Completely Positive Linear Maps on Complex Matrices

Man-Duen Choi
Department of Mathematics, University of California, Berkeley, California 94720

Recommended by Chandler Davis

Abstract

A linear map Φ from \mathfrak{M}_{n} to \mathfrak{M}_{m} is completely positive iff it admits an expression $\Phi(A)=\Sigma_{i} V_{i}^{*} A V_{i}$ where V_{i} are $n \times m$ matrices.

In this paper, we describe the tractable structure of completely positive linear maps between complex matrix algebras. The objective is (pursuing the work of Stinespring [8], Størmer [9], and Arveson [1,2]) to establish that completely positive linear maps, rather than positive linear maps, are the natural generalization of positive linear functionals. The results presented here are 'finite' and 'concrete' in essence. The reader may consult [1, Chapter 1] for general abstract information about the infinite-dimensional case.

Our main theorems reveal that the class of completely positive linear maps is the positive cone of the class of hermitian-preserving maps endowed with a natural ordering. Thus, a thorough structure theory follows im mediately (Theorem 5). Finally (Theorem 7), we show that positive linear maps have the same effect as completely positive linear maps on 2×2 symmetric matrices.

For a complex matrix A, A^{*} denotes the transpose of the complex conjugate of A. We say a square matrix A is symmetric iff A equals its transpose, A is hermitian iff $A=A^{*}, A$ is positive (or positive semi-definite for exactness) iff A is hermitian and its eigenvalues are nonnegative. We denote by \mathfrak{M}_{n} the collection of $n \times n$ complex matrices. The Kronecker delta $\delta_{j k}$ equals 1 if $j=k$, and 0 if $j \neq k$; hence $I=\left(\delta_{j k}\right) \in \mathfrak{M}_{n}$ is the identity $n \times n$ matrix. $E_{j k} \in \mathfrak{M}_{n}$ is the $n \times n$ matrix with l at the j, k component and zeros
elsewhere. $\mathfrak{M}_{n}\left(\mathfrak{M}_{m}\right)=\mathfrak{M}_{m} \otimes \mathfrak{M}_{n}$ is the collection of all $n \times n$ block matrices with $m \times m$ matrices as entries; each element of $\mathfrak{M}_{n}\left(\mathfrak{R}_{m}\right)$ can also be regarded as an $n m \times n m$ matrix with numerical entries.

A linear map $\Phi: \mathfrak{M}_{n} \rightarrow \mathfrak{M}_{m}$ is positive (resp. hermitian-preserving) iff $\Phi(A)$ is positive (resp. hermitian) for all positive (resp. hermitian) A in \mathfrak{M}_{n}. We define $\Phi \otimes 1_{p}: \mathfrak{M}_{p}\left(\mathfrak{M}_{n}\right) \rightarrow \mathfrak{M}_{p}\left(\mathfrak{M}_{m}\right)$ by $\Phi \otimes 1_{p}\left(\left(A_{j k}\right)_{1 \leqslant j, k \leqslant p}\right)=\left(\Phi\left(A_{j k}\right)\right)_{1 \leqslant j, k \leqslant p}$. Φ is completely positive iff $\Phi \otimes 1_{p}$ is positive for all positive integers p. The reader is referred to [4] for the discrimination in a precise way between completely positive linear maps and positive linear maps.

For each $n \times m$ matrix V, it is evident that the map: $\mathfrak{M}_{n} \rightarrow \mathfrak{M}_{m}$ with $A \rightarrow V^{*} A V$ is completely positive. In the following, we show that the combinations of maps of the above form constitute all completely positive linear maps.

Theorem 1. Let $\Phi: \mathfrak{M}_{n} \rightarrow \mathfrak{M}_{m}$. Then Φ is completely positive iff Φ is of the form $\Phi(A)=\Sigma_{i} V_{i}^{*} A V$ for all A in \mathfrak{M}_{n} where V_{i} are $n \times m$ matrices.

Proof. The 'if' part is obvious. We proceed to prove the converse. Each $1 \times n m$ matrix v can be regarded as a $1 \times n$ block matrix $\left(x_{1}, \ldots, x_{n}\right)$ with $1 \times m$ matrices x_{j} as entries; hence we associate with it the $n \times m$ matrix V which has x_{j} as the j-th row. A simple computation leads to

$$
\left(V^{*} E_{i k} V\right)_{1<j, k<n}=\left(x_{i}^{*} x_{k}\right)_{1<j, k<n}=v^{*} v .
$$

Now suppose $\Phi: \mathfrak{M}_{n} \rightarrow \mathfrak{M}_{m}$ is completely positive. As $\left(E_{j k}\right)_{1 \leqslant i, k \leqslant n}$ is positive, so $\left(\Phi\left(E_{j k}\right)\right)_{1 \leqslant j, k \leqslant n} \in \mathfrak{M}_{n}\left(\mathfrak{M}_{m}\right)$ is positive; thus there exist vectors v_{i}^{*} (regarded as $n m \times 1$ matrices) such that $\left(\Phi\left(E_{j k}\right)\right)_{j k}=\Sigma_{i} v_{i}^{*} v_{i}$. Let V_{i} be the $n \times m$ matrices associated with v_{i}. Then by the preceding result, $\left(\Phi\left(E_{i k}\right)\right)_{j k}$ $=\Sigma_{i}\left(V_{i}^{*} E_{i k} V_{i}\right)_{j k}$. Therefore, we conclude that $\Phi(A)=\Sigma_{i} V_{i}^{*} A V_{i}$ for all A.

Each linear map $\Phi: \mathfrak{M}_{n} \rightarrow \mathfrak{M}_{m}$ is determined by its values on $E_{i k}$. Hence Φ is completely determined by the single element $\left(\Phi\left(E_{i k}\right)\right)_{1 \leqslant j, k \leqslant n} \in \mathfrak{M}_{n}\left(\mathfrak{M}_{m}\right)$. The proof of Theorem 1 also provides another characterization of completely positive linear maps:

Theorem 2. Let Φ be a linear map from \mathfrak{M}_{n} to \mathfrak{M}_{m}. Then Φ is completely positive iff $\left(\Phi\left(E_{i k}\right)\right)_{1 \leqslant i, k \leqslant n}$ is positive.

Remark 3. For a linear map $\Phi: \mathfrak{M}_{n} \rightarrow \mathfrak{M}_{m}$, it is obvious that Φ is hermitian-preserving iff $\left(\Phi\left(E_{i k}\right)\right)_{j k}$ is hermitian. Endowed with the natural ordering induced by $\mathfrak{R}_{n}\left(\mathfrak{M}_{m}\right)$, the class of hermitian-preserving maps is a partially ordered vector space over the reals, while the class of completely positive linear maps is just the positive cone.

Referring again to the proof of Theorem 1, we deduce another pertinent fact (cf., [7, p. 134, Theorem 2.1] and [5, p. 259, Theorem 2]): $\Phi: \mathfrak{M}_{n} \rightarrow \mathfrak{M}_{m}$ is hermitian-preserving iff Φ admits an expression $\Phi(A)=\Sigma \epsilon_{i} V_{i}^{*} A V_{i}$ where $\epsilon_{i}= \pm 1, V_{i}$ are $n \times m$ matrices. Since there are no such elegant expressions for positive linear maps, we may be convinced that completely positive linear maps, rather than positive linear maps, deserve the adjective 'positive'.

Remark 4. In the proof of Theorem 1, the expression $\left(\Phi\left(E_{i k}\right)\right)_{j k}$ $=\Sigma_{i} v_{i}^{*} v_{i}$ is not unique, hence $\left\{V_{i}\right\}$ is not uniquely determined. For some improvement, we may require $\left\{v_{i}^{*}\right\}$ to be linearly independent, then $\left\{V_{i}\right\}$ must be linearly independent too.

This additional condition on $\left\{V_{i}\right\}_{i}^{\ell}$ ensures that $\Phi(A)=\Sigma_{i}^{\ell} V_{i}^{*} A V_{i}$ is a 'canonical' expression for Φ, in the following precise sense: Let $\left\{W_{p}\right\}_{p}^{p^{\prime}}$ be a class of $n \times m$ matrices, then Φ has the expression $\Phi(\Lambda)=\Sigma_{p}^{\ell^{\ell}} W_{p}^{*} \Lambda W_{p}$ iff there exists an isometric $\ell^{\prime} \times \ell$ matrix $\left(\mu_{p i}\right)_{p i}$, such that $W_{p}=\Sigma_{i} \mu_{p i} V_{i}$ for all p. Moreover, if $\left\{W_{p}\right\}_{p}^{\ell^{\prime}}$ is also a linearly independent set, then $\ell^{\prime}=\ell$, and $\left(\mu_{p i}\right)_{p i}$ is unitary.

Proof. The 'if' part follows by direct computation. We proceed to prove the 'only if' part. Denote by w_{p}, the display of W_{p} as a $1 \times n m$ matrix. As in the proof of Theorem 1, $\Sigma_{p} w_{p}^{*} w_{p}=\left\langle\Phi\left(E_{i k}\right)\right\rangle_{i k}=\Sigma_{i} v_{i}^{*} v_{i}$. Thus w_{p}^{*} belongs to $s p\left\{v_{i}^{*}\right\}_{i}$, the linear span of $\left\{v_{i}^{*}\right\}_{i}$; namely, there exists $\left(\mu_{p i}\right)_{p i}$ such that $w_{p}^{*}=\Sigma_{i} \overline{\mu_{p i}} v_{i}^{*}$. It follows that $W_{p}=\Sigma_{i} \mu_{p i} V_{i}$.

Since $\left\{v_{i}^{*}\right\}_{i}$ is a linearly independent set, $\left\{v_{i}^{*} v_{i}\right\}_{i j}$ is also a linearly independent set. (In fact, $\left\{v_{i}^{*} v_{j}\right\}_{i j}$ is a basis of the linear transformation space on $\left.s p\left\{v_{i}^{*}\right\}_{i}.\right)$ From

$$
\Sigma_{i} v_{i}^{*} v_{i}=\Sigma_{p} w_{p}^{*} w_{p}=\Sigma_{p i i} \overline{\mu_{p i}} \mu_{p i} v_{i}^{*} v_{i}
$$

we obtain $\Sigma_{p} \overline{\mu_{p i}} \mu_{p i}=\delta_{i j}$. Hence $\left(\mu_{p i}\right)_{p i}$ is an isometry. In case that $\left\{W_{p}\right\}_{p}$ is also a linearly independent set, from $\operatorname{sp}\left\{v_{i}^{*}\right\}_{i}^{\ell}=s p\left\{w_{p}^{*}\right\}_{p}^{\ell}$, we derive that $\ell=\ell^{\prime}$ and $\left(\mu_{p i}\right)_{p i}$ is unitary.

For each fixed positive K in \mathfrak{M}_{m}, we write $\mathbf{C P}\left[\mathfrak{M}_{n}, \mathfrak{M}_{m} ; K\right]$ $=\left\{\Phi: \mathfrak{M}_{n} \rightarrow \mathbb{M}_{m} \mid \Phi\right.$ is completely positive and $\left.\Phi(I)=K\right\}$. It is evident that CP $\left[\mathfrak{M}_{n}, \mathfrak{M}_{m} ; K\right]$ is a convex set, hence it is the convex hull of its extreme points. The following theorem gives a thorough description of the structure of completely positive linear maps.

Theorem 5. Let $\Phi: \mathfrak{M}_{n} \rightarrow \mathfrak{M}_{m}$. Then Φ is extreme in $\mathbf{C P}\left[\mathfrak{M}_{n}, \mathfrak{M}_{m} ; K\right]$ iff Φ admits an expression $\Phi(A)=\Sigma_{i} V_{i}^{*} A V_{i}$ for all A in \mathfrak{M}_{n}, where V_{i} are $n \times m$ matrices, $\Sigma_{i} V_{i}^{*} V_{i}=K$, and $\left\{V_{i}^{*} V_{j}\right\}_{i j}$ is a linearly independent set.

Proof. 'The only if part'
Assume Φ is extreme in $\operatorname{CP}\left[\mathfrak{M}_{n}, \mathfrak{M}_{m} ; K\right]$. Express Φ in canonical form (Remark 4) $\Phi(A)=\Sigma V_{i}^{*} A V_{i}$ with $\left\{V_{i}\right\}$ linearly independent. Now suppose $\Sigma_{i j} \lambda_{i j} V_{i}^{*} V_{i}=0$, we wish to prove that $\left(\lambda_{i j}\right)_{i j}=0$.

We may assume that $\left(\lambda_{i j}\right)_{i j}$ is a hermitian matrix. (In fact, from $\Sigma \lambda_{i j} V_{i}^{*} V_{i}$ $=0$ we infer that $\Sigma\left(\lambda_{i j} \pm \overline{\lambda_{i j}}\right) V_{i}^{*} V_{i}=0$. Then, if we prove $\left(\lambda_{i j} \pm \overline{\lambda_{i j}}\right)_{i j}=0$, that will yield $\left(\lambda_{i j}\right)_{i i}=0$.) By a scalar multiplication, we may further assume $-I \leqslant\left(\lambda_{i j}\right)_{i j} \leqslant I$.

Define $\Psi_{ \pm}: \mathfrak{M}_{n} \rightarrow \mathfrak{M}_{m}$ by $\Psi_{ \pm}(A)=\Sigma V_{i}^{*} A V_{i} \pm \Sigma \lambda_{i j} V_{i}^{*} A V_{j}$. Hence $\Psi_{ \pm}(I)$ $=\Sigma V_{i}^{*} V_{i}=K$. Let $I+\left(\lambda_{i j}\right)_{i j}=\left(\alpha_{i j}\right)_{i j}^{*}\left(\alpha_{i j}\right)_{i j}$ and $W_{i}=\Sigma_{j} \alpha_{i j} V_{j}$. By direct computation, $\Psi_{+}(A)=\Sigma W_{i}^{*} A W_{i}$; thus Ψ_{+}is completely positive. In the same manner, Ψ_{-}is also completely positive. From $\Phi=\frac{1}{2}\left(\Psi_{+}+\Psi_{-}\right)$and the extremeness of Φ, we obtain $\Phi=\Psi_{+}$. By Remark 4 , $\left(\alpha_{i j}\right)_{i j}$ is an isometry. Therefore, $I+\left(\lambda_{i j}\right)_{i j}=I$, i.e., $\left(\lambda_{i j}\right)_{i j}=0$ as required.

Proof. 'The if part'.
Assume $\Phi(A)=\Sigma V_{i}^{*} A V_{i}, \Sigma V_{i}^{*} V_{i}=K$ and $\left\{V_{i}^{*} V_{i}\right\}_{i j}$ is a linearly independent set. (Consequently, $\left\{V_{i}\right\}_{i}$ is a linearly independent set.) Now suppose $\Phi=\frac{1}{2}\left(\Psi_{1}+\Psi_{2}\right)$ with $\Psi_{1}(A)=\Sigma W_{p}^{*} A W_{p}, \quad \Psi_{2}(A)=\Sigma Z_{q}^{*} A Z_{q}$, and $\Sigma W_{p}^{*} W_{p}$ $=\Sigma Z_{q}^{*} Z_{q}=K$. Since $\Psi(A)=\frac{1}{2} \Sigma W_{p}^{*} A W_{p}+\frac{1}{2} \Sigma Z_{q}^{*} A Z_{q}, W_{p}$ and Z_{q} can be expressed in terms of V_{i} (Remark 4). Let $W_{p}=\Sigma_{i} \mu_{p i} V_{i}$ for each p. Then $\Sigma V_{i}^{*} V_{i}=\Sigma W_{p}^{*} W_{p}=\Sigma_{p i j} \overline{\mu_{p i}} \mu_{p i} V_{i}^{*} V_{i}$, so $\Sigma_{p} \frac{p}{\mu_{p i}} \mu_{p i}=\delta_{i j}$; i.e., $\left(\mu_{p i}\right)_{p i}$ is an isometry. From Remark 4 again, we conclude that $\Phi=\Psi_{1}$; therefore Φ is extreme in CP[$\left.\mathfrak{M}_{n}, \mathfrak{M}_{m} ; K\right]$.

Remark 6. Suppose $\Phi: \mathfrak{M}_{n} \rightarrow \mathfrak{M}_{m}$ is completely positive. From Remark 4 , we can write Φ in the form $\Phi(A)=\Sigma_{i}^{\ell} V_{i}^{*} A V_{i}$ where $\left\{V_{i}\right\}_{i}^{\ell}$ is a class of linearly independent $n \times m$ matrices; hence $\ell \leqslant n m$. In case Φ is extreme in $\mathbf{C P}\left[\mathfrak{M}_{n}, \mathfrak{M}_{m} ; K\right], \ell$ can be reduced to $\leqslant m$. In fact, $\left\{V_{i}^{*} V_{j}\right\}_{i j}$ is a linearly independent set only if the cardinal number of $\left\{V_{i}^{*} V_{j}\right\}_{i j} \leqslant \operatorname{dim} \mathfrak{M}_{m}$, hence only if $\ell^{2} \leqslant m^{2}$, i.e., $\ell \leqslant m$.

In particular, if $m=1$, we obtain the well-known fact that Φ is a 'pure state' (an extreme identity-preserving positive functional) on \mathfrak{M}_{n} iff Φ is a 'vector state' (i.e., there exists a unit vector v such that $\Phi(A)=v^{*} A v$ for all A).

The general structure of positive linear maps is very complicated (see [9, Chapter 8]). We will treat it for 2×2 matrices only. Following is an 'almost global' property of positive linear maps.

Theorem 7. If $\Phi: \mathfrak{M}_{2} \rightarrow \mathfrak{M}_{m}$ is positive, then there exist $2 \times m$ matrices V_{i} such that $\Phi(A)=\Sigma_{i} V_{i}{ }^{*} A V_{i}$ for all 2×2 symmetric A.

Proof. We will associate each linear map with a matrix-coefficient quadratic form. First, we call attention to a known result (see [3, Theorem 2] for an elegant proof; the statement also appeared in an earlier paper [6, Appendix III]): Let F be an \mathfrak{M}_{m}-coefficient quadratic form $F(s, t)=B_{1} s^{2}+$ $B_{2} s t+B_{3} t^{2}$ with real indeterminates s, t. If $F(s, t)$ is positive for all s, t, then there exist $k \times m$ matrices C, D, such that $F(s, t)=(C s+D t)^{*}(C s+D t) .(k$ is a certain integer.)

Now suppose Φ is positive, then $\Phi\left(\left[\begin{array}{cc}s^{2} & s t \\ s t & t^{2}\end{array}\right]\right)$ is positive for all real s, t; i.e., $F(s, t)=\Phi\left(E_{11}\right) s^{2}+\Phi\left(E_{12}+E_{21}\right) s t+\Phi\left(E_{22}\right) t^{2}$ is a positive \mathfrak{M}_{m}-coefficient quadratic form. From the preceding paragraph, there exist matrices C, D such that $\Phi\left(E_{11}\right)=C^{*} C, \Phi\left(E_{12}+E_{21}\right)=C^{*} D+D^{*} C$, and $\Phi\left(E_{22}\right)=D^{*} D$. Define $\Psi: \mathfrak{M}_{2} \rightarrow \mathfrak{M}_{m}$ by

$$
\left(\Psi\left(E_{i k}\right)\right)_{i k}=\left[\begin{array}{cc}
C^{*} C & C^{*} D \\
D^{*} C & D^{*} D
\end{array}\right]
$$

then Ψ is completely positive from Theorem 2. Since Φ agrees with Ψ on every symmetric matrix, we obtain the desired expression from Theorem 1.

We remark that Theorem 7 is not valid for higher order matrices. This is just because the quoted result for an \mathfrak{M}_{m}-coefficient quadratic form cannot be generalized to the case of more than 2 real indeterminates, as will be shown in a forthcoming paper.

The author would like to express his thanks to Prof. Chandler Davis for stimulating discussions on related topics. Partial material of this paper has appeared in the author's PhD. Thesis at the University of Toronto.

REFERENCES

1 W. B. Arveson, Subalgebras of C^{*}-algebras, Acta Math. 123, 141-224 (1969).
2 W. B. Arveson, Subalgebras of C^{*}-algebras II, Acta Math. 128, 271-308 (1972).
3 A. P. Calderón, A note on biquadratic forms, Linear Alg. Appl. 7, 175-177 (1973).
4 M. D. Choi, Positive linear maps on C^{*}-algebras, Canad. J. Math. 24, 520-529 (1972).

5 R. D. Hill, Linear transformations which preserve hermitian matrices, Linear Alg. Appl. 6, 257-262 (1973).
6 T. Koga, Synthesis of finite passive n-ports with prescribed positive real matrices of several variables, IEEE Trans. Circuit Theory, CT-15, 2-23 (1968).

7 J. dePillis, Linear transformations which preserve hermitian and positive semidefinite operators, Pacific J. Math. 23, 129-137 (1967).
8 W. F. Stinespring, Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc. 6, 211-216 (1955).
9 E. Størmer, Positive linear maps of operator algebras, Acta Math. 110, 233-278 (1963).

Received 24 October 1973; revised 4 October 1974

