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In this paper we construct a seven-term exact sequence involving
the cohomology groups of a group extension. Although the exis-
tence of such a sequence can be derived using spectral sequence
arguments, there is little knowledge about some of the maps oc-
curring in the sequence, limiting its usefulness. Here we present
a construction using only very elementary tools, always related to
the notion of conjugation in a group. This results in a complete and
usable description of all the maps, which we describe both on co-
cycle level as on the level of the interpretations of low dimensional
cohomology groups (e.g. group extensions).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A classical tool to study the cohomology of groups fitting in a group extension

1 N G Q 1

is the Lyndon–Hochschild–Serre spectral sequence, which relates the cohomology of G to the coho-
mology of the kernel N and the quotient Q . For example, as observed in [11], for any G-module M ,
the Lyndon–Hochschild–Serre spectral sequence gives rise to an exact sequence
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0 H1
(

Q , MN
) inf

H1(G, M)
res

H1(N, M)Q tr
H2

(
Q , MN

)

inf
H2(G, M)1

ρ
H1

(
Q , H1(N, M)

) λ
H3

(
Q , MN

)
,

where H2(G, M)1 is the kernel of the restriction map res : H2(G, M) → H2(N, M). The inflation and
the restriction maps in the sequence are well understood, but the others are induced by differentials
in the spectral sequence and there is no explicit description available, except from Huebschmann’s
description of λ, see below. At least, using cocycle manipulations, two different ad hoc constructions
of a map tr : H1(N, M)Q → H2(Q , MN ) were given in [4] and [10] which render the left-hand five-
term sequence exact.

In this paper, we give an alternative, purely group theoretic construction of connecting maps tr
and ρ as above fitting into this sequence, taking the last map λ to be the map constructed by
Huebschmann in [8]. Just as for the latter, our constructions are based on mostly well-known inter-
pretations of the low dimensional cohomology groups, such as derivations, semi-direct complements,
extensions and crossed modules. As a striking fact, our maps tr and ρ are extracted from nothing but
the conjugation action of group extensions of G by M which are split at least over N , on the set of
semi-direct complements of N: the map tr is basically given by the isotropy groups of this action,
while the map ρ more precisely encodes this action itself, modulo conjugation by elements of M . It
is interesting to observe that Huebschmann’s map λ can be viewed as a broadening of the context
from conjugation to “conjugation-like” automorphisms.

We also give an explicit description of the three maps tr, ρ , and λ on the cocycle level. In particu-
lar, it turns out that the two constructions of a suitable map tr in [4] and [10] both are just different
descriptions of our map tr.

In general, we do not know whether or not the maps in our sequence coincides with the ones
obtained from the spectral sequence. However, when M is N-invariant, we know that tr equals the
boundary map d0,1

2 : H1(N, M)Q → H2(Q , MN ) (see Lemma 9.1). Furthermore, Huebschmann showed
in [8] that his map λ is the same as the one induced by the spectral sequence.

We start by recalling two important techniques in our construction, namely the pull-back and
a kind of push-out construction. In what follows, we will find a more appropriate way to regard
H1(G, M), namely using semi-direct complements and/or splittings, instead of derivations (Section 3).
To avoid complicating things, and to gain optimal insight in the matter, we use some notions of cat-
egory theory, which are briefly overviewed in Section 4. We are then ready to construct the different
maps in the sequence (Sections 5, 6 and 7). It will be clear that the seven-term exact sequence is
natural with respect to the modules, but we will still have to show that it is natural with respect to
the group extension. We do this in Section 8. In Section 9, we show that, at least under some con-
ditions, tr equals d0,1

2 . An explicit cocycle description of the maps tr, ρ and λ is given in Section 10.
Finally, we demonstrate our results for the Heisenberg groups in Section 11. We finish with some
observations concerning split group extensions (Section 12).

2. Pull-back and push-out constructions

The pull-back and the push-out are two key notions from category theory. The reason that they
are also important to us, is that we can use them to describe induced maps on the extension level.

Given two group morphisms p1 : E → H and p2 : G → H , we consider the subgroup P ⊆ E × G
consisting of all couples (e, g) ∈ E × G such that p1(e) = p2(g). Together with the natural maps
q1 : P → E and q2 : P → G , (P ,q1,q2) is the so-called pull-back of p1 and p2. This pull-back satisfies
the following universal property: for any two group morphisms α1 : E ′ → E and α2 : E ′ → G such
that p1 ◦ α1 = p2 ◦ α2, there exists a unique group morphism α : E ′ → P such that q1 ◦ α = α1 and
q2 ◦ α = α2. It is obvious that this universal property determines the pull-back completely up to
isomorphism.
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Now suppose we have a short exact sequence of groups

0 M
i1

E
p1

H 1

with abelian kernel, and a group morphism p2 : G → H . Taking the pull-back (P ,q1,q2) of p1 and p2,
we can find a map i2 : M → P such that we obtain a commutative diagram with exact rows

e′ : 0 M
i2

P

q1

q2
G

p2

1

e : 0 M
i1

E
p1

H 1.

Throughout the article, we denote the equivalence class of an extension e by [e]. Now one can
check that [e′], with e′ the bottom extension in the diagram, is the image of [e] under the induced
map (p2)

∗ : H2(H, M) → H2(G, M), where M is a G-module via p2.
The push-out construction we use in this paper is the same as the one given by C.C. Cheng and

Y.C. Wu [2]. Take a short exact sequence of groups with abelian kernel

0 M1
i1

E1
p1

G 1,

a G-module M2 and a G-module morphism i2 : M1 → M2. We describe the map (i2)∗ : H2(G, M1) →
H2(G, M2) on the level of extensions.

Throughout this paper, we will denote the action of an element g ∈ G on an element m of a
G-module M by g · m. There is an E1-module structure on M2 induced by p1, i.e. e1m2 = p1(e1) · m2,
so we can consider the semi-direct product M2 � E1. Set E = (M2 � E1)/S , where S is the normal
subgroup of M2 � E1 consisting of the elements of the form (−i2(m1), i1(m1)) for m1 ∈ M1. There are
maps j1 : E1 → E and j2 : M2 → E , defined by taking the composition of the respective embeddings
in M2 � E1 and the quotient map M2 � E1 → E . We call (E, j1, j2) the push-out construction of the
maps i1 and i2. Sometimes we omit the maps and say that E is the push-out construction of i1 and i2,
if it is clear what j1 and j2 are. Observe that j1 ◦ i1 = j2 ◦ i2.

There is a “universal property” of the push-out construction. Let E ′ be a group and let ρ1 : E1 → E ′
and ρ2 : M2 → E ′ be group homomorphisms such that ρ1 ◦ i1 = ρ2 ◦ i2. There exists a homomorphism
h : E → E ′ with h ◦ j1 = ρ1 and h ◦ j2 = ρ2, if and only if

ρ2(e1 · m2) = ρ1(e1)ρ2(m2)ρ1(e1)
−1. (1)

In this case, h is unique.
Observe that we can give an easier description of condition (1), defining an action of E1 on E ′ by

conjugation, i.e. e1 x = ρ1(e1)xρ1(e1)
−1 for x ∈ E ′ and e1 ∈ E1. Now we can replace condition (1) by

demanding that ρ2 is compatible with the action of E1.
If we take ρ1 = j1 and ρ2 = j2, Eq. (1) holds. Moreover, the universal property determines E up

to isomorphism.
Take maps p1 : E1 → G and 1 : M2 → G , the trivial map, and observe that we can find a map

p : E → G such that p ◦ j1 = p1 and p ◦ j2 = 1. Thus, there is a commutative diagram
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0 M1

i2

i1
E1

j1

p1
G 1

0 M2
j2

E
p

G 1.

The bottom sequence is automatically exact. One can check that the image of the class of the upper
sequence under the natural map H2(G, M1) → H2(G, M2), induced by i2, can be represented by the
bottom sequence.

3. Derivations, splittings and semi-direct complements

Let G be a group and M a G-module. It will be useful for the construction of the exact sequence
to have different descriptions of the first cohomology group H1(G, M). Consider the standard split
extension of G by M

0 M
i0

M � G
p0

G 1.

It is well known that H1(G, M) is isomorphic to the group Der(G, M)/Inn(G, M), where Der(G, M)

is the group of derivations d : G → M , and Inn(G, M) are the inner derivations. We can associate to
each derivation d a splitting s : G → M � G , s(g) = (d(g), g). In this way, we get a bijection between
Der(G, M)/Inn(G, M) and Sec(G, M)/∼M , where Sec(G, M) is the set of splittings of the split exact
sequence. The equivalence relation is the following: s1 ∼M s2 if there exists m ∈ M such that s1 =
i0(m)s2i0(m)−1. These interpretations of H1(G, M) are well known, and appear in several textbooks
on cohomology of groups, for example in [1].

For our purposes, there is a more convenient way to look at H1(G, M). Define the set of semi-
direct complements SDC(G, M) of G in M � G as the set containing all subgroups H � M � G , such
that the restriction of p0 to H is an isomorphism onto G . The map s 	→ s(G) entails a bijection
between Sec(G, M) and SDC(G, M). Now we can transfer the equivalence relation ∼M to a relation on
SDC(G, M), namely H ∼ H ′ if there exists an m ∈ M such that H = i0(m)H ′i0(m)−1. There is also an
induced group structure

H1 + H2 = {
(h1 + h2, g) ∈ M � G

∣∣ (h1, g) ∈ H1, (h2, g) ∈ H2
}
,

that turns SDC(G, M) and its quotient under the equivalence relation into abelian groups.
Consider the case where there is an exact sequence of groups

1 N G
π

Q 1.

We know that conjugation in the normal subgroup N induces a G-module structure on H1(N, M).
Moreover, the action of G factors through Q , so that H1(N, M) becomes a Q -module. We would like
to know what the G-action looks like on derivations, splittings or semi-direct complements, since this
action directly gives us the action of Q .

We denote the action of an element g ∈ G on a derivation d : N → M by gd. Using the standard
N-resolution, one can see that

(gd
)
(n) = g · d

(
g−1ng

)
.
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It is now straightforward to check that on the level of splittings s : N → M � N and semi-direct
complements H of N in M � N the above action translates to

(g s
)
(n) = (0, g)s

(
g−1ng

)
(0, g)−1 and g H = (0, g)H(0, g)−1,

where we view M � N as a subgroup of M � G . If d is an inner derivation, gd will also be an inner
derivation. Therefore, we have a well-defined action of G on Der(N, M)/Inn(N, M), Sec(N, M)/∼M
and SDC(N, M)/∼. These actions factor through Q and correspond to the usual Q -module structure
on H1(N, M).

4. A categorical point of view

Let Pair be the category of all pairs (G, M) where G is a group and M is a G-module. A morphism
(α, f ) from (G, M) to (G ′, M ′) consists of a group homomorphism α : G ′ → G and a G ′-module mor-
phism f : M → M ′ , where M is a G ′-module via α. Now SDC(−,−) is a functor from Pair to the
category of sets, where the induced maps are defined by

SDC(α, f )(H) = {(
f (m), g

) ∣∣ (
m,α(g)

) ∈ H
}
,

for H ∈ SDC(G, M). Note that SDC(1, f ) and SDC(α,1) are given by the direct and inverse image,
respectively.

As we will see, the functor SDC(G,−) preserves products and final objects. This is an important
property, since it implies that the functor will preserve group objects. Let C be a category that has
products and a final object 1C . We call C a category that admits group objects. A group object X is
an object such that there exist morphisms μ : X × X → X (“multiplication”), η : 1C → X (“unit”) and
i : X → X (“inverse”) satisfying the commutative diagrams that correspond to the usual group axioms
(e.g. see [9, p. 75]).

If F : C → D is a functor between two categories that admit group objects, there is a well-known
criterion for F to preserve group objects.

Lemma 4.1. If F : C →D preserves products and final objects, then F will preserve group objects.

Explicitly, if (X,μ,η, i) is a group object, (F X, Fμ ◦ h−1, Fη, F i) will be a group object, where h
is the canonical map h = (F (pr1), F (pr2)) : F (X × X) → F X × F X , which is an isomorphism since F
preserves products. Often, we will omit h−1 and simply write (F X, Fμ, Fη, F i).

Lemma 4.2. Let C and D be categories that admit group objects, and let F : C →D and G : C →D be functors
that preserve products and final objects. If a is a natural transformation between F and G, then for every group
object X of C , aX : F X → G X is a homomorphism of group objects, i.e. the diagram

F X × F X

Fμ

aX ×aX
G X × G X

Gμ

F X
aX

G X

commutes.

This is also well known, and can be proved using the naturality of a and the fact that F and G
preserve products. We will use this lemma to show that certain maps in our seven-term sequence are
homomorphisms.

Now let’s turn our attention to the functor SDC(G,−) from the category G-modules to the category
of sets.
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Lemma 4.3. The functor SDC(G,−) preserves products and the final object.

The proof is left to the reader. The fact that the functor SDC(G,−) preserves the final object is
trivially checked. It is also obvious how to associate to any element H ∈ SDC(G, M1 × M2) a pair of
elements (H1, H2) in SDC(G, M1) × SDC(G, M2). One can then show that this correspondence is in
fact a bijection.

An object M in the category of G-modules is always a group object, with the obvious commutative
group law, denoted as +. It follows that SDC(G, M) is a group object in the category of sets, with
multiplication SDC(1,+). The reader can check that this is the same group law as the one described
in Section 3.

5. Construction of tr

Given a short exact sequence of groups

1 N
j

G
π

Q 1

and a G-module M , we construct an exact sequence

0 H1
(

Q , MN
) inf

H1(G, M)
res

H1(N, M)Q tr
H2

(
Q , MN

) inf
H2(G, M).

Note that M is also an N-module, and MN is a Q -module, so the cohomology groups are well defined.
The existence of the exact sequence follows from the Hochschild–Serre spectral sequence. In this
section, we give an explicit description of a map that can be chosen to be the third map.

One can use cocycles to see that the image of the second inflation map is contained in the kernel
of the restriction map res : H2(G, M) → H2(N, M) (or see Corollary 5.9). So it is not surprising that
we will first turn our attention to a general construction involving extensions in Ker(res). Take an
extension

e : 0 M
i

E
p

G 1 (2)

which is partially split. This means that the sequence

0 M
i

p−1(N)
p

N 1

is split and therefore equivalent to the standard split extension through an isomorphism γ : M � N →
p−1(N). (We will sometimes identify the two extensions.) In other words, the class [e] belongs to the
kernel H2(G, M)1 of the restriction map res : H2(G, M) → H2(N, M).

A partial semi-direct complement H of N in e is a subgroup H � E such that p(H) = N and p|H :
H → N is an isomorphism. Two partial semi-direct complements H1 and H2 of N in e are equivalent
(denoted by H1 ∼ H2) if there exists an element m ∈ M such that H2 = i(m)H1i(m)−1. Every partially
split extension e determines an action of E on the partial semi-direct complements H � E of N
in e, induced by conjugation. It is immediate that this action will factor through p : E → G , after
passing to equivalence classes. It factors further through π : G → Q . If we denote the equivalence
class of a semi-direct complement H by [H], the obtained action of Q is given by q[H] = [e H], where
π(p(e)) = q.

As a special case, we can consider the standard split extension of G by M

e0 : 0 M M � G G 1.
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In this situation, the set of partial semi-direct complements corresponds exactly to SDC(N, M) and
the action we obtain then is the same action as the one we discussed at the end of Section 3.

Every partial semi-direct complement H of N in e determines a homomorphism s : N → E , map-
ping n to its unique pre-image under p in H . Observe that p ◦ s = id. Such a homomorphism
s : N → E is called a partial splitting of e over N , and for every H , there is a unique partial split-
ting s with s(N) = H . Observe that es defined by es(n) = es(p(e)−1np(e))e−1 is a partial splitting
with (es)(N) = e(s(N)), so this is an action of E on the partial splittings of e that corresponds to the
above action of E on the partial semi-direct complements. Two partial splittings s1 and s2 of e are
equivalent (we write s1 ∼ s2) if there exists an element m ∈ M such that i(m)s1 = s2 or equivalently,
i(m)s1(n)i(m)−1 = s2(n) for all n ∈ N .

Now we can start with the construction of a map ω that will give rise to a map tr : H1(N, M)Q →
H2(Q , MN ). Take an extension (2) and a partial semi-direct complement H of N in e. Since H is
isomorphic to N , one can expect that “taking the quotient of E and H” will correspond to taking the
quotient of G and N . Of course, H doesn’t need to be a normal group of E , so we have to pass to the
normalizer NE (H) in E . The following two lemmas are easily checked.

Lemma 5.1. The intersection i(M) ∩ NE(H) equals i(MN ).

Lemma 5.2. The restriction p|NE (H) : NE(H) → G is surjective iff e H ∼ H for all e ∈ E (or equivalently, es ∼ s
for all e ∈ E, where s is the unique splitting with s(N) = H).

Let Ω be the set of all pairs (e, H), where e is an extension

e : 0 M
i

E
p

G 1,

[e] ∈ H2(G, M)1 and H � E is a partial semi-direct complement of N in e with e H ∼ H for all e ∈ E .
By the lemmas above, the sequence

0 MN i
NE(H)

p
G 1

is exact. It is not difficult to check that this sequence induces an exact sequence

e′ : 0 MN ī
NE(H)/H

p
Q 1,

where ī and p are the induced maps. This gives a map

ω : Ω → H2(Q , MN)
,

mapping (e, H) to the class of the extension e′ .
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First we make some remarks about the construction of ω. In the commutative diagram

0 M
i

E
p

G 1

0 MN

j

i
NE(H)

ι

p
G

π

1

0 MN ī
NE(H)/H

p
Q 1,

E is isomorphic to the push-out construction of the inclusion map j : MN ↪→ M and i : MN → NE (H),
and NE (H) is isomorphic to the pull-back of p : NE (H)/H → Q and π : G → Q . To show the first
statement, let E ′ be the push-out construction of j : MN → M and the map i : MN → NE (H). We
know from Section 2 that we can find a map p̃ such that

0 M
ĩ

E ′ p̃
G 1

0 MN

j

NE(H)

q

p
G 1

is a commutative diagram with exact rows. We can use the universal property of the push-out
construction to get a map h : E ′ → E such that h ◦ ĩ = i and h ◦ q = ι. Thus, we get the following
commutative diagram with exact rows

0 M
ĩ

E ′

h

p̃
G 1

0 M
i

E
p

G 1.

The right-hand side commutes, since p̃ ◦ ĩ = 1 = (p ◦ h) ◦ ĩ, by definition of p̃. Also, (p ◦ h) ◦ q = p ◦ ι =
p̃ ◦ q. Therefore uniqueness in the universal property gives us the equality p̃ = p ◦ h. Now by the
five-lemma, h is an isomorphism and E ∼= E ′ . The pull-back statement is proven in the same way.

Our goal is to find a map H1(N, M)Q → H2(Q , MN ) completing the five-term exact sequence.
Define SDC(N, M)Q as the pre-image of H1(N, M)Q under the projection SDC(N, M) → H1(N, M).
We deduce from Section 3 that SDC(N, M)Q consists of all partial semi-direct complements H of N in
M�G with (m,g)H ∼ H for all (m, g) ∈ M�G . Therefore, we can define t̂r : SDC(N, M)Q → H2(Q , MN )

as

t̂r(H) = ω(e0, H),

where e0 is the standard split extension of G by M . We will show that this indeed induces a map
tr : H1(N, M)Q → H2(Q , MN ) that can be chosen as the third map in the five-term sequence. We
show that tr is a natural homomorphism, that renders the corresponding five-term sequence exact.

Lemma 5.3. t̂r : SDC(N,−)Q → H2(Q ,−N ) is a natural transformation of functors.
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Proof. We have to show that for every G-module map f : M1 → M2, the following diagram is com-
mutative

SDC(N, M1)
Q t̂r

SDC(1, f )

H2(Q , MN
1 )

H2(1, f )

SDC(N, M2)
Q t̂r

H2(Q , MN
2 ).

For H ∈ SDC(N, M1)
Q , use the push-out construction to find a representant of f∗(t̂r(H)). The universal

property and the five-lemma give an equivalence of f∗(t̂r(H)) with the extension t̂r( f∗(H)), in the
same way as in the remarks about the construction of ω. �

It is well known that the cohomology functors Hn(G,−) preserve products and the final object 0.
Furthermore, if M1 and M2 are G-modules, the action of G on SDC(G, M1 × M2) ∼= SDC(G, M1) ×
SDC(G, M2) is the diagonal action. Using this information and Lemma 4.3, we see that also the func-
tors SDC(N,−)Q and H2(Q ,−N ) preserve products and final objects, so they will preserve group
objects. Now, by Lemma 4.2 and Lemma 5.3, we obtain the following result.

Proposition 5.4. The map t̂r : SDC(N, M)Q → H2(Q , MN ) is a homomorphism.

To see that t̂r induces a well-defined map tr : H1(N, M)Q → H2(Q , MN ), we need the following
lemma.

Lemma 5.5. Given H ∈ SDC(N, M)Q . There exists an H̃ ∈ SDC(G, M) such that H̃ ∩ (M � N) = H iff
t̂r(H) = 0.

Proof. Suppose that H = H̃ ∩ (M � N). Since M � N is normal in M � G , H is normal in H̃ , so
NM�G (H) contains the semi-direct complement H̃ of G . This means that the short exact sequence

0 MN NM�G(H) G 1

splits, and consequently, t̂r(H) = 0. Conversely, choose a semi-direct complement Q̃ ⊆ NM�G (H)/H
of Q and take the inverse image under q : NM�G (H) → NM�G (H)/H . It is not difficult to prove that
this is the required semi-direct complement H̃ in SDC(G, M). �

There are some immediate consequences of this lemma.

Corollary 5.6. The map tr : [H] 	→ t̂r(H) is well defined.

Proof. We can extend every semi-direct complement of the form i(m)H0 to the semi-direct comple-
ment i(m) H̃0 of M � G , where H0 = {(0,n) ∈ M � G | n ∈ N} and H̃0 = {(0, g) ∈ M � G | g ∈ G}. �
Corollary 5.7. The sequence

0 H1
(

Q , MN
) inf

H1(G, M)
res

H1(N, M)Q tr
H2

(
Q , MN

)

is exact.
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We will show that tr : H1(N, M)Q → H2(Q , MN ) is a map that fits in the five-term exact sequence.
To complete the proof of exactness, we need the following lemma.

Lemma 5.8. Let e : 0 → M i−→ E
p−→ G → 1 be an extension of G by M.

• If e is partially split and there exists a partial semi-direct complement H of N in e with e H ∼ H for all
e ∈ E, then inf(ω(e, H)) = [e].

• Conversely, if there exists an [e′] ∈ H2(Q , MN ) such that [e] = inf[e′], then there exists a partial semi-
direct complement H of N in e with e H ∼ H for all e ∈ E, such that [e′] = ω(e, H).

Proof. The inflation map inf : H2(Q , MN ) → H2(G, M) is the composition of the maps H2(Q , MN ) →
H2(G, MN ) and H2(G, MN ) → H2(G, M), induced by respectively the projection map π : G → Q and
the inclusion map MN ↪→ M . Using Section 2, we see that for any extension e′ of MN and Q , we can
represent inf(e′) by the bottom row in the diagram

e′ : 0 MN
i0

E0
p0

Q 1

0 MN i′

j

P
p′

G

π

1

inf(e′) : 0 M
i

E
p

G 1.

(3)

Here P is the pull-back of p0 and π , and E is the push-out construction of i′ and j.
Now it follows from the remarks after the definition of ω that inf(ω(e, H)) = [e] when e is partially

split and H is a partial semi-direct complement of N in e with e H ∼ H . This proves the first part of
the lemma.

For the second part, suppose that [e] = inf[e′], where

e′ : 0 MN
i0

E0
p0

Q 1.

We show that we can find a partial semi-direct complement H of N in e with e H ∼ H for all
e ∈ E , such that the extensions e′ and the canonical representative of ω(e, H) are equivalent. Since
[e] = inf[e′], we have again a diagram (3) where the upper right-hand square is a pull-back diagram
and the lower left-hand square is a push-out construction. Using properties of the pull-back (see Sec-

tion 2), we see that the short exact sequence 1 → N
j−→ G π−→ Q → 1 induces a short exact sequence

1 → N α−→ P h−→ E0 → 1. Define H̃ = α(N) � P and observe that h induces an isomorphism h of
extensions as follows

0 MN
i0

E0
p0

Q 1

0 MN i′
P/H̃

h ∼=
p′

Q 1.

If we set H = γ (H̃) ⊂ E , we see that p(H) = j(N), and a similar argument shows that p|H : H → N
is an isomorphism. Therefore H is a partial semi-direct complement of N in e and e is partially split.
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Observe also that γ (P ) ⊂ NE(H), so p(NE (H)) = G . From Lemma 5.2 it follows that e H ∼ H for all
e ∈ E .

We can use Lemma 5.1 and the five-lemma to see that γ is an isomorphism of extensions

0 MN i′
P

γ∼=

p′
G 1

0 MN i
NE(H)

p
G 1.

Since γ (H̃) = H , the map induces an isomorphism γ : P/H̃ → NE (H)/H , such that there is an equiv-
alence of extensions

0 MN
i0

E0

γ ◦h−1∼=

p0
Q 1

0 MN NE(H)/H Q 1.

The bottom extension represents ω(e, H), so this proves that [e′] = ω(e, H). �
This proves the exactness of the sequence

0 H1
(

Q , MN
) inf

H1(G, M)
res

H1(N, M)Q tr
H2

(
Q , MN

) inf
H2(G, M),

since tr[H] = ω(e0, H) and inf(e0) = 0. Furthermore, we have the following corollaries, which are
important for the next section.

Corollary 5.9. The image of inf is contained in H2(G, M)1 .

Corollary 5.10. Let [e] ∈ H2(G, M)1 . Now [e] ∈ Im inf iff there exists a partial semi-direct complement H of
N in e with e H ∼ H for all e ∈ E (or equivalently, a partial splitting s : N → E of e over N with es ∼ s for all
e ∈ E).

6. Construction of ρ

We construct a map ρ : H2(G, M)1 → H1(Q , H1(N, M)), extending the five-term sequence to a
six-term exact sequence. Take an extension [e] ∈ H2(G, M)1. This is an extension of the form

e : 0 M
i

E
p

G 1,

for which the induced extension 0 → M i−→ p−1(N)
p−→ N → 1 is split. Choose a partial splitting

s0 : N → E of e over N . We define a map

ρ̃0(e) : E → Der(N, M)

associated to s0, sending x ∈ E to the derivation dx : N → M , defined by i(dx(n)) = (xs0)(n)s0(n)−1. An-
other way to describe this derivation is by taking the derivation associated to x H0 = γ −1(xγ (H0)x−1),
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where H0 = {(0,n) | n ∈ N} and γ : M � N → p−1(N) is the isomorphism given by γ (m,n) =
i(m)s0(n).

We know from the previous section that the action of E on the equivalence classes of partial
splittings factors through G and Q , so this will also be the case for ρ̃0(e). Hence, we obtain a map

ρ0(e) : Q → Der(N, M)/∼ ∼= H1(N, M),

sending q to the class of the derivation ρ̃0(e)(x), with π(p(x)) = q. Observe that ρ0(e) is trivial iff
xs0 ∼ s0 for all x ∈ E .

We now show that the map ρ0(e) is a derivation, where H1(N, M) has the natural Q -module
structure as discussed in Section 3.

Lemma 6.1. The map ρ0(e) : Q → H1(N, M) is a derivation.

Proof. It suffices to show that ρ̃0(e) is a derivation, where the action of E on Der(N, M) is given via
p : E → G . Take x, y ∈ E and define dx = ρ̃0(e)(x), dy = ρ̃0(e)(y) and dxy = ρ̃0(e)(xy). Observe that
i((gd)(n)) = g̃i(d(g−1ng))g̃−1, where p(g̃) = g . As a result,

i
((p(x)dy

)
(n)

) = i
(
dxy(n)

)
i
(
dx(n)

)−1
.

This means that ρ̃0(e) and ρ0(e) are derivations. �
For two different partial splittings s0 and s1 of e over N , there always exists a derivation d ∈

Der(N, M) such that s1(n) = i(d(n))s0(n) for all n ∈ N . In this case, we write s1 = ds0.

Lemma 6.2. Let s1 = ds0 . Then xs1 = p(x)d xs0 for all x ∈ E.

The proof is left to the reader.

Lemma 6.3. Take s0 and s1 , partial splittings of e over N with s1 = ds0 and take the associated maps ρ̃0(e),
ρ̃1(e) : E → Der(N, M). Then for all x ∈ E, ρ̃1(e)(x) − ρ̃0(e)(x) = p(x)d − d.

Proof. Set d1 = ρ̃1(e)(x) and d0 = ρ̃0(e)(x). Using the previous lemma and the fact that i(d1(n)) =
(xs1)(n)s1(n)−1, we see that i(d1(n)) = i((p(x)d)(n))(xs0)(n)s1(n)−1. Now it is clear that i(d1(n)) =
i((p(x)d)(n))i(d0(n))i(−d(n)) and the result follows. �

As a consequence, the maps e 	→ [ρ̃0(e)] ∈ H1(E,Der(N, M)) and e 	→ [ρ0(e)] ∈ H1(Q , H1(N, M))

are independent of the choice of the partial splitting. Thus we can define a map ρ̂ , mapping a partially
split extension e of G by M to ρ̂(e) = [ρ0(e)]. We show that this induces a well-defined homomor-
phism of groups

ρ : H2(G, M)1 → H1(Q , H1(N, M)
);

[e] 	→ [
ρ0(e)

]
.

First, we prove a more general result.

Lemma 6.4. If M1 and M2 are two G-modules and α : M1 → M2 is a G-module homomorphism, then
α∗(ρ̂(e)) = ρ̂(e′), where α∗ is the induced map H1(Q , H1(N, M1)) → H1(Q , H1(N, M2)) and e′ is an ex-
tension of G by M2 , that fits in a commutative diagram
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e : 0 M1

α

i
E

β

p
G 1

e′ : 0 M2
i′

E ′ G 1.

Observe that the last statement is equivalent (modulo canonical isomorphisms) with the fact that
(E ′, β, i′) is the push-out construction of the inclusion map i of e and the map α, or with [e′] =
H2(1,α)[e]. One can prove this equivalence using the methods in the remarks about the construction
of ω, the following Lemma 5.2.

Proof. Take a partial splitting s1 : N → E of e over N and the partial splitting s2 = β ◦ s1 of e′ over N .
Observe that β(xs1(n)) = β(x)s2(n) for all x ∈ E and n ∈ N .

Since ρ1(e) maps q to the class of ρ̃1(e)(x) in H1(N, M1), with π(p(x)) = q, the image of ρ(e)
under the map α∗ will be the class of the derivation in Der(Q , H1(N, M2)) that maps q to [α ◦
ρ̃1(e)(x)]. Also, i′((α ◦ ρ̃1(e)(x))(n)) = i′(ρ̃2(e′)(β(x))(n)). It follows that α ◦ ρ̃1(e) = ρ̃2(e′) ◦ β , and
one easily sees that this implies that ρ̂(e′) = α∗(ρ̂(e)). �

We state some immediate consequences.

Corollary 6.5. The map ρ : H2(G, M)1 → H1(Q , H1(N, M)) is well defined.

Corollary 6.6. The map ρ is natural with respect to the modules.

The following theorem is now easily proven using Lemma 4.2 and the fact that the cohomology
functors Hn(B,−) preserve products for every group B .

Theorem 6.7. The map ρ : H2(G, M)1 → H1(Q , H1(N, M)) is a homomorphism.

We want to prove that the definition of ρ yields an exact sequence.

Lemma 6.8. The sequence

· · · H1(N, M)Q tr
H2

(
Q , MN

) inf
H2(G, M)1

ρ
H1

(
Q , H1(N, M)

)

is exact.

This follows from Corollary 5.10 and Lemma 6.3.

7. Construction of λ

In this section, we give a map λ : H1(Q , H1(N, M)) → H3(Q , MN ) that completes the seven-term
exact sequence

0 H1
(

Q , MN
) inf

H1(G, M)
res

H1(N, M)Q tr
H2

(
Q , MN

)

inf
H2(G, M)

ρ
H1

(
Q , H1(N, M)

) λ
H3

(
Q , MN

)
.
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We will describe the construction given by Huebschmann in [8]. Huebschmann proves that his con-
struction yields the differential map induced by the spectral sequence, so the map will automatically
have all the good properties. In particular it will be a homomorphism, that is natural in a strong sense
(see [8]).

We will make use of the following interpretation of the third cohomology group. It is known that
H3(G, M) corresponds to equivalence classes of crossed extensions, i.e. exact sequences of the form

0 M C
δ

Γ G 1,

where C δ−→ Γ is a crossed module that induces the given action of G on M (see [1, IV.5]). The
equivalence relation is generated by elements (1M ,α : C → C ′, β : Γ → Γ ′,1G), such that the diagram

0 M C
δ

α

Γ

β

G 1

0 M C ′ δ′
Γ ′ G 1

is commutative, and (α,β) is a homomorphism of crossed modules. This in particular means that α
is compatible with the action of Γ , where Γ acts on C ′ via β .

Now let

e0 : 0 M M � N N 0

be the standard split extension of N by M , and define Aut(N, M) ⊂ Aut(M) × Aut(N), the group of all
couples of automorphisms (σ ,φ) ∈ Aut(M) × Aut(N) with σ(n · m) = φ(n) · σ(m). Observe that every
element of Aut(N, M) induces an automorphism of M � N . Also, there is a map χ : G → Aut(N, M)

mapping g to (i g , cg), where i g(m) = g · m and cg(n) = gng−1.
Take AutM(M � N) ⊂ Aut(M � N), the group of all automorphisms of M � N that map M to itself.

Observe that these automorphisms are of the form

(m,n) 	→ (
σ(m) + d(n),φ(n)

)

where (σ ,φ) ∈ Aut(N, M) and d ◦φ−1 ∈ Der(N, M). There is an obvious homomorphism θ : AutM(M �

N) → Aut(N, M), which fits in a split exact sequence

0 Der(N, M)
α

AutM(M � N)
θ

Aut(N, M) 1,

where α maps a derivation d to the automorphism (m,n) 	→ (m + d(n),n).
Let AutG(e0) be the pull-back of χ and θ . Using the pull-back properties, we find a split exact

sequence

0 Der(N, M)
i1

AutG(e0)
p1

G 1.

Observe that the induced G-module structure on Der(N, M) coincides with the one given in Section 3.
There is a splitting s : G → AutG(e0), mapping g to the couple (c(0,g), g), where c(0,g) is conjugation
with (0, g) in M � G . Since N is a normal subgroup of G , M � N will be a normal subgroup of M � G
such that c(0,g) can indeed be considered as an automorphism of M � N .
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Take β1 : M � N → AutM(M � N) mapping (m,n) to c(m,n) , conjugation with (m,n), and β2 : M �

N → G , mapping (m,n) to n. The pull-back property gives us a map β : M � N → AutG(e0). Define
an action of AutG(e0) on M � N by setting (h,g)(m,n) = h(m,n). The reader can check that this turns
β : M � N → AutG(e0) into a crossed module.

It is easy to see that we obtain a commutative diagram

0 M

−δ0

M � N

β

N 1

0 Der(N, M)
i1

AutG(e0)
p1

G 1,

where −δ0(m)(n) = m − n · m. Furthermore, the images of the vertical maps are normal subgroups of
the groups in the bottom row, so we can take cokernels without losing exactness of the rows, thanks
to the snake-lemma and injectivity of the map N → G . Define OutG(e0) = AutG(e0)/ Im β . We get the
following commutative diagram with exact rows

0 M

−δ0

M � N

β

N 1

0 Der(N, M)
i1

AutG(e0)

Π

p1
G

π

1

0 H1(N, M)
i2

OutG(e0)
p2

Q 1.

(4)

The standard splitting of the first row is compatible with the given splitting s of the second row, and
the resulting quotient map s̄ : Q → OutG(e0) is a splitting of the third row.

We restrict our attention to the second column of the diagram. It is not difficult to see that MN is
the kernel of β , so we obtain a crossed extension

e : 0 MN M � N
β

AutG(e0)
Π

OutG(e0) 1.

Take D ∈ Der(Q , H1(N, M)) and define a new splitting Ds̄ : Q → OutG(e0) as Ds̄(q) = i2(D(q))s̄(q).
Now

eD : 0 MN M � N
β

Π−1
(

Ds̄(Q )
) Φ

Q 1

is a crossed extension, with Φ = p2 ◦ Π . Observe that Π−1(Ds̄(Q )) with the associated maps can
be seen as the pull-back of Π and Ds̄. One can check that this means that [eD ] = (Ds̄)∗[e]. It is
straightforward to see that the induced action of Q on MN coincides with the given one. Define

λ̂ : Der
(

Q , H1(N, M)
) → H3(Q , MN): D 	→ λ̂(D) = [eD ].

Huebschmann proves in [8] that λ̂ yields a well-defined homomorphism λ : H1(Q , H1(N, M)) →
H3(Q , MN ), coinciding with the corresponding differential of the spectral sequence.
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Since we don’t know whether or not our map ρ is the same as the map obtained by Sah in [11],
we still have to check exactness of the following part of the sequence

· · · H2(G, M)1
ρ

H1
(

Q , H1(N, M)
) λ

H3
(

Q , MN
)
.

We will make use of the following result due to Huebschmann [7].

Lemma 7.1. A crossed extension

0 B C
δ

Γ
ρ

Q 1

is equivalent to the zero extension if and only if there exists a short exact sequence 1 → C → E → Q → 1 and
a homomorphism h : E → Γ such that the diagram

1 C E

h

Q 1

0 B C
δ

Γ
ρ

Q 1

is commutative and (1 : C → C,h : E → Γ ) is a homomorphism of crossed modules.

Now we can prove exactness.

Lemma 7.2. The sequence

· · · H2(G, M)1
ρ

H1
(

Q , H1(N, M)
) λ

H3
(

Q , MN
)

is exact.

Proof. First suppose that [D] ∈ H1(Q , H1(N, M)) with λ[D] = 0. This means that we can find a short
exact sequence 1 → M � N i−→ E

p−→ Q → 1 and a homomorphism of crossed modules (1M�N ,h :
E → Π−1(Q̃ )) such that the diagram

1 M � N
i

E

h

p
Q 1

0 MN M � N
β

Π−1(Q̃ )
Φ

Q 1,

(5)

with Q̃ = Ds̄(Q ), is commutative. We want to find an extension of G by M that is partially split, such
that [D] is the image of the extension under ρ .

Let p′ : E → G be the composition of h with the map p1 : AutG(e0) → G and observe that π ◦
p′ = p. The kernel of p′ is easily seen to be M , so we find an extension

e : 0 M
i′

E
p′

G 1,
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where i′ is the composition M ↪→ M � N
i→ E . One can show that the induced action of G on M

coincides with the given action. Clearly, p′−1(N) is isomorphic to M � N through i. We show that
this extension is the extension we need.

Write [De] = ρ[e]. We fix the partial splitting s0 : N ↪→ M � N
i→ E of e over N . We know that

De(q) = [ρ̃0(e)(x)] for π ◦ p′(x) = q or equivalently, p(x) = q. Using the description of ρ on semi-
direct complements, we see that ρ̃0(e)(x) is the derivation associated to the semi-direct complement
x H0 = i−1(xi(H0)x−1). Here H0 is the standard partial semi-direct complement of N in the standard
split extension. Since h is a homomorphism of crossed modules, x H0 equals h(x)H0.

From the commutative diagram (5), we deduce that Π ◦ h(x) = Ds̄ ◦ p(x), so

Π ◦ h(x) = Π
(
i1(d)s(g)

)
(6)

for D(p(x)) = [d] and π(g) = p(x). As the reader can easily check, β(m,n)H0 ∼ H0, so it follows that
the action of AutG(e0) on [H0] factors through OutG(e0). Eq. (6) shows that

x H0 ∼ i1(d)s(g)H0 = i1(d)H0 = α(d)H0,

and the last one has associated derivation d. It follows directly that [ρ̃0(e)(x)] = [d] = D(p(x)), so
De(p(x)) = D(p(x)).

Conversely, consider a partially split extension

e : 0 M
i′

E
p′

G 1

and a given partial splitting s0 : N → E of e over N . Let D = ρ0(e) and let γ : M � N → p′−1(N)

be the isomorphism associated with s0 as before. By defining p = π ◦ p′ and observing that Ker p =
γ (M � N), we obtain an exact sequence

1 M � N
γ

E
p

Q 1.

We construct a homomorphism h : E → AutG(e0), from h1 = p′ : E → G and h2 : E → AutM(M � N)

sending x to h2(x), with h2(x)(m,n) = γ −1(xγ (m,n)x−1). The compositions of h ◦ γ with respectively
AutG(e0) → G and AutG(e0) → AutM(M � N) equal the compositions of β with these two maps. By
the pull-back property, this means that h ◦ γ = β .

We know that h(x) = i1(d)s(p′(x)) for some derivation d. Since h(x)H0 = x H0, it is clear that
d = ρ̃0(e0)(x). It follows that Π ◦ h(x) = Ds̄(p(x)), so h(E) ⊂ Π−1(Q̃ ) with Q̃ = Ds̄(Q ) and we get
a commutative diagram

1 M � N
γ

E

h

p
Q 1

0 MN M � N
β

Π−1(Q̃ ) Q 1,

where the left-hand square is a homomorphism of crossed modules. This shows that λ[D] = 0 and
the sequence is exact. �
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Remark 7.3. Using spectral sequence arguments, one can see that in case H2(N, M)Q = 0, the seven-
term sequence can be extended to the following eight-term exact sequence:

0 H1
(

Q , MN
) inf

H1(G, M)
res

H1(N, M)Q tr
H2

(
Q , MN

)

inf
H2(G, M)

ρ
H1

(
Q , H1(N, M)

) λ
H3

(
Q , MN

) inf
H3(G, M).

Since λ coincides with the differential d1,1
2 of the spectral sequence, this follows from spectral

sequence arguments as introduced in [6].

8. Naturality of the sequence

We already know that the maps in the seven-term exact sequence are natural with respect to the
modules. Here we show that the maps are also natural with respect to the short exact sequence of
groups. Let

0 N ′

α0

G ′

α

π ′
Q ′

α

1

0 N G
π

Q 1

be a morphism of group extensions. Take a G-module M . Then M is also a G ′-module through α.
Observe that now automatically MN ⊂ MN ′

, and call the inclusion j : MN → MN ′
.

The naturality of λ has already been shown in [8]. We show that tr and ρ are also natural with
respect to the short exact sequence of groups.

To prove the naturality of tr, one has to show the commutativity of

H1(N, M)Q tr

α∗
0

H2(Q , MN)

H1(N ′, M)Q ′ tr
H2(Q ′, MN ′

).

The right-hand map is the composition of α∗ : H2(Q , MN ) → H2(Q ′, MN ) and j∗ : H2(Q ′, MN ) →
H2(Q ′, MN ′

). Take [d] ∈ H1(N, M)Q . Then automatically α∗
0 [d] = [d ◦ α0] ∈ H1(N ′, M)Q ′

, since g′
(d ◦

α0) = α(g′)d◦α0. To find the image of tr[d] under j∗ ◦α∗ , we first take a pull-back and then a push-out
of the sequence representing [ed] = tr[d]. This means there is a diagram

ed : 0 MN NM�G(H)/H Q 1

α∗(ed) : 0 MN

j

P Q ′

α

1

e : 0 MN ′
E Q ′ 1,
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where the upper right-hand square is a pull-back diagram, while the lower left-hand square is a push-
out construction. As before, we let sd(n) = (d(n),n) ∈ M � G for all n ∈ N and s′

d(n
′) = (d(α(n′)),n′) ∈

M � G ′ for all n′ ∈ N ′ , and set H = sd(N) and H ′ = s′
d(N ′).

Observe that there exists a commutative diagram with exact rows

0 M
i′

M � G ′

1�α

p′
G ′

α

1

0 M
i

M � G
p

G 1.

Furthermore, (m, g) ∈ NM�G (H) iff for all n ∈ N , gd(n) − d(n) = n · m − m, and (m, g′) ∈ NM�G ′ (H ′)
iff for all n′ ∈ N ′ , g′

(d ◦ α0)(n′) − (d ◦ α0)(n′) = α(n′) · m − m. Now it is easy to see that (1 �

α)−1(NM�G (H)) ⊆ NM�G ′ (H ′). Set S = (1� α)−1(NM�G (H)). Observe that i′(m) ∈ S iff m ∈ MN , and
p′(S) = G ′ , since p : NM�G (H) → G is surjective. This means that the bottom sequence in the diagram

0 MN ′
NM�G ′(H ′) G ′ 1

0 MN i′
j

S
p′

G ′ 1

is exact. It is also clear that (1 � α)(H ′) ⊆ H , so H ′ ⊆ S and even H ′ � S , since S ⊂ NM�G ′ (H ′). It
follows that we get an exact sequence

0 MN i′
S/H ′ p′

Q ′ 1

and we claim that this sequence is equivalent to the sequence α∗[ed]. Take φ1 : S/H ′ → NM�G (H)/H ,
mapping (m, g′)H ′ to (m,α(g′))H and φ2 : S/H ′ → Q ′ , φ2 = p′ . It is easy to see that the maps are
well defined and that, by the universal property, we obtain a map φ : S/H ′ → P . Now one only has
to check that the diagram

0 MN i′
S/H ′

φ

p′
Q ′ 1

α∗(ed) : 0 MN P Q ′ 1

is commutative, but that is rather straightforward.
Since the diagram

e′
d : 0 MN ′

NM�G ′(H ′)/H ′ Q ′ 1

0 MN

j

S/H ′ Q ′ 1
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is commutative, the upper row e′
d , representing tr(α∗[d]), is the push-out construction of the bottom

row, equivalent to α∗(ed). It follows that [e] = tr(α∗[d]), so the map tr is natural.
To prove that ρ is natural, we have to show that

H2(G, M)1
ρ

α∗

H1(Q , H1(N, M))

α∗

H2(G ′, M)1
ρ

H1(Q ′, H1(N ′, M))

(7)

commutes. Observe that the right-hand map is the composition

H1
(

Q , H1(N, M)
) α∗

H1
(

Q ′, H1(N, M)
) H1(1,α∗

0 )

H1
(

Q ′, H1(N ′, M)
)
.

Take [e] ∈ H2(G, M)1, with

e : 0 M
i

E
p

G 1,

and fix a partial splitting s0 : N → E of e over N . We know that α∗[e] can be represented by the
bottom row in the diagram

e : 0 M
i

E
p

G 1

e′ : 0 M
i′

P
p′

h

G ′

α

1,

where the right-hand square is a pull-back square. By the universal property of the pull-back, we find
a partial splitting s′

0 : N ′ → P of e′ over N , such that h ◦ s′
0 = s0 ◦ α0. Take q′ ∈ Q ′ and fix an element

x′ ∈ P such that π ′ ◦ p′(x′) = q′ . Then ρ(α∗[e]) can be represented by the derivation D1, mapping q′ to
the class of the derivation D̃1(x′), with i′(D̃1(x′)(n′)) = (x′

s′
0)(n

′)s′
0(n

′)−1. Straight-forward calculations

show that i(D̃1(x′)(n′)) = (h(x′)s0)(α0(n′))s0(α0(n′))−1.
Now take a look at α∗(ρ[e]). We can represent ρ[e] by a derivation D2, that maps q ∈ Q to

the class of the derivation D̃2(x), with π ◦ p(x) = q and i(D̃2(x)(n)) = (xs0)(n)s0(n)−1 for all n ∈ N .
Applying the right-hand map of (7) to ρ[e], we obtain an element that can be represented by a
derivation D3, sending q′ ∈ Q ′ to the class of D̃2(x) ◦ α0, where π ◦ p(x) = α(q′). Observe that we
can choose x = h(x′), with π ′ ◦ p′(x′) = q′ . Now i(D̃2(h(x′))(α0(n′))) = (h(x′)s0)(α0(n′))s0(α0(n′))−1. It
follows that the diagram (7) commutes, thus ρ is natural.

9. More on tr

Suppose we take a G-module M that is N-invariant, so the G-action induces a well-defined
Q -action on M . In this case, the equivalence relation on derivations is trivial, and H1(N, M)Q can
be identified with HomG(N/N ′, M), where N ′ is the commutator subgroup of N . The G-action on
N/N ′ is induced by conjugation.
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Lemma 9.1. Let M be an N-invariant G-module, and take [d] = d ∈ H1(N, M)Q ∼= HomG(N/N ′, M). Then
tr[d] = −d∗[ε], or equivalently, tr[−d] = d∗[ε], with

ε : 0 N/N ′ G/N ′ Q 1.

Proof. The partial splitting corresponding to (−d) is s−d : N → M �G: n 	→ (−d(n),n). A representant
of tr[−d] is given by

e : 0 M
i

(M � G)/s−d(N)
p

Q 1.

On the other hand, the extension d∗[ε] can be represented by the second row of the following dia-
gram, where E is the push-out construction

0 N/N ′

d

G/N ′ Q 1

0 M
i′

E
p′

Q 1.

Observe that E = (M � (G/N ′))/S , where S = {(−d(n),nN ′) ∈ M � (G/N ′) | n ∈ N}. Take ρ : (M �

G)/s−d(N) → E , mapping (m, g)s−d(N) to (m, gN ′)S . One easily checks that this is an equivalence of
extensions, so tr[−d] = d∗[ε]. �

This is exactly the same result as described in Theorem 7.3.1 in [3], so it means that at least
for M = MN , the map tr we have constructed in this paper coincides with the map induced by the
spectral sequence.

10. Cocycle description

Fix a section α : Q → G for π and let fα : Q × Q → N denote the associated factor set, i.e.
α(q)α(q′) = fα(q,q′)α(qq′).

10.1. The map tr

Take an element [d] ∈ H1(N, M)Q , the associated partial splitting s : N → M�G , and the associated
partial semi-direct complement H = s(N). Since [d] is Q -invariant, we obtain an exact sequence

0 MN i
NM�G(H) G 1,

and we choose a section s̃ : G → NM�G (H), not necessarily a homomorphism, that extends s. There is
an associated factor set f s : G × G → MN such that s̃(g)̃s(g′) = i( f s(g, g′))̃s(gg′). We define a section
s̄ : Q → NM�G (H)/H of

eH : 0 MN ī
NM�G(H)/H Q 1

as s̄(q) = s̃(α(q))H . Now take q1,q2 ∈ Q . One easily shows that

s̄(q1)s̄(q2) = ī
(

f s
(
α(q1),α(q2)

) − f s
(

fα(q1,q2),α(q1q2)
))

s̄(q1q2).
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We conclude that tr[d] = [F ], where F : Q × Q → MN is the cocycle

F (q1,q2) = f s
(
α(q1),α(q2)

) − f s
(

fα(q1,q2),α(q1q2)
)
.

In general, one can choose a section s̃ : G → NM�G (H) that does not necessarily extend s. In this case,
the image tr[d] can be represented by the cocycle F : Q × Q → MN with

F (q1,q2) = f s
(
α(q1),α(q2)

) − f s
(

fα(q1,q2),α(q1q2)
) + ī−1(̃s

(
fα(q1,q2)

)
H

)
.

Note that one can use this to show that tr ≡ 0 if M = MN and α is a homomorphism, taking s̃(g) =
(0, g).

Remark 10.1. In [10], Rousseau gave an ad hoc construction of a map H1(N, M)Q → H2(Q , MN ) on
the cocycle level, rendering the five-term sequence exact. It turns out to coincide with the above
cocycle description of our map tr.

10.2. The map tr, second description

It is easy to prove the following lemma.

Lemma 10.2. Take a derivation d : N → M and set H = {(d(n),n) | n ∈ N}, the associated partial semi-direct
complement. For (m, g) ∈ M � G, the following holds: (m, g) ∈ NM�G (H) iff (gd − d)(n) = n · m − m for all
n ∈ N.

Take a derivation d : N → M such that [d] ∈ H1(N, M)Q and fix a normalized map η : Q → M for
which (α(q)d − d)(n) = n · η(q) − η(q), so that (η(q),α(q)) ∈ NM�G(H) by the previous lemma, where
H is defined as before. We claim that a representative cocycle F : Q × Q → MN of tr[d] is given as

F (q1,q2) = η(q1) + α(q1) · η(q2) − fα(q1,q2) · η(q1q2) − d
(

fα(q1,q2)
)
.

Indeed, we can take a section s̄ : Q → NM�G(H)/H of the representative extension

eH : 0 MN ī
NM�G(H)/H Q 1

of tr[d], mapping q to s̄(q) = (η(q),α(q))H . It is now an easy calculation to see that indeed
s̄(q1)s̄(q2) = ī(F (q1,q2))s̄(q1q2) for all q1,q2 ∈ Q , so F is the cocycle associated to eH .

Observe that, if M = MN , we can choose η̃ = 0. In this case, a representative of tr[d] is given
by F (q1,q2) = −d( fα(q1,q2)). This gives an alternative proof of Lemma 9.1. As a corollary, tr ≡ 0 if
M = MN and α is a homomorphism (i.e. the sequence of groups is split exact).

Remark 10.3. Observe that this second cocycle description of our transgression map tr coincides with
an explicit ad hoc description of a map H1(N, M)Q → H2(Q , MN ), making the five-term sequence
exact, by Guichardet in [4, §8].

10.3. The map ρ

Take an element [ f ] ∈ H2(G, M)1 such that f : G × G → M is a cocycle with f |N×N = 0. There is
a partially split extension

e : 0 M M × f G G 1
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associated to f , where M × f G is the set M × G with group law

(m, g)
(
m′, g′) = (

m + g · m′ + f
(

g, g′), gg′).
It is trivial to see that M × f N is just the semi-direct product M � N . Take a section s0 : N → M × f G
defined as s0(n) = (0,n). Observe that

(m, g)(0,n)(m, g)−1 = (
m + f (g,n) − gng−1 · (m + f

(
g, g−1)) + f

(
gn, g−1), gng−1).

Remember that ((m,g)s0)(n) = (m, g)s0(g−1ng)(m, g)−1, so the derivation d(m,g) associated to (m,g)s0
is defined as

d(m,g)(n) = m − n · m + f
(

g, g−1ng
) − n · f

(
g, g−1) + f

(
ng, g−1).

Since f is a cocycle, −n · f (g, g−1) + f (ng, g−1) = − f (n, g), so ρ̃0(e)(m, g) = d(m,g) with d(m,g)(n) =
m − n · m + f (g, g−1ng) − f (n, g). It is now easy to see that

ρ0(e)(q) = [dg]

with π(g) = q and dg(n) = f (g, g−1ng)− f (n, g). This gives a complete description of ρ(e) = [ρ0(e)].

10.4. The map λ

It is easy to see that, if we fix a cocycle c : OutG(e0) × OutG(e0) × OutG(e0) → MN associated to
the crossed extension

e : 0 MN M � N
β

AutG(e0)
Π

OutG(e0) 1,

the image of [D] under λ can be represented by c̃ with c̃(q1,q2,q3) = c(Ds̄(q1), Ds̄(q2), Ds̄(q3)). This
comes from the fact that λ[D] can be realized as (Ds̄)∗[e].

On the other hand, we can give a direct cocycle description for λ. Fix a section s2 : H1(N, M) →
Der(N, M) of the quotient map Der(N, M) → H1(N, M). Since the rows in diagram (4) on p. 84
are split exact, we can identify AutG(e0) ∼= Der(N, M) � G and OutG(e0) ∼= H1(N, M) � Q . Then
s̃ : OutG(e0) → AutG(e0), defined as s̃([d],q) = (s2[d],α(q)) is a section of Π , so s̃ ◦ Ds̄ = (s2 ◦ D,α), is
a section of Φ : Π−1(Ds̄(Q )) → Q .

We compute a map f : Q × Q → M � N , measuring the defect of (s2 ◦ D,α) being a homomor-
phism. In other words, f should satisfy

β ◦ f (q1,q2)
(
s2 D(q1q2),α(q1q2)

) = (
s2 D(q1),α(q1)

)(
s2 D(q2),α(q2)

)
.

Therefore we measure both the defect of α being a homomorphism (using fα ), and the defect of
s2 ◦ D being a derivation via α. Since s2 D(q1) + α(q1)s2 D(q2) − s2 D(q1q2) maps to zero in H1(N, M),
it is an inner derivation for all q1,q2 ∈ Q and we can fix a map F ′ : Q × Q → M such that

−δ0(F ′(q1,q2)
) = s2 D(q1) + α(q1)s2 D(q2) − s2 D(q1q2).

Using the relation nd = d + δ0(d(n)), we see that

β ◦ f (q1,q2) = (−δ0(F ′(q1,q2) + (
s2 ◦ D(q1q2)

)(
fα(q1,q2)

))
, fα(q1,q2)

)
,



K. Dekimpe et al. / Journal of Algebra 369 (2012) 70–95 93
and we can choose

f (q1,q2) = (
F ′(q1,q2) + (

s2 ◦ D(q1q2)
)(

fα(q1,q2)
)
, fα(q1,q2)

)
.

The cocycle c : Q × Q × Q → MN of the crossed extension is now defined by

s̃◦Ds̄(q1) f (q2,q3) f (q1,q2q3) = i0c(q1,q2,q3) f (q1,q2) f (q1q2,q3),

where i0 : MN → M � N is the obvious embedding (for the correspondence, see [1, IV.5]). Using the
fact that fα satisfies a non-abelian “cocycle condition” (for the definition, see [1, IV.6]), and that s2 ◦ D
takes values in Der(N, M), together with the definition of F ′ and the definition of the G-action on
Der(N, M), we can compute that

c(q1,q2,q3) = c′(q1,q2,q3) + (
α(q1q2)s2 D(q3)

)(
fα(q1,q2)

)
, (8)

with

c′(q1,q2,q3) = α(q1) · F ′(q2,q3) − F ′(q1q2,q3)

+ F ′(q1,q2q3) − F ′(q1,q2),

which resembles a coboundary expression. The last term in (8) is given by taking the derivation
s2 D(q3) ∈ Der(N, M), letting α(q1q2) act on it by the usual G-action, and evaluating the resulting
derivation in fα(q1,q2) ∈ N .

11. Example: The Heisenberg groups

We illustrate the seven-term exact sequence for the Heisenberg groups Gk with trivial coefficient
module Z. The group Gk has presentation

Gk = 〈
a,b, c

∣∣ [a,b] = ck, [a, c] = [b, c] = 1
〉
.

Set N = Z(Gk) = 〈c〉 ∼= Z, so Q = Gk/N = 〈a,b〉 ∼= Z
2, where a and b are the images of a and b under

the projection map. We obtain the group extension

εk : 0 N Gk Q 0.

To give an explicit description of the exact sequence, it is important to understand the cohomology
groups that appear. We also want to know which cocycles we can choose as group generators. It is
known that H1(Q ,Z) is the free abelian group on generators [ fa] and [ fb], with fa(a) = 1 = fb(b)

and fa(b) = 0 = fb(a). Furthermore, there is an isomorphism H1(Gk,Z) ∼= Z
2, and we can choose

generators [ f̃a] and [ f̃b] for H1(Gk,Z), with f̃a(a) = 1 = f̃b(b), f̃a(b) = 0 = f̃b(a) and f̃a(c) = 0 =
f̃b(c). Since N = Z(Gk) and Z is the trivial module, H1(N,Z) is invariant under the action of Q , so
H1(N,Z)Q ∼= Z with generator [ f ], with f (c) = 1. It is known that the cohomology group H2(Q ,Z) is
isomorphic to Z, with generator [ε1]. We also have the relation H2(Gk,Z) ∼= Z

2 ⊕Zk , and Hartl gives
an explicit isomorphism D : Z2 ⊕ Zk → H2(Gk,Z) in the example in [5] on p. 410. The generators of
H2(Gk,Z) are D(1,0,0), D(0,1,0) and D(0,0,1). Since H2(N,Z) = 0, H2(Gk,Z)1 = H2(Gk,Z). Last
of all, H1(Q , H1(N,Z)) is a free abelian group on the generators [ f1] and [ f2], with f1(a) = f = f2(b)

and f1(b) = 0 = f2(a).
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The exact sequence is now of the form

0 Z
2 inf

Z
2 res

Z
tr

Z
inf

Z
2 ⊕Zk

ρ
Z

2 0.

One can easily see that inf is the identical map after identification of the groups with Z
2. It is clear

that any homomorphism f : Gk → Z takes c to zero, so res ≡ 0. From Section 9 we know that tr[ f ] =
−[εk], since f : N → Z is an isomorphism. It is easy to see that [εk] = k[ε1], so tr(1) = −k after
identification.

For the description of the next maps, we make use of the isomorphism in [5]. Computing a co-
cycle for ε1, one easily verifies that inf[ε1] can be represented by a cocycle sending a couple
(akblcm,ak′

bl′ cm′
) to ck′l . It follows that inf[ε1] corresponds to D(0,0,1). This means that inf is the

composition of the projection pk : Z → Zk and the embedding il of the last factor in Z
2 ⊕Zk .

We claim that the last map is the projection Z
2 ⊕Zk → Z

2. Indeed, using the formulas in [5], one
proves that D(1,0,0) maps to the class of g1 : Q → H1(N,Z), where g1(aαbβ) sends c to α. This
means that g1(a) = f and g1(b) = 0, so g1 = f1. Analogously, D(0,1,0) is sent to the class of g2,
with g2(a) = 0 and g2(b) = f , so g2 = f2. The element D(0,0,1) is sent to zero. Now it is clear that
ρ : Z2 ⊕Zk → Z

2 is the projection p12 on the first two factors.
Therefore the exact sequence equals

0 Z
2 id

Z
2 0

Z
−k

Z
il◦pk

Z
2 ⊕Zk

p12
Z

2 0.

12. Splitting sequence of groups with N-invariant module

We consider the special case in which the sequence

1 N G Q 1

splits and the module M is N-invariant, so MN = M . Fix a splitting α : Q → G .
We have seen in Section 9 that in this case, tr will be the zero map. Moreover, we can show that

the map λ will also be trivial, since we can find a section σ : OutG(e0) → AutG(e0) of Π , that is
a homomorphism.

Take Π(h, g) ∈ OutG(e0) and set g′ = α(π(g)). Now there exists a map h′ such that (h′, g′) ∈
AutG(e0) and Π(h′, g′) = Π(h, g). One can show that h′ is the unique map with these properties.

Define α̃ : OutG(e0) → AutG(e0), mapping Π(h, g) to (h′, g′) as in the above. It is easy to check
that this is a homomorphism. Observe that this means that the crossed extension

0 MN M � N
β

AutG(e0)
Π

OutG(e0) 1

is equivalent to zero, so λ ≡ 0.
These results are compatible with results for the sequence induced by the spectral sequence.
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