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I. INTRODUCTION

A Hill’s equation is an equation of the form

V' +A—q@@))y=0

q(z + 7) = ¢(2), O

where g(2) is assumed to be integrable over [0, #]. Without loss of generality,
it is customary to assume that

Jm g(z)dz = 0.
0
The discriminant of (1) is defined by

A(A) = yi(m) + y¢'(),

where y; and y, are solutions of (1) satisfying

3(0) = 3,(0) =1

and
¥1'(0) = y,(0) = 0.

Pertinent information about the analytic structure of the discriminant
can be found in Magnus and Winkler [1]. 4(A) is an entire function of order
1/2 and A(A) — 2 has infinitely many zeros with no finite limit point. To
each zero there corresponds a solution of (1) satisfying

¥m) =3(0) and  y'(m) = y'(0).

* Taken from a dissertation submitted to the Faculty of the Polytechnic Institute
of New York in partial fulfillment of the requirements for the degree of Doctor of
Philosophy (Mathematics).
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This condition, combined with (I), defines a self-adjoint boundary value
problem. It has only real eigenvalues which are the zeros of A(A) — 2.
They are denoted by A, (f = 0, [, 2,...) and are arranged so that
Ag <A A <Ay A<,
Similarly, the eigenvalues corresponding to the boundary condition
y@) = —3(0) and (7)) = —y'(0)
are the zeros of 4(A) 4 2 which are denoted by A/ (i = 1, 2,...) and are
arranged so that
AT S <Ay A <

The two sequences are interlaced so that

Ao <A A <A A <A A <
The following intervals are now formed:

(—o0, A], (Ao » A7), T, AT (A, AL, [Ar s Aslseee

In the intervals of type (— o0, Ag] and [Ag_; , As,] We have 4 > 2. In those
of type (g , Agnyy) and (g, , Aoy} We have | 4 | < 2. In intervals of type
Ao 15 As,] We have 4 < —2.

For values of A such that | 4 | > 2, (1) has no solution which is bounded
for all real . When | 4| = 2, there exists at least one bounded solution.
When | 4| < 2, all solutions of (1) are bounded for all real .

Therefore, the intervals for which | 4 | < 2 are called stability intervals,
while the remaining intervals are called instability intervals. All instability
intervals are finite except for (— o0, Aj].

The following result will be proved.

THEOREM. If g(2) is real and integrable, and if precisely n finite instability
intervals fail to vanish, then q(z) must satisfy a differential equation of the form

g 4+ H(q, ¢ ,.., ¢*"¥) =0, a.e., 2)
where H is a polynomial of maximal degree n + 2.
Borg [2], Hochstadt [3], and Ungar [4] proved this theorem for the case
n =, i.e., when all finite instability intervals vanish, and found that
g(z) =0, ae. ©)

For the case n = 1, Hochstadt [5] showed that ¢(z) is an elliptic function
that satisfies

¢" =3¢"+ g+ B, ae, “)
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where 4 and B are constants. Equations (3) and (4) are equivalent to (2)
for the cases n = 0 and 1, respectively. In particular, for the case n = 2,
the explicit expression of (2) is

q¥® = 10gq" + Aq¢" + 5(¢'* — 10¢® 4 Bq® + Cq + D, ae., (5)

where 4, B, C, and D are constants.

Erdelyi [6] investigated a Hill’s equation where ¢(2) is a Lame function
and discovered situations where all but a finite number of finite instability
intervals vanish. Equation (4) provides a converse to some of his results.

Lax [7] later showed that if g(2) is a periodic solution of

cq + K,(q) =0, (6)

where ¢ is a constant and K,, is an nth order Korteweg—deVries operator,
then the Hill’s equation (1) has only a finite number of instability intervals.
Equations (3), (4), and (5) are equivalent to (6) when 7 is 0, 1, and 2, respec-
tively, and hence provide a converse to Lax’s result for these cases.

Hochstadt [5], also proved that ¢(2) is infinitely differentiable a.e. when
n finite instability intervals fail to vanish. We assume this result throughout
this paper.

II. A Necessary LEmMMA

As in [5], y, is represented by the series

P

7o) = X s, (7a)
where
wy(2) = (sin AV/2z)/AL/2 (7b)
and
wun(@) = (187 [ " sin N2z — ) () we(0) dL. (7c)

We let Q(2) = |, o q() d¢ and write w,(2) in the form
wi(2) = fi(?) sin A2z 4 g,(2) cos AL/22, (8)

We now prove the following.

LemMa. Let q(z) be infinitely differentiable. Then

fl2) = ;0 [(P(=))/(F71%)] + O[1j(v+r+2)] (k= 1,2,...) (9)
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and

M
g®) = Y [(RFE)/(VF] + O[1j(Me+n] (k= 1,2,.),  (10)
120
where Py and R are polynomials in Q and q plus integral terms, P is a
polynomial in Q, q, q',..., %2 plus integral terms, and R is a polynomial
m Q,q,..., g%V plus integral terms. Furthermore, the maximal degree of
the nonintegral terms in P/* and R/* is k.
The proof is accomplished by induction. By repeated integrations by
parts, we get, for & = 1:

(%) = sin Al/2z iv (=1)g 7¢) +q(2n)(0)] 0[ ; ]

22nT2)\n13/2 ANT5/2

-+ cos Al/2g S

g, § I 0] g 1y

which can be put in the form of (9) and (10). (For details see Appendix 1.)
We now substitute series (9) and (10) into (7c¢) and perform repeated
integrations by parts. This yields

TR
Wyyq = sin AM2z g l (%) Z kl_}(_{:l
k 0 (2n)
N (_l)n [Q(z) Z Akiz(132 + ( )Z AL+Z(1/)2]
+ 22)14—2)\111-1

n=0

v 1 a0 D g 1 B

—I_ Z 2211+1/\n+1/"

n=1

Folgkd

- cos Al/2z g

M
P
2)\1/2f (C) /\Ml—l(?z dl

M 2 (2n)
v [ Y, ;,fff a@ Y, 2]
+ 22n+2/\n+1

n=0¢

(1 [ 3 D ) 5 O]

N
+ Z 22n+1/\n+1/2
n=1
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(For details, see Appendix I.) Hence,

M Pk+l( ) 1
Jen(2) = Z  NeAmAL2 +0 ()\k+M+3/2)

and

REF(2) |
gk+1(z) Z Ae+m+l + % ( AM+R+L )’

m=0

where

Phe) = 4 [ o) RoQ) 4L

+ ] ;,::, ,, (=1)"[P(z) Q(;)nj; Pi(0) g(z)]*"

_ - (— 1)n—1[le(z) q(z\ + _R,L(O) af 2Y](2n-1)
+ ¥ ST (11
I+n=m
n£0

and

Rife) = — 3 [ q@) Pai(0) ¢

Y (=1)"[R*(z) g(=) — RH0) g(z)]*"

2n+2
I+n=m 2

+ 3 (— 1) 1[P}(z) q(;z)n:1 P0) g@ 2

l+n=m+1

A multiplication by ¢ increases the maximal degree of each term in (11)
and (12) by 1. Furthermore, for fixed m > 0, the highest order terms in
the nonintegral parts of P5,™ and RiH are ¢®m-2 and ¢®m-V, respectively.
For m = 0, the nonintegral parts of Pit' and R{™ are polynomials in ¢
and Q.

Therefore, PL™ consists of a polynomial of maximal degree %2+ 1 in
0,4 ¢, 9®"? plus integral terms, and RE™ consists of a polynomial
of maximal degree 2+ 1 in Q, g, ¢',..., ¢®™ 1 plus integral terms.

The proof of the Lemma is now complete.
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I1I. ProoF oF THEOREM

The proof of the theorem is accomplished by investigating the related
problem

u" + [A — ¢g(z + 7)]Ju = 05 7 real, arbitrary (13)

and by assuming the result [5] that ¢() is infinitely differentiable a.e. when
n finite instability intervals fail to vanish.
Let uy(2) denote the solution of (13) which satisfies

u,(0) =0 and u,'(0) = 1.

In [5], Hochstadt showed that (13) when subject to #(0) = u(), has eigen-
values p,(r), where p(r) lies in the 7th finite instability interval of (1).
Therefore, all but # zeros of u,(m) and y,(w) coincide when precisely » finite
instability intervals fail to vanish. Furthermore, as functions of A, y.(m)
and u,(w) are entire functions of order 1/2. Hence,

us(m) = f(7) yo(m) 1j [ m(((T);]

where f(r) is a constant which may depend on 7.
From the lemma it follows that, for real A

Tolm) = (sin NBm/A2) + O(I ),

and similarly for u,(7). This implies that f(+) = I, and

up() H [A — 1(0)] = yo(m) ﬂ (A — pil7)]-

1=l

This is rewritten as

i) 3. O = ) 3, 14

i=0

where oo(7) = 1 and

ofr) = (=17 Y (M) p(r) pafr)  for j=1,2.m

§y<Ep<ee <l
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From the lemma it follows that

y4(2) = i [fi(=) sin A1/2z 4 g,(2) cos A/2%]

sin M/2g o Xp ’”(z) 1
= —TIT[I + ;,Z': Z: Alg+l—1 ( MW )]

N M 1
-+ cos A2z [’; Z k+l + 0 (,\M+N+1)]

sin Al/2z y P(z) 1
Lt P P& L o ]
A2 [ nz=:o pricden AT " ( ANH )
E=12,...,n+1
1=0,1,2,...,n
N Ri}2) 1
+ cos AL/2y [ Lol ]
1.2—.:1 ktl=n AlH ( ANH )
=1,2,....0
1=0,1,....0~1
Hence,
sin Al/2z n(z) 1
J’z(z) = A1/2 [Z ()\N+1 )]
(2 1 4]
+ cos A1/2 [Z ®) to (s )J (15)
where

Pz) =1, Pyz)= Y PjKz) and

k+l-1=n

R,(2) = ) RMz) for n=-1,2,...,N.
k+l=n
For fixed n > 1,

Po(z) = Pyl(z) + Z P(z)

k+l 1=n
-1

= [(=D12][g#B(2) +¢*20)] + 3 Pi(z)

k+l-1=n
k=2,8,....n+1
1=0,1,...,n~1
= (14227 g=(z) + P, *(2). (16)

Clearly, P,*(z) is a polynomial of maximal degree n - 1inQ, g, ¢’,..., g%*~9
plus integral terms.
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u(s) can also be represented by a series of the form

ac

uy(z) == Z (),

U
where

sin Al2z

w(?) =~

and
%41(8) = o [ sinwite — 2) g + ety dr

Following the same steps as in deriving (15) we get

wim) =SR] 5O o (5]

+cos 2| 3 (7,000 + 0 ()| (1)
n=0

From the analog of (11), using the periodicity of g, it follows that S, (7)
differs from the nonintegral terms in P,(r) by a constant. In fact P,(w) =
S,,(0). Similarly, (12) can be used to show that T, is precisely the constant

Ry(m).

The trigonometric terms in (17) are expressed as exponentials giving
Pl [ A (7-) 2T 1
u2(77) 2 [Z )\L+f/2 Z k ( Ant2 )]

e~ i\ im [ntl iSk(T) n+l 1
+ 2 I:I;o AEet+1/2 + Z ( Ant2 )] *
yo(7) has the same representation with 7 = 0. Equation (14) now becomes

et [ Sy (r) | LT, I
KA I STEN)

+ e_ml’zr [n+l sz( ) n+l

3 > NFH2 + Z + O(/\n+2 :IE Z a;(0)An—i

eitn S (0) W T, !
|2 o Y k0 ()

e_i,\ll'z,-, [n+l lSk(O) n+1 Tk

+ o) Z AR+172 Z

-~ B

( Atz )]2 Z ai{(T)AI. (18)
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We note that for Im(A/2) > 0, "7 — 0 as Im(X'/?) — oo, while for
Im(\'/2) < 0, e=#'/*7 — 0 as Im(X\/Z) - co. Therefore, the coefficients of
&7 and ¢~/ from both sides of (18) must be independently equal. Hence

[%1 ,\:ff,(: ) %1 Te y +0 (o ,\,Lz )] i o, (0)An

- [B 52+ T o) Loow a9

This, in turn, implies that all coefficients of powers of A~1/2 in (19) vanish.
In particular,

2 [060) Sulr) — o) SO =0 for I=1,2,..,m

k=1

This is rewritten as
-1

oy(7) = 0(0) + ¥ [650) Si_i(7) — S1-s(0) o5(r)] for I=1,2,...,n (20)
j=0

We solve (20) recursively for oy(7),..., 0;_4(7) in terms of Sy(7),..., Sy_4(7)
and conclude that ¢y(7) is a linear function of Sy(7),..., Sy(7). That is, oy(7)
is a polynomial in g, ¢',..., ¢®*% of maximal degree [ + 1, for I =1,2,...,n

Matching coeflicients of A»=3/2 in (19) gives

Y. o(0)Ser) = Y Su0)oi(r),
j+k=n+1 J+k=n+1
k+#0 Ie#0

which is rewritten as
Y [0/0) Spia-i(r) — Sri1-5(0) o5(7)] = 0. (21)
=0

From (16), we see that S,,,(r) = [(—1)r/22"+?] q‘Z”’(T) + Sk ,(7), where
S*, () is a polynomial of maximal degree n 4- 2 in ¢, ¢',..., g®*~2.
We conclude that (21) is of the form

g™ + H(g, ¢'yeers §?%2) = 0

and the theorem is proven.
We now derive explicit expressions of these equations. The lengthy
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process of repeated integrations by parts gives the following convergent
series:

sin A2 |

) = VI 20+ D) —
T [g9) — 100°6) 9(7) — ST + 1041328 + 0(1i)]
+ cos XV g(—l 8%) [ gz + =) ds + 0(1)]. 22)

(A simpler formal procedure for deriving this series is found in Appendix II.)
When all finite instability intervals vanish, (14) becomes uy(7) = vy(=).
Matching coefficients of A=3/ yields

g(7) = ¢(0), ae.

from which (3) immediately follows.
For n > 1 when we substitute (22) into (14) and match the coefficients

of A»73/2 we get
oy(r) — o1(0) = (1/2)[g(+) — ¢(0)], ae- (23)
The coefficients of A*=%/2 yield

05(0) + [g(7)/2] 0,(0) + (3/8) ¢*(v) — [¢"()/8]
= oy(7) + [9(0)/2] os(7) +- (3/8) ¢°(0) — [¢"(0)/8], a.e.

A substitution of (23) into the above expression gives

ay(7) = [—¢"(7)/8] + (3/8) ¢*(7) — {[9(0)/4] — [04(0)/2]} ¢()
— [4°(0)/8] + [¢"(0)/8] — [4(0) 01(0)/2] + 0x(0), ae. (24)

When all finite instability intervals vanish, the only nonzero symmetric
function in (14) is a4(r). When precisely one finite instability interval fails
to vanish, o4(r) and o,(v) are the only nonzero symmetric functions in (14).

Hence, when all finite instability intervals vanish, the explicit expression
of (21) is (23) with o(7) = 0.

Similarly, when precisely one finite instability interval fails to vanish,
the explicit expression of (21) is (24) with oy(r) = 0 and (4) then follows.

To obtain (5) we need only substitute (23) and (24) into the explicit
expression of (21) when precisely two finite instability intervals fail to vanish.
This yields an equation of the form

a(r) — 1041 ¢'() + Aq°() — S + 10g%7) + Beie)
+ Cq(r) + D =0, a.e,
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where
A = 2¢(0) — 40,(0)
B = 126,(0) — 6
C = 160,(0) + 24(0)1
D = —10g%0) -+ 8[g(0) ¢"(0) + 2,(0) ¢°(0) — 20,(0) ¢(0)]
+ 5[¢(O)F — ¢'(0).

APPENDIX |
In this section we derive the expressions for @(3) and #,,,(2) which
were stated in the lemma.

For F e CN[0, =], the integration by parts formula yields

[ sin 202LF() d
Y0

N cos 2N 2z F@m(z) — Fen(()
= Z_:O (_ 1)n+1 [ 22n+1)n+1,2 ]
N . . .
S (— )" Lsin 2012z F(2n-1)(z) .
+ n§=:1 22mpn +0 ‘ AN-+1 )’ (25)

and
"z cos 2A2LF (L) d
v0

& (— )" sin 24122 F(2ni(z)
= Z DZn+lyn+1/2

n=0

. N Ccos 2Al,r‘2zF(2rz—l) %) — F(2n—1) O 1
-+ Z (—1)m? [ 22"(/\”) ( )] + 0 ( SN ) (26)

n=1

Upon inserting (7b) into (7c) we get

w(2) = % J: sin M/%(z — ) sin \L2{g(0) d¢

x4
= % ‘ [sin A2z cos AL2{ — cos A2z sin AV27] sin M /2{g({) di
0

sin Al/2y

) " sin 2M724(0)
0

cos Al/2y

- Lo i [0 "1 — cos 20120 g(0) dL.

409/51/3-15
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Using (25) and (26) this becomes

>1n ,\1 2z § i cos 2A1 2zg12n(z) — ¢*n)(0)
Z ( ! [ 22n+l/\n+1,r2 ]

wy(2) =

710

i — 1)1 sin 2A1/2zg2n—1)(z) i
+ Z ( 22n)‘n + O ( AN+L )2

. cos A2z ( rF (—1)" sin 2A1/22¢(20(z)
TS [ q(&) dl + Z 22n+1/\n+1/2

4 f: (=11 [cos2/\1/2zq‘2"—”(z)—q‘2"—”(0)] I O( 1 \))

emyn AN )Y
il o [5i0 22122 cos Al/2z — cos 2A1/2% sin A1/2g] ¢f2)(z)
=2 (=N JEntz\n+3/2
{—1)" sin A1/22¢%27(0)
+ Zﬂ 22n+2/\n+3/"
n Z (—1)""[cos 2A12z cos Al/2z -+ sin 20172z sin A1/2z] g(2n—1)(3)
= 22n+1xn+1
(—1)"~1 cos Al/2zg2n-1(()
- Zl 2n+ln+1
] 1/2 z
— SN[ @) dt + 0w,
0

By factoring sin A!/2z and cos A%z out of their respective terms, the desired
result for w,(2) is obtained.
By writing (7¢) in the form

w1 {5) = Al f [sin 2172z cos AV/2; — cos AV2z sin A1/2(] q(&) wi () d¢

and using (8), we get
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sin Al/2y

(@) = S [ cos NLfsin MLAQ) 9(0) + cos MaLey0) (D)

cos AY/2z

~ S0 [ sin Nafsin XURL£(0) g() + cos WLgy(2) g(0)] dL.
0

_sin A2z {z sin 2AY73

sin Al/2z

+ T [ cost Miagg() eu(t) dt

cos Al/2g

o f " sin® X2Lg() fi(D) L

1725 17 sin 2AL/2
- [ A0 4

Let
Fi(s) = g} fu(2),  Gi(3) = ¢(2) 8:(3)
and note that
cos? AL = (1/2) 4 (cos 2M12L[2),  sin® N2L = (1/2) — (cos 2A1/2{/2).

Then

in A%z 2 sin AM2z 2 | o
Wy.49(2) = SHZIW‘ [) G0 dl + ‘IW .[, sin 2020 F,({) d{

sin A2y 2 o cos Aty r®
+ i L cos 2A/2LG (L) df — ——:Z—XI'/—Z'-L Fy(§) dt

cos Al/2z cos A%z

| " sin 202G (L) dL + | " cos 20LF(L) dL.
o 0
(27)
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Now integrate the appropriate terms in (27) by parts [using (25) and (2631
then

sin AL cos Al 2z e .
%@zﬁwiG@ ~ S | B

= Y0

Csin A2z \Z (—1)"eos A RF2(5) — F27(0)]

’)/\1 /2 I2n Flyn-1/2
= n*O =

N n—1 12 pQ2n-1)
1) sin 20 2 F () |
2:: 22n/\n

cos A2z { X (—1)"sin 201 2 f‘“” ()
L2 Zn-Tpn-1,

(. n=0

N i (__l)n—][cos ! ’~F()ll 1)( ) ,( R — 1)(0)])
= 2271,\)1 \

_, sin UL Z\: — 1) sin 2A! 22G27(2)

' 2M1/2 = 22n-1An-1'2

N n—1 12 2n-1) (2n-1)
5 (— D" Heos 2X 22G )-GO
T [ 221111\11 ( ) ’ u]‘t

n=1

cos M72z { & (—1)"eos 2N %G (z) — GE(0)]
— e j I2n+1)\n+1/2

n=0

(=D"tsin 222G V) )
22n)n

Mz

O
pa—
%

2
] —
et
I

)
L
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or

sin Al/2y cos At/2g

wnle) =S | G0t — S5 [T R e

+ Z (—1)"[sin 222z cos X'/%z — cos 2\"2% sin XV/%2] F)(2)

22n+2)‘n+1
N n o y1/2,, ;p(en)
(—1)* sin AM%F,2™(0)
+ Z 227L+2)\ﬂ+1 £
X (—1)"[cos 22122 cos A%z - sin 2412z sin AL/2g] F21)(z)
+ Z PeniLynii/z

n=

_ ﬁ ( l)n—l[cos /\1/22.] F(2n 1)(0)

) SEniiynil/2
e
N (—1)"[cos 2412z cos X%z + sin 2012z sin A22] G27(2)
+ ZO 22n+2)n+1
bou

_ f (—1)" cos 222G EV(0)

2n+2)\n+1
= 22n+2)

n ﬁ’: (—1)"[cos 20V sin X2z — sin 202z cos A/%z] G2 ~1)(2)

22n+1,\n+1/2

N n—1 ;. y1/2,~v(2n—1)
(—1D)" ' sin A %G 0) 1
- Z 22n+1)m+1/2k +0 (,\N+3/2)'
Therefore,
) 1 2 N (2n) g +F(2n) 0
tenls) = sin e o " Gu ag + 3 (-1 [FEGLEETO)

N (2n 1) (2n—1)
+Z_:(_1)n[ (2) + Gy (O)JI

22nti)n+1/2 |

_1 z
1 cos A/2g 3%_/ f F(b) d¢

N F(Zn—l)(z) _ F(2n—1)(0)
+ 2—:1 (-1 [ . 22n+1/\n+f/2 ]

+ % (=1 [ G’(czn)(zzz)n+2,\n+(12n)(0) ]% +0 AN}rs/z) (28)

n=0

409/51/3-16
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and we need only substitute the equivalent series for F; and Gy, from (9)
and (10), respectively, into the above expression.

ArpeEnpIx 11

Due to the complexity of calculating series (22) by repeated integrations
by parts, we offer a simpler formal procedure for deriving this series in an
asymptotic sense.

In Coddington and Levinson [7] it is shown that the equation

YV +R—q@)]y=0 (29)

has asymptotic solutions of the form

YHE) = eit [Z fn(t) +0 (_)\1%1—)]

=0

and

o =3 8o ().

Let v (t) = ay™(t) + by~(t), where y,(0) = 0 and »,’(0) = 1. A direct
substitution of y,(¢) into (29) yields

Y n:[—;:fn +2i;{n' i Afn B qf,.] 0 (s ;ﬂ)
4 pe-it i (= —X%n _2”‘g" + 82 +Ag" — 2 | +0(A,}+1) —0.

Hence a[2if,., + f, — qfa] € + b[—2ig,,; + £, — qga] e =0, from
which we conclude that

1 t
Jnsl®) = 5; [ Tafu—fi1dt
and (30)
1 ¢
gnnl) = o [ [~gn +aildt,  for n>1
By taking fo(t) = go(t) = 1, it immediately follows that

2.(t) = (—=1)" f.(t) for n=0,1,2,...
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From y,(0) == 0 we get 5 = —a and hence

30 =a e[ 5 50+ 0 ()

=0

_ﬂﬂi(gﬁm OULﬂg

£HO ok

n=0

#en [ CREO o

o[£ 5500 ()

n=0

ool § 0 o L)

n=0

nmzam%[

+a

From y,'(0) = 1, it follows that

o= [ffen+ 3 =20+ 0 ()]

nodd
Therefore,
it pint 2if () et L g—ikt 21n(2)
(t) ( 2% ) m;en A" ( 2 ) ";id A
Ya\l) ~
W+ ¥ 2fn (0)
nodd
or
sin X2 Y [ifu(£)/A"] + cos At Z(:ld [fu(2)/An]
_yz(t) ~ neven no (31)

2 de [/='(0)/A"]
Let T = 3", 4aa [fa'(0)/A"]. Then
51/[1,\+ Z (fn(O)/)\) 2 = 1A+ T) = (1/1A)[ /(1 ——)]

”4EWNWﬂ+QWM>
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After expanding this series sufficiently and substituting the results into
(31), we get

ye(m) = sin d[(1j2) + {[fo(m) + #,(0))/A%
A {lfa(m) +i5'(0) — LA O + #(m) /' (0)}/A%
+{lfe(m) + #5'0) — 2,/ (0) £+ (0) — d[A'(OF + #=) f5'(0)
— LA Q)17 + O(1/A%)]
+ cos An[(—#fy(m)/A%) — {ilfa(m) + #u(m) 1/ (0))/A%} + O(1/A%)]. (32)

The first few results of repeated applications of (30) are
fo) =1

L) = (1720 O(t)
fo®) = —(1/ARIQ*(®)/2] — (1) + 9(0)}

740 = —(118) [[0°0)6] — [ ¢ dr + 9000~ 00 a9 + ¢0) ~ ¢ O)
Jo(t) = (1/16)[[Q*(9)/24] — O(r) ¢*(¢) + [(0) Q*(2)2] + (5/2) ¢°(t)
— (3/2) ¢%(0) — 4(0) ¢(t) — ¢'(0) O(2) — [9(¥) Q*(®)/2]
+00) ¢ —¢'® + ¢ O]
Due to the length of fi() and fi(#), we simply state that
f5'(0) = (—1/32)[—2¢* + 5(¢')* + 699" — ¢""]s~0

and fy(m) = 0.
These results are now substituted into (32) and we finally get

yam) = sin Ar{(1/3) + [g(0)/2¥] -+ {[g%(0) — ¢"(0) + 24°(0)}/8°;
+{[—5[q'(0)]* — 104(0) ¢"(0) -+ 10g%(0) + ¢*(0)]/32X7}; + O(1/X%)]

1 cos A [(— 1/8A%) fo " (7) dr + 0(1/,\6)].
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