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a b s t r a c t

Consider a stochastic differential equation driven by G-Brownian motion

dX(t) = AX(t)dt + σ(t, X(t))dBt

which might be regarded as a stochastic perturbed system of

dX(t) = AX(t)dt.

Suppose the second equation is quasi surely exponentially stable. In this paper, we
investigate the sufficient conditions under which the first equation is still quasi surely
exponentially stable.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

An accurate mathematical model of a dynamic system in finance, economy, or control engineering often includes the
consideration of additive stochastic elements as well as multiplicative stochastic elements. As we know, Lyapunov [1] first
obtained the stability for the nonlinear system Ẋ = A(t)X + f (t, X) according to the stability of linear system Ẋ = A(t)X .
Since then Itô’s breakthrough work about Itô calculus, Hasminskii [2] first studied the stability of the origin of the linear Itô
equation

dX(t) = AX(t)dt +

m
i=1

BiX ◦ dWi(t), X(0) = x0 ∈ Rn, t ≥ 0, (1.1)

which might be regarded as a stochastic perturbed system of dX(t) = AX(t)dt . Arnold et al. [3] studied more systematically
the almost sure and moment stability for (1.1). For more information about exponential stability, we refer the reader to
Mao [4]. Motivated by uncertainty problems, risk measures and the superhedging in finance, Peng [5] introduced the notion
of sublinear expectation space in 2006, together with the notion of sublinear expectation, Peng also introduced the related
G-normal distribution and G-Brownian motion. The stochastic calculus with respect to the G-Brownian motion has been
established by Peng in [5,6]. Since these notionswere introduced, many properties of G-Brownianmotion have been studied
by researchers, for example, Denis et al. [7] and Gao and Jiang [8], et al. In this paper, wewill give the sufficient conditions to
show that the solution of stochastic differential equation driven by G-Brownian motion is quasi surely (q.s.) exponentially
stable.
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2. Preliminaries

In this section, we introduce some notations and preliminaries about sublinear expectations and G-Brownian motion,
more details concerning this section may be found in [5,6].

LetΩ be a given set and letH be a linear space of real valued functions defined onΩ . We further suppose thatH satisfies
C ∈ H for each constant C and |X | ∈ H if X ∈ H .

Definition 2.1. A sublinear expectation E is a functional E : H → R satisfying

(i) Monotonicity: E[X] ≥ E[Y ] if X ≥ Y .
(ii) Constant preserving: E[C] = C for C ∈ R.
(iii) Sub-additivity: For each X, Y ∈ H, E[X + Y ] ≤ E[X] + E[Y ].
(iv) Positive homogeneity: E[λX] = λE[X] for λ ≥ 0.

The triple (Ω, H, E) is called a sublinear expectation space. If (i) and (ii) are satisfied,E[·] is called a nonlinear expectation
and the triple (Ω, H, E) is called a nonlinear expectation space.

We omit the notions of G-normal distribution and G-expectation Ê[·], see [5]. Let (Bt)t≥0 be a 1-dimensional G-Brownian
motion with G(a) :=

1
2 Ê[aB2

1] =
1
2 (σ̄

2a+
− σ 2a−), where σ̄ 2

= Ê[B2
1], σ

2
= −Ê[−B2

1], 0 ≤ σ ≤ σ̄ < ∞. Peng defined the
Itô integral with G-Brownian motion and space L2G(Ωt0; R

n), see the Chapter 3 of Peng [6].

Proposition 2.1 (See [7]). Let Ê be G-expectation. Then there exists a weekly compact family of probability measures P on
(Ω, B(Ω)) such that for all X ∈ H, Ê[X] = maxP∈P EP [X], where EP [·] is the linear expectation with respect to P.

They defined the associated G-capacity: Ĉ(A) := supP∈P P(A), C(A) := infP∈P P(A), A ∈ B(Ω). Note that Ĉ(A) =

1 − C(Ac), A ∈ B(Ω).

3. The main result

In this section,we consider the exponential stability for G-stochastic differential equations. Firstly, given an exponentially
stable stochastic linear system

dXt = AXtdt, t ≥ t0 ≥ 0,
Xt0 = X0, t0 ≥ 0, (3.1)

where the initial condition X0 ∈ L2G(Ωt0; R
n), X = (X1, . . . , Xn)

T , A is a constant n×nmatrix. Assume that some parameters
are excited or perturbed by G-Brownian motion, and the perturbed system has the form

dXt = AXtdt + σ(t, Xt)dBt , t ≥ t0 ≥ 0,
Xt0 = X0, t0 ≥ 0, (3.2)

where Bt is a d-dimensional G-Brownian motion, and σ : R+
× Rn

× Ω → Rn×d satisfies the conditions for the existence
and uniqueness of the solution, see [6]. Denote by X(t, t0, X0) the solution of Eq. (3.2).

Theorem 3.1. Let λ be the maximum of the real parts of all eigenvalues of −A. Assume that there exist constants ρ ≥ 0, α > 0,
and a polynomial p(t) such that

∥σ(t, x)∥2
≤ p(t)e(−2λ+ρ)t , (3.3)

for all x ∈ Rn and sufficiently large t, and lim supt→∞

log ∥eAt∥2

t ≤ −α. Then the solution of (3.2) has the property

lim sup
t→∞

log ∥X(t, t0, X0)∥
2

t
≤ −α + ρ q.s., (3.4)

for all t0 ≥ 0 and any X0 ∈ L2G(Ωt0; R
n).

In order to prove Theorem 3.1 we need the following lemma.

Lemma 3.1. Let Bt be a one dimensional G-Brownian motion. Suppose that there exist constants ε > 0 and δ > 0 such that
Ê[exp{ δ2

2 (1 + ε)
 T
0 η2d⟨B⟩s}] < ∞. Then for any T > 0 and r > 0,

Ĉ


sup
0≤t≤T

 t

0
ηsdBs −

δ

2

 t

0
η2
s d⟨B⟩s


> r


≤ e−δr .
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Proof. By the representation theorem of G-expectation, we have

Ĉ


sup
0≤t≤T

 t

0
ηsdBs −

δ

2

 t

0
η2
s d⟨B⟩s


> r


= Ĉ


sup

0≤t≤T
exp


δ

 t

0
ηsdBs −

δ2

2

 t

0
η2
s d⟨B⟩s


> eδr



≤

Ê

exp


δ
 T
0 ηsdBs −

δ2

2

 T
0 η2

s d⟨B⟩s


eδr
= e−δr .

The last inequality is because exp(δ
 T
0 ηsdBs −

δ2

2

 T
0 η2

s d⟨B⟩s) is exponential martingale under Ê. Since

EP


exp


δ2

2

 T

0
η2d⟨B⟩s


< Ê


exp


δ2

2
(1 + ε)

 T

0
η2d⟨B⟩s


< ∞,

from the Novikov’s condition, we know that exp{δ
 t
0 ηsdBs −

δ2

2

 t
0 η2

s d⟨B⟩s} is a martingale under each EP and

EP [exp{δ
 t
0 ηsdBs −

δ2

2

 t
0 η2

s d⟨B⟩s}] = 1, thus Ê[exp{δ
 t
0 ηsdBs −

δ2

2

 t
0 η2

s d⟨B⟩s}] = 1. �

Proof of Theorem 3.1. Fix ϵ > 0 arbitrarily, and there exists a positive constant c = c(ϵ) such that

∥e−At
∥ ≤ ce(2λ+ϵ)t , p(t) ≤ ceϵt , t ≥ 0. (3.5)

By G-Itô’s formula (see Theorem 6.5 in [6]), we have d(e−AtX(t)) = e−Atσ(t, Xt)dBt . Define u(t) := ∥e−AtX(t)∥2. By G-Itô’s
formula again we get

u(t) = u(t0) + 2
 t

t0
XT
s e

−AT se−Asσ(s, Xs)dBs +

 t

t0
trace{e−Asσ(Xs, s)σ (Xs, s)T e−AT s

}d⟨B⟩s (3.6)

for all t ≥ t0. It follows from Lemma 3.1 that for any δ > 0, t1 > t0,

Ĉ


sup

t0≤t≤t1

 t

t0
XT
s e

−AT se−Asσ(s, Xs)dBs −
r
2

 t

t0
XT
s e

−AT se−Asσ(s, Xs)σ (s, Xs)
T e−AT se−AsXsd⟨B⟩s


> δ


≤ e−rδ. (3.7)

Choose an arbitrary θ > 1 and let k be an integer large enough so that k ≥ t0. Set t1 = k, r = e−ρk, δ = θeρk log k. We then
obtain

Ĉ


sup

t0≤t≤k

 t

t0
XT
s e

−AT se−Asσ(s, Xs)dBs

−
e−ρk

2

 t

t0
XT
s e

−AT se−Asσ(s, Xs)σ (s, Xs)
T e−AT se−AsXsd⟨B⟩s


> θeρk log k


≤

1
kθ

. (3.8)

Using the Borel–Cantelli lemma for capacity (see Lemma 2 in [9]), we deduce that there exists a k0 such that t

t0
XT
s e

−AT se−Asσ(s, Xs)dBs ≤
e−ρk

2

 t

t0
XT
s e

−AT se−Asσ(s, Xs)σ (s, Xs)
T e−AT se−AsXsd⟨B⟩s + θeρk log k (3.9)

for all k ≥ k0, t0 ≤ t ≤ k. From assumption (3.3), we know that t

t0
XT
s e

−AT se−Asσ(s, Xs)dBs

≤
e−ρk

2

 t

t0
XT
s e

−AT se−Asσ(s, Xs)σ (s, Xs)
T e−AT se−AsXsd⟨B⟩s + θeρk log k

≤
e−ρk

2
c2
 t

t0
u(s)eρsd⟨B⟩s + θeρk log k. (3.10)

It follows from (3.6) and (3.10) that

u(t) ≤ u(t0) + e−ρkc2
 t

t0
u(s)eρsd⟨B⟩s + 2θeρk log k +

 t

t0
trace{e−Asσ(Xs, s)σ (Xs, s)T e−AT s

}d⟨B⟩s

≤ u(t0) + e−ρkc2
 t

t0
u(s)eρsd⟨B⟩s + 2θeρk log k + nc2

 t

t0
eρsd⟨B⟩s. (3.11)
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Then u(t) ≤ u(t0) + e−ρkc2σ̄ 2
 t
t0
u(s)eρsds + 2θeρk log k + nc2σ̄ 2

 t
t0
eρsds. From the generalization of Gronwall–Bellman

inequality (see Theorem 2.1 in [10]), we have

u(t) ≤ (u(t0) + 2θeρk log k) exp

e−ρkc2σ̄ 2

 t

t0
eρsds


+ nc2σ̄ 2

 t

t0
exp


c2σ̄ 2e−ρk

 t

s
eρrdr


eρsds

≤ (u(t0) + 2θeρk log k + neρk) exp

e−ρkc2σ̄ 2

 t

t0
eρsds


≤ (u(t0) + 2θeρk log k + neρk) exp


c2σ̄ 2

ρ


, t0 ≤ t ≤ k, k ≥ k0, q.s. (3.12)

Since θ > 1 is arbitrary and u(t)
eρt log t ≤

u(t)
eρ(k−1) log(k−1)

, k − 1 ≤ t ≤ k. By (3.12), we have

lim sup
t→∞

u(t)
eρt log t

≤ lim sup
k→∞

(u(t0) + 2θeρk log k + neρk) exp


c2σ̄ 2

ρ


eρ(k−1) log(k − 1)

≤ 2 exp

ρ +

c2σ̄ 2

ρ


q.s. (3.13)

Since

lim sup
t→∞

log ∥X(t, t0, X0)∥
2

t
≤ lim sup

t→∞

log ∥eAt∥2

t
+ lim sup

t→∞

log ∥e−AtX(t, t0, X0)∥
2

t
, (3.14)

from the inequality (3.13) and assumption, we know that lim supt→∞

log ∥X(t,t0,X0)∥2

t ≤ −α + ρ q.s. �

In the last, we give some examples to illustrate our results.

Example 1. Let α > 0, ρ ≥ 0 and p(t) be a polynomial of t . Suppose that B(t) is one-dimensional G-Brownian motion.
Consider G-SDE with initial condition X(t0) = x0 (t0 ≥ 0):

dX(t) = −αX(t)dt + p(t)e(−2α+ρ)t X(t)

1 +

X2(t)

dB(t), t ≥ t0. (3.15)

By Theorem 3.1, we deduce that the solution of (3.15) has the property lim supt→∞

log ∥X(t,t0,x0)∥2

t ≤ −α+ρ q.s. for all t0 ≥ 0
and x0 ∈ L2G(Ωt0; R).

Example 2. Let B(t) = (B1(t), B2(t)) be a two-dimensional G-Brownian motion, consider a two-dimensional G-SDE:dX(t) =


−4 −2
3 1


X(t)dt + e−1.5t


t2 sin x1 t cos(x1 + x2)
t3 cos x2 t2 sin(x1 − x2)


dB(t), t ≥ t0,

X(t0) = x0 (t0 ≥ 0).
(3.16)

Note that A and −A have the eigenvalues −1, −2 and 1, 2, respectively. Therefore, from the Theorem 3.1, we deduce that
the solution of (3.16) has the property lim supt→∞

log ∥X(t,t0,x0)∥2

t ≤ −
1
2 q.s. for all t0 ≥ 0 and x0 ∈ L2G(Ωt0; R

2).

Example 3. Assume that ρ < 1
2 and B(t) is one-dimensional G-Brownian motion. We consider the following stochastic

differential equation driven by G-Brownian motion:

d

X1(t)
X2(t)


=


0 1

−1 −1


X1(t)
X2(t)


+


0

p(t)e−
1
2 ρt


dB(t),

where the initial conditions are X1(0) = 0 and X2(0) = 0. From the Theorem 3.1, we have

lim sup
t→∞

log(X2
1 (t) + X2

2 (t))
t

≤ −ρ q.s.
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