On fast algorithms for the evaluation of Legendre coefficients

Shuhuang Xiang
Department of Applied Mathematics and Software, Central South University, Changsha, Hunan 410083, PR China

ARTICLE INFO

Article history:

Received 13 July 2012
Accepted 16 August 2012

Keywords:

Fast algorithm
Legendre expansion
Chebyshev expansion
Bernstein ellipse
Finite regularity

Abstract

In this paper, we present formulas betwixt Legender and Chebyshev expansion coefficients for a piecewise smooth (or Dini-Lipschitz) function, analyze the error bounds for the Piessens' algorithm and present a new algorithm with $O(N \log N)$ operations for computation of the first $N+1$ coefficients of the Legendre expansion. Finally, we show the identity to the formulas given by Iserles [5] for analytic functions in a neighborhood of $[-1,1]$.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Legendre expansions are widely used in approximation theory, numerical integration, solutions of partial differential equations, analysis of pseudospectral methods, special function theory, etc. Given a function $f \in L^{2}[-1,1]$, it takes $O\left(N^{2}\right)$ operations to compute the first $N+1$ terms of the Legendre expansion

$$
\begin{equation*}
f(x)=\sum_{m=0}^{\infty} a_{m} P_{m}(x) \tag{1.1}
\end{equation*}
$$

by the standard discrete expansion [1]

$$
\begin{equation*}
a_{m}=\left(m+\frac{1}{2}\right) \int_{-1}^{1} f(x) P_{m}(x) d x \approx\left(m+\frac{1}{2}\right) \sum_{n=0}^{N} w_{n} f\left(x_{n}\right) P_{m}\left(x_{n}\right), \quad m=0,1, \ldots, N \tag{1.2}
\end{equation*}
$$

where $\left\{x_{n}\right\}_{n=0}^{N}$ is the Gauss-point set (the roots of $\left.P_{N+1}(x)=0\right)$ and w_{n} the corresponding weights in the Gauss-Legendre quadrature [2].

Piessens [3] presented another efficient algorithm with order $O\left(N^{2}\right)$ to approximate the first $N+1$ Legender coefficients by using the Chebyshev expansion:

$$
\begin{equation*}
f(x)=\sum_{m=0}^{\infty}{ }^{\prime} c_{m} T_{m}(x), \quad c_{m}=\frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_{m}(x)}{\sqrt{1-x^{2}}} d x, \quad m \in \mathbb{Z}_{+}, \tag{1.3}
\end{equation*}
$$

where \sum^{\prime} denotes a sum whose first term is halved. Then a_{m} can be approximated [3] by

$$
a_{m} \approx\left(m+\frac{1}{2}\right) \sum_{k=0}^{N}{ }^{\prime} c_{k} I_{m, k}, \quad m=0,1, \ldots, N
$$

[^0]which yields a fast algorithm [3]
\[

$$
\begin{equation*}
\bar{a}_{m}=\left(m+\frac{1}{2}\right) \sum_{j=0}^{N}{ }^{\prime \prime} I_{m, j} \tilde{c}_{j}, \quad m=0,1, \ldots, N . \tag{1.4}
\end{equation*}
$$

\]

Here $I_{m, k}=\int_{-1}^{1} P_{m}(x) T_{k}(x) d x$ can be calculated by recursion in $O\left(N^{2}\right)$ operations

$$
I_{m, k}=\left\{\begin{array}{l}
\frac{2}{1-k^{2}}, \quad m=0, k \text { is even } \tag{1.5}\\
\frac{2^{2 m}(m!)^{2}}{(2 m+1)!}, \quad k=m \geq 1 \\
\frac{[(m+2 j-3)(m+2 j-2)-m(m+1)](m+2 j)}{[(m+2 j+1)(m+2 j)-m(m+1)](m+2 j-2)} I_{m, m+2 j-2}, \quad m \geq 1, k=m+2 j, j \geq 1 \\
0, \quad \text { otherwise },
\end{array}\right.
$$

$\widetilde{c}_{m}(m=0,1, \ldots, N)$ can be evaluated by FFT in $O(N \log N)$ operations [4]:

```
function \(b=\operatorname{coefficients(f,n)\quad \% (n+1)\text {coefficientsfor}f~}\)
\(\mathrm{a} 0=-1 ; \mathrm{b} 0=1 \quad\) \% approximate interval of \(f\)
\(\mathrm{x}=(\mathrm{a} 0+\mathrm{b} 0) / 2+(\mathrm{b} 0-\mathrm{a} 0) / 2 * \cos \left(\mathrm{pi} *(0: \mathrm{n})^{\prime} / \mathrm{n}\right) ; \quad\) \% Chebyshev points of the second kind
\(\mathrm{fx}=\mathrm{feval}(\mathrm{f}, \mathrm{x}) /(2 * \mathrm{n})\);
\(\mathrm{g}=\mathrm{fft}(\mathrm{fx}([1: \mathrm{NO}+1 \mathrm{NO}:-1: 2]))\); \(\quad\) \% FFT
\(\widetilde{\widetilde{c}}=[2 * \mathrm{~g}(1) ; \mathrm{g}(2: \mathrm{NO})+\mathrm{g}(2 * \mathrm{NO}:-1: \mathrm{NO}+2) ; 2 * \mathrm{~g}(\mathrm{NO}+1)] ; \quad \%\) Chebyshev coefficients
```

and $\sum^{\prime \prime}$ denotes a sum whose first and last terms are halved.
More recently, Iserles [5] proposed a new improvement by using the Cauchy theorem and Taylor expansions of the Legendre and hypergeometric functions Φ_{m} and ${ }_{2} F_{1}$, respectively, for $f(x)$ analytic on and inside the Bernstein ellipse ε_{ρ} with foci ± 1 and major and minor semiaxis lengths summing to $\rho(>1)$. The derivation is rather convoluted but the outcome is a surprisingly simple numerical algorithm [5]. The total error bound on the algorithm remains open there [5].

In this paper, we will focus on fast algorithms for the evaluation of Legendre expansion for non-analytic functions of finite regularity and their error analysis. We will show that the Legendre coefficient a_{m} for piecewise smooth (or Dini-Lipschitz) $f(x)$ on $[-1,1]$ can be represented by the Chebyshev coefficients as

$$
\begin{equation*}
a_{0}=\frac{1}{2} c_{0}+\frac{1}{2} \sum_{n=1}^{\infty} I_{0,2 n} c_{2 n}, \quad a_{m}=\left(m+\frac{1}{2}\right) \sum_{n=0}^{\infty} I_{m, m+2 n} c_{m+2 n}, \quad m=1,2, \ldots, \tag{1.6}
\end{equation*}
$$

from which we can construct an efficient algorithm to compute a_{m}

$$
\begin{align*}
& \tilde{a}_{0}=\frac{1}{2} c_{0}+\frac{1}{2} \sum_{n=1}^{N_{0}} I_{0,2 n} \widetilde{c}_{2 n}, \quad \tilde{a}_{m}=\left(m+\frac{1}{2}\right) \sum_{n=0}^{N_{0}} I_{m, m+2 n} \widetilde{c}_{m+2 n}, \quad m=1, \ldots, N-1, \\
& \tilde{a}_{N}=\left(N+\frac{1}{2}\right) \sum_{n=0}^{N_{0}-1} I_{N, N+2 n} \widetilde{c}_{N+2 n}+\frac{1}{2}\left(N+\frac{1}{2}\right) I_{N, N+2 N_{0}} \widetilde{c}_{N+2 N_{0}}, \tag{1.7}
\end{align*}
$$

where N_{0} is a fixed positive integer depending on $f(x)$ and independent of N for a given tolerance $\delta>0, \widetilde{c}_{m}(m=$ $\left.0,1, \ldots, N+2 N_{0}\right)$ can be evaluated by FFT in $O\left(\left(N+2 N_{0}\right) \log \left(N+2 N_{0}\right)\right)$ operations, and $I_{m, j}$ can be obtained by (1.5) in $O\left(N N_{0}\right)$ operations. Therefore, the total cost is $O(N \log N)$. In Section 2, we will derive the error bounds for Piessens' algorithm (1.4) and the new algorithm (1.7). In the final remark, we will show that (1.6) is identity to that given in [5] for analytic functions in a neighborhood of $[-1,1]$.

2. Main results

Lemma 2.1. Suppose $f(x) \in L^{2}[-1,1]$ is piecewise smooth (or Dini-Lipschitz) on $[-1,1]$, then

$$
a_{0}=\frac{1}{2} c_{0}+\frac{1}{2} \sum_{n=1}^{\infty} I_{0,2 n} c_{2 n}, \quad a_{m}=\left(m+\frac{1}{2}\right) \sum_{n=0}^{\infty} I_{m, m+2 n} c_{m+2 n}, \quad m=1,2, \ldots
$$

Proof. Recall that a function $h(x)$ is called piecewise continuous on [$-1,1$] provided (i) h is continuous on [-1 , 1] except at finitely many points y_{1}, \ldots, y_{k}; and (ii) at each of the points y_{1}, \ldots, y_{k}, the left-hand and right-hand limits of h exist. h is
called piecewise smooth if h and h^{\prime} are both piecewise continuous on [$\left.-1,1\right][6, \mathrm{p}$. 32]. Since $f(x)$ is piecewise smooth on $[-1,1]$, then $f(\cos (\theta))$ is piecewise smooth on $[-\pi, \pi]$ and

$$
f(\cos (\theta))=\sum_{n=0}^{\infty}{ }^{\prime} c_{n} \cos (n \theta), \quad \cos (\theta) \neq y_{j}, j=1, \ldots, k
$$

(see [6, p. 35]), where c_{n} is the same as that in (1.3). Consequently we have

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty}{ }^{\prime} c_{n} T_{n}(x), \quad x \neq y_{j}, j=1, \ldots, k \tag{2.1}
\end{equation*}
$$

Thus, from (2.1) and Theorem 1.27 [7, p. 22] it follows

$$
\begin{aligned}
a_{m} & =\left(m+\frac{1}{2}\right) \int_{-1}^{1} f(x) P_{m}(x) d x=\left(m+\frac{1}{2}\right) \int_{-1}^{1} \sum_{n=0}^{\infty}{ }^{\prime} c_{n} T_{n}(x) P_{m}(x) d x \\
& =\left(m+\frac{1}{2}\right) \sum_{n=0}^{\infty}{ }^{\prime} c_{n} \int_{-1}^{1} T_{n}(x) P_{m}(x) d x, \quad m \in \mathbb{Z}_{+},
\end{aligned}
$$

which directly leads to (1.6).
In the case that f is Dini-Lipschitz, from the Dini-Lipschitz Theorem [8, p. 129], the Chebyshev expansion uniformly converges to $f(x)$. By the above same proof, (1.6) is also satisfied.

Lemma 2.2. For the Legendre expansion (1.1) and Chebyshev expansion (1.3), the coefficients satisfy

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{2 \sqrt{n} M}{\rho^{n-1}\left(\rho^{2}-1\right)} \quad(\text { see }[9]), \quad\left|c_{n}\right| \leq \frac{2 M}{\rho^{n}} \quad(\text { see }[10]), n=1,2, \ldots \tag{2.2}
\end{equation*}
$$

if f is analytic with $|f(z)| \leq M$ in the region bounded by the ellipse \mathscr{E}_{ρ} with foci ± 1 and major and minor semiaxis lengths summing to $\rho>1$; or

$$
\begin{align*}
& \left|a_{n}\right| \leq \frac{\sqrt{\pi} V_{p}}{\sqrt{2(n-p-1)}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) \cdots\left(n-\frac{2 p-1}{2}\right)} \quad \text { (see [11]), } \tag{2.3a}\\
& \left|c_{n}\right| \leq \frac{2 V_{p}}{\pi n(n-1) \cdots(n-p)} \quad(\text { see }[12]) \tag{2.3b}
\end{align*}
$$

if $f, \ldots, f^{(p-1)}$ are absolutely continuous on $[-1,1]$ and $f^{(p)}$ has bounded variation V_{p} for some $p \geq 1$.
Theorem 2.1. The error bound for the Piessens' algorithm (1.4) for evaluating a_{m} can be given as

$$
\left|\bar{a}_{m}-a_{m}\right| \leq\left\{\begin{array}{l}
\frac{(2 m+1) I_{m, m} V_{p}}{p \pi N(N-1) \cdots(N-p+1)}+\frac{V_{p}}{(p-1)\left(N-\frac{1}{2}\right)\left(N-\frac{3}{2}\right) \cdots\left(N-\frac{2 p-3}{2}\right)} \sqrt{\frac{\pi}{2(N-p)}} \tag{2.4}\\
\frac{(4 m+2) I_{m, m} M}{(\rho-1) \rho^{N}}+\frac{2 M[(N+1)(\rho-1)+1]}{\sqrt{N+1} \rho^{N-1}(\rho-1)^{3}(\rho+1)}, \quad f(x) \text { analytic in } \varepsilon_{\rho}
\end{array}\right.
$$

for $m=0,1,2, \ldots, N$.
Proof. From the definitions of $I_{m, k} \mathrm{~s}$, it follows for $m \geq 0$ that

$$
\left|a_{m}\right| \leq\left(m+\frac{1}{2}\right) \sum_{n=0}^{\infty}\left|c_{n} I_{m, n}\right|=\left(m+\frac{1}{2}\right)\left|c_{m} I_{m, m}\right|+\left(m+\frac{1}{2}\right) \sum_{j=1}^{\infty}\left|c_{m+2 j} I_{m, m+2 j}\right|
$$

and for $j \geq 0$ that

$$
\left|I_{m, m+2 j+2}\right|=\frac{|(m+2 j-3)(m+2 j-2)-m(m+1)|(m+2 j)}{[(m+2 j+1)(m+2 j)-m(m+1)](m+2 j-2)}\left|I_{m, m+2 j-2}\right| \leq \frac{|2 j-1|}{2 j+1}\left|I_{m, m+2 j}\right|
$$

which implies

$$
\left|I_{m, m+2 j}\right| \leq \frac{1}{2 j-1}\left|I_{m, m}\right|, \quad j=0,1,2, \ldots
$$

Moreover, from (1.4)-(1.6), the error bound for evaluation of a_{m} by (1.4) can be given as

$$
\begin{equation*}
\left|\bar{a}_{m}-a_{m}\right| \leq\left(m+\frac{1}{2}\right) I_{m, m}\left(\sum_{j=0}^{N-1},\left|\widetilde{c}_{j}-c_{j}\right|+\frac{1}{2}\left|\widetilde{c}_{N}-c_{N}\right|\right)+\sum_{j=N+1}^{\infty}\left|a_{j}\right|, \quad m=0,1,2, \ldots, N . \tag{2.5}
\end{equation*}
$$

Recalling (2.13.1.11) in [2] (also see [13, p. 96])

$$
\begin{equation*}
\tilde{c}_{j}-c_{j}=\sum_{\ell=1}^{\infty}\left(c_{2 \ell n-j}+c_{2 \ell n+j}\right), \quad j=0,1, \ldots, n, \tag{2.6}
\end{equation*}
$$

which, together with (2.5) and (2.6), gives

$$
\begin{equation*}
\left|\bar{a}_{m}-a_{m}\right| \leq\left(m+\frac{1}{2}\right) I_{m, m} \sum_{j=N+1}^{\infty}\left|c_{j}\right|+\sum_{j=N+1}^{\infty}\left|a_{j}\right| . \tag{2.7}
\end{equation*}
$$

Furthermore, note that $\sum_{j=N+1}^{\infty}\left|c_{j}\right| \leq \frac{2 V_{p}}{p \pi N(N-1) \cdots(N-p+1)}$ [14, Theorem 2.1] for $V_{p}<\infty$ and

$$
\begin{aligned}
\sum_{j=N+1}^{\infty}\left|a_{j}\right| & \leq V_{p} \sqrt{\frac{\pi}{2(N-p)}} \sum_{j=N+1}^{\infty} \frac{1}{\left(j-\frac{1}{2}\right)\left(j-\frac{3}{2}\right) \cdots\left(j-\frac{2 p-1}{2}\right)} \\
& =V_{p} \sqrt{\frac{\pi}{2(N-p)}} \frac{1}{p-1} \sum_{j=N+1}^{\infty}\left[\frac{1}{\left(j-\frac{3}{2}\right) \cdots\left(j-\frac{2 p-1}{2}\right)}-\frac{1}{\left(j-\frac{1}{2}\right) \cdots\left(j-\frac{2 p-3}{2}\right)}\right] \\
& =\frac{V_{p}}{(p-1)\left(N-\frac{1}{2}\right)\left(N-\frac{3}{2}\right) \cdots\left(N-\frac{2 p-3}{2}\right)} \sqrt{\frac{\pi}{2(N-p)}} .
\end{aligned}
$$

These together lead to (2.4) for $V_{p}<\infty$.
Similarly, by (2.2) together with Theorem 2.1 [14] and Corollary 2.1 [9], it obtains (2.4) for $f(x)$ analytic in ε_{ρ}.
Theorem 2.2. The error bound for the algorithm (1.7) for evaluating a_{m} can be given as

$$
\left|\widetilde{a}_{m}-a_{m}\right| \leq \begin{cases}\frac{(4 m+2) I_{m, m} V_{p}}{p \pi\left(N_{0}+2 m\right)\left(N_{0}+2 m-1\right) \cdots\left(N_{0}+2 m-p+1\right)}, & V_{p}<\infty \tag{2.8}\\ \frac{(4 m+2) I_{m, m} M}{(\rho-1) \rho^{m+2 N_{0}}}, & f(x) \text { analytic in } \varepsilon_{\rho}\end{cases}
$$

for $m=0,1,2, \ldots, N$.
Proof. In a similar way, the error for computation of each a_{m} by \widetilde{a}_{m} can be estimated from (1.6) and (1.7) for $m=0,1, \ldots, N$ by

$$
\begin{aligned}
\left|\widetilde{a}_{m}-a_{m}\right| & \leq\left(m+\frac{1}{2}\right) I_{m, m}\left(\sum_{n=0}^{m+2 N_{0}-1}\left|\widetilde{c}_{n}-c_{n}\right|+\left|\frac{1}{2} \widetilde{c}_{N+2 N_{0}}-c_{N+2 N_{0}}\right|+\sum_{n=N_{0}+1}^{\infty}\left|c_{m+2 n}\right|\right) \\
& \leq\left(m+\frac{1}{2}\right) I_{m, m}\left(\sum_{n=m+2 N_{0}+1}^{\infty}\left|c_{n}\right|+\sum_{n=N_{0}+1}^{\infty}\left|c_{m+2 n}\right|\right) \text { by }(2.6) \\
& \leq(2 m+1) I_{m, m} \sum_{n=m+2 N_{0}+1}^{\infty}\left|c_{n}\right|,
\end{aligned}
$$

which together with $\sum_{j=N+1}^{\infty}\left|c_{j}\right| \leq \frac{2 V_{p}}{p \pi N(N-1) \cdots(N-p+1)}$ for $V_{p}<\infty$ and $\sum_{j=N+1}^{\infty}\left|c_{j}\right| \leq \frac{2 M}{(\rho-1) \rho^{N}}$ [14, Theorem 2.1] yields the desired result.

Remark 1. From the definition of $I_{m, m} \mathrm{~s}$, we see that $\frac{1}{2} I_{0,0}=1$ and $\left(m+\frac{1}{2}\right) I_{m, m} \leq \sqrt{m}$ for $m \geq 1$.
Remark 2. Both algorithms (1.2) and (1.5) can achieve higher accuracy as N increases. However, these methods cannot improve the accuracy of the relative errors at the last few coefficients as reported in [3]. But from (2.8), it shows that the relative errors by (1.7) at the last few coefficients can achieve higher accuracy as N_{0} increases.

Example 1. We illustrate the convergence rates of (1.7) and compare with that evaluated by the discrete expansion (1.2) and (1.5) with $N=100$ (Tables 1 and 2).

Table 1
Approximation of coefficients of the Legendre expansions by (1.7).

$f(x)$	a_{k}	$N_{0}=2$	$N_{0}=10$	$N_{0}=10^{2}$	$N_{0}=10^{3}$	Exact value
e^{x}	a_{0}	1.17520248187784	1.17520119364380	1.17520119364380	1.17520119364380	1.17520119364380
	a_{100}	0.00000000000000	0.00000000000000	0.00000000000000	0.00000000000000	0.000000000000000
$\frac{1+x}{4+x^{2}}$	a_{0}	0.23182165921697	0.23182380450040	0.23182380450040	0.23182380450040	0.23182380450040
	a_{100}	0.00000000000000	0.000000000000000	0.00000000000000	0.00000000000000	0.000000000000000
$e^{-1 / x^{2}}$	a_{0}	0.08855032961820	0.08907377800247	0.08907385589078	0.08907385589078	0.089073855890078
	a_{100}	0.00000000037222	0.00000000032330	0.00000000032424	0.00000000032424	0.000000000032424
$\|x\|^{3}$	a_{0}	0.24979747886432	0.24999996006293	0.25000000009753	0.25000000000004	0.250000000000000
	a_{100}	0.00000154312226	0.00000117911069	0.00000094424591	0.00000094223996	0.00000094223929

Table 2
Approximation of coefficients of the Legendre expansions by (1.2) and (1.5) respectively.

$f(x)$	a_{k}	$\operatorname{By}(1.2)$	By (1.5)	Exact value
e^{x}	a_{0}	1.17520119364380	1.17520119364380	1.17520119364380
	a_{100}	0.00000000000000	0.00000000000000	0.00000000000000
$\frac{1+x}{4+x^{2}}$	a_{0}	0.23182380450040	0.23182380450040	0.23182380450040
	a_{100}	0.00000000000001	0.00000000000000	0.00000000000000
$e^{-1 / x^{2}}$	a_{0}	0.08907385589078	0.08907385589078	0.08907385589078
	a_{100}	0.00000000091831	0.00000000016170	0.00000000032424
$\|x\|^{3}$	a_{0}	0.25000000765123	0.25000000812140	0.25000000000000
	a_{100}	0.00000183956737	0.00000068850364	0.00000094223929

3. Final remarks

Iserles [5] proposed fast algorithms for analytic function $f(x)$ on and inside the Bernstein ellipse ε_{ρ}. By using the Cauchy theorem and Taylor expansions of the Legendre and hypergeometric functions Φ_{m} and ${ }_{2} F_{1}$, the Legendre coefficient a_{m} can be represented by [5] in the form of

$$
a_{m}=\frac{2^{2 m}(m!)^{2}}{2(2 m)!\rho^{m}} \sum_{j=0}^{\infty} \int_{-\pi}^{\pi}\left(1-\rho^{-2} e^{2 i \theta}\right) f\left(\frac{1}{2}\left(\rho^{-1} e^{i \theta}+\rho e^{-i \theta}\right)\right){ }_{2} F_{1}\left(m+1, \frac{1}{2} ; m+\frac{3}{2} ; \rho^{-2} e^{2 i \theta}\right) e^{i m \theta} d \theta .
$$

Letting $\rho \rightarrow 1$ it follows [5]

$$
\begin{equation*}
a_{m}=\frac{1}{2 \pi} \sum_{j=0}^{\infty} \tilde{g}_{m, j} \int_{-\pi}^{\pi}\left(1-e^{2 i \theta}\right) f(\cos (\theta)) e^{i(m+2 j) \theta} d \theta=\frac{1}{2} \sum_{j=0}^{\infty} \widetilde{g}_{m, j}\left(c_{m+2 j}-c_{m+2 j+2}\right), \tag{3.1}
\end{equation*}
$$

where $\widetilde{g}_{m, j}=\frac{2^{2 m}(m!)^{2}(m+1)_{j}\left(\frac{1}{2}\right)_{j}}{(2 m)!j^{\prime}\left(m+\frac{2}{2}\right)_{j}}$ can be computed by

$$
\tilde{g}_{0,0}=1, \quad \tilde{g}_{m, 0}=\frac{m}{m-\frac{1}{2}} \widetilde{g}_{m-1,0}, \quad \tilde{g}_{m, j}=\frac{(m+j)\left(j-\frac{1}{2}\right)}{j\left(m+j+\frac{1}{2}\right)} \tilde{g}_{m, j-1}, \quad m=1,2, \ldots, j=1,2, \ldots,
$$

which together leads to a fast algorithm [5]

$$
\begin{align*}
& \widehat{a}_{m}=\frac{1}{2} \sum_{j=0}^{N_{0}-1} \tilde{g}_{m, j}\left(\widetilde{c}_{m+2 j}-\widetilde{c}_{m+2 j+2}\right), \quad m=0,1, \ldots, N-1 \\
& \widehat{a}_{N}=\frac{1}{2} \sum_{j=0}^{N_{0}-2} \tilde{g}_{N, j}\left(\widetilde{c}_{N+2 j}-\widetilde{c}_{N+2 j+2}\right)+\frac{1}{2} \widetilde{g}_{N, j}\left(\widetilde{c}_{N+2 N_{0}-2}-\frac{1}{2} \widetilde{c}_{N+2 N_{0}}\right) . \tag{3.2}
\end{align*}
$$

In the following, we will show that (3.1) and (1.6) are identity, that is,

$$
\begin{aligned}
& a_{0}=\frac{1}{2} c_{0}+\frac{1}{2} \sum_{n=1}^{\infty} I_{0,2 n} c_{2 n}=\frac{1}{2} \sum_{j=0}^{\infty} \widetilde{g}_{0, j}\left(c_{2 j}-c_{2 j+2}\right) \\
& a_{m}=\left(m+\frac{1}{2}\right) \sum_{n=0}^{\infty} I_{m, m+2 n} c_{m+2 n}=\frac{1}{2} \sum_{j=0}^{\infty} \widetilde{g}_{m, j}\left(c_{m+2 j}-c_{m+2 j+2}\right), \quad m \geq 1 .
\end{aligned}
$$

Fig. 1. The relative errors computed by (3.2) and (1.7) respectively: $m=0: 2: 100$.

Notice that (3.1) can be rewritten as

$$
\begin{equation*}
a_{m}=\frac{1}{2} \widetilde{g}_{m, 0} c_{m}+\frac{1}{2} \sum_{j=1}^{\infty}\left(\widetilde{g}_{m, j}-\widetilde{g}_{m, j-1}\right) c_{m+2 j}=\frac{1}{2} \widetilde{g}_{m, 0} c_{m}-\frac{1}{2} \sum_{j=1}^{\infty} \frac{\frac{1}{2} m+j}{j\left(m+j+\frac{1}{2}\right)} \widetilde{g}_{m, j-1} c_{m+2 j} \tag{3.3}
\end{equation*}
$$

Comparing the first coefficient in (3.3) with that in (1.6), it is obvious by the definitions of $I_{m, m}$ and $\widetilde{g}_{m, 0}$ that

$$
\left(m+\frac{1}{2}\right) I_{m, m}=\frac{1}{2} \widetilde{g}_{m, 0}, \quad m=0,1,2, \ldots
$$

Hence, it is only necessary to prove that for each fixed m

$$
\begin{equation*}
\left(m+\frac{1}{2}\right) I_{m, m+2 j}=-\frac{1}{2} \frac{\frac{1}{2} m+j}{j\left(m+j+\frac{1}{2}\right)} \widetilde{g}_{m, j-1}, \quad j=1,2, \ldots, \tag{3.4}
\end{equation*}
$$

which can be proved by induction on j. Suppose (3.4) is true for $k=j$, then for $k=j+1$, by (1.6) it yields

$$
\begin{aligned}
& \left(m+\frac{1}{2}\right) I_{m, m+2 j+2} \\
& \quad=\left(m+\frac{1}{2}\right) I_{m, m+2 j} \frac{[(m+2 j-1)(m+2 j)-m(m+1)](m+2 j+2)}{[(m+2 j+3)(m+2 j+2)-m(m+1)](m+2 j)} \\
& \quad=-\frac{1}{2} \frac{\frac{1}{2} m+j}{j\left(m+j+\frac{1}{2}\right)} \widetilde{g}_{m, j-1} \frac{[(m+2 j-1)(m+2 j)-m(m+1)](m+2 j+2)}{[(m+2 j+3)(m+2 j+2)-m(m+1)](m+2 j)} \\
& \quad=-\frac{1}{2} \frac{\frac{1}{2} m+j+1}{(j+1)\left(m+j+1+\frac{1}{2}\right)} \cdot \frac{(m+j)\left(j-\frac{1}{2}\right)}{j\left(m+j+\frac{1}{2}\right)} \widetilde{g}_{m, j-1}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left\{\frac{j(j+1)\left(m+j+\frac{1}{2}\right)\left(m+j+\frac{3}{2}\right)}{\left(\frac{1}{2} m+j+1\right)(m+j)\left(j-\frac{1}{2}\right)} \frac{\left(\frac{1}{2} m+j\right)[(m+2 j-1)(m+2 j)-m(m+1)](m+2 j+2)}{j\left(m+j+\frac{1}{2}\right)[(m+2 j+3)(m+2 j+1)-m(m+1)](m+2 j)}\right\} \\
= & -\frac{1}{2} \frac{\frac{1}{2} m+j+1}{j\left(m+j+\frac{3}{2}\right)} \tilde{g}_{m, j}
\end{aligned}
$$

where we used Maple 11 to verify the last factor in the right-hand side of the third equality is equal to 1 .
Therefore, the fast algorithm (3.2) can also be applied to piecewise smooth (or Dini-Lipschitz) functions. Comparing (3.3) with (1.7) ($N_{0}-1$ instead of N_{0} in (1.7)), we see that for fixed $m=0,1, \ldots, N$ in (3.2) and (1.7)

$$
(3.2)=(1.7)-\frac{1}{2} \widetilde{g}_{m, N 0} \widetilde{c}_{m+2 N_{0}+2} .
$$

Example 2. We use $f(x)=e^{-1 / x^{2}}, \sqrt{1-x^{2}},|x|$ to compare (3.2) with (1.7) to show the efficiency of these two algorithms (Fig. 1).

Acknowledgment

This work was supported by the NSF of China (No. 11071260).

References

[1] J.S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge University Press, 2007.
[2] P.J. Davis, P. Rabinowitz, Methods of Numerical Integration, second ed., Academic Press, 1984.
[3] R. Piessens, Computation of Legendre series coefficients, Algorithm 473, Commun. ACM 17 (1974) 25.
[4] L.N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50 (2008) 67-87.
[5] A. Iserles, A fast (and simple) algorithm for the computation of Legendre coefficients, DAMTP Tech. Rep. 2010/NA01.
[6] G.B. Folland, Fourier Analysis and its Applications, Thomson Learning, 1992.
[7] W. Rudin, Real and Complex Analysis, McGraw-Hill Company, Inc., 1974.
[8] E.W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
[9] S. Xiang, On error bounds for orthogonal polynomial expansions and Gauss-type quadrature, SIAM J. Numer. Anal. 50 (2012) 1240-1263.
[10] S. Bernstein, Sur l’order de la meilleure approximation des fonctions continues par des polynomes de degré donné, Mem. Acad. Roy. Belg. (2) 4 (1912) 1-103.
[11] H. Wang, S. Xiang, On the convergence rates of Legendre approximation, Math. Comp. 81 (2012) 861-877.
[12] L.N. Trefethen, Approximation Theory and Approximation in Practice, University of Oxford, 2011. http://www2.maths.ox.ac.uk/chebfun/ATAP/.
[13] J.P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications, New York, 2000.
[14] S. Xiang, X. Chen, H. Wang, Error bounds for approximation in Chebyshev points, Numer. Math. 116 (2010) 463-491.

[^0]: E-mail address: xiangsh@mail.csu.edu.cn.
 0893-9659/\$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.aml.2012.08.011

