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It was shown in 1971 by M. Bcnard [l] that the irreducible complex 
characters of the crystallographic reflection groups 8s , 8, , and 8, all have 
Schur index 1 over the rational field Q. The same result for other crystallo- 
graphic reflection groups had been proved in earlier papers by A. Young [ 111 
in 1930, W. Specht [9] in 1932, and T. Kondo [6] in 1965. 

As for the noncrystallographic groups, it can be seen that each Schur 
index is 1 for the dihedral groups 2s” by formulas of Yamada [IO] (1968); 
also a particularly simple proof appears in Plotkin [7] (1972). It is easily seen 
(e.g., by the methods of the present paper) that the group $a of all symmetries 
of the icosahedron has all Schur indices 1, so the only irreducible group 
remaining is the group 3, of symmetries of the regular 120-hedroid in 
Euclidean four-space. We shall extend the results above to the case of 4:) 
thereby providing the final step in the proof of the following theorem. 

THEOWM. If % is a finitegroup generated by rejections and ,y is an irreducible 
complex character of 3, the71 the Schur index m,(X) of x over the rational$eld Q 
is equal to 1, with the exception of the character of degree 48 of 4: , whose 
Schur index is 2. 

Since the theorem has been proved by means of a case-by-case analysis, 
a general proof covering all cases simultaneously would be of considerable 
interest. 

All notation involving $a and its characters will be that used in [5]. 
All characters of y4 are real valued. Since x 11 Y xl:! 1 x13 ) xl4 9 x27 T x28 are of 

odd degree (and real), they all have Schur index I by theorem of A. Speiser 
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(see [3, p. 165)). Each of the characters of even degree has Schur index either 
1 or 2 by a theorem of Brauer and Hasse (again see [3, pa 1651). Thus it will 
sufhce to show that m&) is odd for each x of even degree. The most impor- 
tant tool will be the following theorem of Schur (see [4, Il.4]; also see 
[S, Theorem 21). 

THEQREM (Schur). Suppose F is a subJiefd of the complex field C’ and x ix 
an ~~~ed~c~b~e C-representation of a j&rite group 3. If x is a c~~st~t~~~t of the 
character 71 of an F-representation of 9 then m,(X) j (x, 7). 

Two reductions are possible. Given an irreduci’ble character x of $d ) 
suppose a character 17 of a Q-representation has been found, as in S&K’s 
theorem, for which (x, 7) is odd. Multiplying by the alternating character xz ) 
we obtain a possibly different character x2x, and xsq is also afforded by a 
Q-representation. Since 

(x2x, x27) = (x7 7) 

is odd, we see that x2x also has Schur index 1. Inspecti.on of the character table 
shows then that we need not consider xi for i = 3, 5, 18, 20, and 32 (since 
x3 = x2x4 y etc.). 

Next set F = Q(S/“), and define $I E Gal(F : Q) by means of $(5r/z) = 
-SJz. Suppose 7 is the character of a Q-representat.ion T and (x, q) is odd. 
Then P = T has character q* = 7, and 

(x”, 7) = (X&T 9) = (x3 1717 
80 m,(x4) = 1. Since 

a = cos T/5 = (1 + 5q4 and p = cos 2%-15 = (-1 + 5q4, 

the effect of 4 on the entries of the character table is to interchange c and -/!I. 
Thus we also need not consider xi for i = 6, 7, 17, 24, 26, and 30 (since 
x6 = x4&, etc.). 

The remaining characters of even degree are xs , i = 4, 8, 9, LO, 15, 16, 
19, 21, 22, 23, 25, 29, 31, 33, and 34. For each we shall exhibit a character 71 
of a Q-representation for which (xi , 7) is odd, i j; 34.. 

A subgroup LX? of $b is called parabolic if it is generated by a subset of a 
set (S, p S, s S, , S,> of fundamental reflections. Thus a nontrivial proper 
parabolic subgroup is a Coxeter group with one of the Coxeter graphs 
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and hence is of type G& , OZr x 6Yr , OZa , GZs x O& , &‘s , %s6, ~4’s” x 6Zr, or 9a 
(see [2, Chap. 51). 

If 1% is the principal character of a subgroup X? of 9,) then the induced 
character I%* of 94 is clearly the character of a rational representation of Y4, 
so lx* is a candidate for the role of 71 in Schur’s theorem. By the Frobenius 
Reciprocity Theorem we have, for each character x of 94, 

We shall compute this formula explicitly for parabolic subgroups of each type. 
The simplest case is, of course, Z = Uk’r = {I, $} for any $ E Ks7 , since 

Ks, is the class of reflections in Y4 . Thus 

(x2 Le*) = wux(l) + X&N’ 
Let us carry out the computation for another type, say X = Zz6. Then 

% has four conjugacy classes: C, = {I}, the class C’s C I&, of five reflections, 
and classes C’s and C, each having two elements of order 5 (rotations through 
angles +27r/5 and j&r/5). The elements of Cs are products of two reflections 
having angle n/5 between their reflecting planes. Thus for an appropriate basis 
we have the representing matrix 

[’ 3nj5 l 0 

sin 3z-15 o 

0 1 II cos 

sin 3n/5 

-cos 37r/5 1 0 0 1 0 1 1 
I 
-cos 3~15 -sin 3rr/5 

zzz sin 3~15 

0 

-cos 3%-15 1 
o 

0 o 1 1 

having trace 2 - 2 cos 3a/5 = 2 + 2/3 = 201 + 1. Since x3 is a character 
afforded by a faithful representation of -Y4 as a group of transformations of 
B*, and the only class of elements of order 5 at which x3 takes the value 
2~ + 1 is K, , we may assume that C’s _C K6 , and similarly C, _C KS . As a 
result, when &? = #a” we have 

(x, b*) = WNx(l) + 2x(&) + 2xFJ + 5x~fG)l. 

The computations are omitted for parabolic subgroups of other types; we 
simply list the resulting formulas: 

2 = G; (x, lx*) = W)[X(~) + xK,)l, (1) 
c@ = @I x G; (x, lee*) = (1/4)[xU) + x(G) + 2x(&d, (2) 

2 = &a; (x> 1~“) = W6hU) + 2x(%) + 3x(Wl, (3) 
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Applying the above formulas we find, for example, that for .Z = @” we have 

(~4, 1~“) = (1/2)[4 - 21 = 1, 
and hence m&) = 1. In fact, for each remaining character xi of even order, 
with the exception of xs4, there is a parabolic subgroup A? for which 
(xi ) I&*) = 1. They are listed in the following table: 

Character X4 x8 x9 x15 X16 Xl9 x21 

Subgroup a1 a?2 G& x a-1 a$ @z x & a2 a2 

Character X22 x23 x25 X-29 x31 x33 

Subgroup 22” a3 a3 22” x a$ =& a3 

There is a subgroup S? = (K x L)/&l of order 48, where K = 
( pj , K) < I and L < I is the g-element quaternion group. The faithful 
characters of degree 2 on K and L give an irreducible character 77 of X7 with 
ma(q) = 2 (see [l, p. 98, 6(b)]). Th us mo(~34) = 2 by Lemma 2.2 of [1], 
since &a4 j 2,~) is odd and x34 and 7 are rational valued 
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