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The author proposed (Truns. Amer. Math. Sot. 199 (1974). 89-1 12) the 
extended entropy condition (E) and solved the Riemann problem for general 
2 x 2 conservation laws. The Riemann problem for 3 Y 3 gas dynamics 
equations was treated by the author (1. Dz# erential Equations 18 (1975), 
218-231). In this paper we justify condition (E) by the viscosity method in the 
spirit of Gelfand [Uspehi Mat. Nauk 14 (1959), 87-1581. We show that a shock 
satisfies condition (E) if and only if the shock is admissible, that is, it is the limit 
of progressive wave solutions of the associated viscosity equations. For the 
“genuinely nonlinear” 2 x 2 conservation laws, Co&y and Smaller [Comm. 
Pure Appl. Math. 23 (1970), 867-8841 proved that a shock satisfies 1,ax’s shock 
inequalities [cf. Comm. Pure Appl. Math. 14 (1957), 537-5661 if and only if it is 

admissible. In this paper, we consider systems that are not necessarily genuinely 
nonlinear. 

I. GENERAL 2 x 2 CONSERVATION LAWS 

Consider general 2 x 2 conservation laws 

where (u, v) = (u, U) (x, t) and f, g E C2( U) for some open set c in [w2. 
Assume that (1.1) is strictly hyperbolic, that is, d(f, g) had real and distinct 

eigenvalues X, < X, at each point in ZI. 

It is known that a weak solution (u, 7~) to (1 .I) satisfies the Hugonoit 

condition (H) across any discontinuity at (x, t): 

where (u+ , u,) = (u, U) (2 + 0, t), (u- , K) 7 (u, v) (x - 0, t), and S ia 
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is the speed of discontinuity. For any (U s , v,,) in U, let the shock set through 

cull Y v,,) be the set of points (u, V) satisfying Hugonoit condition 

where (J = u(u,, , v,; u, v) is the shock speed. 
In [5] it is proved that there exists a unique solution to the Riemann 

problem for (1.1) if across every discontinuity (u- , w-) and (u+ , v+), the 
following extended entropy condition (E) is satisfied. 

(E) a(~-, v-; u+ , v+) < a@-, VP; U, ZJ) 

for all (u, V) on the shock curve through (u- , V-) between (u- , V-) and 

(u+ , v+)* 
Suppose that (u+ , v,) belongs to the shock set through (u- , v-) and 

s = u(u- , v-; u+ , w+). Denote by {u- , v-; u+ , v,; S} the shock wave solution 

(% w)(x, 0 = ,;:y : 1;; 

for x’ - st < 0 
for x - St > 0: 

DEFINITION. A shock {u- , v-; u+ , vu+; s} is admissible if for each E > 0, 
there are sequences {f’, gE}, (uPE, u’_~), and (u+~, ZI-~), 

s’ = U(U-E, v-c; U+E, v+q 

fE@tf, v+“) - fqU_E, VW’) _ gf(u+E, v+‘) - gC(u-E, v-‘) 
u+E - u E -, - ‘I;_< - v-6 

and progressive wave solution (U, V) (t), 6 = (x - Ft)/c, connecting 
(u-<, v-‘) on the left and (u+<, z)+~) on the right of viscosity equations 

Ut +f’(% $! = %, 9 
Ut + gqu, 4% = EU,, (14 

such that (f <, g') --f (f, g) in the C,,2 topology, sE -+ s, (IL”, ZI-‘) - (u- , V-), 
and (u+~, z)+‘) -+ (u+ , v+) as E + 0, . 

Remarks. An admissible shock {u- , v-; u+ , v+; s> is the uniform limit 
of progressive waves (UC, V) (Y(E) (x - set)) in the region{(x, t) / (x - st) > S} 
for every 6 > 0. Here Y(E) is chosen so that y(c) -+ 0, rapidly as E -+ 0, . 
To find a progressive wave solution to (1.2) connecting (u-<, ‘u-‘) and (u+“, v+‘) 
we have to find a connecting orbit of the vector field (cf. [l]) 

UfC = -SE(UE - u-') ff@E, 2)') - fc(upc, VP'), 
vgE = --sC(v~ - ZIP’) + g+, v”) - g+LE, v-f) (1.3) 
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such that 

We first find conditions that guarantee the hyperbolicity of ( 1.1). 

PROPOSITION 1.1. Let (z i) be any nonsingular constant real matrix. Suppose 
that for any (24, v) in U, 

Mafv + b&J - b(af, + bg,)) Wfu + 4,) - c(cfv + dg,)) > 0. (1.4) 

Then (1.1) is strictly hyperbolic. 

Proof. By direct calculation we know that if /3~ > 0, then the real matrix 
(G “,) has real and distinct eigenvalues. Set 

Then 

and 

have the same eigenvalues. But /3~ > 0 if and only if (1.4) holds. This proves 
the proposition. Q.E.D. 

In [4], Lax proved that for (u, V) near (u,, , o,), the shock set through 

(uo , v,,) contains two curves through (u,, , v,,) and each curve has one of 
the right eigenvectors of d(f, g) as its tangent. Hereafter, we assume that 
for any (uO , ~a) in U, 

The shock set through (ua , z+,) consists of two curves 

sr(u,, , us) and s,(u, , T+,) such that for any (u, U) on 

u(uO, u0 ; u, U) < h,(u, V) and for any (u, u) on s,(u,, u,,), 

+I , 00 ; u, v) > 404 74. 

(l-5) 

Write m = au + bv, n = cu + db, k = af + bg, 1 = cf + dg. Consider 

mt + k(m, 4, = 0, 

nt + +, n), = 0, 
(1.1’) 

where m and n are basic dependent variables. It is shown that condition (E) 
for (1.1)’ is equivalent to condition (E) for (1.1). In other words, condition 
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(E) is invariant under linear manipulations. It is noted, however, that non- 
linear manipulations could change the shock set and condition (E). 

In mn-coordinates, (1.2) takes the form (%/an) (ayarn) > 0. For definite- 
ness, set (&/an) < 0 and (al/am) < 0. Let I(m, , n,), II(mO, %a), III(m, , n,), 
and IV(m, , no) be the quadrants defined by (ma, n,,), e.g., 

I(mo , no) = {Cm, 4 I m > ma, 71 > no>. 

In mn-coordinates, the right eigenvectors of d(f, g) corresponding to hi , 
i=1,2,canbetakentobey,=(1,a~)t,a,>O>a,.Leth,=hi(uo,vo;u,v) 
be a nonzero smooth tangent to si(uo, no) at (u, ZI), and 

h&o > uo; 4 4 = Yibo 9 uo). 

Condition (I .5) implies that there is no point (u, v) + (u. , ZIP) with m = m, , 
or YZ = no where m, = au, + nv, and no = cue + dv, . Therefore 

s&o > vo) - {(uo 3 fJo)> = %+(uo , uo) u si-(uo , wo), i=l,2, 

such that sl+(uo , uo> C Iho , no>, sl-(uo , aa) C III(m, , no), sz+(uo , vo) C 
IV(m, , no), and ss-(U o , vo) C II(m, , no). Let (d/d& be the directional deriv- 
ative along curve si in the direction hi , i = 1, 2. 

LEMMA 1.1. Assume that (1.4) and (1.5) hold. Write hi = Cf=, aiiyj , 
i = 1, 2. Then a,, > 0 and az2 > 0 and (u, v) E s(uo , vo), and for 
(u, v) E si+(uo , no) we have 

(I) (do/dpi) > 0 if and only if CJ < hi and 

(2) (du/dpJ < 0 if and onZy ;f u > Ai, 
and for (u, v) E si-(u. , vo), we have 

(3) (da/dpJ > 0 if and only if (T > Ai and 

(4) (du/dpJ < 0 ;f and only ;f u < Ai. 

Proof. We only prove the lemma when (u, n) E ss+(uo , no). The other 
cases are proved similarly. Since hi = yi at (u. , no), to prove a,, > 0 and 
a22 > 0, we have only to show that a,, # 0 and az2 # 0. Differentiating 

along si(uo , vo), we have 

= C (Aj - u) aijyj , (1.6) 
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Since (u, n) E IV(m, , n,) and yzt E IV(m, , n,), it follows from (1.6) that if 
a aa = 0, then (do/d& = 0 and h, = 0. But hi is nonzero and so az2 f 0. 

(l), (2), (3), and (4) are proved by using (1.6) and the fact that a,, > 0 and 
az2 > 0. We omit the details. Q.E.D. 

LEMMA 1.2. Assume that (1.4) and (1.5) hold. Let (ul , vl) be any point on 

s2+(uo , vo> between (u. , vo) and (u2 I v2), (u2 , v2) E s,+(u, , vo). If 

then (ul , vl) E c-(u2 , Q). 

Proof. For simplicity assume that there exist only finite many points 
(uk, v’i), k = 1, 2 )...) q on sa+(uo , ZJ~) between (~1~) vo) and (up , ZJ.J such that 
u(uo ) vo; uk, v”) = u(uo , v’u; u 2 , va). Without loss of generality assume that 
there is no point (u, v) on s,+(u, , uo) between (Us, v”) and (z+l, G+l), 
K = 1, 2 ,..., q - 1, such that u(uo , so; u, v) = o(uo, v,; z+ , ~1~). Then 
(do/d& < 0 at either (z@, v”) or (@+l, oL+r) along sa+(uo ,zI~) for each fixed K. 
By Lemma 1.1, u 3 A, at either (G, v”) or (G+l, z++l). Since 

U(Uo ) vo; Uk, v”) = u(uo ) vo; d+l, ?Y+y, 

it follows that (u”, n”) is in the shock through (uli+l, v7;+l) and 

u(u7;, v”; &+I, v7”l) = u(uo ) v,; U7<, 4 = u(uo , v,; &+I, v”“) = u. 

But u 3 A, at either (u”, n”) or (z&‘+l, G+l), (1.5) implies that 
(&, vi) E ~s(&+r, ++I). By Lemma 1.1, we conclude that 

(uk, v”) E s2-(u7~+l, @+I), 

and so (uL+l, @+‘) E IV(mk, nk), mk = auk + bvx‘, n7; = cuL + dvk. By finite 
induction, we have (ui, vi) E IV(mj, nj) for q 2 i > j > 1. In particular, 

(u 2 , VJ E IV(u, , q) and the lemma is proved. 
We prove the lemma by contradiction when there exist infinite many points 

(u, v) on s,+(u, , vo) between (u. , vo) and (u? , v2) with 

+o , v’o; f4 4 = u(%J , 74); ug , v2). 
We omit the details. Q.E.D. 

Similarly, we have analogous results as Lemma 1.2 for curves sz-, si+, 
and sl-. 
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THEOREM 1.1. Assume that (1.4) and (1.5) hoEd. Then a shock {u- , v-; 

u+ 3 v’t; s} is admissible if and only if the shock satisjes condition (E). 

Proof. We only proof the theorem when m = u, n = v, and (1.4) reduces 
to f,,g, > 0, and when (u+ , v+) E sa+(u- , v-). The general cases are proved 
analogously. For definiteness, assume that fv < 0 and g, < 0. This implies 
that U+ > u- and v+ < v- . 

Assume first that s = a(u- , v-; u, , u+) < u(u_ , v_; u, v) for every 

(u, 4 f (u+ , v,) on s,+(u- , v-) between (u- , v-) and (u+ , v+). Let (1.3) 
take the form 

UC = -s(u - u-) +f(u, v) - f(K > v-1 = 5% 4, 

Vf = -+I - v-) + g(u, v) - g(u- , v-) = Ye, 9. 
(1.3)’ 

Since $U = fv # 0 and #Jo = g, # 0, it follows that $ = 0 (I/J = 0) is a 
curve defined for U(V). By Lemma 1.2 there is no point (u, v) on sz+(u,, , v,,), 

u- < u < u+ , or v+ < v < v_ with u(u- , v-; u, v) = s. The inequality 
s < CT implies that 4 > 0 on the curve $ = 0 joining (u- , v-) and (u+ , v,). 
Similarly # < 0 on the curve $ = 0 joining (u- , v-) and (u+ , v+). Thus 
#J = 0 and 4 = 0 do not intercept between (u- , v-) and (u+ , v+) and there 
is no critical point for (1.3)’ in the region bounded by 4 = 0 and # = 0. 
This is indicated in Fig. 1. 

FINRE 1 

The point (u- , v-) is a critical point for (1.3)’ with index -1, and (u- , v,) 
is a critical point with index +l. Since the vector fields on the boundary 
C$ = 0 and I# = 0 point toward the region and there is no critical point in this 
region bounded by 4 = 0 and # = 0, there is a connecting orbit from (u- , v-) 
to (u+ , v,). Therefore {u- , v-; U, , v+; s} is admissible. 

We may have, however, s = o(u-; v-; u, v) for some (u, v) on s,+(u, , vO) 
between (u,, , vO) and (u+ , v+). To deal with this case, we first note that by 
condition (E), 0 = (u- , v-; u, v) is nonincreasing at (u, v) = (u+ , v,). If 
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(W4kJ -=c 0 at (u+ , v+), we then take (f’, g’) = (f, g) and sE < s, 1 sE - s 1 
small. Since (du/dps) < 0 at (u+ , v+), we can find (u+‘, v+‘) on sa+(uO , u,,), 

I u+’ - u+ I small, such that U(U- , v_; u+~, v+~) = sE. Consider the shock 
wave {u- , v-; uAE, v+‘; SC} that satisfies condition (E) and s” < a(~-, v-; u, v) 
for every (u, v) on sa+(u, v) between (u- , U-) and (u+<, v+‘). The first part of 
this proof guarantees that {up, v-; u.+~, v+~; s’} is admissible and so is 
{u- , v-; u+ , n+; s} by definition. 

If D is stationary at (u+ , v+) along sa+(u- , v-), then we employ the standard 
perturbation theory to find ( ff, g’) (cf. [7]). We omit the details. 

Conversely, suppose that condition (E) fails for {u- , v-; u+ , v+; s}; we 
want to show that the shock is not admissible. Ifs > h,(u- , v-), then (u- , V-) 
is an unstable node and it is obvious that there is no connecting orbit from 

(u- , v-) to (u+ , r~+) (cf. Fig. 2). If s < h,(u- , v-), then (u- , v-) is a saddle 

FIGURE 2 

FIGURE 3 

point for (1.3)‘. Let (us , 0 v ) be the first point on sa+(u- , v-) such that 

u(u- , v-; ug , coo) = s. Since {u- , v-; u+ , w+; s} does not satisfy condition (E), 
we know that (ua , va) # (u+ , v+), and by Lemma 1.2, there is no point 
(u, v) on sa+(u- , v-), u- < u < u. , or v. < v < a- with U(U- , v-; u, v) = s. 
Therefore, by the first part of this proof, there is a connecting orbit from 
(u- , v-) to (u. , vo); but there is no orbit connecting (u- , v-) and (u+ , v+). 
If s = h,(u- , v-), (u- , v-) is a singular critical point, and it can be proved 
analogously that there is no connecting orbit for (1.3)’ either. Moreover, for 
E small, the shock {u-e, v-“; u+~, v+~; s’} does not satisfy condition (E), and 
there is no connecting orbit for (1.3). This proves that {u- , v_; u+ , v+; s} 
is not admissible. This completes the proof of Theorem 1.1. Q.E.D. 
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Remark. After obtaining the results of this paper I learned of the results 
of Professor Dafermos [2], in which he characterizes the solution of the 
Riemann problem he obtained earlier as the limit of centered wave solutions 
(u’, 0’) (x/t) of 

Ut +f(% qz = mm! , 

where E > 0 is small. He showed that the solution (z& 6) of the Riemann 
problem {(Us , vJ, (z+ , z)~)> thus obtained can be described by 2i = G(w), 
v between v, and vI , or 5 = G(u), ?I between u, and u1 . In case d = a(u), the 
following proposition holds [2, Proposition 3.41. 

PROPOSITION. Suppose that the solution (22, 6) has a discontinuity 
(u- , a-) = (ii, 6) (s - 0) and (u+ , v+) = (C, 6) (s + 0) at x/t = s. Then for 
any u between u_ and u+ , the solution of the initial valueproblem (1.3)‘, u(O) = u 
and v(O) = S(u) has the property that ~(5) = a(~([)) for --CO < 5 < 00. 

In other words, the vector field (1.3)’ restricted to the curve B = a(u) is a 
tangent vector field pointing toward (u+ , v+). Therefore it follows from 
Theorem 1.1 and its proof that the shock {u- , v-; u+ , v+; s} satisfies con- 
dition (E). By the uniqueness theorem proved in [5], the solution of the 
Riemann problem obtained in [2] is actually the same as the one in [5]. 

2. GAS DYNAMICS EQUATIONS 

Consider gas dynamics equations in Lagrangian coordinates 

Ut + P, = 0, 

nt - u, = 0, (2.1) 

Et + (Pu)s = 0, -co<x<co, t>o, 

where u is the velocity, ZJ is the specific volume, p = p(v, e) > 0 is the 
pressure, e is the internal energy, and E = &uz + e is the total energy. For 
the physical reasons, we consider the viscosity equations of the form 

Ut + P, = (%?), , 

vt - 24, = 0, 

Et + (P& = (-4,~ 

(2.2) 

where E > 0 is the viscosity coefficient. The notion of admissibility and 
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condition (E) are defined the same way as in Section 1, except we only 
consider the perturbation pc of p. 

We assume that ~~(0, S) < 0 so that (2.1) is hyperbolic. Here S is the 
entropy. We also assume that the shock set through any point (u,, , V” , -E,) 
consists of three curves C,(u, , ~a, E,), C,(u, , vug , E,,), and C,(u, , z0 , E,) 
such that C, and C, are defined for u and on C, , u and p are constant. It is 
shown that these assumptions imply that the shock speed (J is positive on C’s, 
negative on C, , and zero on C, . Certain sufficient conditions are given in [5] 
to guarantee that C, and C’s are defined for u. 

Since the shock speed is constant along C, whether or not the convexity 
condition P&V, s) > 0 is satisfied, we only justify condition (E) for shock 
curves C, and Cs . 

THEOREM 2. I. A shock {u- , v- , E-; u+ , v+ , E,; s} is admissible if and 
only if the shock satisfies condition (E). 

Proof. We only prove the theorem when (u+ , v+ , E,) E Cs(u- , v- , E-) 
and u+ > u- so that s = U(U_ , w- , E_; u+ , z’- , E+) > 0. The other cases 
are treated similarly. 

Analogous to the proof of Theorem 1.1, we only consider the case 

,(u- , v- , E-; UA , v+ , E,) < o(u- , v- > E-; u, 8, E) 

for every (u, v, E) E C,(u- , v- , E-) between (u- , U- , E-) and (u+ , v+ , E+). 
We have to find an orbit connecting (u- , v- , E-) and (u+ , v+ , E,) for the 
system of ordinary differential equations 

up = -s(u - u-> + p -P- , 

0 = -s(v - v-) - (24 - u-), (2.3) 

uuc = -s(E - E-) + (pu - P-u-), ‘$ = (x - sty<. 

From (2.3) we can eliminate 2, and E to write ug = f (u) for some smooth 
functionf. It is noted that f (u-) = f(u,) = 0. We assert that there is no zero 
off between u- and u+ . Indeed, if ug = f(u) = 0 at u between u- and u+ , 
then -s(u - u-) + p - p- = 0, -s(v - v-) - (u - u-) = 0, and 
-s(E - E-) - (pu -p-u_) = 0 by (2.3). This implies that 

(u, v, E) E C&L , v- , E-) and u(u- , v- , E-; u, v, E) = s. 

This is a contradiction, since we assume that s < 0. Hence f (u) is nonzero for 
u- < u < u+ . We next assert that f(u) is positive for u- < u < u+ . We 
have only to show that f (u) is positive for u- < u, / u- - u 1 small. Indeed, by 
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(2.3), E _ E- = (U - u-) (u + (p-/s)) and v - v- = (l/s) (U - U-) and so 

= lim - f (P,(v, e) + P,(v, e)?) 
u+u- 

= ;y- - f p&l, S) = - f p*-(v- , S-h 

where S- is the entropy at (u- , v- , E-). Since 

s < ,cu- , v- , E-; u- , v- , K) = (-Po)~‘~ cv- 7 ‘-) 

by assumption, we know that 

lim % 
U’U- u - al- 

= f (-3 - p*) = + (5 + (-pp)(s - (-pp) > 0. 

Therefore ug > 0 at u > u- , 1 u - u- 1 small. This completes the proof of 
Theorem 2.1. Q.E.D. 

COROLLARY. If {u- , a-, E-i u+ , v+ , E,; s} satisfies condition (E), then 

(i) S(u- , v- , E-) > S(u+ , v+ , E,) when s > 0, and 

(ii) S(u- , v- , E-) < S(U, , v, , E,) when s < 0. 

In other words, the entropy S increases in the time direction across any shock 
satisfying condition (E). 

pyoof. We prove only (i). Condition (ii) is proved similarly. 
By thermodynamic equations, de = T ds -p dv. Therefore 

TS, = ee + pv, = (E - $I& $ Pv, 

= (2u - u- + (p-/s)) up - uu, - (P/S) % 

= (u - u- + (p- -p/s)) UC 

= -(l/s) UC2 < 0. 

This proves the corollary. Q.E.D. 

Remark. The author proved this corollary in [6] by investigating the 
behavior of the entropy S along the shock and rarefaction curves. 



88 TAI-PING LIU 

ACKNOWLEDGMENT 

The author expresses his sincere gratitude to Professor C. Dafermos for criticisms 
of the proof of Theorem 1.1 in the first draft of this paper. 

REFERENCES 

1. C. C. CONLEY AND J. A. SMOLLER, Viscosity matrices for two-dimensional non- 
linear hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 867-884. 

2. C. M. DAFERMOS, Structure of solutions of the Riemann problem for hyperbolic 
systems of conservation laws, Arch. Rational Mech. Anal., to appear. 

3. I. M. GELFAND, Some problems in the theory of quasilinear equations, Uspehi 
Mat. Nat& 14 (1959), 87-158. [English translation in Amer. Math. Sot. Transl., 
Ser. 2, No. 29 (1963), 295-381.1 

4. P. D. LAX, Hyperbolic systems of conservation laws, II, Comm. Pure Appl. Math. 
10 (1957), 537-566. 

5. T.-P. Lru, Riemann problem for general 2 x 2 conservation laws, Trans. Amer. 
Math. Sot. 199 (1974), 89-112. 

6. T.-P. LIU, The Riemann problem for general systems of conservation laws, 
J. Differential Equations 18 (1975), 218-234. 

7. J. A. SMOLLER, Contact discontinuities in quasi-linear hyperbolic systems, Comm. 
Pure Appl. Math. 23 (1970), 791-801. 


