L) = (Q, ~)  in (5.12), and using (5.2), (5.5), (5.6), and (5.13). Estimate 
(5.15) follows from (5.14) and the triangle inequality, and estimate (5.16) follows easily from 
(5.2), (5.5), (5.7), and (5.9). II 
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We now turn our attention to the nonlinear problem. Define 

1' := aF + + 2  ll(uo,Bo)llw) II(uo, Bo)llw (5.17) 

and B((uo, Bo), 2a~ ) to be the ball in VY(f~) of radius ~ centered at (uo, Bo). 

THEOREM 5.5. If the data is sufficiently small, more precisely if 81'~c < ~2, then the non- 
linear problem (4.1)-(4.3) has a unique solution ((u,B),p) • )/V(f~) x 8(f~), with (u,B) • 
B((Uo, Bo), 2~-~) • 
PROOF. The proof is based on a fixed point argument using the contraction mapping principle. 
Define the mapping G by G((w, T)) = (u, B), where (u, B) is the unique solution of the following 
linear problem: find 

((u,B),p) • W(~) × S(r~), 

such that 

(u, B ) -  (uo, Bo) • VYb,(~), (5.18) 

a((u, B), (v, L)) + b((v,L),p) = F((v,L))  - c((w, T), (w, T), (v, L)) , (5.19) 
v(,,-, L) • 

and 

b((u, B), q) = 0, Vq e S(•) (5.20) 

(the existence and uniqueness of a solution to this problem follows from Theorem 5.4). We first 
show that under the hypotheses of the theorem G maps the ball B((uo, Bo), 2_2) into itself, and 
that this mapping is a strict contraction. Taking (v, L) = (u, B) - (uo, Bo) in (5.19) we get 

a(Cu, B)  - (Uo, Bo), (u, B) - (Uo, Bo)) + b((u, B) - (Uo, Bo), p) = F((u,  B) - (uo, Bo)) 

- a((uo,  Bo), (u, B)  - (Uo, Bo)) - c((w,  T),  (w, T),  (u, B)  - (uo, Bo)) ,  

and from (5.20) and the fact that V.Uo = 0 we get that 

a((u,B) - (Uo, Bo), (u,B) - (uo, Bo)) -- F((u ,B)  - (Uo, Bo)) - a ( (uo ,  Bo), (u,B) - (uo,Bo)) 

- c((w,  T),  (w, T),  (u, B)  - (uo, Bo)) .  

Now using (5.2), (5.3), (5.5), and (5.6) we deduce that 

a[[(u,B) - (Uo, Bo)[[~v _< (/~F "~ aa[[(uo, Bo)[[~v + ~ci[(w, T)[[~v) ][(u, B) - (uo, Bo)[[w. 

Using 
[](w,T)[[~ v _< 2[[(w,T)-  (Uo, Bo)[[~v + 2[[(uo, Bo)[[~v, 

and the definition of 7, (5.17), we get that 

aH(u,B) - (uo, Bo)[[w _< 1' + 2ac[](w, T) - (Uo, Bo)II~v. 

4 ~ Now since (w, T) is in the ball/~((uo, Bo), 2a-~ ) , it is obvious that [I (w, T) - (uo, Bo)[[~p ~ ~ ,  
and employing the hypothesis 81'~c < a 2, we get that (u, B) E B((Uo, Bo), 2a-~ ). 

We now show that G is a strict contraction. Let (w, T)I, (w, T)2 E B((uo, Bo), 20-~) and let 
(u, B)I -- G((w, T)I) and (u, B)2 -- G((w, T)2). Writing (5.19) for each of these and taking the 
difference of the two equations we get 

a((u,  B)I  - (u, B)2, (v, L)) q- b((v, L),p1 - p2) 
= -c((w,  T)I, (w, T)I, (v, L)) + c((w, T)2, (w, T)2, (v, L)) 

CAI41M 25.-12=C 



22 A.J. M~.za 

(where Pl and P2 denote the pressures corresponding to (u, B)I and (u, B)2, respectively). Taking 
(v,L) = (u ,B)I  - (u,B)~ and using (5.20) we get 

a(Cu, B)I - (u, B)2, (u, B)I - (u, B)2) = - c((w, T)I,  (w, T)~, (u, B)l  - (u, B)2) 

+ c((w, T)2, (w, T)2, (u, B)1 - (u, B)2), 

s o  

a ( ( u , B ) l  - ( u , B ) 2 ,  ( u , B ) l  - (u ,B)2 )  -- - c ( ( w , T ) l  - ( w , T ) 2 ,  ( w , T ) l ,  ( u , B ) l  - ( u , B ) 2 )  

+ c((w,T)2,  (w,T)2 - (w, T)I ,  (u, B)I - (u,B)2),  

and using (5.3) and (5.6) we get 

~t[(u,B)I - (u,B)2[I 2 

<_ ~o(ll(w, Thllw + II(w,T)211w/li(w, Th (w,T)211w II(u,B)l - (u,B)211w. 

Since (w,T) l ,  (w,T)2 E B((uo, Bo), 2_~ ), it is also obvious that 

]l(w,T)lllW + [l(w,T)2liw <_ 4~/+ 2]l(uo, B0)llw, 

so we get that  

odl(u, Bh - (u,B)211w <_ (4"l'~c + 2~cll(~,Bo)llw'~ II(w,T),, - (w,T)211w. (5.21) 
/ 

From the hypothesis 87~c < ~2, we have that  ~ < ~ and from the definition of 7, (5.17), a 
2~ci](uo, Bo)ll~v ~ 7, so that  

7 ~2 
II(uo, B0)ll~ -< ~ < 16~'  

thus 2~oll(uo, Bo)llw < a ~-~ ~, or + 2~cll(uo, Bo)llw < a; hence from (5.21) we conclude that  

II (u, B)1 - -  (U, B)2 IIw -< ell(w, T)  1 - -  (W, T)211w, 

for some constant c < 1. Thus we have proved the existence of a unique (u ,B)  E B((uo, Bo), ~ ) ,  
and a unique p E 8(f~) which satisfy (5.18)-(5.20) with (w, T) = (u, B). Thus (4.1)-(4,3) have 
a unique solution ( (u ,B) ,p)  E W(a)  x S(• ) with (u ,B)  E B(Cuo, Bo), 2_~). I 

We remark that  the condition for existence and uniqueness in Theorem 5.5 is a condition on 
the smallness of the data relative to the Hartmann number, and the Magnetic Reynolds number. 
More explicitly a, which depends on the domain, the Hartmann number, and the Magnetic 
Reynolds number must be such that  8~fsc < a2 (where sc depends on the domain and interaction 
parameter, and 7 depends on the body force f, the domain, and the extension (uo,Bo)). For 
fixed flow parameters the boundary data must be such as to have an extension into the domain 
(uo, B0) with sufficiently small norm so that  87sc < ~2. 

Assuming 87~c < a2, one may easily derive the estimate 

II(u,B)llw _< II(uo, Bo)llw + 2--7 
(5.22) 

ot 

< 2~c' 

for the solution ( (u ,B) ,p)  to (4.1)-(4.3) guaranteed by Theorem 5.5, and using a similar argu- 
ment to that  used to obtain (5.16), we get 

Ilpllo < 7 + - f f  II(u,B)llw + II(u,B)ll~ 
~ a  ~ (5,23) 
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The uniqueness result of Theorem 5.5 can be improved slightly; in fact without any smallness 
assumptions on the data, there exists at most one solution ((u,B),p) E VP(fl) x $ (n )  to (4.1)- 
(4.3) such that 

c~ 
II(u,B)llw < 

2t¢ c" 

To prove this, assume there are two such solutions (u, B)x and (u, B)2, write (5.19) for each and 
subtract the two equations; setting (v, L) = (u, B)I - (u, B)2 and using (5.20) we get 

a ( ( u , B ) l  - ( u , B ) 2 ,  ( u , B ) l  - ( u , B ) 2 )  = - c ( ( u , B ) l  - ( u , B ) 2 ,  ( u , B ) l ,  ( u , B ) i  - ( u , B ) 2 )  

+ c((u, B)2, (u, B)2 - (u, B)I, (u, B)I - (u, B)~.), 

and using (5.3) and (5.6) we get 

o, II (u, B)x - (u, B)2 I1~ < ,¢, (11 (u, B)l IIw + II (u, B)2 IIw) II(u, Bh - (u, B)2 I1~,, 

or 

The result then follows from the fact that the hypothesis implies that 

6. F INITE ELEMENT APPROXIMATION AND E R R O R  ESTIMATES 

We now turn to the question of finite element approximations. For simplicity, we assume f~ is 
a convex polyhedron. We point out that there may be a loss of accuracy, due to a Babu~ka-type 
paradox if the domain fl has curved boundaries and it is approximated by a polyhedron, see [3,4] 
for details and ways to overcome this problem. 

We start by choosing families of finite dimensional spaces xa(f t )  C Hl(ft) ,  3}a(fl) c Hl(f~) 
and Sa(fl) C $(f~) parametrized by a parameter/i  which satisfies 0 < / i  < 1. We also define 

Xbh(n) :---- Xa(n) n H i ( n  ) and y~(n)  :-- ya (n )  n H~(n). 

On these spaces we use the norms induced by the norms on Hl(f~) and $(fl). Next, we define 
the product spaces 

wa(n) := xa(n) × ya(n) and ~L(n ) :=  Xb~(n) x y~(n), 

with norms induced by the norm on W(f/). 
As in the previous section we assume throughout this section that f and the boundary condi- 

tions satisfy the hypotheses and conditions stated in Section 3. 
We approximate the essential boundary conditions hi, h3, h4, and l by hi h, h3 h, h4 h, and l h 

which belong to the restriction to Y1 of elements of Xh(f~), to the restriction to 1`3 of normal 
components of Xa(f~), to the restriction to I' 4 of tangential components of Xa(f~), and to the 
restriction to ~ of normal components of ya(ft) ,  respectively. There are several ways of choosing 
these approximate boundary conditions. For example these may be chosen as the interpolants 
of the given functions in the appropriate boundary spaces, or these may be chosen to be some 
projection of the given boundary conditions onto the appropriate boundary spaces. We assume 
that we have available 

h~ E Xa(f~)lrl, ]~3 ~ E {(w a. n)lrs  : w a ~ Xa( f / )} ,  

These are the approximations to hi,  hs, h4, and l, respectively. As in the continuous case one 
may find an extension into the domain of the essential boundary data (uo a, Boa). We emphasize 
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that these extensions are not needed in order to compute the approximate solution and therefore 
are never constructed in practice, but are only used to derive the following theoretical results. 

The approximate (discrete) problem we consider is: find 

((uh, Ba),p ~) • ~ ( ~ )  x ~ ( ~ )  

such that 

(u n , B ~ ) - (u0 h, Bo a) • W b . ( n ) ,  (6.1) 

a((ua'  Bh)' (va' La)) + c((uh' Ba)' (ua' Ba)' (vh' Lh)) + b((vh' La)'Pa) = F((va '  La)) (6.2) 

v(v ", L h ) • W$.(~),  

and 

b((u a, Ba), qn) = 0, Vq n • Sn(~). (6.3) 

We quickly derive existence and uniqueness results for solutions of the discrete problem, since 
these closely mimic those of Section 5 for the continuous problem. 

Of course, the forms a(o, o), c(o, o, o), b(., °), and F( . )  are continuous on the appropriate finite- 
dimensional subspaces, and a(., .) is coercive on 1/Y~ (ft). 

The inf-sup condition, condition (5.7), is not automatically satisfied over the subspaces ~)~n(ft) 
and ,~a(fl); in fact this condition turns out to be a constraint on the finite element pairs Xa(ft) 
and 8n(ft) that can be used to obtain a stable and accurate approximation. We therefore require 
that Xa(ft) and ,~a(~) are chosen so that the inf-sup condition is satisfied, i.e., so that 

inf sup >/3 h, 
p.~s~(n) (o~ ,~)~w~.cn)  II(Oh, Bh)ltwllPhllo -- 

(6.4) 

for some positive constant /3 h. Many finite element pairs that satisfy this requirement have 
been devised for the approximation of the usual Navier-Stokes equations (since this is exactly 
the condition necessary for the analogous discretization of the Navier-Stokes equations to yield 
meaningful approximations); see, e.g., [5] and the references therein. For simplicity and in view 
of the error estimates it is convenient to choose y~(fl) = ~,h(fl). 

As stated above we denote (u0 h, B0 h) the extension into the domain of the data (analogous to 
the one in the continuous case). Given hi a, h~, h~, and I h, the existence of u0 ~ E Xa(fl) such 
that 

u0~lrl  = h l ,  (u0 h.  n)tr3 = h~, and [u0 h - (~0 h • n)~] l~ ,  = h~, 

and B0 • yn(fl) such that 
(Bo ~' n)lon --- I h, 

is obvious from the way the approximations to the boundary conditions were derived. Moreover 
condition (6.4) guarantees that uo h may be chosen in such a way so that 

/q aV-u0 h dx = 0, Vq h e $n(~). 

The proof of this is exactly the same as that in the continuous case. 
It should be noted that for reasonable choices of finite element spaces and sufficiently small 

h, /3 a can be bounded from below uniformly in h and thus we may essentially let/3 h = /3 (we 
therefore omit the superscript in the discussion below). 

As in the continuous case, define 

7n := hE + (n~ + 2~cl[(u0h,Bon)llW) ]](uoh,Bo~)[lw. 
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It should be noted that by choosing h sufficiently small, 7 ~ can be made arbitrarily close to 7- 

THEOREM 6.1. I[ the data is suttlciently sma/l, more precisely" i [ 8 7 ~ c  < c~ 2, then the discrete 
problem (6.1)-(6.3) has a unique solution ((un, Bh),p n) • )4)a(12) x Ga(~) with (ua, B a) e 

B((-0~,B0~), ~ ) .  
PROOF. The proof proceeds exactly as that for Theorem 5.5. | 

Without any smallness assumption on the data, there exists at most one solution such that 
II(ua, Bn)Hw < ~ and the estimates (5.22) and (5.23) hold with (u,B) and p replaced by 
(u a, B a) and ph, respectively. 

We now turn our attention to obtaining an error estimate, i.e., an estimate for the difference 
between the solution of the approximate problem (6.1)-(6.3) and that of the continuous prob- 
lem (4.1)-(4.3). We only consider the case where both the continuous problem and the discrete 
problem have a unique solutions in B((u0, B0), 2a-~ ) and B((u0 a, B0~), 2_~,~, respectively. 

Define the subspaces 

and 

The space Z(f~) is the subspace of functions of H~(~) which are solenoidal (divergence free) and 
Zn(~)is the subspace of functions of X'ba(f~) which are discretely solenoidal. Note that in general 
Za(f~) ~ Z(f~), in fact a measure of the "angle" between the two spaces Z(fl) and Za(fl) (see [5] 
and the references therein) is given by 

O := sup inf IIz- z%. 
zr~EZr~(~ ) zEZ(~) 
II,~lh=l 

Also note that 0 _< 0 _< 1. We also define the affine spaces 

X ~ ( ~ ) : = ( w  ~ x ~ ( ~ ) : w ~ l r ~ = h ~ ,  (w~.n) l r  ~ = h ~ ,  and [w h - ( w  ' - n ) n l l r . = h ~ l ,  

y~(n) :-- {T' ~ Y~(m: (T ~" n)lo~ --l~), 

and their product 
w~(n) := x~(n) × yl~(n), 

and the spaces 

X#(~) := { T h E  X#(~) :  ~ qaV.wh dx = 0, Vq h E Sh(f~)}, 

and 

w~(n) := x~(n) x y~(n). 

The basic error estimate is given by the following theorem. 

THEOREM 6.2. Let the hypotheses of Theorem 5.5 and Theorem 6.1 be valid. These theorems 
guarantee existence of solutions to problems (4.1)-(4.3) and (6.1)-(6.3), denoted ((u, B),p) and 
((u a, Bh),pa), respectively. Then there exist positive constants ~ < oo, i = 1 , . . . ,  4, such that 

ll(u,B) - (uh, B~)II~ 
_<gl inf II(u,B)-(vn,  Ln) l lw+~20  inf Ilp-qallo,(6"5) 

(vr',Ltt)El4zh (~) q~.ESa(n) 
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and 
lip -p~'llo < ms inf II(u, B) - (v a, Lh')ll~v + ~4 qS, ElSl~a(f,l)lip - q~'lio. (6.6) - (v~,L~)eW~(n) 

Let (w a, T a) be an arbitrary element of W~(f/), then clearly, (u a, B a) - (w a, T a) • PROOF. 
PP.(f / ) ,  in fact 

b((u a, S a ) _ (w h, Ta), qa) = b((u ~, Sa),  qa) _ b((w h, T~), qa) 
= 0, Vq n • S~(f/),  

therefore (u a, B a) - (w a, T a) E Za(fl) x y a(f/). For the exact solution we have (4.2), i.e., 

a((u,  B), (v a, La)) + c((u, B), (u, B), (v a, La)) + b((v a, La),p) = F ( (v  a, La)) 
V(va ,La ) • w a ( f l ) ,  (6.7) 

and for the approximate solution we have (6.2), i.e., 

a ( (u  a, Bh), (v a, Lh)) + c((u a, Ba), (u a, Ba), (v a, La)) + b((v a, La), pa) = F ( (v  h, La)) 
V(va ' La ) • )4~a (fl) ' (6.8) 

Subtracting (6.8) from (6.7) yields 

a((u, B) - (u a, Ba), (v a, La)) + c((u, B) - (u a, Ba), (u, B), (v a, La)) 

+ c((u a, Ba), (u, B) - (u a, Ba), (v a, La)) + b((v a, La),p - pa) = 0 

V(v a, L a) • PY~(fl). 

Letting qa be an arbitrary element of Sa(f~), we have 

a((w a, T a ) - (u a, Ba), (v a , La)) + c((w a , T a ) - (u a , Ba), (u, B), (v a , La)) 

+ c((u a ' Ba), (w a, T a ) _ (u a, Ba), (v a ' La)) + b((v a, La), qa _ pa) 

= a((w a, T a) - (u, B), (v a, La)) + c((w a, T a) - (u, B), (u, B), (v a, La)) (6.9) 

+ c((u a, Ba), (w a, T a ) - (u, B), (v a, La)) + b((v a, La), qa _ p), 

V(v a, L a) • W~(fl) ,  (w a, T a) • W~(fl), qa • Sa(~). 

Setting (v a, L a) = (w a, T a) - (u a, Ba), letting z be an arbitrary element of Z(ft), and using the 
definition of the spaces Z(f/) and Za(fl), we have from (6.9) 

a( (w h , T a ) - (u a , Ba), (w a, T a ) - (u a, Ba)) 

+ c((w a, T a ) - (u a, Bh), (u, B), (w a , T a ) - (u a , Ba)) 

+ c((u a, Ba), (w a, T a ) - (u a , Ba), (w h, T a ) - (u a, Ba)) 

-- a((w a, T a) - (u, B), (w a, T a ) - (u a, Ba)) 
+ c((w a , T h ) - (u, B), (u, B), (w a , T a ) - (u h, Ba)) (6.10) 

+ c((u a, Ba), (w h , T a ) - (u, B), (w h, T a ) - (u a, Ba)) 

+ b((w h, T a ) - (u a, B a) - (z, 0), qa _ p), 

V(wa, T ~) • w ~ ( a ) ,  q h • sA(a),- .  • z ( a ) .  

The right hand side of (6.10) may be bounded from above using the continuity properties (5.2)- 
(5.4), and the left hand side of (6.10) may be bounded from below using (5.3) and (5.6). And so 
we get 

( a -  ac [Jl(u, B)IIw + II(ua, Ba)JJw])Jl(w a, T a) - ( u a ,  Ba)llw 

< ( ~ .  + ~:,,:[ll(u, B)II '~ + II(uA, Bh')llw]) II(w~', Th') - (u, B)ll,,v (6.11) 

I I w "  - u "  - "111 
~b i1~_'--~11"~ IIqA-Pllo. 
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Using the definition of O, since w a - u a • Za(fl), we have 

inf H w a -  u ~ -  zlll < O. (6.12) 
,~z(n) Ilwa-u~l[1 - 

From (5.22) and its discrete analog, we have that 

o~1 := ~ - n~(ll(u,B)llw + II(ua, Ba)llw) > 0. (6.13) 

Taking the infimum of (6.11) over Z(fl) and using (6.12), (6.13), and the triangle inequality yields 

II(u, B)  - (u a, Ba)llw < (1 -F no)II(u, B)  - (w  a, Ta)llw + ~ Clip- qallo 
0~1 (6.14) 

V(w a, T a) • wh( f l ) ,  qa • Sa(f~), 

with 
+ 

Now taking the infimum of (6.14) over }4}h(~) and Sa(f~) we have 

II(u,B) - (ua, Ba)l lw < (1 -b no) inf II(u,B) - (wa, Ta)llw 
- (w~,T~)~W~(a) 

If (6.4) is satisfied, we can show tha t  

+ n b 0 inf  lip- qhllo. 
oq qhE,.~'(n) 

inf II(u,B) - (wa, T~)II~v < ( 1 % ~  inf 

(6.15) 

Since v h was arbitrary 

so w a E X2a(f/) and 

inf I i u -wa l l 1  < ( 1 +  ~-~b~ inf flu- vaI[1. 

and 

b((~ ~, 0), qh) = b(( .  - v ~, 0), qh) Vq~ e s~(a) ,  

To this end, let v ~ be an arbitrary element of X1a(fl); (6.4) implies that there exists @h E Zh(f/) ± 
such that 

nb II~hlll ~ ~ Ilu - v~llz, 

see [8]. Let w h = @h -t- v a then w h E Xa(fl) ,  moreover w h - v ~ E Xba(gl) and 

b((w ~, Ta) ,q  ~) = b((wa, 0), q ~) = b((~, h + va, 0), q h) 

= b((u, 0), qa) = 0, Vq h E Sa(fl) ,  

Ilu - w~llz ~ Ilu - vhfll + Ilihll~ 
_< (1 + - 

II(u,B) - (vh, Lh)liW. (6.16) 
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Thus, 

inf 
(w~,T~)eW~ Ca) 

II(u,B) - (w h,Ta)ll~ = inf I lu -  whll~ + inf liB - Tall~ 
w~.e;~(n) T~ey~(n) 

inf I l u -vh l l~+  inf IIB-LAII 2] - fl / Lv~ex~(n) L~ey~(n) 

gbh2 inf l i (u,B) - (va, La) l l~ ,  
( \1 + /9 / (v~-,L~.)ew~(n) 

from which the result follows. Substituting (6.16) into (6.15) then yields (6.5) with 

a1=(l+ao) I+ and a2=--. 

Now let qa be an arbitrary element of Sa(f~); we have from (6.7) and (6.8), 

b((v a, La), qa _ pa) _- b((v a, La), qa _ p) _ a((u, B) - (u a, Ba), (v a, La)) 

- c((u, B) - (u a, Ba), (u, B), (v a, Lh)) 
- c((u a, Bh), (u, B) - (u a, Bh), (v a, La)) 

V(v a, L h) e W~(a),  qa e ,Sa(a). 

Using (5.2)-(5.4) and the inf-sup condition (6.4) yields 

1 
<_ + + B ) , .  + 

Now using the triangle inequality, (6.5), and taking the infimum over Sa(f~), we arrive at (6.6) 
with 

~ 3  = ~ a  + - o [ l l ( u , S ) l [ ~  + I I ( u h ,  n ~ ) l l w  , 

and 

Sb ~20 f 
= 1 + ~ + -Ti~a + ~c[ll(u,B)liw + ll(ua, Ba)llw]). t~4 

Obviously we may obtain an upper bound on ~3 and ~4 through the use of (5.22) and the 

corresponding bound for (u a, B~). | 
We remark that the error estimates (6.5) and (6.6) are optimal with respect to the product 

norm employed since right hand sides of these estimates involve only appraximation-theoretic 
terms. 

From a computational view point, (6.1)-(6.3) is apparently a formidable system to solve. We 
briefly mention that iterative solution techniques that decouple the calculation of the velocity 
field from the calculation of the magnetic field may be employed. Several solution schemes for 
these equations have been suggested and analyzed in [6,10]. 
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