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Abstract-A specially-modified boundary integral equation (BlE) method is used to investigate the 
viability of the singular boundary conditions of the well known driven-cavity Stokes flow problem, 
a bench-mark problem of computational fluid dynamics. We introduce small ‘leaks’ to replace the 
singularities, thus creating a perturbed, physically realizable problem. We make two discoveries, 
namely: (i) unexpectedly, the introduction of the leaks affects the flow field at considerably greater 
distances from the leaks than one might perhaps intuitively predict; and (ii) the full, numerical BlE 
solution reveals that the far field, asymptotic, closed-form solution for the flowfield of the perturbed 
problem is a surprisingly accurate representation of the flow even in the near field. 

The driven cavity problem, a classical bench-mark problem of computational fluid dynamics, is 
remarkable in that it corresponds to a physically unrealizable flow. The impossibility of the flow 

lies in the inherent boundary singularities, first noted by Taylor [l] in his ‘scraper problem’, across 
which the boundary stresses are non-integrable; this implies that an infinite force is required to 
drive the lid with any finite velocity. 

1. INTRODUCTION 

The discontinuity of the flow field at these singularities can be circumvented by permitting 
small ‘leaks’ allowing fluid to enter or leave the cavity. The boundary geometry of the leaks, 
which ensues on the basis of this assumption, is shown in Figure 1 below. 
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Figure 1. Problem geometry and boundary conditions. 
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BIE solutions of Stokes flows in the neighbourhood of reentrant corners have already been 
found by Kelmanson [2] using an extension of the singularity subtraction technique introduced 
by Symm [3] in connection with harmonic problems. However, in [2] the original integral equations 
contained a vorticity gradient, which is non-integrable at the re-entrant corner. Our approach, like 
that of Xu [4], diff ers somewhat in that it is based upon integral equations containing boundary 
pressure and shear stress, which are both integrable, though singular, at the corner. Furthermore, 
it makes use of singularity incorporation near the re-entrant corner, extending the harmonic 
applications of Hansen [5] and Kelmanson [6] to the present biharmonic problem. 

2. FORMULATION 

We seek to determine the stationary, incompressible Stokes flow in the region shown in Figure 1. 
The non-dimensional, biharmonic stream function $ = $J (2, y) may readily be sought via integral 
equation techniques, provided we can write the boundary conditions in a suitable form. There 
are noslip conditions on the solid boundaries, the upper of which (C in Figure 1) is stationary, 
the lower of which slides with unit speed in the positive 2 direction. Boundary conditions for + 
on the solid walls and far back into the channel are easily found but, in the wedge, its asymptotic 
form is a little more complicated. Using the polar coordinate system of Figure 1, we find that 
the asymptotic form of II, = 1c, (T, 29) is : 

r9 sin 290 sin(79 80) 790 (29 - - - Sc) sin 29 (6 - 0s) cos 190 sin - (29 190) - 1/1 co9 =r 

1902 - sin2 90 

+ 

2 (do cos 19, - sin 9s) 

29, t1j 

where 8s is the fixed wedge angle shown in Figure 1. Near the re-entrant corner, a consideration 
of singular nature of the flow must be undertaken, as in [2]. A prolonged analysis, based upon the 
far-field asymptotic behaviour of the flow in both the wedge and channel regions, and the singular 
nature of the flow in the re-entrant region, leads to the following coupled integral equations in 
the unknown values of the boundary pressures p and wall stresses r s -A II, : 

dG 
P(s)y(s)g ds = YO - f, (XO,YO) E C, 

;Ao~~(xo,Yo)+ 
bAoG 

P(S) -jjy - 
bAoG 

?- (s> x ds = ‘4 (~0, YO) E C, (3) 

where G is a Greens function, specifically chosen to annihilate certain integral contributions on 
the sliding plate, given by 

G(x- Xo,Y, Yo) = & {(x - x0)’ + (y - YO)~} In 
(x - zo)2 + (Y + Yo)2 YYO 

(3 - +o)2+(Y-yo)2 
--3 

4s 
(4) 

and A0 = & + &. In Equations (3) and (4), & refers to differentiation with respect to 

the vector $ of Figure 1. The details of this rather lengthy derivation may be found in Hansen 
and Kelmanson [‘?I. On solving Equations (3) and (4) for the boundary stress and pressure 
distributions, the stream function may be subsequently found using 

3. NUMERICAL SOLUTION 

(5) 

The boundary C was broken into sections Cj , j = 1,. . . ,6. On Cl, which extended along y = 1 
from 2 = -ootoz= -4, the asymptotic Couette behaviour of p (x, 1) and 7 (2, 1) was enforced. 
Cs, on y = 1, from 2 = -4 to 2 = -0.4, was further subdivided into 40 uniform elements, 
over each of which both p and r were assumed to be piecewise constant functions. On C’s, on 
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Y = 1, from 2 = -0.4 to I = 0, the singular forms of p and r were incorporated into the inte- 
gral equations via series expansions with unknown coefficients, i.e., singularity incorporation was 
employed on the boundary elements nearest the re-entrant corner. The unknowns’ behaviours 
on Cd , Cz and C’s essentially mirrored that enforced over Cz , C2 and Cr, respectively, except 
that these sections were on r9 = 19s , and that the pressure and wall stress on Cs were obtained 
by suitable differentiation of Equation (1). For a full discussion of the above parameter choices, 
the reader is again referred to Hansen and Kelmanson [7]. The subsequently discretized versions 
of Equations (3) and (4) provided linear equations in the boundary unknowns and series coeffi- 
cients, solution of which yielded the stream function via a discretized form of Equation (5). We 
merely mention here that much analysis and computational effort was required to perform the 
integations to obtain the coefficients in these linear equations, particularly in those cases where 
the collocation points (zc, yc) lay on the boundary C. 

4. RESULTS 

Results are presented for r9c = 90°. Figure 2 shows streamlines on a scale in which each 
border graticule represents 5 channel widths (5-CW). The dotted streamlines are those from 
Taylor’s [l] scraper problem, in which there is no gap. What is interesting is that the presence 
of the channel (i.e., leak) clearly affects the flow at distances of order 0 (loo-CW) from the leak; 
this is certainly greater than one might intuitively expect. In Figure 3, each border graticule 
represents a distance of 50-CW, and we can see that the perturbed flow of the present work has 
asymptotically approached the theoretical zerogap flow at distances of order 0 (lOOO-CW) from 
the leak. This we expect, and indeed it is a check on the accuracy of the results produced by the 
integral equation method. 

Our final observation, which we could not have predicted, is illustrated in Figure 4, in which 
we provide a comparison between the asymptotic solution of Equation (1) with the full numerical 
solution generated by our method. Unexpectedly, the asymptotic solution, which is far easier to 
obtain, is a remarkably accurate representation of the flow even at distances of order O(l-CW) 
away from the leak. 
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Figure 2. Streamline comparisons between present solution (-) and Taylor (1962) 
solution (- - -) for 90 = W. Each border graticule is 5 channel widths. 
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Figure 3. As Figure 2; each border graticule is 60 channel widths. 

! 

Figure 4. Streamline comparisons between present solution (-) and asymptotic 
solution (- - -) of Equation (l), far 90 = 90°. 
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