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A Family of Ovals with Few Collineations

J. A. TRAS, S. E. PAYNE AND H. GEVAERT

A recently discovered [I] family of ovals in PG(2, q), q = 2', e odd, is shown to have a cyclic
collineation group of order 2e.

1. INTRODUCTION

An oval of PG(2, q) is a set of q + 1 points no three of which are collinear; a hyperoval
of PG(2, q), q even, is a set of q + 2 points not three of which are collinear. For any oval
n of PG(2, q), q even, there is a unique point n, called the nucleus of n, such that
n u {n} = D* is a hyperoval. For a survey on ovals and hyperovals we refer to [2, pp. 45,
207 and 278-285]. Recently, S. E. Payne discovered a new family of ovals which we now
describe.

Let F = GF(q), q = 2', e odd. Define J: F -+ F by

In [1] it was shown that

for all x E F. (1)

n(J) = {(O, 1, O)} u {(I, c, cb
) : c E F} (2)

is an oval in PG(2, q) with nucleus (0, 0, 1), and that n(J) is new provided e ~ 5. It is clear
that J commutes with each automorphism of F, so that

a: (x, y, z) 1--+ (r, l, Z2) (3)

generates a group of order e of collineations of PG(2, q) leaving invariant the oval D(J).
A simple computation shows that

(4)

From this it follows that

(): (x, y, z) 1--+ (y, x, z) (5)

is a projectivity of PG(2, q) that fixes the points (1, 1, 1) and (0, 0, 1), interchanges (1, 0, 0)
and (0, 1,0), and interchanges the points (1, c, cb ) and (1, c- 1, (C-1)b), c #- 0. Hence () leaves
invariant the hyperoval

a- = D(J) u {(O, 0, I)}. (6)

The goal of this essay is to show that for e ~ 5 the cyclic group G of order 2e generated
by a and () is the full group G* of collineations of PG(2, q) leaving invariant the hyperoval
n*. For e ~ 7, Bezout's theorem (cf. [3, p. 44]) yields a fairly efficient proof. The case
q = 32 is more stubborn, even requiring the assistance of a computer.

The G-orbits on D* are {(O, 0, I)}, {(l, 1, I)}, {(I, 0, 0), (0, I, O)},and sets of size 2d, where
I < d and d divides e. One reason for interest in this result is the many pairwise non
isomorphic generalized quadrangles (GQ) that arise from D*. As explained in [I], there are
the following cases:

(I) n* yields one GQ of order (q - I, q + I).
(II) For each G-orbit of n* there arises a distinct GQ of order (q, q), with none of these

isomorphic to the dual of any of them.
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(III) For each G-orbit on the unordered pairs of distinct points of n* there arises a
distinct GQ of order (q + 1, q - 1), none of which is the dual of that one given in
(I).

2. AN ALGEBRAIC CURVE OF DEGREE SIX

For each x E F a routine calculation shows that

(xbt = X(Xb)4 + x5 + x.

Taking square roots and putting

fAT) = T 3 + Xl/2T 2 + X5/2 + x l/2,

we have

(7)

(8)

(9)

(2.1) Ifl =F x E F, then xbis the unique root in F offAT) = O. Ifx = 1, then I b = 1 is
a root, but so is T = O.

PROOF. For x = 0, fAT) = T3 = 0 has only the root T = Ob = O. For x = 1,
fAT) = T 3 + T 2 = 0 has the root T = I b = 1 and also the extraneous root T = O.
Recall that the elements of F are partitioned into two sets: Co = {x2 + x: x E F} and
its other additive coset C1, where since e is odd C1 = Co + 1. Then T 2 + aT + b is
irreducible over F iff b/a2 E C1 (cf. [2]). So for 0 =F x =F 1, T 2 + (X1/6 + x516)T +
Xb(x1/6 + x516) is irreducible over F iff Xb(x1/6 + X516)/(XI/6 + X516)2 = 1 +
x '/3/(1 + X1/3)2 E CIl which is the case since 1 E C1 and x I/3/(1 + X1/3)2 = A2 + A E Co,
with A = (1 + XI/3)-I. 0

As a corollary one may prove that if y = b-I and 0 =F y E F, then yY is the unique root
in F of T 5 + T(1 + l) + l = O.

Writing homogeneous co-ordinates for the points of n(b), we find

and

.Q(c5) = {(x, y, z): x = z = 0 =F y or x =F 0

and

and

(Y/X)b = z/x} = {(O, 1,0), (1, 1, I)} u {(x, y, z): 0 =I- x =I- y

(Z/X)6 + (y/x)(Z/X)4 + (y/X)5 + y]x = O}

= {(O, 1,0), (1, 1, I)} u {(x, y, z): 0 =F x =F y

(10)

Z6 = xy(x + Y + z)"].

Putting x = 0 in Z6 = xy(x + Y + Z)4 allows only the point (0, 1,0); and x = y =I- 0
does allow (1, 1, 1), but it also allows the extraneous point (1, 1,0). Define the algebraic
curve T in PG(2, q) by

T = {(x, y, z) E PG(2, q): Z6 = xy(x + Y + z)"]. (11)
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Then the preceding paragraph proves the following:

(2.2) r = il(<5) u {(l, I, O)}.
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Our goal is to show that for e ~ 5, G* = G. Since (J E G*, it suffices to determine all
linear (i.e. projective) collineations of PG(2, q) leaving il* invariant-and for e > 32 we
are already able to do this!

(2.3) Let IX be a linear collineation in G*. Then:
(i) if q > 32, IX E {id, O};
(ii) if q = 32 and (0,0, I)" = (0,0, I), then IX E {id, 9};
(iii) if q = 32 and (I, I, 0)" = (I, I, 0), then IX E {id, 9}.

PROOF. Clearly, IX transforms the algebraic curve T into an algebraic curve I", also
of the sixth degree. The point (I, I, 0) is a 4-tuple point of T, and moreover is the only
singular point of r. Hence (I, 1,0)" is the unique singular point of I", Suppose T =1= I",
Since rand I" are irreducible, by Bezout's theorem (cf. [3, p. 44]) we have IT n r'1 :s:; 36.
As il(<5) n (il(<5))" ern I", we have q :s:; Ir n J"]. Hence if q > 32, r = T' and
(I, 1,0)" = (I, 1,0).

Now suppose q = 32 and (0, 0, I)" = (0,0, I). The tangents of T at the simple points
of r (i.e. the points of .0(<5)) concur at (0, 0, 1). Consequently, the tangents of I" at
the points of (il(<5))" = il(<5) concur at (0, 0, I). Therefore the tangents of rand I" at the
points of il(<5) coincide. This means that, if r =1= F' and considering the intersection multi
plicities of points of T n I", the points of il(<5) account for at least 2(q + I) = 66 common
points, contradicting Bezout's theorem. Hence also in this case we have r = I" and
(I, 1,0)" = (I, 1,0).

Next, suppose that q = 32 and (I, 1,0)" = (I, 1,0), so the 4-tuple points of rand T"
coincide. Assume T =1= T", Then (I, 1,0) accounts for at least 4-4 = 16 common points of
rand I", Since 32 + 16 > 36, we again have a contradiction, by Bezout's theorem.

At this point we know that each of the hypotheses of (2.3) leads to r = I" and
(I, 1,0)" = (I, 1,0), which we now take as our hypothesis.

Since the tangents of rat the simple points of rconcur at (0, 0, I), we have (0, 0, I)" =
(0,0, I). Let L be a line through (0, 0, I). IfL n il(<5) = 1, then the intersection multiplicity
of L and rat 1 is exactly 6 iff L is x = °or y = 0, in which case 1 is (0, 1,0) or (1,0,0).
Hence, with [a, b, c] denoting the line with equation aX + bY + cZ = 0, we have all of
the following: (il(<5))" = il(t5); (I, I, 0)" = (I, I, 0); (0, 0, I)" = (0, 0, I); [I, I, 0]" =
[I, I, 0]; (I, I, I)" = {il(t5) n [I, I, OJ}" = (il(t5))" n [I, I, 0]" = il(t5) n [I, I, 0] =
(I, I, I); {(O, 1,0), (I, 0, OW = {(O, 1,0), (I, 0, O)}; [0, 0, I]" = [0,0, I]. Since IX is linear,
it is now easy to check that IX E {id, 9}. 0

The preceding result has as an immediate consequence that G = G* if q > 32 or if
q = 32 and (I, 1,0)" = (I, 1,0) for each linear IX in G*. Hence the remainder of the paper
is devoted to showing that when q = 32, (I, 1,0)" = (I, 1,0) for each linear IXin G*. Before
proceeding, however, we make one interesting (but probably useless) observation. The map
r: (x, y, z) 1-+ (z, y, x) maps il(t5) u {(O, 0, I)} to il(t5*) u {(O, 0, I)}, where (Xb)-I =
(xjxbt, for all x =1= 0, and 0.1* = 0. Using (4), for all x =1= °it follows that (ljxb)b* =
(X-1j(XbjX))b* = (x-1j(X-1)b)b* = ((X-1)b)-1 = xlx". Hence 15*: xjxb1-+ Ijxb (x =1= 0),
implying that <5* is a product of disjoint transpositions.

3. THE SPECIAL ROLE OF (I, 1,0)

For any c E F - {O, I}, the line joining the points (I, c, cb) and (I, c- 1
, (C-1)b) of il(t5)

contains the point (I, I, 0).
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(3.1) If the distinct lines PI pz and qlqz, PI> P h ql> qz E .Q(b), contain the point (I , I, 0), then
the line joining the diagonal points of the complete quadrangle PI pzq. qz is always the line
[I , I , 0).

PROOF. This is a straightforward computation using (4). o
(3.2) Let PIPZ, q.qh rlrZ, with PI ' Pz , ql' qz, rl, rz E 11(15), be distinct lines containing the

point (I , 1,0). Then PI' Pz, ql' qz, rl , rz belong to an irreducible conic C. Moreover, the line
[I , 1,0) is the tangent from (I, 1,0) to C.

PROOF. Let a, b, c, d be four points of an irreducible conic C. Then the line joining the
diagonal points of the complete quadrangle abed is tangent to C. Let C be the irreducible
conic through the points PI' Pz, q" qh r l . Then, by (3.1), [I, I, 0] is the line joining the
diagonal points of PIPzqlqz and is the tangent to C through (I , I, 0). Hence the line L
through (I, 1,0) and rl is a secant to C and passes through a second point r of C. It follows
that [I, 1, 0] is the line joining the diagonal points of qlqzrl r and ofql qzr, rz, forcing r = rz.

o
(3.3) Let (I, 1, 0) be on the line PI Pz, with PI> pz points of l1(b). Then the line joining the

diagonal points ofptpzrs, with r(O, 0, I) and s(l, I, I), is external to .Q(b). In this way there
arise all q/2 lines through (1, 1,0) having no point in common with 11(15).

PROOF. First suppose PIPZ = [0,0, 1), say PI (1,0,0) and pz(O, 1,0). Then the line joining
the diagonal points of PI p-rs is [I, I, 1), and it will have a point of l1(b) iff there is some
c E F with cb = 1 + c. Clearly, c = 1 is not a solution, but (2.1) implies 0 =
fc(cb) = (I + C)3, an impossibility. So, suppose p,(I, c, cb) and pz(l, c-I, (C -I)b),
o :/= c :/= l. The line joining the diagonal points of PI pzrs is [I, 1, (I + c)/(I + c + ~)] .

This line meets .Q(c5) iff there is some x E F - {O, I} with xb/(I + x) = 1 + cb/(I + c).
Use tb/(1 + t) = t I /6/(1 + t1/3) for t :/= 1, and put a = x 1/6

, b = Cl /6 to rewrite this last
equation as ff(1 + b + bZ) + a(l + bZ) + I + b + bZ = O. For a given b, there is no
solution for a iff (I + b + bZ)z/(I + bZ)ZE C. iff (I + b + bZ)/(I + bZ) E C. iff
1 + (I + b + bZ)/(I + bZ) = b/(1 + WECo, which is easily seen to hold, completing
the proof of the first statement. For the second statement it suffices to show that for
x,y E F - {O, 1},(1 + x )/(I + x + xb) = (I + y)/(I + y + l)iffx = yorx = y - I.
And this is easily seen to be the case using steps similar to those just above. 0

The results of this section show that the point (1, 1,0) plays a rather remarkable role for
the oval 11(15). To complete the determination of all collineations of PG(2, q), leaving 11*
invariant in case q = 32, we show that (1, I, 0) is unique in this respect.

4. THE CASE q = 32

Let F = GF(32), and let w be a primitive root of F satisfying w5 = 1 + w. The effect
of the permutation b is given in (5.1).

Let a be a projective (i.e. linear) collineation of PG(2, 32) leaving the hyperoval !1*
invariant and moving the point (1, 1,0). We must find a contradiction. The proof is arranged
into a number of cases according to the form of the co-ordinates for the point (I , 1,0)".

CASE I: (I, 1,0)" = (I, b, c) = u, with b :/= 0 :/= c
Let e. , ez, e3be the points of 11* with co-ordinates e\ (I , 0, 0), ez(0, I, 0), e3(0, 0, 1). Let

e.u (\ 11* = {e;,};}, i = 1,2,3, with co-ordinates.ft(l, x, xb),};(I , y, l),};(I, z, ~),

xyz :/= O.
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Writing out the condition that e., u and /; are collinear for i = 1, 2, 3 yields b = z,
c = l, and clb = Jtlx. Hence

(X-I)~ = x~/x = liz. (12)

(a) e~ If: e.u, i = 1, 2, 3
Here el' ez, e3,f. ,Iz, 13 are on an irreducible conic C, by (3.2). Since C contains el , ez,

e3 it must have an equation of the form

C: XY + m YZ + nZX = O. (13)

O.

But since C also containsf.,h.!3' we also have

x + mx~+1 + nx~ = O} 1 Jt X~-I

Y + myHI + nl = 0 ::;> 1 l i-I

Z + mz~+1 + nz~ = 0 1 i i-I

Now add the first row to each of the other two and expand the determinant by the first
column to obtain

x~l(x + y)z + x~z~(x + z)y + lz~(y + z)x = O. (14)

Now use (12) in (14) to solve for x and rewrite (12):

x = Z(yHI + zH')/(zl + yi), (15)

x~ = l(yHI + zH')/(zl + yz~). (16)

Keep in mind that x, y, z are distinct and non-zero, so that both xl + yz~ =f. 0 and
l+1 + Z~+I =f. O.

Since (tZ)~ = (f)Z for all t E F, it follows that a triple (x, y, z) satisfies (15) and (16) (and
hence (12» iff (xz, i, ZZ) does. It is also easy to check that (x, y, z) satisfies (15) and (16)
(and hence (12» iff o', x-I, Z-I) does. Hence a given triple (x, y, z) (of distinct non-zero
elements of F) belongs to an 'orbit' of 'ten' triples corresponding to the automorphisms in
G such that all satisfy or all fail to satisfy (15) and (16). In Table 5 (Section 5) we list all
pairs (x, y) for which there is a z (= xllx~) satisfying (15) and (16). Using the elements of
G as indicated just above we can restrict our attention to the pairs: (WO, w3

) , (w, WI),
(w', w13

) , (w5
, w), (w7, w4

) , (w", w9
) .

Consider the equation of the line D joining the diagonal points of the complete quadrangle
el ezf.h, with u = elf. (') ezfz = (1, b, c) = (1, z, i)· Also e,h (') «J, = (l, yx~, l x~).

This leads to an equation for D:

X(yll + xlx~) + Y(l/x~ + Ill) + Z(xlxz~ + vlv") = O. (17)

Since D is the image of the line [1, 1, 0] under the action of iX, we have that D (') {l* must
not be empty. This eliminates classes 4 and 5, leaving four possibilities from Table 3 yet to
be considered. In each case we pick some line L through u = (1, b, c) with L =f. D, elf.,
ezh, eJ!; and with IL (') .Q*I = 2; say L (') .Q* = {e4 , Ii}. Then the line D' joining the
diagonal points of elf. e41i must coincide with D. Below, we have indicated our choice of
L for each of the four cases. A quick comparison with Table 3 will show that in each of these
cases D' =f. D.

TABLE 1.

(i,j)

(0, 3)
(1, 21)
(3, 13)
(11,9)

L

x + wlOy + Z = 0
x + w2 y + w5z = 0
x + w5 y + W

l 5Z = 0
x + w2y + w6z = 0

(1, W
19, w3

) , (1, W, W
19)

(1, w20
, w2

) , (1, I, I)
(I, W

12, w I5) , (I, w, wJ)

(I, w5
, W

I6), (I, w3, w2J
)

D'

x + w2
\ Y + w3z = 0

x + w22 y + w6z = 0
w6X + w2 y + Z = 0
x + Y + wZ = 0



358 J. A. Thas, S. E. Payne and H. Gevaert

This completes a proof that case l(a) cannot occur.
(b)e3 E elu
Letp be the diagonal pointp = ed3 n eJ!; = (l,y, z"), Then thelinepu: X(t5+ 1 + l+l) +

Y(l + Z6) + Z(z + y) = 0 must coincide with the line e3u = elu: ly + zZ = O.
Hence Z6+1 = yHI. The pair (y, z) satisfies l+1 = t5+1iff the pair (/, Z2) also satisfies
(/)6+1 = (Z2)6+1. It turns out that every pair (y, z) satisfying yHI = ZHI lies in the
'c-orbit' of one of the pairs (W

21, W23), (w3, Wi). In both cases x = w7 (by (15». In each case
we again choose a line L * edl' eli;, ed'3 through u = (1, z, i) meeting n* in two points
e4'~' The line D' joining the diagonal points of e3e4!d'4 must be the line D = elu:
ly + zZ = O. For (x, y, z) = (w7

, Wi, W
23) put e4 (1 , wll

, w13
) and/i(l, I, I). For (x, y, z) =

(w7
, w3, Wi), put e4(l, wlO

, w) and/i(l, 1, 1). In both cases u E e4/iand e4/i ~ {eJ;, ed2' e3h}.
Inthefirstcaseu = (1,z,l) = (l,w3,w2)andoneotherdiagonalpointis(l,w'l,w24);

and el on D' says that

o 0

which is not true.
In the second case u = (I, z, i) = (I, w21, w20

) and one other diagonal point is (I, wlO
,

w30
) . Here el on D' says

o 0

which is impossible. Hence case l(b) does not occur.
(c) e3 E eli;
Applying the automorphism eshows that this case is equivalent to the previous case (b).
(d) e3 E e3h
The diagonal points of e1edllz must be on the line ed'3' so the points (0, 0, 1), n =

(1, z, i) and (l, yx6
, x61) are all collinear. Writing out this condition we find z = yx611.

By (12) we have z = xllx6
, and so yUly = x26Ix . With the help of Table 1 (and using

x * y) we see that x = y-I and z = 1. Using the automorphisms (1, (12, (13, (14, we only need
to consider the cases x = w, w3, wS, w7

, w", WiS. The procedure is now similar to that in the
preceding cases. Choose a line L through u meeting n* in two points e4 , Ii, so that
L * ed-I' e21z , e3h. Then the line joining the diagonal points of the complete quadrangle
e\}; «J. must contain (0, 0, 1). For each choice of x we make an appropriate choice of
e4,/i and one of the other diagonal points d. (For (i,j, k) under e4'~' d, read (Wi, wi, wk);
* denotes the corresponding co-ordinate to be zero.)

TABLE 2.

x e4 !4 d

w (0, 2, 7) (0, 12, IS) (*, 0, 5)
w3 (0, 2, 7) (0,20, 2) (23,0, 5)
w5 (0,2, 7) (0, 19, 3) (30,0, 5)
w7 (0, 2, 7) (0, 18, 8) (19,0, 5)
wll (0,2, 7) (0, 13, 21) (22,0, 5)
W

l 5 (0, 2, 7) (0, 8,28) (30,0, 5)



A family of ovals with few collineations 359

In each case it is easy to check that the line ud does not contain e3' so that Case I is
completely eliminated.

CASE 2: (I, 1,0)' = (I, b, 0) = u
Since (I, I, 0)" is different from (I, I, 0) and u ¢ n*, we have I "# b "# 0. Put L 1 =

el e2 = el u. Let L2 = ueo with eo(l, I, I) and supposefo(l, y, l) is in L2 n n*,°"# y "# 1.
Finally, let L3 = ue3 and suppose}; (1, x, xb) is in L3 rv n*,°"# x "# 1. Therefore L" L2>
L3 are three distinct lines through u each meeting n* in two points. It follows readily that

b = x = (y + l )/( l + l). (18)

Considering the automorphisms (1, (12, (13, (14, we can restrict our attention to the values of
y given in Table 3.

TABLE 3

i:y = Wi

j: b = x = w1

I
22

3
12

5
15

7
28

11
2

15
20

(a) e3 ¢ L I , L2 , L3

Then eo ,10, h are on the conic XY + m YZ + nXZ = 0; so

°= Y l +1 l
X X b+ 1 xb

0.

(19)

One may check that the pairs (x, y) from Table 3 never satisfy the equation in (19).
(b) ej E L I

The diagonal point (x + y, x + y, yXS + xl + XS + l) of eOfoe3h must be on L 1 ,

implying

xl + yxb + xb + l = 0. (20)

From (I8) and (20) it follows that y = (x + xb)/(XS + 1), but a check with the values
of (x , y) from Table 3 shows this is impossible.

(c) e3E L 2

The diagonal point (0, x, xb) of el e2e3h must be incident with L 2. From this it follows
that

(x - I)b + XS = 1. (21)

But (21) is satisfied for x iff it is satisfied for X-I and x'. Hence it suffices to check (21) for
the cases x = w, x = ~,x = w5

• For each of these three values of x , (21) fails to hold.
(d) e3 E L 3

The diagonal point (1, l ,l )of e,e2eofo must be on L3. This implies x = l. With (18)
this forces y = y 20 = i /3 + Y + yS13, so Y = yS. Hence y = °or y = I, both values being
excluded from Table 3.

CASE 3: (1, 1,0)" = (1,0, c) = u, c "# 1
With el (1, 0, 0), e2(0, 1, 0), e3(0, 0, 1), eo(I , 1, l),fo(l, x , xb),f2(1, y, l), put L 1 = ele3 '

L2 = eofo, L3 = ed2 as three distinct lines through u = (I, 0, c). From ueo = ufo and
ue2 = Uf2 we find

c = (x + xb)/(x + I) = l. (22)
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Again we need only consider the following values of x:

i : x = Wi 3 5 7 II 15}
j: l = wi 15 20 22 2 28 12 (23)

k: y = ~ 12 23 21 20 8 14

(a) e~ rf L 1, Lz, L3

Here eo,fo,fz are on the conic X Y + mYZ + nZX = 0, so

o l(x + XO+I
) + y(~+1 + ~) + yH I (x + ~).

Then checking the six values of (x, y) from (23) shows that case (a) cannot occur.
(b) e~ E L 1

The diagonal point (I + l, l + Y + ~(y + 1), lxo + XO) of eofoezJ; must be
incident with L I • This forces ~ = (l + y)/( y + I), which is not permitted by (23).

(c) e~ E t,
The diagonal point (1, y , 0) of e l e3ez/Z must be incident with L z. This forces

(y -I)O + l = 1. This is the equation of (21), which was shown to be impossible in case
2(c).

(d ) e~ E L3 •

The diagonal point (1, x, x) of e,e3eofo must be on L 3. This forces c = x, and from (22)
it follows that r = ~. We check the values of x permitted by (23):

i : x = lJ 3 5 7 11 I:}j : ~ = wi 19 27 16 6 13 (24)

ki x' = ~ 2 6 10 14 22 30

This completes a proof that case 3 cannot arise.

CASE 4: (1, 1,0)" = (1,0, 1) = u
Let L I , Lz, L3be distinct lines through u with L 1 = e,e3, Lz = eoez, L3 = fIfz; el(1, 0, 0),

ez(O, 1,0),e3(0,0, 1),eo(1, 1, 1),fI(l,x,xO),fz(l,y, l); x , yrf {O, I},x 1= y.FromuEfJz
we have xl + yxO + x + Y = O. For example, we may choose

x = w30 and y = W
l8 (25)

(a) e~ rf L I , Lz, L3

Then eo,fI ,fz must be on the conic X Y + m YZ + nZX = O. But this is not satisfied for
x = WO and y = W

18•

(b) ej E L ,
The diagonal point (l + l , l + y + y~ + xO,l~ + XO) of eoez fI fz must be incident

with L" forcing l + Y + (y + 1)XO = O. But this does not hold for x = w30 and
y = W

18
•

(c) e) E L,
The diagonal point (1, y, ~y/x) of ele3fIfz must be on Lz. This leads to x = ~y, which

does not hold for x = w30 and y = W
18

•

(d ) e) E L 3

The diagonal point (0, I, 1) of e, e3 eoez must be on L3, forcing XO+ x + 1 = O. Again
this is not satisfied for x = w30

•
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Case 5: (1, 1, o)a = (0, 1, c) = u
Then (1, 1, oye = (1, 0, c), which is excluded by case 4.

5. HELPFUL TABLES

These tables were compiled with computer assistance.
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(5.1) For F = GF(32) with primitive root w satisfying w5 = 1 + w2
, the action of the

ovoidal permutation 15: x 1-+ X
I/ 6 + X

1/2 + X
5/6 is given by the following table:

TABLE 4.
(Wi)" = wi

0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 15
j 0 19 7 27 14 16 23 6 28 4 I 13 15 21 12 9

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
j 25 29 8 3 2 22 26 20 30 17 II 10 24 5 18

(5.2) All pairs (i,j) are given for which there exists z = w\ with (x, y, z) = (w', wj
, wk

)

satisfying both (15) and (16):

TABLE 5.

Class (i,j) (2i,2j) (4i,4j) (8i, 8j) (I6i, 16j)

I (0,3) (0,6) (0, 12) (0,24) (0, 17)
2 (I, 21) (2, II) (4, 22) (8, 13) (16, 26)
3 (3, 13) (6,26) (12,21) (24, II) (17,22)
4 (5, I) (10,2) (20,4) (9, 8) (18, 16)
5 (7,4) (14,8) (28, 16) (25, I) (19,2)
6 (II, 9) (22, 18) (13, 5) (26, 10) (21,20)

Class (-j, -i) (-2j, -2i) (-4j, -4i) (-8j, -8i) (- 16j, - 16i)

I (28,0) (25,0) (19,0) (7,0) (14,0)
2 (10, 30) (20, 29) (9, 27) (18, 23) (5, 15)
3 (18, 28) (5, 25) (10, 19) (20, 7) (9, 14)
4 (30,26) (29, 21) (22, II) (23, 22) (15, 13)
5 (27, 24) (23, 17) (15, 3) (30, 6) (19, 12)
6 (22, 20) (13, 9) (26, 18) (21,5) (II, 10)

(5.3) For one (i,j)from each class in Table 5 the corresponding D n n* is computed. (Here
x = Wi, Y = wj

, z = wk so that (x, y, z) satisfies (15) and (16).)

TABLE 6.

(i, j) k D DnJJ*

(0,3) 27 w12X + Y + w9Z = 0 (I, W
l 3,

W
21), (1, W

25,
W

17)

(1, 21) 4 w5X + Y + Z = 0 (I, w6
, W

23), (I, W
15, w9

)

(3, 13) 28 W
I6X + Y + W

I8Z = 0 (1, w6
, W

23), (1, wH
, w2O

)

(5, I) 8 W! 5X + Y + W
l 8Z = 0 Empty

(7,4) 15 w3X + Y + W
l2Z = 0 Empty

(11, 9) 2 w17X + Y + w22Z = 0 (I, W, W
I9), (I, W

26, w")
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