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A B S T R A C T

The number of particulate delivery systems for biologics is negligible compared to liquid

dosage forms, signifying the complications associated with development of solid protein

delivery systems. Particulate protein delivery systems can improve stability, reduce viscos-

ity of suspensions at high protein concentration and allow for controlled drug release. This

review discusses current advances in controlled delivery of particulate protein formula-

tions.While the focus lies on protein crystals and delivery systems employing protein crystals,

amorphous protein particles will also be addressed. Crystallization and precipitationsmethods

and modifications allowing controlled delivery with and without encapsulation are sum-

marized and discussed.

© 2016 Shenyang Pharmaceutical University. Production and hosting by Elsevier B.V. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Keywords:

Protein crystals

Protein particles

Protein delivery

Controlled release

1. Introduction

With the increasing number of biologics in the pipelines of phar-
maceutical manufacturers, approaches enabling improved
stabilization and delivery of these molecules are increasingly
sought-after. Administration of biologics via the gastro-
intestinal tract frequently yields poor bioavailability because
of low intestinal absorption and enzymatic and chemical deg-
radation of proteins prior to absorption, although some progress
has been made in the case of peptides [1–3]. Consequently, par-

enteral administration is still the most common route of
administration for protein pharmaceuticals. The vast major-
ity of biologics for parenteral application nowadays are
marketed as liquid or lyophilized formulations, but both pre-
sentations are associated with specific advantages and also
some drawbacks and intricacies. Specifically, liquid presenta-
tions are convenient to use but require meticulous optimization
of formulation composition, especially with regards to formu-
lation pH, ionic strength and stabilizing excipients to achieve
optimal physical and chemical stability [4]. Lyophilized bio-
logic drug products apart from optimization of the formulation
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often require product-specific development or optimization of
the lyophilization process to safeguard product quality while
achieving commercially viable lyophilization process dura-
tions. However, lyophilization often results in high physical and
chemical stability enabling shelf life of 3 to 5 years and may
also be advantageous if highly concentrated solutions must be
administered (up-concentration by lyophilization) [5,6].

Moreover, several additional requirements regarding toler-
ability and applicability of the formulation have to be factored
in when developing liquid or lyophilized drug products. Beyond
sterility, appropriate tonicity and pH-value, protein concen-
tration is a main parameter, especially when dealing with high
doses administered by subcutaneous or intramuscular injec-
tion, where injection volume is strictly limited. Apart from
detrimental effects on physical stability, increasing protein con-
centrations frequently result in increased viscosity and/or
opalescence affecting the injectability of the formulation and
complicating visual inspection [7,8].

In addition to the challenges associated with develop-
ment and stabilization of biologics formulations, standard liquid
and lyophilized forms result in almost all cases in immedi-
ate drug release. Frequent application due to the short
circulation half-life of numerous therapeutic proteins repre-
sents a significant burden for patients and sustained drug
release would be beneficial. However, low drug load, protein
degradation during encapsulation and low stability of the en-
capsulated protein during storage and after administration
complicate development of polymeric protein delivery systems
[9,10].

Crystalline protein formulations may represent an inter-
esting alternative as protein crystals are densely packed
allowing high drug loading, they have a reduced surface area
reducing interactions with the solvent and polymeric scaf-
folds and show improved stability compared to amorphous
formulations [11–13]. Furthermore, dissolution rate of protein
crystals can be controlled without requiring encapsulation into
a polymeric system [14]. Processing and administration of
protein drug products also benefits from crystalline forms: vis-
cosity of suspensions is substantially lower than that of equally
concentrated protein solutions, allowing higher drug loading
and simplifying administration [15]. In addition, interactions
with aqueous or organic media are reduced and the protein
stability at elevated temperatures is improved [16]. Despite these
advantages, the crystallization of proteins with and without
subsequent encapsulation for controlled delivery is still in its
infancy, and previous reviews on this topic mainly have dealt
with general suitability [17] as well as the upscaling and char-
acterization of protein crystals [16].

In this review, we present the latest developments in the
crystallization of pharmaceutically active proteins as well as
give an update on the progress in delivery and encapsulation
methods of amorphous protein precipitates and protein crystals.

2. Particle production methods

Defining optimal conditions for protein crystallization and pre-
cipitation can be tedious, and the transfer of crystallization
conditions betweenmolecules is typically unsuccessful, leading

to the notion that protein crystallization is rather art than
science. In order to prepare protein crystals, a protein solu-
tion has to be transferred into a thermodynamically unstable
supersaturated state which returns to equilibrium by devel-
opment of a crystalline or amorphous phase. For crystallization,
it is the goal to increase the interactions between two protein
molecules so that a well ordered arrangement takes place while
nonspecific aggregation is avoided [18]. In general, the native
conformation is maintained during and often preserved ef-
fectively after crystallization (see chapter 2.3.). There exists a
wealth of knowledge about protein crystallization with focus
on purification or structure determination [19] but much less
research efforts were made toward manufacturing of larger
batches. For elucidation of the protein structure, only a few large
but almost perfect crystals are needed, typically produced in
very small scale. However, in order to produce crystalline protein
drug substance at commercial scale, batch crystallization
methods appear to be the most suitable option (chapter 2.1.).
The formation of protein particles is a wide field with count-
less methods published, a selection of which is presented in
chapter 2.2.

2.1. Preparation of protein crystals by
batch crystallization

Batch crystallization is the production of uniform crystals in
a large scale, preferably with a high yield [20]. In general, the
strategy is to quickly reach a high level of supersaturation of
the protein so that numerous crystallization nuclei are formed
simultaneously followed by a growth phase, whereby all nuclei
grow in parallel, reaching the same size (Fig. 1A). This process
is often initiated by a liquid–liquid phase separation between
the protein and the solvent, followed by a first nucleation within
the protein droplets [23]. According to the classical nucle-
ation theory, more nuclei are formed if the difference of Gibbs
free energy (ΔG) is largely negative, i.e. the system reaches a
lower free enthalpy. With the free enthalpy ΔG being related

to the chemical potential by μ = ∂
∂( )G
n p T,

systems tend to spon-

taneously ‘escape’ to lower chemical potentials as this leads
to a reduction of the free enthalpy if other parameters, par-
ticularly the pressure p and the temperatureT are held constant.
Thereby, supersaturated solutions are thermodynamically in-
stable as the chemical potential in the supersaturated state is
higher as compared to the solid aggregate state – hence, these
systems tend to aggregate with crystals frequently forming the
lowest free enthalpy state. Accordingly, dissolved proteins in
a supersaturated state spontaneously aggregate and thereby
form nuclei on which further protein will deposit. The speed
and extend at which supersaturation is reached strongly affects
nuclei size and size distribution [24], but if the degree of su-
persaturation is pushed too high, precipitation takes place [20].
Commonly, supersaturation is reached bymixing a solution con-
taining a high concentration of precipitating agent to a protein
solution or by a rapid temperature drop. For the crystalliza-
tion of individual proteins, different buffers and precipitating
agents like salts, glycol, alcohols or poly(ethyleneglycol)s are
required [25,26]. Decreasing the solvation of the protein is the
primary goal for crystallization. For example, ‘salting out’ a
protein by the addition of kosmotropes (e.g. sodium, lithium,
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fluoride, sulfate or phosphate) has proven to be effective for
crystallization [18].

The subsequent growth phase may take place within a few
seconds up to several days [27]. As for all the other protein crys-
tallization methods (e.g. sitting drop, hanging drop, etc.),
individual screening and optimization is required for batch crys-
tallization of proteins. For systematic screening, methods may
be based on statistical design of experiments, allowing the ef-
ficient determination of main factors affecting crystallization.
Protein concentration, type of precipitant, ionic strength, pH
and temperature are important parameters to consider in such
experiments.Moreover, Ostwald ripeningmay occur over longer
periods of time, favoring formation of larger crystals if the so-
lution is not being stabilized [28–30].

Batch crystallization conditions are frequently explored using
water vapor diffusion experiments with subsequent transfer
to micro-batch and to large batch crystallization [22,31]. A two
or more dimensional phase diagram can be produced narrow-
ing down the optimal conditions for crystal growth (Fig. 1B)
and describing the interactions and influence of two or more
variables on the solubility of the protein [32].

Insulin is probably one of the most prominent examples for
protein crystallization with batch crystallization being still in-
vestigated and developed. One recent example is the study by
Nanev et al. introducing a method for insulin batch crystalli-
zation [21]. Various crystal sizes between 18 and 57 μm with
narrow size distributions could be achieved by high super-
saturation of the protein solution. Insulin was dissolved in a
citrate buffer at pH 7 in the presence of ZnCl2 and acetone, and
the solution was preheated to 50 °C. Nucleation was initiated
by a rapid temperature drop. Parameters for the crystal size
were insulin concentration, crystal growth time and growth
temperature.

Crystallizing proteins by complexation with metal ions like
Zn or other ionic molecules (e.g. protamine, ionic liquids) has
not only proven to be effective but also to delay dissolution,
offering the possibility to serve as a delivery system without
further processing [14,33–36].

Recent advances in crystallization of pharmaceutically active
drugs have been made in the field of monoclonal antibodies:
trastuzumab, rituximab, infliximab [15] and anti-hTNF-alpha have

successfully been crystallized [37,38]. Furthermore, batch crys-
tallization of human growth hormone (hGH) was reported [39].

Apart from the potential advantages associated with the use
of protein crystals as drug delivery system, batch crystalliza-
tion of recombinant proteins and antibodies can be employed
for NMR characterization or downstream processing. Such
methods may develop into cost-effective alternatives to X-ray
diffraction or Protein A or ion exchange chromatography, re-
spectively in the future [40,41].

2.2. Preparation of amorphous protein particles

The production of amorphous protein particles can be achieved
by mild processes that preserve the bioactivity of therapeutic
proteins such as freeze drying, spray-drying, spray-freeze-
drying and the precipitation in supercritical fluids. Freeze drying
of a protein/PEG blend solution and subsequent removal of PEG
from the matrix has proven to yield precipitated protein par-
ticles with homogenous size distribution [42]. Spray-drying of
proteins is widely used for protein particle production, e.g. re-
combinant human anti-IgE and recombinant human
deoxyribonuclease could be spray dried with and without ad-
dition of excipients and yielded in stable particles [43]. Spray-
freeze drying is a modification of the standard spray drying
process and offers the production of protein particles without
the threat of degradation by heat. The sprayed protein drop-
lets are collected in liquid nitrogen and are subsequently
transferred to a freeze dryer [44,45]. Genentech and Alkermes
developed a product consisting of hGHmicroparticles that were
encapsulated in PLGA in amorphous form (Nutropin Depot).
Particles of hGH were suspended in a solution of PLGA and
spray-freeze-dried into liquid nitrogen.

Supercritical antisolvent precipitation technique (SAS) was
demonstrated to provide protein particles by spraying solu-
tions of various proteins dissolved in DMSO into concurrently
flowing supercritical CO2 [46]. Supercritical CO2 acts as a solvent
for DMSO but is a non-solvent for proteins (e.g. insulin, trypsin,
and lysozyme) and thus leads to protein precipitation. After
evaporation of the solvents, the protein particles can be
collected.Advantagesof SASare the lowprocessing temperatures
as well as the low toxicity of excipients used in the process.

Fig. 1 – (A) Theoretical depiction of the time course of nucleation and subsequent crystal growth. Reprinted from [21] with
permission from Elsevier. (B) Phase diagram of lysozyme crystallization. Reprinted and minimally adapted from [22] with
permission from Elsevier. For efficient crystallization the aim is to surpass the supersolubility curve but to stay in the
nucleation zone to avoid precipitation.
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Further methods of protein precipitation are summarized
in chapter 5.

3. Stability of protein crystals

Studies on the stability of protein crystals have been per-
formed and discussed before [11]. For insulin, it was found that
the dried amorphous form possess higher stability, whereas
insulin crystals were found to be more stable suspended in
aqueous media [47]. However, several other examples re-
vealed an increased overall stability of crystalline proteins.
Shenoy et al. compared the crystalline and amorphous forms
(with and without stabilization agents like sucrose and tre-
halose) of glucose oxidase and lipase and found increased
stability of the protein crystals [11]. Elkordy et al. obtained
similar results for lysozyme [13].

The cause of the stabilizing effect of the crystalline state
can be derived from the Hofmeister series. Effect of salts on
stability of proteins in relation to the Hofmeister series has been
investigated by Broering et al. [48]. With increasing concen-
tration of kosmotropes, proteins are increasingly excluded from
(aqueous) solvents, reducing potential risk of degradation. As
mentioned above, kosmotropes are often found to promote
protein crystallization, suggesting a relationship between the
stabilizing effects of the kosmotropic ions and the
desolvatization during crystallization. Collins evaluated the sta-
bilizing effects of kosmotropes on proteins and underlined the
relationship between the stabilizing effect and their capacity
to crystallize proteins [18]. Protein stabilization and crystalli-
zation are both initiated by an exclusion of protein surface from
the solvent forcing the protein to reduce its surface to a
minimum.The structure having minimum surface usually rep-
resents the native state. This process can be continued until
interactions between protein molecules lead to a well-ordered
combination of more and more molecules to finally yield a
crystal lattice in which all protein molecules are bound in their
native state.

Frequently, organic solvents are used to encapsulate pro-
teins into organic polymers. To prevent the crystals from
dissolving during encapsulation, the solubility of proteins in

the used solvents should be considered as the integrity protein
crystals in the presence of organic solvents will only be main-
tained if dissolution is minimal. Chin et al. have shown for 34
solvent systems that solubility of lysozyme, a protein with high
aqueous solubility, depends on hydrophobicity of the solvent
(logP) and thus can be predicted for other solvents [49]. However,
a certain aqueous layer is still required to maintain the native
conformation of the protein, leading to the common recom-
mendation that proteins should only be dried to a certain
(maximally preserving) extent [50].

4. Delivery systems employing protein
crystals

In principle, controlled release from protein crystals can be
achieved either with or without encapsulation of crystals into
a polymeric system. Since some protein crystals already show
delayed dissolution encapsulation can be avoided in some cases.
As an example, insulin crystals formed by complexation with
zinc or protamine are capable of sustaining insulin release after
subcutaneous application [51,52]. In contrast, encapsulationmay
protect proteins from destabilizing environmental condi-
tions such as humidity, extreme pH and light.

4.1. Unmodified protein crystals

Brader et al. developed an insulin co-crystal composed of
human insulin and octanoyl modified insulin [53]. The modi-
fication with octanoyl residues was achieved by covalent
conjugation to LysB29 of human insulin. Thereby, hydropho-
bicity was increased without affecting bioactivity. Co-
crystallization of unmodified and modified insulin at different
ratios yielded insulin crystals with overall prolonged dissolu-
tion behavior (Fig. 2).

Similarly, recombinant human interferon α-2b (rhIFN) che-
lated with Zn ions showed sustained release from protein
crystals [54]. Crystals were produced by hanging drop vapor
diffusion method in the presence of zinc acetate and sodium
acetate. Several morphologies were obtained by varying pH, ionic
strength and the addition of further precipitants like PEG of

Fig. 2 – (A) Schematic drawing of co-crystallization of insulin with octanoyl (C8) modified insulin. (B) Dissolution rate of
insulin crystals with different ratios of C8 insulin. Open symbols represent unmodified insulin, filled symbols C8 insulin.
Reprinted by permission from Macmillan Publishers Ltd [53].
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different molecular weight. Biological activity of rhIFN was re-
tained and in vitro dissolution showed an initial burst over 8 h,
followed by a subsequent release over up to 48 h.

Shi et al. developed a method for batch crystallization of
rhIFN [35]. In this study, a semi-crystalline structure was formed
bymolecular self-assembly of the protein and protamine sulfate
in the presence of zinc acetate. Spherical, monodisperse semi-
crystals were obtained with adjustable ratios of protamine in
the semi-crystal. Dissolution depended on the relative amount
of protamine in the particles. Increasing ratios of protamine
to rhIFN resulted in reduced dissolution of crystals, achiev-
ing release for up to one week. In vivo experiments confirmed
the delayed dissolution, resulting in extended blood levels for
up to seven days for the highest protamine to rhIFN ratio.

4.2. Protein crystal encapsulation

Human growth hormone (hGH) crystals were obtained by
batch crystallization using two different approaches [39]. Ad-
mixing sodium acetate and PEG 6000 and incubating over
12–16 h at 33 °C produced circular crystals with yields over
90%. In contrast, crystallization of hGH with zinc and acetone
as precipitating agents for 21–24 h at 15 °C resulted in hex-
agonal crystals (yield > 50%). Crystals were coated either with
the poly(arginine) or protamine simply by overnight incuba-

tion in the crystallizationmedium. Protein structure and activity
could be completely retained. After coating of crystals, in
vitro dissolution was significantly prolonged. However, no dif-
ferences between the two coatings were observed. In vivo
tests of poly(arginine) coated hGH crystals in monkeys re-
vealed elevated serum levels of hGH for about 7 d and an
increased induction of IGF-1 serum levels compared to soluble
hGH.

Crystallized lysozyme was encapsulated by Puhl et al.
into nonwovens by dispersing the crystals in organic
poly(caprolactone) (PCL) solution followed by electrospinning
of the suspension (Fig. 3A) [55]. Electrospinning results in an
immensely increased and well controllable surface of the de-
livery systems and allows generation of various macroscopic
morphologies optimally adapted to the site of application.
Protein crystals withstood the encapsulation process and were
found to be located discretely within the electrospun fibers
(Fig. 3B), and loading could be adjusted between 0.25 and 5%
(m/m). It was shown that release depended on the size of the
protein crystals and the diameter of nonwoven fibers as well
as the polymer composition. Burst release was controlled within
broad margins by varying the crystals size and the fiber di-
ameter (Fig. 3C). It was found that higher ratios of fiber diameter
to crystal size resulted in reduced burst release. Moreover, the
addition of polidocanol to the polymer matrix prior to

Fig. 3 – (A) Schematic depiction of encapsulation of protein crystals by electrospinning. (B) Micrograph of distribution of
FITC labeled lysozyme crystals incorporated within a PCL fiber with a loading of 5% m/m. (C) Cumulative lysozyme release
from electrospun nonwovens with different fiber diameters while keeping lysozyme crystal size constant (2.1 μm).
(D) Cumulative lysozyme release from electrospun nonwovens with different polymer compositions. (C) Reprinted with
permission from [55]. Copyright (2014) American Chemical Society. (D) Reprinted from [56] with permission from Elsevier.
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electrospinning increased overall release, altering the release
mechanism. Release rate modification was achieved by the ad-
dition of PLGA for controlled release over several days (Fig. 3D)
[56].

Crystalline recombinant human insulin was encapsulated
in PLGA microspheres by a solvent extraction method by sus-
pending insulin crystals in PLGA dissolved in DCM [57]. By
dispersing this system in an aqueous solution with 5% PVA,
a solid-in-oil-in-water (S/O/W) suspension was formed. After
DCM evaporation, insulin loaded PLGA microspheres could be
collected (Fig. 4A). Loading was adjustable between 2.5 and 10%,
and encapsulation efficiency ranged between 99 ± 10% and
78 ± 1%, at 2.5 and 10% loading, respectively. The release rate

increased with higher loading and exhaustive release was
reached after 2–3 weeks (Fig. 4B).

5. Delivery systems employing non-
crystalline protein particles

Particulate protein delivery is a very broad field, and fre-
quently it is not possible to identify the exact physical state
of protein particles (i.e. amorphous or crystalline). However,
protein particles share some of the advantages of protein crys-
tals (e.g. dense packaging and reduced surface area). In addition,

Fig. 4 – (A) Encapsulation of insulin crystals into PLGA microcapsules by solvent evaporation from an S/O/W system. (B)
Cumulative insulin release from PLGA microspheres with different loading % m/m. Reprinted from [57], with permission
from Elsevier.
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encapsulation technologies suitable for protein particles may
be transferrable to crystalline proteins. Differences between
simple protein particles and protein crystals are likely to be
found in dissolution rate and thermodynamic stability.

Significant research and development efforts in this field were
focused on insulin delivery through inhalation. Exubera®, a spray
dried insulin formulation for pulmonary application, was the
first marketed product but has been taken off the market due
to insufficient acceptance and disappointing sales figures [54].
MannKind Corporation is the only company further pursuing
inhaled insulin delivery at the moment. In June 2014,MannKind
was able to get its fast acting inhalable insulin (Afrezza®) ap-
proved by the FDA [58]. Major improvements of inhaler
technology resulting in significantly smaller inhaler design than
Exubera® in conjunction with its high efficacy and rapid onset
of action is hoped to result in a commercially viable product [59].

However, the production and application of spray-dried
protein particles is a topic of its own and does not necessar-
ily comprise the purpose of protein delivery as a particulate
system. Detailed information on spray drying of proteins the
reader is referred to [60]. Herein, we discuss spray-dried protein
particles only in cases where obtained particles were in-
tended for drug delivery to the human body and not only
prepared for stabilizing reasons.

5.1. Unmodified non-crystalline protein particles

Under normal conditions, amorphous protein particles dis-
solve rapidly and therefore do not allow sustained release.
Consequently, protein particle production without further pro-
cessing is mainly applied when pulmonary application is
intended.

As a typical example, recombinant human insulin par-
ticles suitable for pulmonary application were produced by
precipitation of insulin and subsequent spray-drying of the re-
sulting suspensions [61]. First, protein particles of different sizes
were produced by the addition of various amounts of metha-
nol to an aqueous insulin solution under stirring. Subsequently,
either suspensions of these particles or a particle free protein
solution were spray-dried to yield a free-flowing powder with
particle sizes of approx. 1–5 μm. The largest precipitates kept

their original size after spray-drying while smaller particles ag-
glomerated during spray-drying.The aerodynamic behavior was
investigated with a New Generation Impactor (NGI), and all
preparations were found to be superior compared to Exubera®.
While all insulin particles from the spray-dried suspensions
had no significant difference in aerodynamic behavior, the
spray-dried solution had the smallest fine particle fraction,
which is considered to reach the lung.

5.2. Encapsulation of non-crystalline protein particles

Human growth hormone (hGH) particles were produced by ly-
ophilization of buffered protein solution with addition of zinc
acetate [62]. Zinc was used to reduce the solubility of hGH.The
lyophilisate was densified, followed by regrounding to a powder.
After sieving through a 212 μm screen, protein particles with
defined size were obtained. Both the precipitation with Zn and
the densification reduced the dissolution rate significantly. Un-
treated hGH particles dissolved instantaneously, while complete
dissolution of the densified particles required 20 min and com-
plexation with Zn prolonged the dissolution time-scale to hours.
For encapsulation, PLGA was dissolved in either 1-methyl-2-
pyrrolidone, triacetin, ethyl benzoate or benzyl benzoate and
the protein particles were dispersed therein. Injection of these
suspensions in aqueous medium produced PLGA gels, which
served as a protein particle depot. Release was evaluated in vivo,
and serum hGH levels were measured. After an initial burst
the release lasted up to 28 d.

In another study, lyophilized recombinant human growth
hormone powder was encapsulated in PLGA by S/O/Wmethod
[63]. PLGA was dissolved in dichloromethane and the protein
powder was dispersed therein. Injection in water/
poly(vinylalcohol) generated an S/O/W emulsion from which
DCM was evaporated under stirring until particles were ob-
tained. Particles larger than 74 μmwere removed and a powder
suitable for s.c. injection was obtained. Complete protein release
in vitro was achieved within several weeks (Fig. 5A). In vivo
release behavior of different formulations with ammonium
acetate and ZnO as well as different PLGA types was investi-
gated, and elevated serum hGH concentrations were observed
for all formulations over approximately 16 d (Fig. 5B).

Fig. 5 – (A) Cumulative hGH release from PLGA microspheres with 7% protein loading. hGH was precipitated with 0.5% m/m
zinc oxide. (B) Serum hGH levels in immunosuppressed rats after a single s.c. injection of hGH loaded PLGA microspheres
with different amounts of zinc oxide. Reprinted from [63], with permission from Elsevier.
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Hen egg lysozyme particles were incorporated in an in situ
forming biodegradable microparticle system (ISM) [64]. The
protein was dissolved together with PLGA either in pure di-
methylsulfoxide (DMSO) or DMSO with ethyl acetate and water.
Ethyl acetate precipitated lysozyme and thus in dependence
of the solvent composition either dissolved or homoge-
neously precipitated lysozyme was incorporated. These
solutions/suspensions were emulsified into sesame oil. After
injection into aqueous medium, a homogeneous microparticle
system was produced.The protein was released over approxi-
mately two weeks, and bioactivity was almost completely
retained while the precipitated lysozyme showed slightly greater
activity compared to the unprecipitated protein.

6. Conclusions

Administering proteins in the crystalline or particulate state
represents a versatile and suitable mode of protein delivery.
However, finding the right crystallization conditions usually is
expensive and time consuming and probably not every protein
can be crystallized. This investment may pay off though, con-
sidering the benefits of storage and processing stability. In most
cases, the crystalline state surpasses the amorphous particu-
late state in terms of thermodynamic and physical stability.
Moreover, crosslinking or crystallization with excipients like
protamine may further increase stability and reduced energy
within the crystal lattice may reduce dissolution rates offer-
ing delivery without further encapsulation.

If crystalline protein cannot be obtained, amorphous par-
ticulate protein represents an alternative.Thereby, high loading
and reduced surface area in contact with potentially harmful
environments can also be achieved.

Producing particulate protein for delivery, both crystalline
and amorphous, is still a rather unnoticed field.With growing
expertise on protein crystallization methods as well as protein
stability itself, delivery is coming more and more into the focus
of the formulation scientists and protein crystallization is slowly
moving away from being solely used for purification and struc-
ture analysis.While momentarily the limits caused by the costs
and efforts to be invested often prevail the benefits, this may
change with increasing knowledge in protein batch crystalli-
zation and thus decreasing hurdles for the exploration of new
crystallization protocols.

As soon as uniform crystals or precipitated powder is ob-
tained, well established encapsulation methods can be applied.
S/O/W solvent deposition, electrostatically driven coating and
electrospinning have proven to be applicable.

Release rates are well controllable although an exhaustive
release is not always given for larger macromolecules because
their diffusion in polymer matrices is slow. Bioactivity and in
vivo experiments underline the compatibility of crystalline and
particulate protein formulations for controlled delivery.

Finally, another major point has to be considered: the ra-
tionale why one would seek a long term stabilized protein
formulation with complex release mechanisms. A convention-
ally designed protein formulation is very well capable to
maintain the protein’s integrity over a sufficient timespan.
Either protein solutions with the addition of stabilizing agents

or lyophilized protein powders that are reconstituted in pre-
mixed buffers prior to application, mostly offer effective
stabilization. Besides that in vitro stability and in vivo half-life
differ from protein to protein. The nature of monoclonal an-
tibodies mostly grants them a long circulation in the human
body even without controlled release mechanisms. Peptide hor-
mones on the other hand often need frequent administration,
sometimes even several times a day. For tissue engineering,
growth hormones benefit from a site directed and controlled
release. Consequently, for the former group, the develop-
ment of a drug delivery system is far less useful, while for the
latter group, efficient drug delivery would significantly improve
patients’ lives.
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