A Family of Ovals with Few Collineations

J. A. Thas, S. E. Payne and H. Gevaert

Abstract

A recently discovered [1] family of ovals in $P G(2, q), q=2^{e}, e$ odd, is shown to have a cyclic collineation group of order $2 e$.

1. Introduction

An oval of $P G(2, q)$ is a set of $q+1$ points no three of which are collinear; a hyperoval of $P G(2, q), q$ even, is a set of $q+2$ points not three of which are collinear. For any oval Ω of $P G(2, q), q$ even, there is a unique point n, called the nucleus of Ω, such that $\Omega \cup\{n\}=\Omega^{*}$ is a hyperoval. For a survey on ovals and hyperovals we refer to [2, pp. 45, 207 and 278-285]. Recently, S. E. Payne discovered a new family of ovals which we now describe.

Let $F=G F(q), q=2^{e}, e$ odd. Define $\delta: F \rightarrow F$ by

$$
\begin{equation*}
\delta: x \mapsto x^{1 / 6}+x^{1 / 2}+x^{5 / 6}, \quad \text { for all } x \in F . \tag{1}
\end{equation*}
$$

In [1] it was shown that

$$
\begin{equation*}
\Omega(\delta)=\{(0,1,0)\} \cup\left\{\left(1, c, c^{\delta}\right): c \in F\right\} \tag{2}
\end{equation*}
$$

is an oval in $\operatorname{PG}(2, q)$ with nucleus $(0,0,1)$, and that $\Omega(\delta)$ is new provided $e \geqslant 5$. It is clear that δ commutes with each automorphism of F, so that

$$
\begin{equation*}
\sigma:(x, y, z) \mapsto\left(x^{2}, y^{2}, z^{2}\right) \tag{3}
\end{equation*}
$$

generates a group of order e of collineations of $P G(2, q)$ leaving invariant the oval $\Omega(\delta)$. A simple computation shows that

$$
\begin{equation*}
\left(x^{-1}\right)^{\delta}=x^{\delta} / x . \tag{4}
\end{equation*}
$$

From this it follows that

$$
\begin{equation*}
\theta:(x, y, z) \mapsto(y, x, z) \tag{5}
\end{equation*}
$$

is a projectivity of $P G(2, q)$ that fixes the points $(1,1,1)$ and $(0,0,1)$, interchanges $(1,0,0)$ and $(0,1,0)$, and interchanges the points $\left(1, c, c^{\delta}\right)$ and $\left(1, c^{-1},\left(c^{-1}\right)^{\delta}\right), c \neq 0$. Hence θ leaves invariant the hyperoval

$$
\begin{equation*}
\Omega^{*}=\Omega(\delta) \cup\{(0,0,1)\} \tag{6}
\end{equation*}
$$

The goal of this essay is to show that for $e \geqslant 5$ the cyclic group G of order $2 e$ generated by σ and θ is the full group G^{*} of collineations of $\operatorname{PG}(2, q)$ leaving invariant the hyperoval Ω^{*}. For $e \geqslant 7$, Bezout's theorem (cf. [3, p. 44]) yields a fairly efficient proof. The case $q=32$ is more stubborn, even requiring the assistance of a computer.

The G-orbits on Ω^{*} are $\{(0,0,1)\},\{(1,1,1)\},\{(1,0,0),(0,1,0)\}$, and sets of size $2 d$, where $1<d$ and d divides e. One reason for interest in this result is the many pairwise nonisomorphic generalized quadrangles $(G Q)$ that arise from Ω^{*}. As explained in [1], there are the following cases:
(I) Ω^{*} yields one $G Q$ of order $(q-1, q+1)$.
(II) For each G-orbit of Ω^{*} there arises a distinct $G Q$ of order (q, q), with none of these isomorphic to the dual of any of them.
(III) For each G-orbit on the unordered pairs of distinct points of Ω^{*} there arises a distinct $G Q$ of order ($q+1, q-1$), none of which is the dual of that one given in (I).

2. An Algebraic Curve of Degree Six

For each $x \in F$ a routine calculation shows that

$$
\begin{equation*}
\left(x^{\delta}\right)^{6}=x\left(x^{\delta}\right)^{4}+x^{5}+x \tag{7}
\end{equation*}
$$

Taking square roots and putting

$$
\begin{equation*}
f_{x}(T)=T^{3}+x^{1 / 2} T^{2}+x^{5 / 2}+x^{1 / 2} \tag{8}
\end{equation*}
$$

we have

$$
\begin{equation*}
f_{x}(T)=\left(T-x^{\delta}\right)\left(T^{2}+\left(x^{1 / 6}+x^{5 / 6}\right) T+x^{\delta}\left(x^{1 / 6}+x^{5 / 6}\right)\right) \tag{9}
\end{equation*}
$$

(2.1) If $1 \neq x \in F$, then x^{δ} is the unique root in F of $f_{x}(T)=0$. If $x=1$, then $1^{\delta}=1$ is a root, but so is $T=0$.

Proof. For $x=0, f_{x}(T)=T^{3}=0$ has only the root $T=0^{\delta}=0$. For $x=1$, $f_{x}(T)=T^{3}+T^{2}=0$ has the root $T=1^{\delta}=1$ and also the extraneous root $T=0$. Recall that the elements of F are partitioned into two sets: $C_{0}=\left\{x^{2}+x: x \in F\right\}$ and its other additive coset C_{1}, where since e is odd $C_{1}=C_{0}+1$. Then $T^{2}+a T+b$ is irreducible over F iff $b / a^{2} \in C_{1}$ (cf. [2]). So for $0 \neq x \neq 1, T^{2}+\left(x^{1 / 6}+x^{5 / 6}\right) T+$ $x^{\delta}\left(x^{1 / 6}+x^{5 / 6}\right) \quad$ is irreducible over F iff $x^{\delta}\left(x^{1 / 6}+x^{5 / 6}\right) /\left(x^{1 / 6}+x^{5 / 6}\right)^{2}=1+$ $x^{1 / 3} /\left(1+x^{1 / 3}\right)^{2} \in C_{1}$, which is the case since $1 \in C_{1}$ and $x^{1 / 3} /\left(1+x^{1 / 3}\right)^{2}=A^{2}+A \in C_{0}$, with $A=\left(1+x^{1 / 3}\right)^{-1}$.

As a corollary one may prove that if $\gamma=\delta^{-1}$ and $0 \neq y \in F$, then y^{γ} is the unique root in F of $T^{5}+T\left(1+y^{4}\right)+y^{6}=0$.

Writing homogeneous co-ordinates for the points of $\Omega(\delta)$, we find

$$
\Omega(\delta)=\{(x, y, z): x=z=0 \neq y \quad \text { or } x \neq 0
$$

and

$$
\left.(y / x)^{\delta}=z / x\right\}=\{(0,1,0),(1,1,1)\} \cup\{(x, y, z): 0 \neq x \neq y
$$

and

$$
\begin{align*}
& \left.(z / x)^{6}+(y / x)(z / x)^{4}+(y / x)^{5}+y / x=0\right\} \tag{10}\\
= & \{(0,1,0),(1,1,1)\} \cup\{(x, y, z): 0 \neq x \neq y
\end{align*}
$$

and

$$
\left.z^{6}=x y(x+y+z)^{4}\right\}
$$

Putting $x=0$ in $z^{6}=x y(x+y+z)^{4}$ allows only the point $(0,1,0)$; and $x=y \neq 0$ does allow $(1,1,1)$, but it also allows the extraneous point $(1,1,0)$. Define the algebraic curve Γ in $P G(2, q)$ by

$$
\begin{equation*}
\Gamma=\left\{(x, y, z) \in P G(2, q): z^{6}=x y(x+y+z)^{4}\right\} \tag{11}
\end{equation*}
$$

Then the preceding paragraph proves the following:
(2.2) $\Gamma=\Omega(\delta) \cup\{(1,1,0)\}$.

Our goal is to show that for $e \geqslant 5, G^{*}=G$. Since $\sigma \in G^{*}$, it suffices to determine all linear (i.e. projective) collineations of $P G(2, q)$ leaving Ω^{*} invariant-and for $e>32$ we are already able to do this!
(2.3) Let α be a linear collineation in G^{*}. Then:
(i) if $q>32, \alpha \in\{i d, \theta\}$;
(ii) if $q=32$ and $(0,0,1)^{\alpha}=(0,0,1)$, then $\alpha \in\{\mathrm{id}, \theta\}$;
(iii) if $q=32$ and $(1,1,0)^{\alpha}=(1,1,0)$, then $\alpha \in\{$ id, $\theta\}$.

Proof. Clearly, α transforms the algebraic curve Γ into an algebraic curve Γ^{\prime}, also of the sixth degree. The point $(1,1,0)$ is a 4 -tuple point of Γ, and moreover is the only singular point of Γ. Hence ($1,1,0)^{\alpha}$ is the unique singular point of Γ^{\prime}. Suppose $\Gamma \neq \Gamma^{\prime}$. Since Γ and Γ^{\prime} are irreducible, by Bezout's theorem (cf. [3, p. 44]) we have $\left|\Gamma \cap \Gamma^{\prime}\right| \leqslant 36$. As $\Omega(\delta) \cap(\Omega(\delta))^{\alpha} \subset \Gamma \cap \Gamma^{\prime}$, we have $q \leqslant\left|\Gamma \cap \Gamma^{\prime}\right|$. Hence if $q>32, \Gamma=\Gamma^{\prime}$ and $(1,1,0)^{\alpha}=(1,1,0)$.

Now suppose $q=32$ and $(0,0,1)^{\alpha}=(0,0,1)$. The tangents of Γ at the simple points of Γ (i.e. the points of $\Omega(\delta)$) concur at $(0,0,1)$. Consequently, the tangents of Γ^{\prime} at the points of $(\Omega(\delta))^{\alpha}=\Omega(\delta)$ concur at $(0,0,1)$. Therefore the tangents of Γ and Γ^{\prime} at the points of $\Omega(\delta)$ coincide. This means that, if $\Gamma \neq \Gamma^{\prime}$ and considering the intersection multiplicities of points of $\Gamma \cap \Gamma^{\prime}$, the points of $\Omega(\delta)$ account for at least $2(q+1)=66$ common points, contradicting Bezout's theorem. Hence also in this case we have $\Gamma=\Gamma^{\prime}$ and $(1,1,0)^{\alpha}=(1,1,0)$.

Next, suppose that $q=32$ and $(1,1,0)^{\alpha}=(1,1,0)$, so the 4 -tuple points of Γ and Γ^{\prime} coincide. Assume $\Gamma \neq \Gamma^{\prime}$. Then ($1,1,0$) accounts for at least $4 \cdot 4=16$ common points of Γ and Γ^{\prime}. Since $32+16>36$, we again have a contradiction, by Bezout's theorem.

At this point we know that each of the hypotheses of (2.3) leads to $\Gamma=\Gamma^{\prime}$ and $(1,1,0)^{x}=(1,1,0)$, which we now take as our hypothesis.

Since the tangents of Γ at the simple points of Γ concur at $(0,0,1)$, we have $(0,0,1)^{\alpha}=$ $(0,0,1)$. Let L be a line through $(0,0,1)$. If $L \cap \Omega(\delta)=1$, then the intersection multiplicity of L and Γ at l is exactly 6 iff L is $x=0$ or $y=0$, in which case l is $(0,1,0)$ or $(1,0,0)$. Hence, with $[a, b, c]$ denoting the line with equation $a X+b Y+c Z=0$, we have all of the following: $(\Omega(\delta))^{\alpha}=\Omega(\delta) ;(1,1,0)^{\alpha}=(1,1,0) ;(0,0,1)^{\alpha}=(0,0,1) ;[1,1,0]^{\alpha}=$ $[1,1,0] ;(1,1,1)^{\alpha}=\{\Omega(\delta) \cap[1,1,0]\}^{\alpha}=(\Omega(\delta))^{\alpha} \cap[1,1,0]^{\alpha}=\Omega(\delta) \cap[1,1,0]=$ $(1,1,1) ;\{(0,1,0),(1,0,0)\}^{\alpha}=\{(0,1,0),(1,0,0)\} ;[0,0,1]^{\alpha}=[0,0,1]$. Since α is linear, it is now easy to check that $\alpha \in\{i d, \theta\}$.

The preceding result has as an immediate consequence that $G=G^{*}$ if $q>32$ or if $q=32$ and $(1,1,0)^{\alpha}=(1,1,0)$ for each linear α in G^{*}. Hence the remainder of the paper is devoted to showing that when $q=32,(1,1,0)^{\alpha}=(1,1,0)$ for each linear α in G^{*}. Before proceeding, however, we make one interesting (but probably useless) observation. The map $\tau:(x, y, z) \mapsto(z, y, x)$ maps $\Omega(\delta) \cup\{(0,0,1)\}$ to $\Omega\left(\delta^{*}\right) \cup\{(0,0,1)\}$, where $\left(x^{\delta}\right)^{-1}=$ $\left(x / x^{\delta}\right)^{\delta^{*}}$, for all $x \neq 0$, and $0^{\delta^{*}}=0$. Using (4), for all $x \neq 0$ it follows that $\left(1 / x^{\delta}\right)^{\delta^{*}}=$ $\left(x^{-1} /\left(x^{\delta} / x\right)\right)^{\delta^{*}}=\left(x^{-1} /\left(x^{-1}\right)^{\delta}\right)^{\delta^{*}}=\left(\left(x^{-1}\right)^{\delta}\right)^{-1}=x / x^{\delta}$. Hence $\delta^{*}: x / x^{\delta} \mapsto 1 / x^{\delta} \quad(x \neq 0)$, implying that δ^{*} is a product of disjoint transpositions.

3. The Special Role of $(1,1,0)$

For any $c \in F-\{0,1\}$, the line joining the points $\left(1, c, c^{\delta}\right)$ and $\left(1, c^{-1},\left(c^{-1}\right)^{\delta}\right)$ of $\Omega(\delta)$ contains the point ($1,1,0$).
(3.1) If the distinct lines $p_{1} p_{2}$ and $q_{1} q_{2}, p_{1}, p_{2}, q_{1}, q_{2} \in \Omega(\delta)$, contain the point $(1,1,0)$, then the line joining the diagonal points of the complete quadrangle $p_{1} p_{2} q_{1} q_{2}$ is always the line [$1,1,0$].

Proof. This is a straightforward computation using (4).
(3.2) Let $p_{1} p_{2}, q_{1} q_{2}, r_{1} r_{2}$, with $p_{1}, p_{2}, q_{1}, q_{2}, r_{1}, r_{2} \in \Omega(\delta)$, be distinct lines containing the point ($1,1,0$). Then $p_{1}, p_{2}, q_{1}, q_{2}, r_{1}, r_{2}$ belong to an irreducible conic C. Moreover, the line $[1,1,0]$ is the tangent from $(1,1,0)$ to C.

Proof. Let a, b, c, d be four points of an irreducible conic C. Then the line joining the diagonal points of the complete quadrangle $a b c d$ is tangent to C. Let C be the irreducible conic through the points $p_{1}, p_{2}, q_{1}, q_{2}, r_{1}$. Then, by (3.1), $[1,1,0]$ is the line joining the diagonal points of $p_{1} p_{2} q_{1} q_{2}$ and is the tangent to C through $(1,1,0)$. Hence the line L through $(1,1,0)$ and r_{1} is a secant to C and passes through a second point r of C. It follows that $[1,1,0]$ is the line joining the diagonal points of $q_{1} q_{2} r_{1} r$ and of $q_{1} q_{2} r_{1} r_{2}$, forcing $r=r_{2}$.
(3.3) Let $(1,1,0)$ be on the line $p_{1} p_{2}$, with p_{1}, p_{2} points of $\Omega(\delta)$. Then the line joining the diagonal points of $p_{1} p_{2} r s$, with $r(0,0,1)$ and $s(1,1,1)$, is external to $\Omega(\delta)$. In this way there arise all $q / 2$ lines through $(1,1,0)$ having no point in common with $\Omega(\delta)$.

Proof. First suppose $p_{1} p_{2}=[0,0,1]$, say $p_{1}(1,0,0)$ and $p_{2}(0,1,0)$. Then the line joining the diagonal points of $p_{1} p_{2} r s$ is $[1,1,1]$, and it will have a point of $\Omega(\delta)$ iff there is some $c \in F$ with $c^{\delta}=1+c$. Clearly, $c=1$ is not a solution, but (2.1) implies $0=$ $f_{c}\left(c^{\delta}\right)=(1+c)^{3}$, an impossibility. So, suppose $p_{1}\left(1, c, c^{\delta}\right)$ and $p_{2}\left(1, c^{-1},\left(c^{-1}\right)^{\delta}\right)$, $0 \neq c \neq 1$. The line joining the diagonal points of $p_{1} p_{2} r s$ is $\left[1,1,(1+c) /\left(1+c+c^{\delta}\right)\right]$. This line meets $\Omega(\delta)$ iff there is some $x \in F-\{0,1\}$ with $x^{\delta} /(1+x)=1+c^{\delta} /(1+c)$. Use $t^{\delta} /(1+t)=t^{1 / 6} /\left(1+t^{1 / 3}\right)$ for $t \neq 1$, and put $a=x^{1 / 6}, b=c^{1 / 6}$ to rewrite this last equation as $a^{2}\left(1+b+b^{2}\right)+a\left(1+b^{2}\right)+1+b+b^{2}=0$. For a given b, there is no solution for a iff $\left(1+b+b^{2}\right)^{2} /\left(1+b^{2}\right)^{2} \in C_{1}$ iff $\left(1+b+b^{2}\right) /\left(1+b^{2}\right) \in C_{1}$ iff $1+\left(1+b+b^{2}\right) /\left(1+b^{2}\right)=b /(1+b)^{2} \in C_{0}$, which is easily seen to hold, completing the proof of the first statement. For the second statement it suffices to show that for $x, y \in F-\{0,1\},(1+x) /\left(1+x+x^{\delta}\right)=(1+y) /\left(1+y+y^{\delta}\right)$ iff $x=y$ or $x=y^{-1}$. And this is easily seen to be the case using steps similar to those just above.

The results of this section show that the point $(1,1,0)$ plays a rather remarkable role for the oval $\Omega(\delta)$. To complete the determination of all collineations of $\operatorname{PG}(2, q)$, leaving Ω^{*} invariant in case $q=32$, we show that $(1,1,0)$ is unique in this respect.

4. The Case $q=32$

Let $F=G F(32)$, and let w be a primitive root of F satisfying $w^{5}=1+w^{2}$. The effect of the permutation δ is given in (5.1).

Let α be a projective (i.e. linear) collineation of $\operatorname{PG}(2,32)$ leaving the hyperoval Ω^{*} invariant and moving the point $(1,1,0)$. We must find a contradiction. The proof is arranged into a number of cases according to the form of the co-ordinates for the point $(1,1,0)^{\alpha}$.

CASE 1: $(1,1,0)^{x}=(1, b, c)=u$, with $b \neq 0 \neq c$
Let e_{1}, e_{2}, e_{3} be the points of Ω^{*} with co-ordinates $e_{1}(1,0,0), e_{2}(0,1,0), e_{3}(0,0,1)$. Let $e_{i} u \cap \Omega^{*}=\left\{e_{i}, f_{i}\right\}, i=1,2,3$, with co-ordinates $f_{1}\left(1, x, x^{\delta}\right), f_{2}\left(1, y, y^{\delta}\right), f_{3}\left(1, z, z^{\delta}\right)$, $x y z \neq 0$.

Writing out the condition that e_{i}, u and f_{i} are collinear for $i=1,2,3$ yields $b=z$, $c=y^{\delta}$, and $c / b=x^{\delta} / x$. Hence

$$
\begin{equation*}
\left(x^{-1}\right)^{\delta}=x^{\delta} / x=y^{\delta} / z \tag{12}
\end{equation*}
$$

(a) $e_{3}^{\alpha} \notin e_{i} u, i=1,2,3$

Here $e_{1}, e_{2}, e_{3}, f_{1}, f_{2}, f_{3}$ are on an irreducible conic C, by (3.2). Since C contains e_{1}, e_{2}, e_{3} it must have an equation of the form

$$
\begin{equation*}
C: X Y+m Y Z+n Z X=0 \tag{13}
\end{equation*}
$$

But since C also contains f_{1}, f_{2}, f_{3}, we also have

$$
\left.\begin{array}{l}
x+m x^{\delta+1}+n x^{\delta}=0 \\
y+m y^{\delta+1}+n y^{\delta}=0 \\
z+m z^{\delta+1}+n z^{\delta}=0
\end{array}\right\} \Rightarrow\left|\begin{array}{ccc}
1 & x^{\delta} & x^{\delta-1} \\
1 & y^{\delta} & y^{\delta-1} \\
1 & z^{\delta} & z^{\delta-1}
\end{array}\right|=0
$$

Now add the first row to each of the other two and expand the determinant by the first column to obtain

$$
\begin{equation*}
x^{\delta} y^{\delta}(x+y) z+x^{\delta} z^{\delta}(x+z) y+y^{d} z^{\delta}(y+z) x=0 . \tag{14}
\end{equation*}
$$

Now use (12) in (14) to solve for x and rewrite (12):

$$
\begin{align*}
x & =z\left(y^{\delta+1}+z^{\delta+1}\right) /\left(z y^{\delta}+y z^{\delta}\right) \tag{15}\\
x^{\delta} & =y^{\delta}\left(y^{\delta+1}+z^{\delta+1}\right) /\left(z y^{\delta}+y z^{\delta}\right) \tag{16}
\end{align*}
$$

Keep in mind that x, y, z are distinct and non-zero, so that both $x y^{\delta}+y z^{\delta} \neq 0$ and $y^{\delta+1}+z^{\delta+1} \neq 0$.

Since $\left(t^{2}\right)^{\delta}=\left(t^{\delta}\right)^{2}$ for all $t \in F$, it follows that a triple (x, y, z) satisfies (15) and (16) (and hence (12)) iff $\left(x^{2}, y^{2}, z^{2}\right)$ does. It is also easy to check that (x, y, z) satisfies (15) and (16) (and hence (12)) iff (y^{-1}, x^{-1}, z^{-1}) does. Hence a given triple (x, y, z) (of distinct non-zero elements of F) belongs to an 'orbit' of 'ten' triples corresponding to the automorphisms in G such that all satisfy or all fail to satisfy (15) and (16). In Table 5 (Section5) we list all pairs (x, y) for which there is a $z\left(=x y^{\delta} / x^{\delta}\right)$ satisfying (15) and (16). Using the elements of G as indicated just above we can restrict our attention to the pairs: $\left(w^{0}, w^{3}\right),\left(w, w^{21}\right)$, $\left(w^{3}, w^{13}\right),\left(w^{5}, w\right),\left(w^{7}, w^{4}\right),\left(w^{11}, w^{9}\right)$.

Consider the equation of the line D joining the diagonal points of the complete quadrangle $e_{1} e_{2} f_{1} f_{2}$, with $u=e_{1} f_{1} \cap e_{2} f_{2}=(1, b, c)=\left(1, z, y^{\delta}\right)$. Also $e_{1} f_{2} \cap e_{2} f_{1}=\left(y^{\delta}, y x^{\delta}, y^{\delta} x^{\delta}\right)$. This leads to an equation for D :

$$
\begin{equation*}
X\left(y / y^{\delta}+x / x^{\delta}\right)+Y\left(1 / x^{\delta}+1 / y^{\delta}\right)+Z\left(x / x^{2 \delta}+y / y^{2 \delta}\right)=0 \tag{17}
\end{equation*}
$$

Since D is the image of the line $[1,1,0]$ under the action of α, we have that $D \cap \Omega^{*}$ must not be empty. This eliminates classes 4 and 5 , leaving four possibilities from Table 3 yet to be considered. In each case we pick some line L through $u=(1, b, c)$ with $L \neq D, e_{1} f_{1}$, $e_{2} f_{2}, e_{3} f_{3}$ and with $\left|L \cap \Omega^{*}\right|=2$; say $L \cap \Omega^{*}=\left\{e_{4}, f_{4}\right\}$. Then the line D^{\prime} joining the diagonal points of $e_{1} f_{1} e_{4} f_{4}$ must coincide with D. Below, we have indicated our choice of L for each of the four cases. A quick comparison with Table 3 will show that in each of these cases $D^{\prime} \neq D$.

Table 1.

(i, j)	L	$L \cap \Omega^{*}=\left\{e_{4}, f_{4}\right\}$	D^{\prime}
$(0,3)$	$X+w^{10} Y+Z=0$	$\left(1, w^{19}, w^{3}\right),\left(1, w, w^{19}\right)$	$X+w^{21} Y+w^{3} Z=0$
$(1,21)$	$X+w^{2} Y+w^{5} Z=0$	$\left(1, w^{20}, w^{2}\right),(1,1,1)$	$X+w^{22} Y+w^{6} Z=0$
$(3,13)$	$X+w^{5} Y+w^{15} Z=0$	$\left(1, w^{12}, w^{15}\right),\left(1, w^{2}, w^{7}\right)$	$w^{6} X+w^{2} Y+Z=0$
$(11,9)$	$X+w^{2} Y+w^{6} Z=0$	$\left(1, w^{5}, w^{16}\right),\left(1, w^{3}, w^{27}\right)$	$X+Y+w Z=0$

This completes a proof that case 1(a) cannot occur.
(b) $e_{3}^{\alpha} \in e_{1} u$

Let p be the diagonal point $p=e_{2} f_{3} \cap e_{3} f_{2}=\left(1, y, z^{\delta}\right)$. Then the line $p u: X\left(z^{\delta+1}+y^{\delta+1}\right)+$ $Y\left(y^{\delta}+z^{\delta}\right)+Z(z+y)=0$ must coincide with the line $e_{3}^{\alpha} u=e_{1} u: y^{\delta} Y+z Z=0$. Hence $z^{\delta+1}=y^{\delta+1}$. The pair (y, z) satisfies $y^{\delta+1}=z^{\delta+1}$ iff the pair $\left(y^{2}, z^{2}\right)$ also satisfies $\left(y^{2}\right)^{\delta+1}=\left(z^{2}\right)^{\delta+1}$. It turns out that every pair (y, z) satisfying $y^{\delta+1}=z^{\delta+1}$ lies in the ' σ-orbit' of one of the pairs $\left(w^{21}, w^{23}\right),\left(w^{23}, w^{21}\right)$. In both cases $x=w^{7}$ (by (15)). In each case we again choose a line $L \neq e_{1} f_{1}, e_{2} f_{2}, e_{3} f_{3}$ through $u=\left(1, z, y^{\delta}\right)$ meeting Ω^{*} in two points e_{4}, f_{4}. The line D^{\prime} joining the diagonal points of $e_{3} e_{4} f_{3} f_{4}$ must be the line $D=e_{1} u$: $y^{\delta} Y+z Z=0$. For $(x, y, z)=\left(w^{7}, w^{21}, w^{23}\right)$ put $e_{4}\left(1, w^{11}, w^{13}\right)$ and $f_{4}(1,1,1)$. For $(x, y, z)=$ (w^{7}, w^{23}, w^{21}), put $e_{4}\left(1, w^{10}, w\right)$ and $f_{4}(1,1,1)$. In both cases $u \in e_{4} f_{4}$ and $e_{4} f_{4} \notin\left\{e_{1} f_{1}, e_{2} f_{2}, e_{3} f_{3}\right\}$.

In the first case $u=\left(1, z, y^{\delta}\right)=\left(1, w^{23}, w^{22}\right)$ and one other diagonal point is $\left(1, w^{11}, w^{24}\right)$; and e_{1} on D^{\prime} says that

$$
0=\left|\begin{array}{lll}
1 & w^{23} & w^{22} \\
1 & w^{11} & w^{24} \\
1 & 0 & 0
\end{array}\right|
$$

which is not true.
In the second case $u=\left(1, z, y^{\delta}\right)=\left(1, w^{21}, w^{20}\right)$ and one other diagonal point is $\left(1, w^{10}\right.$, w^{30}). Here e_{1} on D^{\prime} says

$$
0=\left|\begin{array}{lll}
1 & w^{21} & w^{20} \\
1 & w^{10} & w^{30} \\
1 & 0 & 0
\end{array}\right|
$$

which is impossible. Hence case l(b) does not occur.
(c) $e_{3}^{\alpha} \in e_{2} f_{2}$

Applying the automorphism θ shows that this case is equivalent to the previous case (b).
(d) $e_{3} \in e_{3} f_{3}$

The diagonal points of $e_{1} e_{2} f_{1} f_{2}$ must be on the line $e_{3} f_{3}$, so the points $(0,0,1), n=$ $\left(1, z, y^{\delta}\right)$ and $\left(y^{\delta}, y x^{\delta}, x^{\delta} y^{\delta}\right)$ are all collinear. Writing out this condition we find $z=y x^{\delta} / y^{\delta}$. By (12) we have $z=x y^{\delta} / x^{\delta}$, and so $y^{2 \delta} / y=x^{2 \delta} / x$. With the help of Table 1 (and using $x \neq y$) we see that $x=y^{-1}$ and $z=1$. Using the automorphisms $\sigma, \sigma^{2}, \sigma^{3}, \sigma^{4}$, we only need to consider the cases $x=w, w^{3}, w^{5}, w^{7}, w^{11}, w^{15}$. The procedure is now similar to that in the preceding cases. Choose a line L through u meeting Ω^{*} in two points e_{4}, f_{4}, so that $L \neq e_{1} f_{1}, e_{2} f_{2}, e_{3} f_{3}$. Then the line joining the diagonal points of the complete quadrangle $e_{1} f_{1} e_{4} f_{4}$ must contain ($0,0,1$). For each choice of x we make an appropriate choice of e_{4}, f_{4} and one of the other diagonal points d. (For (i, j, k) under e_{4}, f_{4}, d, read (w^{i}, w^{j}, w^{k}); * denotes the corresponding co-ordinate to be zero.)

Table 2.

x	e_{4}	f_{4}	d
w	$(0,2,7)$	$(0,12,15)$	$\left({ }^{*}, 0,5\right)$
w^{3}	$(0,2,7)$	$(0,20,2)$	$(23,0,5)$
w^{5}	$(0,2,7)$	$(0,19,3)$	$(30,0,5)$
w^{7}	$(0,2,7)$	$(0,18,8)$	$(19,0,5)$
w^{11}	$(0,2,7)$	$(0,13,21)$	$(22,0,5)$
w^{15}	$(0,2,7)$	$(0,8,28)$	$(30,0,5)$

In each case it is easy to check that the line $u d$ does not contain e_{3}, so that Case 1 is completely eliminated.

CASE 2: $(1,1,0)^{\alpha}=(1, b, 0)=u$
Since $(1,1,0)^{\alpha}$ is different from $(1,1,0)$ and $u \notin \Omega^{*}$, we have $1 \neq b \neq 0$. Put $L_{1}=$ $e_{1} e_{2}=e_{1} u$. Let $L_{2}=u e_{0}$ with $e_{0}(1,1,1)$ and suppose $f_{0}\left(1, y, y^{\delta}\right)$ is in $L_{2} \cap \Omega^{*}, 0 \neq y \neq 1$. Finally, let $L_{3}=u e_{3}$ and suppose $f_{3}\left(1, x, x^{\delta}\right)$ is in $L_{3} \cap \Omega^{*}, 0 \neq x \neq 1$. Therefore L_{1}, L_{2}, L_{3} are three distinct lines through u each meeting Ω^{*} in two points. It follows readily that

$$
\begin{equation*}
b=x=\left(y+y^{\delta}\right) /\left(1+y^{\delta}\right) \tag{18}
\end{equation*}
$$

Considering the automorphisms $\sigma, \sigma^{2}, \sigma^{3}, \sigma^{4}$, we can restrict our attention to the values of y given in Table 3.

Table 3

$i: y=w^{i}$	1	3	5	7	11
$j: b=x=w^{j}$	22	12	15	28	2

(a) $e_{3}^{\alpha} \notin L_{1}, L_{2}, L_{3}$

Then e_{0}, f_{0}, f_{3} are on the conic $X Y+m Y Z+n X Z=0$; so

$$
0=\left|\begin{array}{ccc}
1 & 1 & 1 \tag{19}\\
y & y^{\delta+1} & y^{\delta} \\
x & x^{\delta+1} & x^{\delta}
\end{array}\right|, \quad \text { i.e. } X^{\delta+1}\left(y^{\delta}+y\right)+X^{\delta}\left(y^{\delta+1}+y\right)+X\left(y^{\delta}+y^{\delta+1}\right)=0 .
$$

One may check that the pairs (x, y) from Table 3 never satisfy the equation in (19).
(b) $e_{3}^{\alpha} \in L_{1}$

The diagonal point $\left(x+y, x+y, y x^{\delta}+x y^{\delta}+x^{\delta}+y^{\delta}\right)$ of $e_{0} f_{0} e_{3} f_{3}$ must be on L_{1}, implying

$$
\begin{equation*}
x y^{\delta}+y x^{\delta}+x^{\delta}+y^{\delta}=0 \tag{20}
\end{equation*}
$$

From (18) and (20) it follows that $y=\left(x+x^{\delta}\right) /\left(x^{\delta}+1\right)$, but a check with the values of (x, y) from Table 3 shows this is impossible.
(c) $e_{3}^{\alpha} \in L_{2}$

The diagonal point $\left(0, x, x^{\delta}\right)$ of $e_{1} e_{2} e_{3} f_{3}$ must be incident with L_{2}. From this it follows that

$$
\begin{equation*}
\left(x^{-1}\right)^{\delta}+x^{\delta}=1 \tag{21}
\end{equation*}
$$

But (21) is satisfied for x iff it is satisfied for x^{-1} and x^{2}. Hence it suffices to check (21) for the cases $x=w, x=w^{3}, x=w^{5}$. For each of these three values of x, (21) fails to hold.
(d) $e_{3}^{\alpha} \in L_{3}$

The diagonal point $\left(1, y^{\delta}, y^{\delta}\right)$ of $e_{1} e_{2} e_{0} f_{0}$ must be on L_{3}. This implies $x=y^{\delta}$. With (18) this forces $y=y^{2 \delta}=y^{1 / 3}+y+y^{5 / 3}$, so $y=y^{5}$. Hence $y=0$ or $y=1$, both values being excluded from Table 3.

CASE 3: $(1,1,0)^{\alpha}=(1,0, c)=u, c \neq 1$
With $e_{1}(1,0,0), e_{2}(0,1,0), e_{3}(0,0,1), e_{0}(1,1,1), f_{0}\left(1, x, x^{\delta}\right), f_{2}\left(1, y, y^{\delta}\right)$, put $L_{1}=e_{1} e_{3}$, $L_{2}=e_{0} f_{0}, L_{3}=e_{2} f_{2}$ as three distinct lines through $u=(1,0, c)$. From $u e_{0}=u f_{0}$ and $u e_{2}=u f_{2}$ we find

$$
\begin{equation*}
c=\left(x+x^{\delta}\right) /(x+1)=y^{\delta} . \tag{22}
\end{equation*}
$$

Again we need only consider the following values of x :
(a) $e_{3}^{\alpha} \notin L_{1}, L_{2}, L_{3}$

Here e_{0}, f_{0}, f_{2} are on the conic $X Y+m Y Z+n Z X=0$, so

$$
0=\left|\begin{array}{ccc}
1 & 1 & 1 \\
y & y^{\delta+1} & y^{\delta} \\
x & x^{\delta+1} & x^{\delta}
\end{array}\right|=y^{\delta}\left(x+x^{\delta+1}\right)+y\left(x^{\delta+1}+x^{\delta}\right)+y^{\delta+1}\left(x+x^{\delta}\right)
$$

Then checking the six values of (x, y) from (23) shows that case (a) cannot occur.
(b) $e_{3}^{\alpha} \in L_{1}$

The diagonal point $\left(1+y^{\delta}, y^{\delta}+y+x^{\delta}(y+1), y^{\delta} x^{\delta}+x^{\delta}\right)$ of $e_{0} f_{0} e_{2} f_{2}$ must be incident with L_{1}. This forces $x^{\delta}=\left(y^{\delta}+y\right) /(y+1)$, which is not permitted by (23).
(c) $e_{3}^{\alpha} \in L_{2}$

The diagonal point ($1, y, 0$) of $e_{1} e_{3} e_{2} f_{2}$ must be incident with L_{2}. This forces $\left(y^{-1}\right)^{\delta}+y^{\delta}=1$. This is the equation of (21), which was shown to be impossible in case 2(c).
(d) $e_{3}^{\alpha} \in L_{3}$

The diagonal point ($1, x, x$) of $e_{1} e_{3} e_{0} f_{0}$ must be on L_{3}. This forces $c=x$, and from (22) it follows that $x^{2}=x^{\delta}$. We check the values of x permitted by (23):

$$
\left.\begin{array}{rlrrrrrr}
i: x & =w^{i} & 1 & 3 & 5 & 7 & 11 & 15 \tag{24}\\
j: x^{\delta} & =w^{j} & 19 & 27 & 16 & 6 & 13 & 9 \\
k: x^{2} & =w^{k} & 2 & 6 & 10 & 14 & 22 & 30
\end{array}\right\}
$$

This completes a proof that case 3 cannot arise.
Case 4: $(1,1,0)^{\alpha}=(1,0,1)=u$
Let L_{1}, L_{2}, L_{3} be distinct lines through u with $L_{1}=e_{1} e_{3}, L_{2}=e_{0} e_{2}, L_{3}=f_{1} f_{2} ; e_{1}(1,0,0)$, $e_{2}(0,1,0), e_{3}(0,0,1), e_{0}(1,1,1), f_{1}\left(1, x, x^{\delta}\right), f_{2}\left(1, y, y^{\delta}\right) ; x, y \notin\{0,1\}, x \neq y$. From $u \in f_{1} f_{2}$ we have $x y^{\delta}+y x^{\delta}+x+y=0$. For example, we may choose

$$
\begin{equation*}
x=w^{30} \text { and } y=w^{18} \quad\left(\text { so } x^{\delta}=w^{18}, y^{\delta}=w^{8}\right) \tag{25}
\end{equation*}
$$

(a) $e_{3}^{\alpha} \notin L_{1}, L_{2}, L_{3}$

Then e_{0}, f_{1}, f_{2} must be on the conic $X Y+m Y Z+n Z X=0$. But this is not satisfied for $x=w^{30}$ and $y=w^{18}$.
(b) $e_{3}^{\alpha} \in L_{1}$

The diagonal point $\left(y^{\delta}+1, y^{\delta}+y+y x^{\delta}+x^{\delta}, y^{\delta} x^{\delta}+x^{\delta}\right)$ of $e_{0} e_{2} f_{1} f_{2}$ must be incident with L_{1}, forcing $y^{\delta}+y+(y+1) x^{\delta}=0$. But this does not hold for $x=w^{30}$ and $y=w^{18}$.
(c) $e_{3}^{\alpha} \in L_{2}$

The diagonal point $\left(1, y, x^{\delta} y / x\right)$ of $e_{1} e_{3} f_{1} f_{2}$ must be on L_{2}. This leads to $x=x^{\delta} y$, which does not hold for $x=w^{30}$ and $y=w^{18}$.
(d) $e_{3}^{\alpha} \in L_{3}$

The diagonal point $(0,1,1)$ of $e_{1} e_{3} e_{0} e_{2}$ must be on L_{3}, forcing $x^{\delta}+x+1=0$. Again this is not satisfied for $x=w^{30}$.

Case 5: $(1,1,0)^{\alpha}=(0,1, c)=u$
Then $(1,1,0)^{\alpha \theta}=(1,0, c)$, which is excluded by case 4 .

5. Helpful Tables

These tables were compiled with computer assistance.
(5.1) For $F=G F(32)$ with primitive root w satisfying $w^{5}=1+w^{2}$, the action of the ovoidal permutation $\delta: x \mapsto x^{1 / 6}+x^{1 / 2}+x^{5 / 6}$ is given by the following table:

Table 4.
$\left(w^{i}\right)^{\delta}=w^{j}$

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
j	0	19	7	27	14	16	23	6	28	4	1	13	15	21	12	9

i	16	17	18	19	20	21	22	23	24	25	26	27	28	29
j	25	29	8	3	2	22	26	20	30	17	11	10	24	5
18														

(5.2) All pairs (i,j) are given for which there exists $z=w^{k}$, with $(x, y, z)=\left(w^{i}, w^{j}, w^{k}\right)$ satisfying both (15) and (16):

Table 5.

Class	(i, j)	$(2 i, 2 j)$	$(4 i, 4 j)$	$(8 i, 8 j)$	$(16 i, 16 j)$
1	$(0,3)$	$(0,6)$	$(0,12)$	$(0,24)$	$(0,17)$
2	$(1,21)$	$(2,11)$	$(4,22)$	$(8,13)$	$(16,26)$
3	$(3,13)$	$(6,26)$	$(12,21)$	$(24,11)$	$(17,22)$
4	$(5,1)$	$(10,2)$	$(20,4)$	$(9,8)$	$(18,16)$
5	$(7,4)$	$(14,8)$	$(28,16)$	$(25,1)$	$(19,2)$
6	$(11,9)$	$(22,18)$	$(13,5)$	$(26,10)$	$(21,20)$
Class	$(-j,-i)$	$(-2 j,-2 i)$	$(-4 j,-4 i)$	$(-8 j,-8 i)$	$(-16 j,-16 i)$
	$(28,0)$	$(25,0)$	$(19,0)$	$(7,0)$	$(14,0)$
1	$(10,30)$	$(20,29)$	$(9,27)$	$(18,23)$	$(5,15)$
2	$(18,28)$	$(5,25)$	$(10,19)$	$(20,7)$	$(9,14)$
3	$(20,26)$	$(29,21)$	$(22,11)$	$(23,22)$	$(15,13)$
4	$(22,24)$	$(13,9)$	$(15,3)$	$(30,6)$	$(19,12)$
5			$(26,18)$	$(21,5)$	$(11,10)$
6	$(22,20)$				

(5.3) For one (i, j) from each class in Table 5 the corresponding $D \cap \Omega^{*}$ is computed. (Here $x=w^{i}, y=w^{j}, z=w^{k}$ so that (x, y, z) satisfies (15) and (16).)

Table 6.

(i, j)	k	D	$D \cap \Omega^{*}$
$(0,3)$	27	$w^{12} X+Y+w^{9} Z=0$	$\left(1, w^{13}, w^{21}\right),\left(1, w^{25}, w^{17}\right)$
$(1,21)$	4	$w^{5} X+Y+Z=0$	$\left(1, w^{6}, w^{23}\right),\left(1, w^{15}, w^{9}\right)$
$(3,13)$	28	$w^{16} X+Y+w^{18} Z=0$	$\left(1, w^{6}, w^{23}\right),\left(1, w^{23}, w^{20}\right)$
$(5,1)$	8	$w^{25} X+Y+w^{18} Z=0$	Empty
$(7,4)$	15	$w^{3} X+Y+w^{12} Z=0$	Empty
$(11,9)$	2	$w^{17} X+Y+w^{22} Z=0$	$\left(1, w, w^{19}\right),\left(1, w^{26}, w^{11}\right)$

References

1. S. E. Payne, A new infinite family of generalized quadrangles, Congressus Numerantium 49 (1985), 115-128.
2. S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Pitman, New York, 1984.
3. A. Seidenberg, Elements of the Theory of Algebraic Curves, Addison-Wesley, Reading, Mass., 1968.

Received 10 November 1986
J. A. Thas and H. Gevaert

State University of Ghent,
Seminar of Geometry and Combinatorics,
Krijgslaan 281,
B-9000 Gent, Belgium
and
S. E. Payne

University of Colorado,
Department of Mathematics,
Campus Box 170,
Denver, Colorado 80202, U.S.A.

