A Family of Ovals with Few Collineations

J. A. THAS, S. E. PAYNE AND H. GEVAERT

A recently discovered [1] family of ovals in PG(2, q), $q = 2^e$, e odd, is shown to have a cyclic collineation group of order 2e.

1. INTRODUCTION

An oval of PG(2, q) is a set of q + 1 points no three of which are collinear; a hyperoval of PG(2, q), q even, is a set of q + 2 points not three of which are collinear. For any oval Ω of PG(2, q), q even, there is a unique point n, called the nucleus of Ω , such that $\Omega \cup \{n\} = \Omega^*$ is a hyperoval. For a survey on ovals and hyperovals we refer to [2, pp. 45, 207 and 278-285]. Recently, S. E. Payne discovered a new family of ovals which we now describe.

Let
$$F = GF(q)$$
, $q = 2^e$, e odd. Define $\delta: F \to F$ by

$$\delta: x \mapsto x^{1/6} + x^{1/2} + x^{5/6}, \quad \text{for all } x \in F.$$
(1)

In [1] it was shown that

$$\Omega(\delta) = \{(0, 1, 0)\} \cup \{(1, c, c^{\delta}): c \in F\}$$
(2)

is an oval in PG(2, q) with nucleus (0, 0, 1), and that $\Omega(\delta)$ is new provided $e \ge 5$. It is clear that δ commutes with each automorphism of F, so that

$$\sigma: (x, y, z) \mapsto (x^2, y^2, z^2) \tag{3}$$

generates a group of order e of collineations of PG(2, q) leaving invariant the oval $\Omega(\delta)$. A simple computation shows that

$$(x^{-1})^{\delta} = x^{\delta}/x. \tag{4}$$

From this it follows that

$$\theta: (x, y, z) \mapsto (y, x, z) \tag{5}$$

is a projectivity of PG(2, q) that fixes the points (1, 1, 1) and (0, 0, 1), interchanges (1, 0, 0)and (0, 1, 0), and interchanges the points $(1, c, c^{\delta})$ and $(1, c^{-1}, (c^{-1})^{\delta})$, $c \neq 0$. Hence θ leaves invariant the hyperoval

$$\boldsymbol{\Omega^*} = \boldsymbol{\Omega}(\delta) \cup \{(0, 0, 1)\}. \tag{6}$$

The goal of this essay is to show that for $e \ge 5$ the cyclic group G of order 2e generated by σ and θ is the full group G* of collineations of PG(2, q) leaving invariant the hyperoval Ω^* . For $e \ge 7$, Bezout's theorem (cf. [3, p. 44]) yields a fairly efficient proof. The case q = 32 is more stubborn, even requiring the assistance of a computer.

The G-orbits on Ω^* are $\{(0, 0, 1)\}$, $\{(1, 1, 1)\}$, $\{(1, 0, 0), (0, 1, 0)\}$, and sets of size 2d, where 1 < d and d divides e. One reason for interest in this result is the many pairwise non-isomorphic generalized quadrangles (GQ) that arise from Ω^* . As explained in [1], there are the following cases:

(I) Ω^* yields one GQ of order (q - 1, q + 1).

(II) For each G-orbit of Ω^* there arises a distinct GQ of order (q, q), with none of these isomorphic to the dual of any of them.

(III) For each G-orbit on the unordered pairs of distinct points of Ω^* there arises a distinct GQ of order (q + 1, q - 1), none of which is the dual of that one given in (I).

2. AN ALGEBRAIC CURVE OF DEGREE SIX

For each $x \in F$ a routine calculation shows that

$$(x^{\delta})^{6} = x(x^{\delta})^{4} + x^{5} + x.$$
(7)

Taking square roots and putting

$$f_x(T) = T^3 + x^{1/2}T^2 + x^{5/2} + x^{1/2}, \qquad (8)$$

we have

$$f_x(T) = (T - x^{\delta})(T^2 + (x^{1/6} + x^{5/6})T + x^{\delta}(x^{1/6} + x^{5/6})).$$
(9)

(2.1) If $1 \neq x \in F$, then x^{δ} is the unique root in F of $f_x(T) = 0$. If x = 1, then $1^{\delta} = 1$ is a root, but so is T = 0.

PROOF. For x = 0, $f_x(T) = T^3 = 0$ has only the root $T = 0^{\delta} = 0$. For x = 1, $f_x(T) = T^3 + T^2 = 0$ has the root $T = 1^{\delta} = 1$ and also the extraneous root T = 0. Recall that the elements of F are partitioned into two sets: $C_0 = \{x^2 + x: x \in F\}$ and its other additive coset C_1 , where since e is odd $C_1 = C_0 + 1$. Then $T^2 + aT + b$ is irreducible over F iff $b/a^2 \in C_1$ (cf. [2]). So for $0 \neq x \neq 1$, $T^2 + (x^{1/6} + x^{5/6})T + x^{\delta}(x^{1/6} + x^{5/6})$ is irreducible over F iff $x^{\delta}(x^{1/6} + x^{5/6})/(x^{1/6} + x^{5/6})^2 = 1 + x^{1/3}/(1 + x^{1/3})^2 \in C_1$, which is the case since $1 \in C_1$ and $x^{1/3}/(1 + x^{1/3})^2 = A^2 + A \in C_0$, with $A = (1 + x^{1/3})^{-1}$.

As a corollary one may prove that if $\gamma = \delta^{-1}$ and $0 \neq y \in F$, then y^{γ} is the unique root in F of $T^5 + T(1 + y^4) + y^6 = 0$.

Writing homogeneous co-ordinates for the points of $\Omega(\delta)$, we find

$$Z(\delta) = \{(x, y, z): x = z = 0 \neq y \text{ or } x \neq 0\}$$

and

$$(y/x)^{\delta} = z/x$$
 = {(0, 1, 0), (1, 1, 1)} \cup {(x, y, z): 0 \neq x \neq y

and

$$(z/x)^{6} + (y/x)(z/x)^{4} + (y/x)^{5} + y/x = 0\}$$

= {(0, 1, 0), (1, 1, 1)} \cup {(x, y, z): 0 \neq x \neq y

and

 $z^6 = xy(x + y + z)^4$

Putting x = 0 in $z^6 = xy(x + y + z)^4$ allows only the point (0, 1, 0); and $x = y \neq 0$ does allow (1, 1, 1), but it also allows the extraneous point (1, 1, 0). Define the algebraic curve Γ in PG(2, q) by

$$\Gamma = \{(x, y, z) \in PG(2, q): z^{6} = xy(x + y + z)^{4}\}.$$
 (11)

Then the preceding paragraph proves the following:

(2.2) $\Gamma = \Omega(\delta) \cup \{(1, 1, 0)\}.$

Our goal is to show that for $e \ge 5$, $G^* = G$. Since $\sigma \in G^*$, it suffices to determine all linear (i.e. projective) collineations of PG(2, q) leaving Ω^* invariant—and for e > 32 we are already able to do this!

(2.3) Let α be a linear collineation in G^* . Then: (i) if q > 32, $\alpha \in \{id, \theta\}$; (ii) if q = 32 and $(0, 0, 1)^{\alpha} = (0, 0, 1)$, then $\alpha \in \{id, \theta\}$; (iii) if q = 32 and $(1, 1, 0)^{\alpha} = (1, 1, 0)$, then $\alpha \in \{id, \theta\}$.

PROOF. Clearly, α transforms the algebraic curve Γ into an algebraic curve Γ' , also of the sixth degree. The point (1, 1, 0) is a 4-tuple point of Γ , and moreover is the only singular point of Γ . Hence $(1, 1, 0)^{\alpha}$ is the unique singular point of Γ' . Suppose $\Gamma \neq \Gamma'$. Since Γ and Γ' are irreducible, by Bezout's theorem (cf. [3, p. 44]) we have $|\Gamma \cap \Gamma'| \leq 36$. As $\Omega(\delta) \cap (\Omega(\delta))^{\alpha} \subset \Gamma \cap \Gamma'$, we have $q \leq |\Gamma \cap \Gamma'|$. Hence if q > 32, $\Gamma = \Gamma'$ and $(1, 1, 0)^{\alpha} = (1, 1, 0)$.

Now suppose q = 32 and $(0, 0, 1)^{\alpha} = (0, 0, 1)$. The tangents of Γ at the simple points of Γ (i.e. the points of $\Omega(\delta)$) concur at (0, 0, 1). Consequently, the tangents of Γ' at the points of $(\Omega(\delta))^{\alpha} = \Omega(\delta)$ concur at (0, 0, 1). Therefore the tangents of Γ and Γ' at the points of $\Omega(\delta)$ coincide. This means that, if $\Gamma \neq \Gamma'$ and considering the intersection multiplicities of points of $\Gamma \cap \Gamma'$, the points of $\Omega(\delta)$ account for at least 2(q + 1) = 66 common points, contradicting Bezout's theorem. Hence also in this case we have $\Gamma = \Gamma'$ and $(1, 1, 0)^{\alpha} = (1, 1, 0)$.

Next, suppose that q = 32 and $(1, 1, 0)^{\alpha} = (1, 1, 0)$, so the 4-tuple points of Γ and Γ' coincide. Assume $\Gamma \neq \Gamma'$. Then (1, 1, 0) accounts for at least 4.4 = 16 common points of Γ and Γ' . Since 32 + 16 > 36, we again have a contradiction, by Bezout's theorem.

At this point we know that each of the hypotheses of (2.3) leads to $\Gamma = \Gamma'$ and $(1, 1, 0)^{\alpha} = (1, 1, 0)$, which we now take as our hypothesis.

Since the tangents of Γ at the simple points of Γ concur at (0, 0, 1), we have $(0, 0, 1)^{\alpha} = (0, 0, 1)$. Let L be a line through (0, 0, 1). If $L \cap \Omega(\delta) = I$, then the intersection multiplicity of L and Γ at I is exactly 6 iff L is x = 0 or y = 0, in which case I is (0, 1, 0) or (1, 0, 0). Hence, with [a, b, c] denoting the line with equation aX + bY + cZ = 0, we have all of the following: $(\Omega(\delta))^{\alpha} = \Omega(\delta)$; $(1, 1, 0)^{\alpha} = (1, 1, 0)$; $(0, 0, 1)^{\alpha} = (0, 0, 1)$; $[1, 1, 0]^{\alpha} = [1, 1, 0]$; $(1, 1, 1)^{\alpha} = \{\Omega(\delta) \cap [1, 1, 0]\}^{\alpha} = (\Omega(\delta))^{\alpha} \cap [1, 1, 0]^{\alpha} = \Omega(\delta) \cap [1, 1, 0]$ = (1, 1, 1); $\{(0, 1, 0), (1, 0, 0)\}^{\alpha} = \{(0, 1, 0), (1, 0, 0)\}$; $[0, 0, 1]^{\alpha} = [0, 0, 1]$. Since α is linear, it is now easy to check that $\alpha \in \{id, \theta\}$.

The preceding result has as an immediate consequence that $G = G^*$ if q > 32 or if q = 32 and $(1, 1, 0)^{\alpha} = (1, 1, 0)$ for each linear α in G^* . Hence the remainder of the paper is devoted to showing that when q = 32, $(1, 1, 0)^{\alpha} = (1, 1, 0)$ for each linear α in G^* . Before proceeding, however, we make one interesting (but probably useless) observation. The map τ : $(x, y, z) \mapsto (z, y, x)$ maps $\Omega(\delta) \cup \{(0, 0, 1)\}$ to $\Omega(\delta^*) \cup \{(0, 0, 1)\}$, where $(x^{\delta})^{-1} = (x/x^{\delta})^{\delta^*}$, for all $x \neq 0$, and $0^{\delta^*} = 0$. Using (4), for all $x \neq 0$ it follows that $(1/x^{\delta})^{\delta^*} = (x^{-1}/(x^{\delta}/x))^{\delta^*} = (x^{-1}/(x^{-1})^{\delta})^{\delta^*} = ((x^{-1})^{\delta})^{-1} = x/x^{\delta}$. Hence δ^* : $x/x^{\delta} \mapsto 1/x^{\delta}$ $(x \neq 0)$, implying that δ^* is a product of disjoint transpositions.

3. The Special Role of (1, 1, 0)

For any $c \in F - \{0, 1\}$, the line joining the points $(1, c, c^{\delta})$ and $(1, c^{-1}, (c^{-1})^{\delta})$ of $\Omega(\delta)$ contains the point (1, 1, 0).

(3.1) If the distinct lines $p_1 p_2$ and $q_1 q_2$, p_1 , p_2 , q_1 , $q_2 \in \Omega(\delta)$, contain the point (1, 1, 0), then the line joining the diagonal points of the complete quadrangle $p_1 p_2 q_1 q_2$ is always the line [1, 1, 0].

PROOF. This is a straightforward computation using (4).

(3.2) Let p_1p_2 , q_1q_2 , r_1r_2 , with p_1 , p_2 , q_1 , q_2 , r_1 , $r_2 \in \Omega(\delta)$, be distinct lines containing the point (1, 1, 0). Then p_1 , p_2 , q_1 , q_2 , r_1 , r_2 belong to an irreducible conic C. Moreover, the line [1, 1, 0] is the tangent from (1, 1, 0) to C.

PROOF. Let a, b, c, d be four points of an irreducible conic C. Then the line joining the diagonal points of the complete quadrangle *abcd* is tangent to C. Let C be the irreducible conic through the points p_1 , p_2 , q_1 , q_2 , r_1 . Then, by (3.1), [1, 1, 0] is the line joining the diagonal points of $p_1p_2q_1q_2$ and is the tangent to C through (1, 1, 0). Hence the line L through (1, 1, 0) and r_1 is a secant to C and passes through a second point r of C. It follows that [1, 1, 0] is the line joining the diagonal points of $q_1q_2r_1r$ and of $q_1q_2r_1r_2$, forcing $r = r_2$.

(3.3) Let (1, 1, 0) be on the line p_1p_2 , with p_1, p_2 points of $\Omega(\delta)$. Then the line joining the diagonal points of p_1p_2rs , with r(0, 0, 1) and s(1, 1, 1), is external to $\Omega(\delta)$. In this way there arise all q/2 lines through (1, 1, 0) having no point in common with $\Omega(\delta)$.

PROOF. First suppose $p_1p_2 = [0, 0, 1]$, say $p_1(1, 0, 0)$ and $p_2(0, 1, 0)$. Then the line joining the diagonal points of p_1p_2rs is [1, 1, 1], and it will have a point of $\Omega(\delta)$ iff there is some $c \in F$ with $c^{\delta} = 1 + c$. Clearly, c = 1 is not a solution, but (2.1) implies $0 = f_c(c^{\delta}) = (1 + c)^3$, an impossibility. So, suppose $p_1(1, c, c^{\delta})$ and $p_2(1, c^{-1}, (c^{-1})^{\delta})$, $0 \neq c \neq 1$. The line joining the diagonal points of p_1p_2rs is $[1, 1, (1 + c)/(1 + c + c^{\delta})]$. This line meets $\Omega(\delta)$ iff there is some $x \in F - \{0, 1\}$ with $x^{\delta}/(1 + x) = 1 + c^{\delta}/(1 + c)$. Use $t^{\delta}/(1 + t) = t^{1/6}/(1 + t^{1/3})$ for $t \neq 1$, and put $a = x^{1/6}$, $b = c^{1/6}$ to rewrite this last equation as $a^2(1 + b + b^2) + a(1 + b^2) + 1 + b + b^2 = 0$. For a given b, there is no solution for a iff $(1 + b + b^2)^2/(1 + b^2)^2 \in C_1$ iff $(1 + b + b^2)/(1 + b^2) \in C_1$ iff $1 + (1 + b + b^2)/(1 + b^2) = b/(1 + b)^2 \in C_0$, which is easily seen to hold, completing the proof of the first statement. For the second statement it suffices to show that for $x, y \in F - \{0, 1\}, (1 + x)/(1 + x + x^{\delta}) = (1 + y)/(1 + y + y^{\delta})$ iff x = y or $x = y^{-1}$. And this is easily seen to be the case using steps similar to those just above.

The results of this section show that the point (1, 1, 0) plays a rather remarkable role for the oval $\Omega(\delta)$. To complete the determination of all collineations of PG(2, q), leaving Ω^* invariant in case q = 32, we show that (1, 1, 0) is unique in this respect.

4. The Case q = 32

Let F = GF(32), and let w be a primitive root of F satisfying $w^5 = 1 + w^2$. The effect of the permutation δ is given in (5.1).

Let α be a projective (i.e. linear) collineation of PG(2, 32) leaving the hyperoval Ω^* invariant and *moving* the point (1, 1, 0). We must find a contradiction. The proof is arranged into a number of cases according to the form of the co-ordinates for the point $(1, 1, 0)^{\alpha}$.

CASE 1: $(1, 1, 0)^{\alpha} = (1, b, c) = u$, with $b \neq 0 \neq c$

Let e_1, e_2, e_3 be the points of Ω^* with co-ordinates $e_1(1, 0, 0), e_2(0, 1, 0), e_3(0, 0, 1)$. Let $e_i u \cap \Omega^* = \{e_i, f_i\}, i = 1, 2, 3$, with co-ordinates $f_1(1, x, x^{\delta}), f_2(1, y, y^{\delta}), f_3(1, z, z^{\delta}), xyz \neq 0$.

Writing out the condition that e_i , u and f_i are collinear for i = 1, 2, 3 yields b = z, $c = y^{\delta}$, and $c/b = x^{\delta}/x$. Hence

$$(x^{-1})^{\delta} = x^{\delta}/x = y^{\delta}/z.$$
 (12)

(a) $e_3^{\alpha} \notin e_i u, i = 1, 2, 3$

Here e_1 , e_2 , e_3 , f_1 , f_2 , f_3 are on an irreducible conic C, by (3.2). Since C contains e_1 , e_2 , e_3 it must have an equation of the form

$$C: XY + mYZ + nZX = 0.$$
(13)

But since C also contains f_1, f_2, f_3 , we also have

$$\begin{array}{c} x + mx^{\delta+1} + nx^{\delta} = 0 \\ y + my^{\delta+1} + ny^{\delta} = 0 \\ z + mz^{\delta+1} + nz^{\delta} = 0 \end{array} \right\} \Rightarrow \begin{vmatrix} 1 & x^{\delta} & x^{\delta-1} \\ 1 & y^{\delta} & y^{\delta-1} \\ 1 & z^{\delta} & z^{\delta-1} \end{vmatrix} = 0.$$

Now add the first row to each of the other two and expand the determinant by the first column to obtain

$$x^{\delta}y^{\delta}(x + y)z + x^{\delta}z^{\delta}(x + z)y + y^{\delta}z^{\delta}(y + z)x = 0.$$
 (14)

Now use (12) in (14) to solve for x and rewrite (12):

$$x = z(y^{\delta+1} + z^{\delta+1})/(zy^{\delta} + yz^{\delta}), \qquad (15)$$

$$x^{\delta} = y^{\delta}(y^{\delta+1} + z^{\delta+1})/(zy^{\delta} + yz^{\delta}).$$
(16)

Keep in mind that x, y, z are distinct and non-zero, so that both $xy^{\delta} + yz^{\delta} \neq 0$ and $y^{\delta+1} + z^{\delta+1} \neq 0$.

Since $(t^2)^{\delta} = (t^{\delta})^2$ for all $t \in F$, it follows that a triple (x, y, z) satisfies (15) and (16) (and hence (12)) iff (x^2, y^2, z^2) does. It is also easy to check that (x, y, z) satisfies (15) and (16) (and hence (12)) iff (y^{-1}, x^{-1}, z^{-1}) does. Hence a given triple (x, y, z) (of distinct non-zero elements of F) belongs to an 'orbit' of 'ten' triples corresponding to the automorphisms in G such that all satisfy or all fail to satisfy (15) and (16). In Table 5 (Section 5) we list all pairs (x, y) for which there is a $z (= xy^{\delta}/x^{\delta})$ satisfying (15) and (16). Using the elements of G as indicated just above we can restrict our attention to the pairs: (w^0, w^3) , (w, w^{21}) , $(w^3, w^{13}), (w^5, w), (w^7, w^4), (w^{11}, w^9)$.

Consider the equation of the line *D* joining the diagonal points of the complete quadrangle $e_1e_2f_1f_2$, with $u = e_1f_1 \cap e_2f_2 = (1, b, c) = (1, z, y^{\delta})$. Also $e_1f_2 \cap e_2f_1 = (y^{\delta}, yx^{\delta}, y^{\delta}x^{\delta})$. This leads to an equation for *D*:

$$X(y/y^{\delta} + x/x^{\delta}) + Y(1/x^{\delta} + 1/y^{\delta}) + Z(x/x^{2\delta} + y/y^{2\delta}) = 0.$$
(17)

Since D is the image of the line [1, 1, 0] under the action of α , we have that $D \cap \Omega^*$ must not be empty. This eliminates classes 4 and 5, leaving four possibilities from Table 3 yet to be considered. In each case we pick some line L through u = (1, b, c) with $L \neq D$, $e_1 f_1$, $e_2 f_2$, $e_3 f_3$ and with $|L \cap \Omega^*| = 2$; say $L \cap \Omega^* = \{e_4, f_4\}$. Then the line D' joining the diagonal points of $e_1 f_1 e_4 f_4$ must coincide with D. Below, we have indicated our choice of L for each of the four cases. A quick comparison with Table 3 will show that in each of these cases $D' \neq D$.

(<i>i</i> , <i>j</i>)	L	$L \cap \Omega^* = \{e_4, f_4\}$	<i>D'</i>
(0, 3)	$X + w^{10}Y + Z = 0$	$(1, w^{19}, w^3), (1, w, w^{19})$	$X + w^{21}Y + w^{3}Z = 0$
(1, 21)	$X + w^2 Y + w^5 Z = 0$	$(1, w^{20}, w^2), (1, 1, 1)$	$X + w^{22}Y + w^{6}Z = 0$
(3, 13)	$X + w^5 Y + w^{15} Z = 0$	$(1, w^{12}, w^{15}), (1, w^2, w^7)$	$w^6X + w^2Y + Z = 0$
(11, 9)	$X + w^2 Y + w^6 Z = 0$	$(1, w^5, w^{16}), (1, w^3, w^{27})$	X + Y + wZ = 0

TABLE 1.

357

This completes a proof that case 1(a) cannot occur.

(b) $e_3^{\alpha} \in e_1 u$

Let p be the diagonal point $p = e_2 f_3 \cap e_3 f_2 = (1, y, z^{\delta})$. Then the line pu: $X(z^{\delta+1} + y^{\delta+1}) + Y(y^{\delta} + z^{\delta}) + Z(z + y) = 0$ must coincide with the line $e_3^{\alpha}u = e_1u$: $y^{\delta}Y + zZ = 0$. Hence $z^{\delta+1} = y^{\delta+1}$. The pair (y, z) satisfies $y^{\delta+1} = z^{\delta+1}$ iff the pair (y^2, z^2) also satisfies $(y^2)^{\delta+1} = (z^2)^{\delta+1}$. It turns out that every pair (y, z) satisfying $y^{\delta+1} = z^{\delta+1}$ lies in the ' σ -orbit' of one of the pairs $(w^{21}, w^{23}), (w^{23}, w^{21})$. In both cases $x = w^7$ (by (15)). In each case we again choose a line $L \neq e_1 f_1, e_2 f_2, e_3 f_3$ through $u = (1, z, y^{\delta})$ meeting Ω^* in two points e_4, f_4 . The line D' joining the diagonal points of $e_3e_4f_3f_4$ must be the line $D = e_1u$: $y^{\delta}Y + zZ = 0$. For $(x, y, z) = (w^7, w^{21}, w^{23})$ put $e_4(1, w^{11}, w^{13})$ and $f_4(1, 1, 1)$. For $(x, y, z) = (w^7, w^{23}, w^{21})$, put $e_4(1, w^{10}, w)$ and $f_4(1, 1, 1)$. In both cases $u \in e_4f_4$ and $e_4f_4 \notin \{e_1f_1, e_2f_2, e_3f_3\}$.

In the first case $u = (1, z, y^{\delta}) = (1, w^{23}, w^{22})$ and one other diagonal point is $(1, w^{11}, w^{24})$; and e_1 on D' says that

		1	w^{23}	w ²²	
0	=	1	w ¹¹	w ²⁴	,
		1	0	0	

which is not true.

In the second case $u = (1, z, y^{\delta}) = (1, w^{21}, w^{20})$ and one other diagonal point is $(1, w^{10}, w^{30})$. Here e_1 on D' says

		1	w^{21}	w ²⁰	
0	=	1	w ¹⁰	w ³⁰	,
		1	0	0	

which is impossible. Hence case 1(b) does not occur.

 $(c) \ e_3^{\alpha} \in e_2 f_2$

Applying the automorphism θ shows that this case is equivalent to the previous case (b). (d) $e_3 \in e_3 f_3$

The diagonal points of $e_1e_2f_1f_2$ must be on the line e_3f_3 , so the points (0, 0, 1), $n = (1, z, y^{\delta})$ and $(y^{\delta}, yx^{\delta}, x^{\delta}y^{\delta})$ are all collinear. Writing out this condition we find $z = yx^{\delta}/y^{\delta}$. By (12) we have $z = xy^{\delta}/x^{\delta}$, and so $y^{2\delta}/y = x^{2\delta}/x$. With the help of Table 1 (and using $x \neq y$) we see that $x = y^{-1}$ and z = 1. Using the automorphisms σ , σ^2 , σ^3 , σ^4 , we only need to consider the cases x = w, w^3 , w^5 , w^7 , w^{11} , w^{15} . The procedure is now similar to that in the preceding cases. Choose a line L through u meeting Ω^* in two points e_4 , f_4 , so that $L \neq e_1f_1, e_2f_2, e_3f_3$. Then the line joining the diagonal points of the complete quadrangle $e_1f_1e_4f_4$ must contain (0, 0, 1). For each choice of x we make an appropriate choice of e_4 , f_4 and one of the other diagonal points d. (For (i, j, k) under e_4 , f_4 , d, read (w^i, w^j, w^k) ; * denotes the corresponding co-ordinate to be zero.)

x	e ₄	ſ ₄	d
w	(0, 2, 7)	(0, 12, 15)	(*, 0, 5)
w^3	(0, 2, 7)	(0, 20, 2)	(23, 0, 5)
w ⁵	(0, 2, 7)	(0, 19, 3)	(30, 0, 5)
w ⁷	(0, 2, 7)	(0, 18, 8)	(19, 0, 5)
w ¹¹	(0, 2, 7)	(0, 13, 21)	(22, 0, 5)
w ¹⁵	(0, 2, 7)	(0, 8, 28)	(30, 0, 5)

TABLE 2.

In each case it is easy to check that the line ud does not contain e_3 , so that Case 1 is completely eliminated.

CASE 2: $(1, 1, 0)^{\alpha} = (1, b, 0) = u$

Since $(1, 1, 0)^{\alpha}$ is different from (1, 1, 0) and $u \notin \Omega^*$, we have $1 \neq b \neq 0$. Put $L_1 = e_1e_2 = e_1u$. Let $L_2 = ue_0$ with $e_0(1, 1, 1)$ and suppose $f_0(1, y, y^{\delta})$ is in $L_2 \cap \Omega^*, 0 \neq y \neq 1$. Finally, let $L_3 = ue_3$ and suppose $f_3(1, x, x^{\delta})$ is in $L_3 \cap \Omega^*, 0 \neq x \neq 1$. Therefore L_1, L_2 , L_3 are three distinct lines through u each meeting Ω^* in two points. It follows readily that

$$b = x = (y + y^{\delta})/(1 + y^{\delta}).$$
(18)

Considering the automorphisms σ , σ^2 , σ^3 , σ^4 , we can restrict our attention to the values of y given in Table 3.

		T/	ABLE 3			
$i: y = w^i$	1	3	5	7	11	15
$j: b = x = w^j$	22	12	15	28	2	20

(a) $e_3^{\alpha} \notin L_1, L_2, L_3$

Then e_0, f_0, f_3 are on the conic XY + mYZ + nXZ = 0; so

$$0 = \begin{vmatrix} 1 & 1 & 1 \\ y & y^{\delta+1} & y^{\delta} \\ x & x^{\delta+1} & x^{\delta} \end{vmatrix}, \quad \text{i.e. } X^{\delta+1}(y^{\delta}+y) + X^{\delta}(y^{\delta+1}+y) + X(y^{\delta}+y^{\delta+1}) = 0.$$
(19)

One may check that the pairs (x, y) from Table 3 never satisfy the equation in (19). (b) $e_3^x \in L_1$

The diagonal point $(x + y, x + y, yx^{\delta} + xy^{\delta} + x^{\delta} + y^{\delta})$ of $e_0 f_0 e_3 f_3$ must be on L_1 , implying

$$xy^{\delta} + yx^{\delta} + x^{\delta} + y^{\delta} = 0.$$
 (20)

From (18) and (20) it follows that $y = (x + x^{\delta})/(x^{\delta} + 1)$, but a check with the values of (x, y) from Table 3 shows this is impossible.

(c) $e_3^{\alpha} \in L_2$

The diagonal point $(0, x, x^{\delta})$ of $e_1e_2e_3f_3$ must be incident with L_2 . From this it follows that

$$(x^{-1})^{\delta} + x^{\delta} = 1.$$
 (21)

But (21) is satisfied for x iff it is satisfied for x^{-1} and x^2 . Hence it suffices to check (21) for the cases x = w, $x = w^3$, $x = w^5$. For each of these three values of x, (21) fails to hold. (d) $e_x^3 \in L_3$

The diagonal point $(1, y^{\delta}, y^{\delta})$ of $e_1e_2e_0f_0$ must be on L_3 . This implies $x = y^{\delta}$. With (18) this forces $y = y^{2\delta} = y^{1/3} + y + y^{5/3}$, so $y = y^5$. Hence y = 0 or y = 1, both values being excluded from Table 3.

CASE 3: $(1, 1, 0)^{\alpha} = (1, 0, c) = u, c \neq 1$

With $e_1(1, 0, 0)$, $e_2(0, 1, 0)$, $e_3(0, 0, 1)$, $e_0(1, 1, 1)$, $f_0(1, x, x^{\delta})$, $f_2(1, y, y^{\delta})$, put $L_1 = e_1e_3$, $L_2 = e_0f_0$, $L_3 = e_2f_2$ as three distinct lines through u = (1, 0, c). From $ue_0 = uf_0$ and $ue_2 = uf_2$ we find

$$c = (x + x^{\delta})/(x + 1) = y^{\delta}.$$
 (22)

Again we need only consider the following values of x:

$$i: x = w' \quad 1 \quad 3 \quad 5 \quad 7 \quad 11 \quad 15 j: y^{\delta} = w^{j} \quad 15 \quad 20 \quad 22 \quad 2 \quad 28 \quad 12 k: y = w^{k} \quad 12 \quad 23 \quad 21 \quad 20 \quad 8 \quad 14$$

$$(23)$$

(a) $e_3^{\alpha} \notin L_1, L_2, L_3$ Here e_0, f_0, f_2 are on the conic XY + mYZ + nZX = 0, so

$$0 = \begin{vmatrix} 1 & 1 & 1 \\ y & y^{\delta+1} & y^{\delta} \\ x & x^{\delta+1} & x^{\delta} \end{vmatrix} = y^{\delta}(x + x^{\delta+1}) + y(x^{\delta+1} + x^{\delta}) + y^{\delta+1}(x + x^{\delta}).$$

Then checking the six values of (x, y) from (23) shows that case (a) cannot occur.

(b) $e_3^{\alpha} \in L_1$

The diagonal point $(1 + y^{\delta}, y^{\delta} + y + x^{\delta}(y + 1), y^{\delta}x^{\delta} + x^{\delta})$ of $e_0f_0e_2f_2$ must be incident with L_1 . This forces $x^{\delta} = (y^{\delta} + y)/(y + 1)$, which is not permitted by (23).

(c) $e_3^{\alpha} \in L_2$

The diagonal point (1, y, 0) of $e_1e_3e_2f_2$ must be incident with L_2 . This forces $(y^{-1})^{\delta} + y^{\delta} = 1$. This is the equation of (21), which was shown to be impossible in case 2(c).

 $(d) e_3^{\alpha} \in L_3$

The diagonal point (1, x, x) of $e_1e_3e_0f_0$ must be on L_3 . This forces c = x, and from (22) it follows that $x^2 = x^{\delta}$. We check the values of x permitted by (23):

$$i: x = w^{i} \quad 1 \quad 3 \quad 5 \quad 7 \quad 11 \quad 15 j: x^{\delta} = w^{j} \quad 19 \quad 27 \quad 16 \quad 6 \quad 13 \quad 9 k: x^{2} = w^{k} \quad 2 \quad 6 \quad 10 \quad 14 \quad 22 \quad 30$$

$$(24)$$

This completes a proof that case 3 cannot arise.

CASE 4: $(1, 1, 0)^{\alpha} = (1, 0, 1) = u$

Let L_1 , L_2 , L_3 be distinct lines through u with $L_1 = e_1e_3$, $L_2 = e_0e_2$, $L_3 = f_1f_2$; $e_1(1, 0, 0)$, $e_2(0, 1, 0)$, $e_3(0, 0, 1)$, $e_0(1, 1, 1)$, $f_1(1, x, x^{\delta})$, $f_2(1, y, y^{\delta})$; $x, y \notin \{0, 1\}$, $x \neq y$. From $u \in f_1f_2$ we have $xy^{\delta} + yx^{\delta} + x + y = 0$. For example, we may choose

$$x = w^{30}$$
 and $y = w^{18}$ (so $x^{\delta} = w^{18}, y^{\delta} = w^{8}$). (25)

(a) $e_3^{\alpha} \notin L_1, L_2, L_3$

Then e_0, f_1, f_2 must be on the conic XY + mYZ + nZX = 0. But this is not satisfied for $x = w^{30}$ and $y = w^{18}$.

(b) $e_3^{\alpha} \in L_1$

The diagonal point $(y^{\delta} + 1, y^{\delta} + y + yx^{\delta} + x^{\delta}, y^{\delta}x^{\delta} + x^{\delta})$ of $e_0e_2f_1f_2$ must be incident with L_1 , forcing $y^{\delta} + y + (y + 1)x^{\delta} = 0$. But this does not hold for $x = w^{30}$ and $y = w^{18}$.

(c) $e_3^{\alpha} \in L_2$

The diagonal point $(1, y, x^{\delta}y/x)$ of $e_1e_3f_1f_2$ must be on L_2 . This leads to $x = x^{\delta}y$, which does not hold for $x = w^{30}$ and $y = w^{18}$.

 $(d) e_3^{\alpha} \in L_3$

The diagonal point (0, 1, 1) of $e_1e_3e_0e_2$ must be on L_3 , forcing $x^{\delta} + x + 1 = 0$. Again this is not satisfied for $x = w^{30}$.

Case 5: $(1, 1, 0)^{\alpha} = (0, 1, c) = u$

Then $(1, 1, 0)^{\alpha\theta} = (1, 0, c)$, which is excluded by case 4.

5. HELPFUL TABLES

These tables were compiled with computer assistance.

(5.1) For F = GF(32) with primitive root w satisfying $w^5 = 1 + w^2$, the action of the ovoidal permutation $\delta: x \mapsto x^{1/6} + x^{1/2} + x^{5/6}$ is given by the following table:

	TABLE 4. $(w^j)^{\delta} = w^j$															
i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
j	0	19	7	27	14	16	23	6	28	4	1	13	15	21	12	9
i	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
j	25	29	8	3	2	22	26	20	30	17	11	10	24	5	18	

(5.2) All pairs (i, j) are given for which there exists $z = w^k$, with $(x, y, z) = (w^i, w^j, w^k)$ satisfying both (15) and (16):

	TABLE 5.						
Class	(<i>i</i> , <i>j</i>)	(2 <i>i</i> , 2 <i>j</i>)	(4 <i>i</i> , 4 <i>j</i>)	(8 <i>i</i> , 8 <i>j</i>)	(16 <i>i</i> , 16 <i>j</i>)		
1	(0, 3)	(0, 6)	(0, 12)	(0, 24)	(0, 17)		
2	(1, 21)	(2, 11)	(4, 22)	(8, 13)	(16, 26)		
3	(3, 13)	(6, 26)	(12, 21)	(24, 11)	(17, 22)		
4	(5, 1)	(10, 2)	(20, 4)	(9, 8)	(18, 16)		
5	(7, 4)	(14, 8)	(28, 16)	(25, 1)	(19, 2)		
6	(11, 9)	(22, 18)	(13, 5)	(26, 10)	(21, 20)		
Class	(-j, -i)	(-2j, -2i)	(-4j, -4i)	(-8j, -8i)	(– 16 <i>j</i> , – 16 <i>i</i>)		
1	(28, 0)	(25, 0)	(19, 0)	(7, 0)	(14, 0)		
2	(10, 30)	(20, 29)	(9, 27)	(18, 23)	(5, 15)		
3	(18, 28)	(5, 25)	(10, 19)	(20, 7)	(9, 14)		
4	(30, 26)	(29, 21)	(22, 11)	(23, 22)	(15, 13)		
5	(27, 24)	(23, 17)	(15, 3)	(30, 6)	(19, 12)		
6	(22, 20)	(13, 9)	(26, 18)	(21, 5)	(11, 10)		

(5.3) For one (i, j) from each class in Table 5 the corresponding $D \cap \Omega^*$ is computed. (Here $x = w^i, y = w^j, z = w^k$ so that (x, y, z) satisfies (15) and (16).)

TABLE 6.				
(<i>i</i> , <i>j</i>)	k	D	$D \cap \Omega^*$	
(0, 3)	27	$w^{12}X + Y + w^{9}Z = 0$	$(1, w^{13}, w^{21}), (1, w^{25}, w^{17})$	
(1, 21)	4	$w^5X + Y + Z = 0$	$(1, w^6, w^{23}), (1, w^{15}, w^9)$	
(3, 13)	28	$w^{16}X + Y + w^{18}Z = 0$	$(1, w^6, w^{23}), (1, w^{23}, w^{20})$	
(5, 1)	8	$w^{25}X + Y + w^{18}Z = 0$	Empty	
(7, 4)	15	$w^{3}X + Y + w^{12}Z = 0$	Empty	
(11, 9)	2	$w^{17}X + Y + w^{22}Z = 0$	$(1, w, w^{19}), (1, w^{26}, w^{11})$	

References

- 1. S. E. Payne, A new infinite family of generalized quadrangles, Congressus Numerantium 49 (1985), 115-128.
- 2. S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Pitman, New York, 1984.
- 3. A. Seidenberg, Elements of the Theory of Algebraic Curves, Addison-Wesley, Reading, Mass., 1968.

Received 10 November 1986

J. A. THAS AND H. GEVAERT State University of Ghent, Seminar of Geometry and Combinatorics, Krijgslaan 281, B-9000 Gent, Belgium and S. E. PAYNE University of Colorado, Department of Mathematics, Campus Box 170, Denver, Colorado 80202, U.S.A.