
Applied Mathematics Letters 26 (2013) 194–200

Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

On fast algorithms for the evaluation of Legendre coefficients
Shuhuang Xiang
Department of Applied Mathematics and Software, Central South University, Changsha, Hunan 410083, PR China

a r t i c l e i n f o

Article history:
Received 13 July 2012
Accepted 16 August 2012

Keywords:
Fast algorithm
Legendre expansion
Chebyshev expansion
Bernstein ellipse
Finite regularity

a b s t r a c t

In this paper, we present formulas betwixt Legender and Chebyshev expansion coefficients
for a piecewise smooth (or Dini–Lipschitz) function, analyze the error bounds for
the Piessens’ algorithm and present a new algorithm with O(N logN) operations for
computation of the first N + 1 coefficients of the Legendre expansion. Finally, we show
the identity to the formulas given by Iserles [5] for analytic functions in a neighborhood of
[−1, 1].

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Legendre expansions are widely used in approximation theory, numerical integration, solutions of partial differential
equations, analysis of pseudospectral methods, special function theory, etc. Given a function f ∈ L2[−1, 1], it takes O(N2)
operations to compute the first N + 1 terms of the Legendre expansion

f (x) =

∞
m=0

amPm(x) (1.1)

by the standard discrete expansion [1]

am =


m +

1
2

 1

−1
f (x)Pm(x)dx ≈


m +

1
2

 N
n=0

wnf (xn)Pm(xn), m = 0, 1, . . . ,N, (1.2)

where {xn}Nn=0 is the Gauss-point set (the roots of PN+1(x) = 0) and wn the corresponding weights in the Gauss–Legendre
quadrature [2].

Piessens [3] presented another efficient algorithmwith order O(N2) to approximate the first N + 1 Legender coefficients
by using the Chebyshev expansion:

f (x) =

∞
m=0

′cmTm(x), cm =
2
π

 1

−1

f (x)Tm(x)
√
1 − x2

dx, m ∈ Z+, (1.3)

where


′ denotes a sum whose first term is halved. Then am can be approximated [3] by

am ≈


m +

1
2

 N
k=0

′ckIm,k, m = 0, 1, . . . ,N
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which yields a fast algorithm [3]

am =


m +

1
2

 N
j=0

′′Im,jcj, m = 0, 1, . . . ,N. (1.4)

Here Im,k =
 1
−1 Pm(x)Tk(x)dx can be calculated by recursion in O(N2) operations

Im,k =



2
1 − k2

, m = 0, k is even

22m(m!)2

(2m + 1)!
, k = m ≥ 1

[(m + 2j − 3)(m + 2j − 2) − m(m + 1)](m + 2j)
[(m + 2j + 1)(m + 2j) − m(m + 1)](m + 2j − 2)

Im,m+2j−2, m ≥ 1, k = m + 2j, j ≥ 1

0, otherwise,

(1.5)

cm (m = 0, 1, . . . ,N) can be evaluated by FFT in O(N logN) operations [4]:

function b = coefficients(f, n) % (n + 1) coefficients for f
a0 = −1; b0 = 1 % approximate interval of f
x = (a0 + b0)/2 + (b0 − a0)/2 ∗ cos(pi ∗ (0 : n)′/n); % Chebyshev points of the second kind
fx = feval(f, x)/(2 ∗ n); % f evaluated at these points
g = fft(fx([1 : N0 + 1N0 : −1 : 2])); % FFTc= [2 ∗ g(1); g(2 : N0) + g(2 ∗ N0 : −1 : N0 + 2); 2 ∗ g(N0 + 1)]; % Chebyshev coefficients

and


′′ denotes a sum whose first and last terms are halved.
More recently, Iserles [5] proposed a new improvement by using the Cauchy theorem and Taylor expansions of the

Legendre and hypergeometric functions Φm and 2F1, respectively, for f (x) analytic on and inside the Bernstein ellipse Eρ

with foci±1 andmajor andminor semiaxis lengths summing to ρ(>1). The derivation is rather convoluted but the outcome
is a surprisingly simple numerical algorithm [5]. The total error bound on the algorithm remains open there [5].

In this paper, wewill focus on fast algorithms for the evaluation of Legendre expansion for non-analytic functions of finite
regularity and their error analysis. We will show that the Legendre coefficient am for piecewise smooth (or Dini–Lipschitz)
f (x) on [−1, 1] can be represented by the Chebyshev coefficients as

a0 =
1
2
c0 +

1
2

∞
n=1

I0,2nc2n, am =


m +

1
2

 ∞
n=0

Im,m+2ncm+2n, m = 1, 2, . . . , (1.6)

from which we can construct an efficient algorithm to compute am

a0 =
1
2
c0 +

1
2

N0
n=1

I0,2nc2n, am =


m +

1
2

 N0
n=0

Im,m+2ncm+2n, m = 1, . . . ,N − 1,

aN =


N +

1
2

 N0−1
n=0

IN,N+2ncN+2n +
1
2


N +

1
2


IN,N+2N0cN+2N0 ,

(1.7)

where N0 is a fixed positive integer depending on f (x) and independent of N for a given tolerance δ > 0, cm (m =

0, 1, . . . ,N + 2N0) can be evaluated by FFT in O((N + 2N0) log(N + 2N0)) operations, and Im,j can be obtained by (1.5)
in O(NN0) operations. Therefore, the total cost is O(N logN). In Section 2, we will derive the error bounds for Piessens’
algorithm (1.4) and the new algorithm (1.7). In the final remark, we will show that (1.6) is identity to that given in [5] for
analytic functions in a neighborhood of [−1, 1].

2. Main results

Lemma 2.1. Suppose f (x) ∈ L2[−1, 1] is piecewise smooth (or Dini–Lipschitz) on [−1, 1], then

a0 =
1
2
c0 +

1
2

∞
n=1

I0,2nc2n, am =


m +

1
2

 ∞
n=0

Im,m+2ncm+2n, m = 1, 2, . . . .

Proof. Recall that a function h(x) is called piecewise continuous on [−1, 1] provided (i) h is continuous on [−1, 1] except
at finitely many points y1, . . . , yk; and (ii) at each of the points y1, . . . , yk, the left-hand and right-hand limits of h exist. h is
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called piecewise smooth if h and h′ are both piecewise continuous on [−1, 1] [6, p. 32]. Since f (x) is piecewise smooth on
[−1, 1], then f (cos(θ)) is piecewise smooth on [−π, π] and

f (cos(θ)) =

∞
n=0

′cn cos(nθ), cos(θ) ≠ yj, j = 1, . . . , k

(see [6, p. 35]), where cn is the same as that in (1.3). Consequently we have

f (x) =

∞
n=0

′cnTn(x), x ≠ yj, j = 1, . . . , k. (2.1)

Thus, from (2.1) and Theorem 1.27 [7, p. 22] it follows

am =


m +

1
2

 1

−1
f (x)Pm(x)dx =


m +

1
2

 1

−1

∞
n=0

′cnTn(x)Pm(x)dx

=


m +

1
2

 ∞
n=0

′cn

 1

−1
Tn(x)Pm(x)dx, m ∈ Z+,

which directly leads to (1.6).
In the case that f is Dini–Lipschitz, from the Dini–Lipschitz Theorem [8, p. 129], the Chebyshev expansion uniformly

converges to f (x). By the above same proof, (1.6) is also satisfied. �

Lemma 2.2. For the Legendre expansion (1.1) and Chebyshev expansion (1.3), the coefficients satisfy

|an| ≤
2
√
nM

ρn−1(ρ2 − 1)
(see [9]), |cn| ≤

2M
ρn

(see [10]), n = 1, 2, . . . (2.2)

if f is analytic with |f (z)| ≤ M in the region bounded by the ellipse Eρ with foci ±1 and major and minor semiaxis lengths
summing to ρ > 1; or

|an| ≤

√
πVp

√
2(n − p − 1)


n −

1
2

 
n −

3
2


· · ·

n −

2p−1
2

 (see [11]), (2.3a)

|cn| ≤
2Vp

πn(n − 1) · · · (n − p)
(see [12]) (2.3b)

if f , . . . , f (p−1) are absolutely continuous on [−1, 1] and f (p) has bounded variation Vp for some p ≥ 1.

Theorem 2.1. The error bound for the Piessens’ algorithm (1.4) for evaluating am can be given as

|am − am| ≤


(2m + 1)Im,mVp

pπN(N − 1) · · · (N − p + 1)
+

Vp

(p − 1)

N −

1
2

 
N −

3
2


· · ·

N −

2p−3
2

 π

2(N − p)
,

Vp < ∞

(4m + 2)Im,mM
(ρ − 1)ρN

+
2M[(N + 1)(ρ − 1) + 1]

√
N + 1ρN−1(ρ − 1)3(ρ + 1)

, f (x) analytic in Eρ

(2.4)

for m = 0, 1, 2, . . . ,N.

Proof. From the definitions of Im,ks, it follows form ≥ 0 that

|am| ≤


m +

1
2

 ∞
n=0

|cnIm,n| =


m +

1
2


|cmIm,m| +


m +

1
2

 ∞
j=1

|cm+2jIm,m+2j|,

and for j ≥ 0 that

|Im,m+2j+2| =
|(m + 2j − 3)(m + 2j − 2) − m(m + 1)|(m + 2j)
[(m + 2j + 1)(m + 2j) − m(m + 1)](m + 2j − 2)

|Im,m+2j−2| ≤
|2j − 1|
2j + 1

|Im,m+2j|,

which implies

|Im,m+2j| ≤
1

2j − 1
|Im,m|, j = 0, 1, 2, . . . .
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Moreover, from (1.4)–(1.6), the error bound for evaluation of am by (1.4) can be given as

|am − am| ≤


m +

1
2


Im,m


N−1
j=0

′
|cj − cj| +

1
2
|cN − cN |


+

∞
j=N+1

|aj|, m = 0, 1, 2, . . . ,N. (2.5)

Recalling (2.13.1.11) in [2] (also see [13, p. 96])

cj − cj =

∞
ℓ=1

(c2ℓn−j + c2ℓn+j), j = 0, 1, . . . , n, (2.6)

which, together with (2.5) and (2.6), gives

|am − am| ≤


m +

1
2


Im,m

∞
j=N+1

|cj| +

∞
j=N+1

|aj|. (2.7)

Furthermore, note that


∞

j=N+1 |cj| ≤
2Vp

pπN(N−1)···(N−p+1) [14, Theorem 2.1] for Vp < ∞ and

∞
j=N+1

|aj| ≤ Vp


π

2(N − p)

∞
j=N+1

1
j − 1

2

 
j − 3

2


· · ·

j − 2p−1

2


= Vp


π

2(N − p)
1

p − 1

∞
j=N+1


1

j − 3
2


· · ·

j − 2p−1

2

 −
1

j − 1
2


· · ·

j − 2p−3

2



=
Vp

(p − 1)

N −

1
2

 
N −

3
2


· · ·

N −

2p−3
2

 π

2(N − p)
.

These together lead to (2.4) for Vp < ∞.
Similarly, by (2.2) together with Theorem 2.1 [14] and Corollary 2.1 [9], it obtains (2.4) for f (x) analytic in Eρ . �

Theorem 2.2. The error bound for the algorithm (1.7) for evaluating am can be given as

|am − am| ≤


(4m + 2)Im,mVp

pπ(N0 + 2m)(N0 + 2m − 1) · · · (N0 + 2m − p + 1)
, Vp < ∞

(4m + 2)Im,mM
(ρ − 1)ρm+2N0

, f (x) analytic in Eρ

(2.8)

for m = 0, 1, 2, . . . ,N.

Proof. In a similarway, the error for computation of each am byam can be estimated from (1.6) and (1.7) form = 0, 1, . . . ,N
by

|am − am| ≤


m +

1
2


Im,m


m+2N0−1

n=0

′
|cn − cn| +

12cN+2N0 − cN+2N0

+ ∞
n=N0+1

|cm+2n|



≤


m +

1
2


Im,m


∞

n=m+2N0+1

|cn| +

∞
n=N0+1

|cm+2n|


by (2.6)

≤ (2m + 1)Im,m

∞
n=m+2N0+1

|cn|,

which together with


∞

j=N+1 |cj| ≤
2Vp

pπN(N−1)···(N−p+1) for Vp < ∞ and


∞

j=N+1 |cj| ≤
2M

(ρ−1)ρN [14, Theorem 2.1] yields the
desired result. �

Remark 1. From the definition of Im,ms, we see that 1
2 I0,0 = 1 and (m +

1
2 )Im,m ≤

√
m form ≥ 1.

Remark 2. Both algorithms (1.2) and (1.5) can achieve higher accuracy as N increases. However, these methods cannot
improve the accuracy of the relative errors at the last few coefficients as reported in [3]. But from (2.8), it shows that the
relative errors by (1.7) at the last few coefficients can achieve higher accuracy as N0 increases.

Example 1. We illustrate the convergence rates of (1.7) and compare with that evaluated by the discrete expansion (1.2)
and (1.5) with N = 100 (Tables 1 and 2).
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Table 1
Approximation of coefficients of the Legendre expansions by (1.7).

f (x) ak N0 = 2 N0 = 10 N0 = 102 N0 = 103 Exact value

ex a0 1.17520248187784 1.17520119364380 1.17520119364380 1.17520119364380 1.17520119364380
a100 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

1+x
4+x2

a0 0.23182165921697 0.23182380450040 0.23182380450040 0.23182380450040 0.23182380450040
a100 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

e−1/x2 a0 0.08855032961820 0.08907377800247 0.08907385589078 0.08907385589078 0.08907385589078
a100 0.00000000037222 0.00000000032330 0.00000000032424 0.00000000032424 0.00000000032424

|x|3 a0 0.24979747886432 0.24999996006293 0.25000000009753 0.25000000000004 0.25000000000000
a100 0.00000154312226 0.00000117911069 0.00000094424591 0.00000094223996 0.00000094223929

Table 2
Approximation of coefficients of the Legendre expansions by (1.2) and (1.5) respectively.

f (x) ak By (1.2) By (1.5) Exact value

ex a0 1.17520119364380 1.17520119364380 1.17520119364380
a100 0.00000000000000 0.00000000000000 0.00000000000000

1+x
4+x2

a0 0.23182380450040 0.23182380450040 0.23182380450040
a100 0.00000000000001 0.00000000000000 0.00000000000000

e−1/x2 a0 0.08907385589078 0.08907385589078 0.08907385589078
a100 0.00000000091831 0.00000000016170 0.00000000032424

|x|3 a0 0.25000000765123 0.25000000812140 0.25000000000000
a100 0.00000183956737 0.00000068850364 0.00000094223929

3. Final remarks

Iserles [5] proposed fast algorithms for analytic function f (x) on and inside the Bernstein ellipse Eρ . By using the Cauchy
theorem and Taylor expansions of the Legendre and hypergeometric functions Φm and 2F1, the Legendre coefficient am can
be represented by [5] in the form of

am =
22m(m!)2

2(2m)!ρm

∞
j=0

 π

−π

(1 − ρ−2e2iθ )f

1
2
(ρ−1eiθ + ρe−iθ )


2F1


m + 1,

1
2
;m +

3
2
; ρ−2e2iθ


eimθdθ.

Letting ρ → 1 it follows [5]

am =
1
2π

∞
j=0

gm,j

 π

−π

(1 − e2iθ )f (cos(θ))ei(m+2j)θdθ =
1
2

∞
j=0

gm,j(cm+2j − cm+2j+2), (3.1)

wheregm,j =
22m(m!)2(m+1)j(

1
2 )j

(2m)!j!(m+
3
2 )j

can be computed by

g0,0 = 1, gm,0 =
m

m −
1
2

gm−1,0, gm,j =
(m + j)


j − 1

2


j

m + j + 1

2

 gm,j−1, m = 1, 2, . . . , j = 1, 2, . . . ,

which together leads to a fast algorithm [5]

am =
1
2

N0−1
j=0

gm,j(cm+2j −cm+2j+2), m = 0, 1, . . . ,N − 1

aN =
1
2

N0−2
j=0

gN,j(cN+2j −cN+2j+2) +
1
2
gN,j

cN+2N0−2 −
1
2
cN+2N0


.

(3.2)

In the following, we will show that (3.1) and (1.6) are identity, that is,

a0 =
1
2
c0 +

1
2

∞
n=1

I0,2nc2n =
1
2

∞
j=0

g0,j(c2j − c2j+2)

am =


m +

1
2

 ∞
n=0

Im,m+2ncm+2n =
1
2

∞
j=0

gm,j(cm+2j − cm+2j+2), m ≥ 1.
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Fig. 1. The relative errors computed by (3.2) and (1.7) respectively:m = 0 : 2 : 100.

Notice that (3.1) can be rewritten as

am =
1
2
gm,0cm +

1
2

∞
j=1

(gm,j −gm,j−1)cm+2j =
1
2
gm,0cm −

1
2

∞
j=1

1
2m + j

j

m + j + 1

2

gm,j−1cm+2j. (3.3)

Comparing the first coefficient in (3.3) with that in (1.6), it is obvious by the definitions of Im,m andgm,0 that
m +

1
2


Im,m =

1
2
gm,0, m = 0, 1, 2, . . . .

Hence, it is only necessary to prove that for each fixedm
m +

1
2


Im,m+2j = −

1
2

1
2m + j

j

m + j + 1

2

gm,j−1, j = 1, 2, . . . , (3.4)

which can be proved by induction on j. Suppose (3.4) is true for k = j, then for k = j + 1, by (1.6) it yields
m +

1
2


Im,m+2j+2

=


m +

1
2


Im,m+2j

[(m + 2j − 1)(m + 2j) − m(m + 1)](m + 2j + 2)
[(m + 2j + 3)(m + 2j + 2) − m(m + 1)](m + 2j)

= −
1
2

1
2m + j

j

m + j + 1

2

gm,j−1
[(m + 2j − 1)(m + 2j) − m(m + 1)](m + 2j + 2)
[(m + 2j + 3)(m + 2j + 2) − m(m + 1)](m + 2j)

= −
1
2

1
2m + j + 1

(j + 1)

m + j + 1 +

1
2

 ·
(m + j)


j − 1

2


j

m + j + 1

2

 gm,j−1
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×


j(j + 1)


m + j + 1

2

 
m + j + 3

2

 1
2m + j + 1


(m + j)


j − 1

2

  1
2m + j


[(m + 2j − 1)(m + 2j) − m(m + 1)](m + 2j + 2)

j

m + j + 1

2


[(m + 2j + 3)(m + 2j + 1) − m(m + 1)](m + 2j)



= −
1
2

1
2m + j + 1

j

m + j + 3

2

gm,j

where we usedMaple 11 to verify the last factor in the right-hand side of the third equality is equal to 1.
Therefore, the fast algorithm (3.2) can also be applied to piecewise smooth (or Dini–Lipschitz) functions. Comparing (3.3)

with (1.7) (N0 − 1 instead of N0 in (1.7)), we see that for fixedm = 0, 1, . . . ,N in (3.2) and (1.7)

(3.2) = (1.7) −
1
2
gm,N0cm+2N0+2.

Example 2. We use f (x) = e−1/x2 ,
√
1 − x2, |x| to compare (3.2) with (1.7) to show the efficiency of these two algorithms

(Fig. 1).
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