The Schur Indices of the Reflection Group \mathscr{I}_{4}

C. 'T. Benson
Department of Mathematics, University of Oregon, Eugene, Oregon 97403

AND

L. C. Grove

Department of Mathematics, University of Arizona, Tucson, Arizona 85721
Communicated by W. Feit
Received August 10, 1972

It was shown in 1971 by M. Benard [1] that the irreducible complex characters of the crystallographic reflection groups $\mathscr{E}_{6}, \mathscr{E}_{7}$, and \mathscr{E}_{8} all have Schur index 1 over the rational field Q. The same result for other crystallographic reflection groups had been proved in earlier papers by A. Young [11] in 1930, W. Specht [9] in 1932, and 'I. Kondo [6] in 1965.

As for the noncrystallographic groups, it can be scen that each Schur index is 1 for the dihedral groups \mathscr{H}_{2}^{n} by formulas of Yamada [10] (1968); also a particularly simple proof appears in Plotkin [7] (1972). It is easily seen (e.g., by the methods of the present paper) that the group \mathscr{I}_{3} of all symmetrics of the icosahedron has all Schur indices 1, so the only irreducible group remaining is the group \mathscr{I}_{4} of symmetries of the regular 120 -hedroid in Euclidean four-space. We shall extend the results above to the case of \mathscr{I}_{4}, thereby providing the final step in the proof of the following theorem.

Theorem. If \mathscr{G} is a finite group generated by reflections and χ is an irreducible complex character of \mathscr{G}, then the Schur index $m_{o}(\chi)$ of χ over the rational field Q is equal to 1 , with the exception of the character of degree 48 of \mathscr{I}_{4}, whose Schur index is 2.

Since the theorem has been proved by means of a case-by-case analysis, a general proof covering all cases simultaneously would be of considerable interest.

All notation involving \mathscr{I}_{4} and its characters will be that used in [5].
All characters of \mathscr{I}_{4} are real valued. Since $\chi_{11}, \chi_{12}, \chi_{13}, \chi_{14}, \chi_{27}, \chi_{28}$ are of odd degree (and real), they all have Schur index 1 by theorem of A. Speiser
(see [3, p. 165]). Each of the characters of even degree has Schur index either 1 or 2 by a theorem of Brauer and Hasse (again see [3, p. 165]). Thus it will suffice to show that $m_{O}(\chi)$ is odd for each χ of even degree. The most impor-tant tool will be the following theorem of Schur (see [4, 11.4]; also see [8, Theorem 2]).

Theorem (Schur). Suppose F is a subfield of the complex field C and χ is an irreducible C-representation of a finite group \mathscr{G}. If χ is a constituent of the character η of an F-representation of \mathscr{G} then $m_{F}(\chi) \mid(\chi, \eta)$.

Two reductions are possible. Given an irreducible character χ of $\mathscr{\mathscr { O }}_{4}$, suppose a character η of a Q-representation has been found, as in Schur's theorem, for which (χ, η) is odd. Multiplying by the alternating character χ_{2}, we obtain a possibly different character $\chi_{2} \chi$, and $\chi_{2} \eta$ is also afforded by a Q-representation. Since

$$
\left(\chi_{2} \chi, \chi_{2} \eta\right)=(\chi, \eta)
$$

is odd, we see that $\chi_{2} \chi$ also has Schur index 1. Inspection of the character table shows then that we need not consider χ_{i} for $i=3,5,18,20$, and 32 (since $\chi_{3}=\chi_{2} \chi_{4}$, etc.).

Next set $F=Q\left(5^{1 / 2}\right)$, and define $\phi \in \operatorname{Gal}(F: Q)$ by means of $\phi\left(5^{1 / 2}\right)=$ $-5^{1 / 2}$. Suppose η is the character of a Q-representation T and (χ, η) is odd. Then $T^{\phi}=T$ has character $\eta^{\phi}=\eta$, and

$$
\left(\chi^{\phi}, \eta\right)=\left(\chi^{\phi}, \eta^{\phi}\right)=(\chi, \eta)
$$

so $m_{0}\left(\chi^{\phi}\right)=1$. Since

$$
\alpha=\cos \pi / 5=\left(1+5^{1 / 2}\right) / 4 \quad \text { and } \quad \beta=\cos 2 \pi / 5=\left(-1+5^{1 / 2}\right) / 4
$$

the cffcct of ϕ on the entries of the character table is to interchange α and $-\beta$. Thus we also need not consider χ_{i} for $i=6,7,17,24,26$, and 30 (since $\chi_{6}=\chi_{4}{ }^{\text {b }}$, etc.).

The remaining characters of even degree are $\chi_{i}, i=4,8,9,10,15,16$, $19,21,22,23,25,29,31,33$, and 34 . For each we shall exhibit a character η of a Q-representation for which $\left(\chi_{i}, \eta\right)$ is odd, $i \neq 34$.

A subgroup \mathscr{H} of \mathscr{I}_{4} is called parabolic if it is generated by a subset of a set $\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ of fundamental reflections. Thus a nontrivial proper parabolic subgroup is a Coxeter group with one of the Coxeter graphs

and hence is of type $O_{1}, O_{1} \times \mathscr{O}_{1}, O_{2}, O_{2} \times \mathscr{C}_{1}, C_{3}, \mathscr{H}_{2}^{5}, \mathscr{H}_{2}^{5} \times \mathscr{O}_{1}$, or \mathscr{I}_{3} (see [2, Chap. 5]).

If $1_{\mathscr{H}}$ is the principal character of a subgroup \mathscr{H} of \mathscr{I}_{4}, then the induced character $1_{\mathscr{H}} *$ of \mathscr{I}_{4} is clearly the character of a rational representation of \mathscr{I}_{4}, so $1_{\mathscr{K}}{ }^{*}$ is a candidate for the role of η in Schur's theorem. By the Frobenius Reciprocity Theorem we have, for each character χ of \mathscr{I}_{4},

$$
\left(\chi, 1_{\mathscr{H}}{ }^{*}\right)=\left(\chi \mid \mathscr{H}, 1_{\mathscr{H}}\right)=|H|^{-1} \sum\{\chi(\psi): \psi \in \mathscr{H}\} .
$$

We shall compute this formula explicitly for parabolic subgroups of each type.
The simplest case is, of course, $\mathscr{H}=\overparen{C}_{1}=\{1, \psi\}$ for any $\psi \in K_{27}$, since K_{27} is the class of reflections in \mathscr{I}_{4}. Thus

$$
\left(\chi, 1_{\mathscr{H}}^{*}\right)=(1 / 2)\left[\chi(1)+\chi\left(K_{27}\right)\right] .
$$

Let us carry out the computation for another type, say $\mathscr{H}=\mathscr{H}_{2}^{5}$. Then \mathscr{H} has four conjugacy classes: $C_{1}=\{1\}$, the class $C_{2} \subseteq K_{27}$ of five reflections, and classes C_{3} and C_{4} each having two elements of order 5 (rotations through angles $\pm 2 \pi / 5$ and $\pm 4 \pi / 5$). The elements of C_{3} are products of two reflections having angle $\pi / 5$ between their reflecting planes. Thus for an appropriate basis we have the representing matrix

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
-1 & & & \\
& 1 & 0 \\
0 & & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos 3 \pi / 5 & \sin 3 \pi / 5 & & 0 \\
\sin 3 \pi / 5 & -\cos 3 \pi / 5 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& \quad=\left[\begin{array}{cccc}
-\cos 3 \pi / 5 & -\sin 3 \pi / 5 & & \\
\sin 3 \pi / 5 & -\cos 3 \pi / 5 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

having trace $2-2 \cos 3 \pi / 5=2+2 \beta=2 \alpha+1$. Since χ_{3} is a character afforded by a faithful representation of \mathscr{I}_{4} as a group of transformations of \mathscr{R}^{4}, and the only class of elements of order 5 at which χ_{3} takes the value $2 \alpha+1$ is K_{6}, we may assume that $C_{3} \subseteq K_{6}$, and similarly $C_{4} \subseteq K_{8}$. As a result, when $\mathscr{H}=\mathscr{H}_{2}^{5}$ we have

$$
\left(\chi, 1_{\mathscr{H}}^{*}\right)=(1 / 10)\left[\chi(1)+2 \chi\left(K_{6}\right)+2 \chi\left(K_{8}\right)+5 \chi\left(K_{27}\right)\right]
$$

The computations are omitted for parabolic subgroups of other types; we simply list the resulting formulas:

$$
\begin{align*}
\mathscr{H} & =O_{1} ; \quad\left(\chi, 1_{\mathscr{H}}^{*}\right)=(1 / 2)\left[\chi(1)+\chi\left(K_{27}\right)\right] \tag{1}\\
\mathscr{H} & =\mathscr{A}_{1} \times \mathscr{q}_{1} ; \quad\left(\chi, 1_{\mathscr{H}}^{*}\right)=(1 / 4)\left[\chi(1)+\chi\left(K_{3}\right)+2 \chi\left(K_{27}\right)\right], \tag{2}\\
\mathscr{H} & =\mathscr{C}_{2} ; \quad\left(\chi, 1_{\mathscr{H}}^{*}\right)=(1 / 6)\left[\chi(1)+2 \chi\left(K_{4}\right)+3 \chi\left(K_{27}\right)\right] \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \mathscr{H}=\mathscr{O}_{2} \times \mathscr{C}_{1} ; \quad\left(\chi, 1_{\mathscr{H}}^{*}\right)=(1 / 12)\left[\chi(1)+3 \chi\left(K_{3}\right)+2 \chi\left(K_{4}\right)\right. \\
&\left.+4 \chi\left(K_{27}\right)+2 \chi\left(K_{29}\right)\right] \tag{4}\\
& \mathscr{H}=\mathscr{O}_{3} ; \quad\left(\chi, 1_{\mathscr{H}}^{*}\right)=(1 / 24)\left[\chi(1)+3 \chi\left(K_{3}\right)+8 \chi\left(K_{4}\right)\right. \\
&\left.+6 \chi\left(K_{27}\right)+6 \chi\left(K_{28}\right)\right] \tag{5}\\
& \mathscr{H}=\mathscr{H}_{2}^{5} ; \quad\left(\chi, 1_{\mathscr{H}}^{*}\right)=(1 / 10)\left[\chi(1)+2 \chi\left(K_{6}\right)+2 \chi\left(K_{8}\right)+5 \chi\left(K_{27}\right)\right], \tag{6}\\
& \mathscr{H}=\mathscr{H}_{2}^{5} \times C_{1} ; \quad\left(\chi, 1_{\mathscr{H}}^{*}\right)=(1 / 20)\left[\chi(1)+5 \chi\left(K_{3}\right)+2 \chi\left(K_{6}\right)+2 \chi\left(K_{8}\right)\right. \\
&\left.+6 \chi\left(K_{27}\right)+2 \chi\left(K_{31}\right)+2 \chi\left(K_{35}\right)\right], \tag{7}\\
& \mathscr{H}=
\end{align*}
$$

Applying the above formulas we find, for example, that for $\mathscr{H}=O_{1}$ we have

$$
\left(\chi_{4}, 1_{\mathscr{H}^{*}}\right)=(1 / 2)[4-2]=1
$$

and hence $m_{Q}\left(\chi_{4}\right)=1$. In fact, for each remaining character χ_{i} of even order, with the exception of χ_{34}, there is a parabolic subgroup \mathscr{H} for which $\left(\chi_{i}, \mathscr{H}_{\mathscr{H}}^{*}\right)=1$. They are listed in the following table:

Character	χ_{4}	χ_{8}	χ_{9}	χ_{15}	χ_{16}	χ_{12}	χ_{21}
Subgroup	a_{1}	a_{2}	$a_{2} \times a_{1}$	a_{2}	$a_{2} \times a_{1}$	a_{2}	a_{2}

Character	χ_{22}	χ_{23}	χ_{25}	χ_{29}	χ_{31}	χ_{33}
Subgroup	$\mathscr{H}_{2}{ }^{5}$	O_{3}	O_{3}	$\mathscr{H}_{2}^{5} \times \mathscr{U}_{1}$	\mathscr{I}_{3}	O_{3}

There is a subgroup $\mathscr{H}=(K \times L) / \pm 1$ of order 48 , where $K=$ $\left\langle p_{5}, k\right\rangle \leqslant I$ and $L \leqslant I$ is the 8 -element quaternion group. The faithful characters of degree 2 on K and L give an irreducible character η of \mathscr{H}, with $m_{O}(\eta)=2$ (see $[1$, p. $98,6(\mathrm{~b})]$). Thus $m_{O}\left(\chi_{34}\right)=2$ by Lemma 2.2 of [1], since $\left(\chi_{34} \mid \mathscr{H}, \eta\right)$ is odd and χ_{31} and η are rational valued.

References

1. M. Benard, On the Schur indices of characters of the exceptional Weyl groups, Ann. of Math. 94 (1971), 89-107.
2. C. Benson and L. Grove, "Finite Reflection Groups," Bogden \& Quigley, Tarrytown-on-Hudson, N. Y., 1971.
3. R. Brauer, Representations of finite groups, in "Lectures on Modern Mathematics" (T. L. Saaty, Ed.), Wiley, New York, 1963.
4 W. Fert, "Characters of Finite Groups," Benjamin, Menio Park, Ca., 1967.
4. L. Grove, The characters of the hecatonicosahedroidal group, J. Reine Angew. Math., to appear.
5. T. Kondo, The characters of the Weyl group of type F_{4}, J. Fac. Sci. Univ. 'Iokyo 1 (1965), 145-153.
6. N. Plotkin, Representations of Finite Groups in Quadratic Fields, Ph.D. Dissertation, Syracuse University, Syracuse, N.Y., 1972,
7. I. Reiner, The Schur index in the theory of group representations, Michigan Math. J. 8 (1961), 39-47.
8. W. Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Schr. Math. Sem. Berlin 1 (1932), 1-32.
9. T. Yamada, On the group algebras of metacyclic groups over algebraic number fields, J. Fac. Sci. Univ. Tokyo 15 (1968), 179-199.
10. A. Young, Quantitative substitutional analysis, IV, V, Proc. London Math. Soc. (2) 31 (1930), 253-288.
