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Elastic fields of circular dislocation and disclination loops are represented in explicit form in terms of
spherical harmonics, i.e. via series with Legendre and associated Legendre polynomials. Representations
are obtained by expanding Lipschitz-Hankel integrals with two Bessel functions into Legendre series.
Found representations are then applied to the solutions of elasticity boundary-value problems of the the-
ory of defects and to the calculation of elastic fields of segmented spherical inclusions. In the framework
of virtual circular dislocation–disclination loops technique, a general scheme to solving axisymmetric
elasticity problems with boundary conditions specified on a sphere is given. New solutions for elastic
fields of a twist disclination loop in a spherical particle and near a spherical pore are demonstrated.
The easy and straightforward way for calculations of elastic fields of segmented spherical inclusion with
uniaxial eigenstrain is shown.
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1. Introduction

Loop configurations of dislocation and disclination defects are
routinely used in the analysis of physical and mechanical behavior
of various materials. This is caused by the facts of experimental
observation of defect loops and exploring loop properties in the
modeling of materials behavior. Glide and prismatic dislocation
loops are formed in crystalline materials in the course of plastic
deformation (Hirth and Lothe, 1982), thermal or radiation treat-
ment (Was, 2007), whereas twist disclination loops are typical
for polymers (Li and Gilman, 1970). Mesoscopic disclination
(Romanov and Vladimirov, 1992) and general Somigliana disloca-
tion (Asaro, 1975) loops were used in representing ensembles of
lattice defects in deformed materials. Physical models describing
the behavior of defect loops are essentially based on the calculation
and the analysis of their elastic fields: displacements, strains and
stresses. On the other hand, elastic fields of loop defects can be
considered as elementary blocks for construction of the solutions
for more involved elasticity problems, e.g. for cracks (Hills et al.,
1996), inclusions (Mura, 1987), and elasticity boundary-value
problems (Kolesnikova and Romanov, 2004). Present work is de-
voted to the finding of new representations for elastic fields of cir-
ll rights reserved.
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cular dislocation and disclination loops involving spherical
harmonic functions, i.e. Legendre polynomials.

Among possible studied defect loop shapes circular loops were
treated in greatest detail. Below we overview only the results ob-
tained for elastically isotropic solids. Starting from the work by
Kröner (1958), where his own results together with early results
by Pfleiderer and Keller, were given, the elastic fields and energies
of circular prismatic and glide (shear) dislocation loops in infinite
elastic media were studied by Kroupa (1960, 1962), Bullough and
Newman (1960), De Wit (1960), Owen and Mura (1967), Marci-
kowski and Sree Harsha (1968), Bushueva et al. (1974), and Pov-
stenko (1995). More recently (Khraishi et al., 2000a,b), delivered
a closed form analytical solutions for stresses and displacements
of general translational circular Volterra dislocation loops that
are characterized by an arbitrary Burgers vector. For disclination
(rotation Volterra dislocation, which is characterized by an axial
vector of rotation, i.e. Frank vector) loops the first solution was
published by Owen and Mura (1967), in case of a rotational dislo-
cation, that later was called ‘‘circular edge disclination” (Huang
and Mura, 1970) and finally accepted the name ‘‘twist disclination
loop”. More solutions for twist and wedge disclination loops in infi-
nite isotropic elastic media were given by Liu and Li (1971), Kuo
and Mura (1972a), Kuo et al. (1973), and Povstenko and Matkovski
(2000). Interesting connection of the twist disclination loop solu-
tion with the problem of a shrink-fit shaft subjected to torsion
can be found in the results reported by Sackfield et al. (2002).

http://dx.doi.org/10.1016/j.ijsolstr.2009.09.014
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Circular dislocations of general Somigliana type, for which the
effective Burgers vector may demonstrate an arbitrary coordinate
dependence, were treated by Kolesnikova and Romanov (1986)
and Kolesnikova and Romanov (1987), who, in particular, calcu-
lated elastic fields of a circular radial disclination loop. For such a
loop Burgers vector in radial direction was linearly dependent on
the radial coordinate inside the cut path bounded by the defect
line, see also (Kolesnikova and Romanov, 2003, 2004). Demir et
al. (1992a,b,c, 1993), investigated a Somigliana ring dislocation
having prismatic and radial components. In their considerations
an effective Burgers vector was defined at the cylindrical cut sur-
face bounded by the circular defect line. Later Korsunsky (1996a),
derived the solutions for the elastic fields of Somigliana ring dislo-
cation via Pupkovich-Neuber potential functions. Recently the ef-
fect of the position of the cut path on the elastic fields of
Somigliana ring dislocation was investigated by Paynter et al.
(2007).

Circular loop defects near a free surface, a planar phase bound-
ary or in a plate were studied for a prismatic dislocation loop
(Chou, 1963; Baštecká, 1964; Salamon and Dundurs, 1971; Dun-
durs and Salamon, 1972; Kolesnikova and Romanov, 2004) and a
glide dislocation loop (Salamon and Dundurs, 1971; Salamon and
Dundurs, 1977), a twist disclination loop (Chou, 1971; Kuo and
Mura, 1972b; Kuo et al., 1973; Kolesnikova and Romanov, 2003)
and a wedge disclination loop (Kuo and Mura, 1972b), and Somig-
liana ring dislocation (Korsunsky, 1996b; Paynter and Hills, 2009).
Salamon (1981), gave the elastic field for circular a glide disloca-
tion loop laying on the interface of dissimilar materials. In all above
works the plane of the loop was assumed to be parallel to free sur-
face or interface. The influence of loop orientation with respect to a
free surface or interface was studied for defects with infinitesi-
mally small area. The first solution in integral form was given by
Steketee (1958). After that the analytical formulas for elastic fields
of infinitesimally small dislocation loops were found by Groves and
Bacon (1970) and Bacon and Groves (1970), in case of a semi-infi-
nite elastic media, and by Salamon and Dundurs (1971), in case of
two-phase elastic media. Interaction forces of small loops with a
free surface were studied by Tikhonov (1967) and Vagera
(1970a,b) for the case of an interface. For small twist and wedge
disclination loops the asymptotes of elastic fields and interaction
forces were provided by Chou and Lu (1972, 1973).

In case of non-planar geometry of involved free surface or inter-
face the list of obtained solutions for elastic fields of circular dislo-
cations and disclinations is much shorter. For a prismatic
dislocation loop the stress field and self-energy was found for a
coaxial loop in a one-phase cylinder by Ovidko and Sheinerman
(2004), and a two-phase cylinder by Aifantis et al. (2007). Recently
elastic fields and energy of a prismatic dislocation loop in a cylin-
der were recalculated by Cai and Weinberger (2009). In case of
spherical geometry, a detailed solution for displacement field of a
prismatic circular dislocation loop in isotropic elastic sphere was
shown by Willis et al. (1983). Later Gryaznov et al. (1991) and
Bondarenko and Litoshenko (1997), reported on the results for
prismatic loop placed in the media with a spherical phase bound-
ary. For twist disclination loops only one example of solutions for a
coaxial cylindrical geometry was published by Kolesnikova and
Romanov (2004).

As it was already mentioned, elastic fields of circular dislocation
and disclination loops can be used as effective tools in construction
of other elasticity solutions for infinite and bounded elastic media.
To find solutions of axisymmetric boundary-value problems in an
elastic half-space, in a plate of finite thickness, in a general mul-
ti-layer planar system, or in a layered cylinder we have proposed
virtual circular dislocation–disclination loops technique (Kolesnik-
ova and Romanov, 1986, 2003, 2004). Applying this technique a
number of boundary-value elasticity problems for defects have
been studied. They include not only the tasks for dislocation and
disclination loops but the solutions for screw and edge dislocations
and wedge disclinations normal to the surfaces of the plate of finite
thickness (Kolesnikova and Romanov, 1986, 1987, 2003), and for a
dilatational inclusion in the plate (Kolesnikova and Romanov,
2004). In addition, the virtual defect technique was tested in the
solution of contact elasticity problems (Kolesnikova, 2005).

In virtual defect technique the boundary conditions are formu-
lated in terms of unknown distributions of virtual circular disloca-
tion and disclination loops. The obtained integral equations are
solved in a standard way by applying integral Hankel-Bessel and
Fourier transforms. In such a procedure, equilibrium equations
(or Papkovich-Neuber equations) are automatically fulfilled. The
helpfulness of the techniques in case of planar and cylindrical
interfaces or surfaces is facilitated by a special representation of
elastic fields of circular loop defects in terms of Lipschitz-Hankel
integrals (LHIs) that include the product of two Bessel functions,
an exponential and a power terms as integrands. For the first time
the representation of the fields of prismatic dislocation loops via
superposition LHIs was shown by Kroupa (1960). Later the dis-
placements, strains and stresses of circular dislocation, disclination
and radial Somigliana dislocation loops were presented as super-
position of LHIs (e.g. Salamon and Dundurs, 1971; Kolesnikova
and Romanov, 1986; Povstenko and Matkovski, 2000).

The next step in the development of virtual dislocation–discli-
nation defects technique is its application to the elasticity prob-
lems with spherical symmetry and boundary conditions given on
a sphere or a part of a sphere. To approach such problems the
method of spherical harmonics is known (Lurie, 1970), in which
harmonic functions, and therefore, displacements and stresses
are presented in the forms of series with Legendre polynomials
with unknown coefficients. Then boundary conditions also need
to be written in the form of series with Legendre polynomials
but with known coefficients. This procedure allows one to deter-
mine the elastic fields. Using such a method the boundary-value
problems for screw dislocation and wedge disclination in a spher-
ical particle (Polonsky et al., 1991a,b) have been solved. In the most
perfect way this method was demonstrated by Willis et al. (1983),
when studying the task on distortions induced by a prismatic dis-
location loop in an elastic sphere. In the present work we extend
the technique of virtual dislocation–disclination loops to the axial
symmetrical elasticity problems with spherically imposed bound-
ary conditions. The first milestone in this direction is the represen-
tation of dislocation and disclination loop elastic fields in terms of
spherical harmonics. Such representation will be useful in other
applications utilizing the properties of circular defects.

The definition of Lipschitz-Hankel integrals (LHIs) is given in
Section 2, where it is shown how these special functions appear
in elastic fields of circular defect loops. Then representations of
the fields of twist disclination loop and prismatic dislocation loop
in cylindrical and spherical coordinates are provided. New repre-
sentations for spherical coordinates are obtained via expansion of
LHIs in series with Legendre polynomials. The details and proper-
ties of such expansion for LHIs are described in Appendices A
and B. Section 3 presents the general scheme of the application
of virtual dislocation–disclination loops technique to spherical
symmetry. Previously unknown solutions for a twist disclination
loop in a spheroid and near a pore are delivered together with
alternative solution for a screw dislocation in a spheroid. In Section
4 we demonstrate the possibility of simple calculations of elastic
field for a segmented inclusion with uniaxial dilatation. The solu-
tion was obtained by exploring the representation of elastic fields
of prismatic dislocation loops in terms with Legendre polynomials.
Finally in Section 5 we briefly summarize the results.

We believe that ideas and approaches given below can be used
in the analysis of a wide spectrum of elasticity problems for the
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bodies containing defects and interfaces of a different kind. In par-
ticular, the solutions for dislocation loops distributed on spherical
surfaces will be important for the analysis of cracks of a complex
shape. The solutions of boundary value problems found with the
help of virtual dislocation–disclination loops technique can be
used as a benchmark for comparison with the results of other
numerical methods, e.g. finite element method (FEM). The tech-
nique of virtual dislocation–disclination loops can be modified
for boundary-value problems of different geometry by using
expansions of loop defect elastic fields in various coordinate sys-
tems, for example in toroidal coordinates. Finally, the solutions
of anisotropic elasticity can be probed with the technique of virtual
dislocation–disclination loops.
2. Elastic fields of circular dislocation and disclination loops

In our study of circular defect loops we will analyze twist discli-
nation loops and prismatic dislocation loops. Twist disclination
loop is characterized by Frank vector x (or vector of rotation),
which is an axial vector; it is normal to the loop plane and goes
through the center of the circle. Prismatic dislocation loop is char-
acterized by Burgers vector b (or vector of translation), which is
true vector; it is also normal to the loop plane. Twist disclination
loops with opposite direction of Frank vector in structureless con-
tinuum are physically undistinguishable, whereas prismatic dislo-
cation loops can be of interstitial or vacancy type depending of
mutual orientation of Burgers vector and dislocation line direction.

Three coordinate systems are used: Cartesian (x, y, z), cylindrical
ðr;u; zÞ and spherical ðR; h;uÞ shifted with respect to the centre of
the defect circle, as shown in Fig. 1. Loop radius is designated asc.

The shift z0 defines the spherical radius R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ z2

0

q
, which

serves as an important parameter in the given below formulas
for elastic fields of circular dislocation and disclination loops.

It is well known that in infinite isotropic elastic media elastic
fields of straight linear dislocations and disclinations can be ex-
pressed via elementary functions (see, e.g. Hirth and Lothe, 1982;
Romanov and Vladimirov, 1992). For circular dislocations and dis-
clinations this is not the case. However the circular geometry and
axial symmetry involved dictate that harmonic functions of elastic-
ity problems, total displacements and elastic fields of dislocation
and disclination loops can be found in the terms of special func-
tions, i.e. elliptic integrals or Lipschitz-Hankel integrals (LHIs).
These representations are appropriate for cylindrical coordinates
(see Section 2.1), whereas for spherical coordinates a new repre-
sentation is needed, as will be given in Section 2.2.
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Fig. 1. Schematics of circular defect of radius c in infinite elastic media. (a) Circular
loop contour shifted by z0 with respect to the origin of cylindrical coordinate system
ðr;u; zÞ; unit basis vectors er ; eu; ez are shown. (b) Circular loop contour shifted
with respect to origin of spherical coordinate systemðR; h;uÞ; unit basis vectors
eR; eh; eu are shown. Dashed circle defines a sphere of radius R0 used in expansion of
Lipschitz-Hankel integrals in series with Legendre polynomials (see below).
2.1. Representation via cylindrical functions

2.1.1. Lipschitz-Hankel integrals (LHIs)
Lipschitz-Hankel integrals are defined as improper integrals

from zero to infinity with integrands consisting of the product of
one or several Bessel functions, exponential function and power
function (see, for example, Watson, 1944). In case of two Bessel
functions with indexes l and m and power function with the expo-
nent k the following notation (Eason et al., 1955) for LHIs is used:

Jðl; m; kÞ ¼
Z 1

0
JlðjÞJmðqjÞe�fjjkdj: ð1Þ

These integrals depend on two parameters f and q. In the simplest
case the indexes l; m, and k in LHIs are real numbers. Lipschitz-Han-
kel integrals converge for f > 0 andlþ mþ k > �1. If f ¼ 0 the con-
vergence condition for indexes becomes: (i) lþ mþ 1 > �k > �1 at
q – 1, (ii) lþ mþ 1 > �k > 0 at q ¼ 1. Lipschitz-Hankel integrals of
type given by Eq. (1) have been investigated in details by Eason et
al. (1955), where representations of LHIs via complete elliptic inte-
gral functions were shown, some approximate formulas for LHIs for
small q or q ffi 1 and small f were given, and recurrence relations
among LHIs having close indexes l; m and k were presented. Later
the limits of LHIs with integer indexes Jðm;n; pÞ at f� > 0 were ana-
lyzed in full details (Salamon and Walter, 1979). Such features, as
the Heaviside step function like behavior for some LHIs at f ¼ 0
and their d-function like character at f ¼ 0; q ¼ 1 were revealed
and proved.

Integrals Jðm;n; pÞ with integer indexes are involved in the
expressions for the coordinate dependences of the fields of circular
dislocation and disclination loops with the following parameters:
q ¼ r

c; f ¼ jz�z0 j
c , where c is a radius of loop, z0 is coordinate of the

loop in a cylindrical coordinate system ðr;u; zÞ (Fig. 1a).

2.1.2. Twist disclination loop
For the first time the elastic fields of a twist disclination loop

(TL) were derived by Owen and Mura (1967), where the non-zero
stress tensor components in cylindrical coordinate were written
in terms of complete elliptic integrals. Later the fields of TL were
presented by Kuo and Mura (1972b) in terms of LHIs. Here we fol-
low the results given by Kolesnikova and Romanov (2004).

To obey the sign convention for disclination Frank vector one
has to choose first the direction of the disclination line, for example
as l ¼ eu, where eu is unit vector related to coordinate u. Then for
the TL with Frank vector x ¼ �xez, where x is a disclination
strength and ez is another unit vector, the fields of displacements
uj and stresses rij can be written as:

uTL
r ¼ uTL

z ¼ 0; ð2a;bÞ

uTL
u ¼

xcsgnðz� z0Þ
2

Jð2;1; 0Þ; ð2cÞ

rTL
ru ¼ �

Gxsgnðz� z0Þ
2

Jð2;2; 1Þ; ð3aÞ

rTL
zu ¼ �

Gx
2

Jð2;1; 1Þ; ð3bÞ

rTL
rr ¼ rTL

uu ¼ rTL
zz ¼ rTL

rz ¼ 0; ð3e; fÞ

where G is shear modulus; m is Poisson ratio, and sgnðz� z0Þ ¼
1; z > z0

�1; z < z0

�
.

2.1.3. Prismatic dislocation loop
Already in the first publication devoted to the calculation of

elastic fields of a prismatic dislocation loop (PL) Kroupa used the
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forms with LHIs (but in slightly different notation, see Kroupa,
1960), which were expressed via elliptic integrals for the sake of
numerical calculations. Later the notation with LHIs for elastic
fields of PLs became widely accepted (e.g. Dundurs and Salamon,
1972; Kolesnikova and Romanov, 1986; Povstenko, 1995).

Prismatic loop with line direction l ¼ eu and Burgers vector
b ¼ �bez, where b is the magnitude of Burgers vector, is of intersti-
tial type. For such PL in the geometry shown in Fig. 1a displace-
ments uj and stressesrij are:

uPL
r ¼

b
4ð1� mÞ ð2m� 1ÞJð1;1; 0Þ þ jz� z0j

c
Jð1;1; 1Þ

� �
; ð4aÞ

uPL
u ¼ 0; ð4bÞ

uPL
z ¼

bsgnðz� z0Þ
4ð1� mÞ 2ð1� mÞJð1;0; 0Þ þ jz� z0j

c
Jð1;0; 1Þ

� �
; ð4cÞ

rPL
rr ¼

Gb
2ð1�mÞ

1�2m
r

Jð1;1;0Þþ jz� z0j
c2 Jð1;0;2Þ�1

c
Jð1;0;1Þ� jz� z0j

cr
Jð1;1;1Þ

� �
;

ð5aÞ

rPL
uu ¼

Gb
2ð1� mÞ

2m� 1
r

Jð1;1; 0Þ � 2m
c

Jð1;0; 1Þ þ jz� z0j
cr

Jð1;1; 1Þ
� �

;

ð5bÞ

rPL
zz ¼

�Gb
2ð1� mÞ

1
c

Jð1;0; 1Þ þ jz� z0j
c2 Jð1;0; 2Þ

� �
; ð5cÞ

rPL
rz ¼

�Gb
2ð1� mÞ �

ðz� z0Þ
c2 Jð1;1; 2Þ; ð5dÞ

rPL
ru ¼ rPL

zu ¼ 0; ð5e; fÞ

Here the designations are similar to those used in Eqs. (2) and (3).

2.2. Representation via spherical functions

It is well-known that solutions of elasticity problems in spher-
ical coordinates are simplified by using representations with
spherical harmonics, i.e. expansions with Legendre polynomials
(Lurie, 1970; Love, 2003), in which variables R; h;u are separated.
One way to find the elastic fields and dislocation and disclination
loops in terms of spherical functions is the direct solution of elas-
rTL
Ru ¼

�Gx
2

P1
k¼2

1
ðkþ1Þðkþ2Þ

R0
R

� �kþ2
P2

kðcos h0Þ sin2 h0
1
k P2

kþ1ðcos hÞ sin h� P1
kþ1ðcos hÞ cos h

h i
; R0 < R

ð�1Þ
P1

k¼1
1

kðkþ1Þ
R

R0

� 	k
P2

kþ1ðcos h0Þ sin2 h0
1

kþ2 P2
kðcos hÞ sin hþ P1

kðcos hÞ cos h
h i

; R < R0

8><>: ð9aÞ

rTL
hu ¼

�Gx
2

P1
k¼2

1
ðkþ1Þðkþ2Þ

R0
R

� �kþ2
P2

kðcos h0Þ sin2 h0
1
k P2

kþ1ðcos hÞ cos hþ P1
kþ1ðcos hÞ sin h

h i
; R0 < R

ð�1Þ
P1

k¼1
1

kðkþ1Þ
R

R0

� 	k
P2

kþ1ðcos h0Þ sin2 h0
1

kþ2 P2
kðcos hÞ cos h� P1

kðcos hÞ sin h
h i

; R < R0

8><>: ð9bÞ
ticity problem using general elasticity approaches with the bound-
ary conditions given on a spherical surface. Such techniques were
applied by Willis et al. (1983) and Bondarenko and Litoshenko
(1997). The other way is to use known expressions for loop elastic
fields, e.g. given by Eqs. (2)–(5) with corresponding representation
of LHIs via spherical functions. To achieve this, a mathematical
problem of the expansion of LHIs into the series with Legendre
polynomials has to be solved. Appendices A and B present such
solutions for LHIs J(m, n; p) with integer indexes m, n, and p. When
LHI expansions are known dislocation and disclination loop elastic
fields can be written in terms of Legendre polynomials.

In addition, components of displacements and stresses must be
transformed from cylindrical ðr;u; zÞ to spherical ðR; h;uÞ coordi-
nates in an obvious manner:

uR ¼ ur sin hþ uz cos h; ð6aÞ

uh ¼ ur cos h� uz sin h; ð6bÞ

uu ¼ uu; ð6cÞ

rRR ¼ rrr sin2 hþ rzz cos2 hþ 2rrz sin h cos h; ð7aÞ

rhh ¼ rrr cos2 hþ rzz sin2 h� 2rrz sin h cos h; ð7bÞ

ruu ¼ ruu; ð7cÞ

rRh ¼ ðrrr � rzzÞ sin h cos hþ rrzðcos2 h� sin2 hÞ; ð7dÞ

rRu ¼ rru sin hþ rzu cos h: ð7eÞ

rhu ¼ rru cos h� rzu sin h; ð7fÞ

In the following Legendre expansions for LHIs involved into fields of
TL and PL are presented for two regions R > R0 and at R < R0, where
R0 is a radius of expansion shown in Fig. 1b.

2.2.1. Twist disclination loop
From Eqs. (2), (3), (6), and (7) and with the help of expansions

for LHIs given by Eqs. (A10h,i,k) the displacements and stresses
of a TL are found as:

uTL
R ¼ uTL

h ¼ 0 ð8a;bÞ

uTL
u ¼

xR0

2

ð�1Þ
P1

k¼2
1

kðkþ1Þðkþ2Þ
R0
R

� �kþ1
P2

kðcosh0Þsin2 h0P1
kðcoshÞ; R0 <R

sgnðz�z0ÞRsinh
R0

þ R
R0

cosh0þ 1
4 sin2h0 sinh0

� �
sinh

�
þ
P1

k¼2
1

ðk�1Þkðkþ1Þ
R

R0

� 	k
P2

kðcosh0Þsin2 h0P1
kðcoshÞ



; R<R0

8>>>>><>>>>>:
ð8cÞ
rTL
RR ¼ rTL

hh ¼ rTL
uu ¼ rTL

Rh ¼ 0; ð9c—fÞ
where P1
nðtÞ and P2

nðtÞ are associated Legendre polynomials, which
are defined with the help of Legendre polynomials PnðtÞ via
Pm

n ðtÞ ¼ ð�1Þmð1� t2Þ
m
2 dm

dtm PnðtÞ;m ¼ 1;2;3 . . . (see, e.g. Bateman
and Erdélyi, 1953).
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Representation of TL displacements in terms of Legendre poly-
nomials Eq. (8c) permits us to extract the displacement jump in
the plane of the loop:

uTL
u

h i���
z¼z0

¼ uTL
u

��� R<R0 ;
z¼z0þd

� uTL
u

��� R<R0 ;
z¼z0�d

¼ xrH 1� r
c

� 	
; ð10Þ

where H 1� r
c

� �
is the Heaviside step function. Analysis shows that

the first term in the expansion Eq. (8c) at R < R0 is responsible for
the jump. This gives the possibility to subdivide total displacements
into elastic and plastic parts explicitly.
rTL
Ru ¼

�Gx
2

ð�1Þ
P1

k¼2
1

kðkþ1Þ
R0
R

� �kþ2
P2

kðcos h0Þ sin2 h0P1
kðcos hÞ; R0 < R

ð�1Þ
P1

k¼1
1

ðkþ1Þðkþ2Þ
R

R0

� 	k
P2

kþ1ðcos h0Þ sin2 h0P1
kþ1ðcos hÞ; R < R0

8><>: ; ð12aÞ

rTL
hu ¼

�Gx
2

P1
k¼2

1
kðkþ1Þðkþ2Þ

R0
R

� �kþ2
P2

kðcos h0Þ sin2 h0P2
kðcos hÞ; R0 < R

ð�1Þ
P1

k¼1
1

kðkþ1Þðkþ2Þ
R

R0

� 	k
P2

kþ1ðcos h0Þ sin2 h0P2
kþ1ðcos hÞ; R < R0

8><>: : ð12bÞ
It is useful to note that the formulas of Eq. (9) can be written in
series with Legendre polynomials P1

kðcos hÞ only and without
additional multipliers cos h and sin h, see expressions in square

brackets. Using the recurrence relations
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

P2
nðtÞ ¼ 1

2nþ1

ðn � 1ÞnP1
nþ1ðtÞ � ðn þ 1Þðn þ 2ÞP1

n�1ðtÞ
h i

; tP1
nðtÞ ¼ 1

2nþ1 nP1
nþ1ðtÞþ

h
ðnþ 1ÞP1

n�1ðtÞ�;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

P1
nðtÞ ¼ 1

2nþ1 P2
n�1ðtÞ � P2

nþ1ðtÞ
h i

; tP2
nðtÞ ¼

1
2nþ1 ðn� 1ÞP2

nþ1ðtÞ þ ðnþ 2ÞP2
n�1ðtÞ

h i
(Bateman and Erdélyi, 1953),

one finds:

1
k

P2
kþ1ðcos hÞ sin h� P1

kþ1ðcos hÞ cos h ¼ �ðkþ 2Þ
k

P1
kðcos hÞ; ð11aÞ

1
kþ 2

P2
kðcos hÞ sin hþ P1

kðcos hÞ cos h ¼ k
kþ 2

P1
kþ1ðcos hÞ; ð11bÞ
uPL
r ¼

b
4ð1� mÞ

ð2m� 1Þ sin h0
P1

k¼1
1

kðkþ1Þ
R0
R

� �kþ1
P1

kðcos h0ÞP1
kðcos hÞ

�
þ ðR cos h�R0 cos h0Þ

R0
sin h0

P1
k¼1

1
ðkþ1Þ

R0
R

� �kþ2
P1

kðcos h0ÞP1
kþ1ðcos

ð2m� 1Þ sin h0
P1

k¼1
1

kðkþ1Þ
R

R0

� 	k
P1

kðcos h0ÞP1
kðcos hÞ

�
� ðR cos h�R0 cos h0Þ

R0
sin h0

P1
k¼1

1
ðkþ1Þ

R
R0

� 	k
P1

kþ1ðcos h0ÞP1
kðcos h

8>>>>>>>>>><>>>>>>>>>>:
uPL

u ¼ 0;

uPL
z ¼

b
4ð1� mÞ

�2ð1� mÞ sin h0
P1

k¼1
1

ðkþ1Þ
R0
R

� �kþ1
P1

kðcos h0ÞPkðcos hÞ�
�
� ðR cos h�R0 cos h0Þ

R0
sin h0

P1
k¼1

R0
R

� �kþ2
P1

kðcos h0ÞPkþ1ðcos hÞ
	
;

2ð1� mÞsgnðz� z0Þ þ ð1� mÞ cos h0 þ ð1� mÞ sin h0
P�

�ðR cos h�R0 cos h0Þ
R0

sin h0
P1

k¼0
R

R0

� 	k
P1

kþ1ðcos h0ÞPkðcos hÞ


;

8>>>>>>>>>><>>>>>>>>>>:
1
k

P2
kþ1ðcos hÞ cos hþ P1

kþ1ðcos hÞ sin h ¼ 1
k

P2
kðcos hÞ; ð11cÞ
1
kþ 2

P2
kðcos hÞ cos h� P1

kðcos hÞ sin h ¼ 1
kþ 2

P2
kþ1ðcos hÞ; ð11dÞ
As a result non-vanished stress components of a TL expressed
in terms of spherical harmonics can be written in a compact
form:
2.2.2. Prismatic dislocation loop
Elastic fields of a PL can be also found in the form of the

components in spherical coordinates. However these compo-
nents are rather cumbersome and for the aim of the present
study such a representation is not necessary. In the following
(see Section 4) we demonstrate how the solutions for PLs can
be used for the construction of the elastic fields of segmented
spherical inclusion with uniaxial eigenstrain. To achieve this
aim the components of PL fields can be given in any coordinate
system but they should be expressed via spherical coordinate
variables under the condition of variable separation, i.e. in
terms of Legendre polynomials.

The components of PL displacement field in cylindrical coordi-
nates are found from Eq. (4) and expansions (A10a,b,d,e):
hÞ
	
; R0 < R

Þ


; R < R0

ð13aÞ

ð13bÞ

R0 < R

1
k¼1

1
k

R
R0

� 	k
P1

kðcos h0ÞPkðcos hÞ�

R < R0

ð13cÞ
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Similarly to the case of a TL, the first term in Eq. (13c) at R < R0 is
responsible for the displacement jump:

uPL
z

 ���
z¼z0
¼ uPL

z

�� R<R0 ;
z¼z0þd

�uPL
z

�� R<R0 ;
z¼z0�d

¼ bH 1� r
c

� 	
ð14Þ

The procedure of the LHI expansion in the series with Legendre
polynomials can be performed in the expressions for cylindrical
components of PL stress tensor, i.e. in Eq. (5). Here as an example
we give only two components, which are relatively simple and con-
cise in notation:
rPL
zz ¼

�Gb
2ð1� mÞR0

� sin h0
P1

k¼1
R0
R

� �kþ2
P1

kðcos h0ÞP1
kþ1ðcos hÞ

�
� ðR cos h�R0 cos h0Þ

R0
sin h0

P1
k¼1ðkþ 2Þ R0

R

� �kþ3
P1

kðcos h0ÞPkþ2ðcos hÞ
	
; R0 < R

� sin h0
P1

k¼0
R

R0

� 	k
P1

kþ1ðcos h0ÞPkðcos hÞ
�
þ ðR cos h�R0 cos h0Þ

R0
sin h0

P1
k¼0ðkþ 1Þ R

R0

� 	k
P1

kþ2ðcos h0ÞPkðcos hÞ


; R < R0

8>>>>>>>>>><>>>>>>>>>>:
ð15aÞ

rPL
rz ¼

�Gb
2ð1� mÞR0

ðR cos h�R0 cos h0Þ
R0

sin h0
P1

k¼1
R0
R

� �kþ3
P1

kðcos h0ÞP1
kþ2ðcos hÞ; R0 < R

ðR cos h�R0 cos h0Þ
R0

sin h0
P1

k¼1
R

R0

� 	k
P1

kþ2ðcos h0ÞP1
kðcos hÞ; R < R0

8><>: ð15bÞ
In the derivation of these formulas, Eqs. 5c and 5d and Eqs.
(A10b,c,f) were exploited.

3. Boundary-value problems for defects in elastic media with
spherical boundaries

3.1. Method of virtual dislocation–disclination loops

Elastic fields of disclination and dislocation loops written in
terms of Legendre polynomials provide a unique possibility for
solution of axisymmetric elasticity boundary-value problems for
defects in presence of spherical free surfaces and interfaces.

Two classes of boundary-value problems can be considered:

(i) spheroid or spherical void with traction-free spherical sur-
face with conditions for stress tensor components:�

rRj
�
R¼a ¼ 0; ðj ¼ R; h;uÞ ð16Þ

where a is a spheroid or pore radius.

(ii) spherical boundary between elastically dissimilar phases I

(inclusion) and II (matrix) with continuity conditions for dis-
placements and stresses:� �

uI

j
��
R¼a
¼ uII

j
��
R¼a
; ð17aÞ
� �

rI

Rj
��
R¼a
¼ rII

Rj
��

R¼a
; ðj ¼ R; h;uÞ ð17bÞ
The elastic field of a defect placed in the vicinity of one of the
above spherical surfaces, is constructed as a sum of the defect elas-
tic field in an infinite medium and an addition field due to distribu-
tions of the virtual dislocation–disclination loops. In the most
general case the boundary conditions Eq. (16) will constitute the
system of six equations. Therefore six independent distributions
of virtual dislocation–disclination loops should be involved. Three
of these distributions are placed in matrix II with their elastic fields
acting in the phase I (spheroid) interior. Three remaining distribu-
tions are placed inside spheroid I with their fields acting in phase II
(matrix). For free surface boundary conditions of Eq. (16) only
three virtual dislocation–disclination distributions are necessary.
Actual choice of the type of defects for virtual distributions de-
pends on the properties of symmetry for elastic fields of the origi-
nal defect. Important is the condition that virtual defect
distributions are placed outside the region in which their elastic
fields act.
Boundary conditions of Eq. (16) or Eq. (17) written in terms of
virtual dislocations and disclinations become the integral equa-
tions for unknown functions of loop distributions. In case of planar
and cylindrical surfaces and interfaces the integral equations can
be transformed to algebraic equations with respect to transformers
of functions of distributions. Previously we have solved a set of axi-
symmetric elasticity problems for defects in plates with planar sur-
faces (Kolesnikova and Romanov, 1986, 1987, 2003, 2004); to get
these solutions Hankel-Bessel integral transformation was used.
The other solved axisymmetric problems operate with cylindrical
system, where the Fourier transformation was utilized (for details
see Kolesnikova and Romanov, 2004; Aifantis et al., 2007). In the
following the axisymmetric boundary conditions for defects in
spheroid and at a spherical pore are investigated.

3.2. Twist loop in a spheroid and near a spherical pore

Let us consider axisymmetric elasticity boundary-value prob-
lems for a TL with Frank vector x ¼ �xez and direction of the dis-
clination line eu, in a spherical particle (Fig. 2a) and near a
spherical pore (Fig. 2b). Following general scheme the field of the
TL in a particle or near pore is given by the sum of its field in an
infinite medium and an image field. The image field is generated
by distributions of virtual TLs that are shown schematically by
dashed circles in Fig. 2a and b. Note that choice of the radius of
sphere ~R0, at which virtual defects are placed, is arbitrary. As it will
be illustrated below this radius does not enter into the final solu-
tion of the boundary-value problem.

Applying such a procedure the stresses of a TL in a spheroid srTL
ij

or near pore prTL
ij can be written in the following form:

s;prTL
ij ¼ rTL

ij þ
Z p

0
f ð~h0ÞrTLv

ij
eR0 sin ~h0d~h0; ð18Þ

where rTL
ij are stresses of real TL in infinite medium (see Eq. (3) or

(12)), rTLV
ij are stresses of a probe virtual TL also taken for an infinite

medium, f ð~h0Þ is the function of virtual TL distribution and eR0; ~h0 are
coordinates of a probe TL, see Fig. 2a and b. The stresses given by Eq.
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(18) at the spheroid (pore) surface must satisfy the boundary con-
ditions of Eq. (16):

s;prTL
RujR¼a þ

Z p

0
f ð~h0ÞrTLV

Ru jR¼a
eR0 sin ~h0d~h0 ¼ 0: ð19Þ

Using the representation of TL stresses in terms of Legendre polyno-
mials (see Eq. (12a)) and assuming the magnitudes of Frank’s vector
of the real TL and virtual TLs being the same we can rewrite the
boundary condition Eq. (19) for TL in spheroid as:

Gx
2

X1
k¼2

1
kðkþ 1Þ

R0

a

� 
kþ2

P2
kðcos h0Þ sin2 h0P1

kðcos hÞ

þ Gx
2

X1
k¼1

1
ðkþ 1Þðkþ 2Þ

aeR0

 !k

Akþ1P1
kþ1ðcos hÞ ¼ 0; ð20Þ

where the designation for transform coefficients Akþ1 ¼
R p

0 f ð~h0Þ
~R0 sin3 ~h0P2

kþ1ðcos ~h0Þd~h0 is introduced. The property of orthogonality
for Legendre polynomials straightforward leads to the following re-
sults for the coefficients:

An ¼ �
eR0

a

 !n�1
R0

a

� 
nþ2

P2
nðcos h0Þ sin2 h0; n ¼ 2;3;4; . . . ð21Þ

Finally, Eqs. (12), (18), and (21) give the solution for stresses of a
twist disclination loop in an elastic spheroid:

srTL
Ru ¼ �

Gx
2
½sgnðz� z0ÞJð2;2; 1Þ sin hþ Jð2;1; 1Þ cos h�

� Gx sin2 h0

2

X1
k¼1

1
ðkþ 1Þðkþ 2Þ

R0

a

� 
kþ3

� R
a

� 
k

P2
kþ1ðcos h0ÞP1

kþ1ðcos hÞ; ð22aÞ

srTL
hu ¼ �

Gx
2
½sgnðz� z0ÞJð2;2; 1Þ cos h� Jð2;1; 1Þ sin h�

� Gx sin2 h0

2

X1
k¼1

1
kðkþ 1Þðkþ 2Þ

R0

a

� 
kþ3

� R
a

� 
k

P2
kþ1ðcos h0ÞP2

kþ1ðcos hÞ: ð22bÞ

The field srTL
ij satisfies (i) boundary conditions (16) and (ii) equa-

tions of mechanical equilibrium. In case of the axisymmetric prob-
lem for stress tensor with only two components, i.e. rRu;rhu, there
remains a single equilibrium equation @rRu

@R þ
@rhu
R@h þ

3rRuþ2rhu cot h

R ¼ 0.
The radius of sphere eR0, at which virtual defects are placed, does
not enter into the solution given Eq. (22).
By analogy to the solution for a TL in a spheroid one can get the
solution of elasticity boundary-value problem for a TL near a pore
in the geometry shown in Fig. 2b. Accounting for Eq. (12a) bound-
ary condition Eq. (16) can be written as:

Gx
2

X1
k¼1

1
ðkþ 1Þðkþ 2Þ

a
R0

� 
k

P2
kþ1ðcos h0Þ sin2 h0P1

kþ1ðcos hÞ

þ Gx
2

X1
k¼2

1
kðkþ 1Þ

eR0

a

 !kþ2

A0kP1
kðcos hÞ ¼ 0; ð23Þ

from which the coefficients A0k ¼
R p

0 f ð~h0ÞeR0 sin3 ~h0P2
kðcos ~h0Þd~h0 can

be found:

A0n ¼ �
aeR0

 !nþ2
a
R0

� 
n�1

P2
nðcos h0Þ sin2 h0; n ¼ 2;3;4; . . . ð24Þ

This result together with Eqs. (12) and (18) allow us to write the
stress tensor components of a TL coaxial to a spherical pore:

prTL
Ru ¼ �

Gx
2
½sgnðz� z0ÞJð2;2; 1Þ sin hþ Jð2;1; 1Þ cos h�

� Gx sin2 h0

2

X1
k¼2

1
kðkþ 1Þ

a
R

� 	kþ2 a
R0

� 
k�1

� P2
kðcos h0ÞP1

kðcos hÞ; ð25aÞ

prTL
hu ¼ �

Gx
2
½sgnðz� z0ÞJð2;2; 1Þ cos h� Jð2;1; 1Þ sin h�

þ Gx sin2 h0

2

X1
k¼2

1
kðkþ 1Þðkþ 2Þ

a
R

� 	kþ2

� a
R0

� 
k�1

P2
kðcos h0ÞP2

kðcos hÞ: ð25bÞ

The field prTL
ij satisfies boundary conditions and equations of

equilibrium.
We have to note that in the case of the derivation of the dis-

placement field of a real defect in an elastic body with boundaries
(e.g. twist disclination loop in a spheroid or near a pore) the meth-
od of virtual loops can also be successfully applied. However in the
displacement solution, the discontinuous terms in the displace-
ment fields of virtual defects, i.e. first term in Eqs. (8c) or (13c),
must be omitted. This means that only the displacement contribu-
tion of virtual loops, which is responsible for elastic strains, should
be taken into account. The other possibility to use the displace-
ment filed of virtual dislocation–disclination loops in the solution
of boundary-value problem could be the proper choice of the cut
path in the procedure of the creation of virtual loop defects. For
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example, in the solution for a TL near a pore the virtual loops hav-
ing the cut path in the internal areas of the loop contours and dis-
tributed inside the pore will produce no additional discontinuities
outside the pore. In the same manner, for finding the displacement
field of a defect inside a spheroid, virtual loops can be placed out-
side the spheroid with their cut paths being in the external areas of
the loop contours.
3.3. Screw dislocation in a spheroid

The elasticity boundary-value problem for a screw dislocation
laying along the diameter of a spherical particle as it is shown in
Fig. 3 was solved by Polonsky et al. (1991a). Here we apply the
method of virtual disclination loops to get this known solution.

The field of the dislocation in spheroid is represented as the
sum of the elastic field r0

ij of dislocation in infinite medium and
an image field ri

ij. The field ri
ij is the superposition of the elastic

fields caused by the distribution of virtual TLs (Fig. 3):

ri
Ru ¼

Z p

0
wð~h0ÞrTLV

Ru
eR0 sin ~h0d~h0; ð26Þ

where wð~h0Þ is the function of loop distribution, eR0; ~h0 are the coor-
dinates of a probe virtual TL in the distribution (Fig. 3).

Non-zero stress components for a screw dislocation with Bur-
gers vector b ¼ bez in infinite medium in spherical coordinate sys-
tem can be easily obtained from well-known expressions for
rSSI
zz ¼

�Ge�zz

2ð1� mÞ

�
P1
k¼1

R0
R

� �kþ2
akPkþ1ðcos hÞ �

P1
k¼1
ðkþ 2Þ R0

R

� �kþ3
ak

R
R0

� 	
cos h� bk

h i
Pkþ2ðcos hÞ

� 

; R0 < R

�
P1
k¼0

R
R0

� 	k
akþ1Pkðcos hÞ �

P1
k¼0
ðkþ 1Þ R

R0

� 	k
akþ2

R
R0

� 	
cos h� bkþ2

h i
Pkðcos hÞ

� 

; R < R0

8>>><>>>: ; ð33Þ
stresses in cylindrical coordinates (e.g. Hirth and Lothe, 1982):

r0
Ru ¼

Gb
2pR

cot h; ð27aÞ

r0
hu ¼ �

Gb
2pR

: ð27bÞ

With the help of image stresses from virtual TL distribution the
boundary conditions Eq. (16) become:

r0
RujR¼a þ

Z p

0
wð~h0ÞrTL

RujR¼a
eR0 sin ~h0d~h0 ¼ 0: ð28Þ
Taking into account Eq. (12a) and the expansion of cot h in Legendre
series we can rewrite Eq. (28) in the form containing Legendre
polynomials:

� Gb
2pa

X1
m¼1

ð4mþ 1Þ
2mð2mþ 1Þ P

1
2mðcos hÞ

þ Gx
2

X1
k¼1

1
ðkþ 1Þðkþ 2Þ

aeR0

 !k

Bkþ1P1
kþ1ðcos hÞ ¼ 0; ð29Þ

from which the coefficient Bkþ1 ¼
R p

0 wð~h0ÞeR0 sin3 ~h0P2
kþ1ðcos ~h0Þd~h0

are obtained immediately:

Bkþ1 ¼
b

pxa �
eR0
a

� 
2m�1

ð4mþ 1Þ; kþ 1 ¼ 2m;

0; kþ 1 ¼ 2mþ 1:

8><>: ð30Þ

As a result the stresses of screw dislocation in a spheroid are deter-
mined from Eqs. (12), (26), (27) and (30). For example, rRu is:

rRu ¼
Gb

2pR
cot hþ Gb

2pR

X1
m¼1

ð4mþ 1Þ
2mð2mþ 1Þ

R
a

� 
2m

P1
2mðcos hÞ: ð31Þ

This solution is identical to those shown by Polonsky et al. (1991a).

4. Elastic fields of segmented inclusion with uniaxial
eigenstrain

The use of elastic fields of dislocation loops in the form of
Legendre series is convenient for determining the fields of seg-
mented spherical inclusion (SSI), shown in Fig. 4a. Such SSI with
uniaxial eigenstrain e�zz is modeled by the distribution of prismatic
dislocation loops (PLs). These loops are placed on the sphere with
radius R0 from h0 ¼ h1 to h0 ¼ h2. Then one can easily obtain for
example the stresses of SSI with uniaxial eigenstrain e�zz, which is
constant in magnitude:

rSSI
ij ðR; hÞ ¼

Z h2

h1

qrPL
ij ðR; h;R0; h0ÞR0 sin h0dh0; ð32Þ

where q is a density of virtual dislocation loops. In the simplest case
the density is constant and related to eigenstrain via q ¼ e�zz

b , where b
is the magnitude of virtual PL Burgers vector.

For example, normal stress component rSSI
zz can be derived from

Eq. (32) with the help of Eq. (15a):
where an ¼
R h2

h1
sin2 h0P1

nðcos h0Þdh0; bn ¼
R h2

h1
cos h0 sin2 h0P1

nðcos h0Þ
dh0. These last integrals are calculated analytically with the help

recurrence relations
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

P1
nðtÞ ¼

nðnþ1Þ
2nþ1 ½Pnþ1ðtÞ � Pn�1ðtÞ�; tPnðtÞ ¼

1
2nþ1 ½ðnþ 1ÞPnþ1ðtÞ þ nPn�1ðtÞ� (Bateman and Erdélyi, 1953) and

integral formula
R

PnðtÞdt ¼ 1
2nþ1 ½Pnþ1ðtÞ � Pn�1ðtÞ� (Prudnikov

et al., 1983):

an¼
nðnþ1Þ
ð2nþ1Þ

1
ð2nþ3ÞðPnþ2ðtÞ�PnðtÞÞ�

1
2n�1

ðPnðtÞ�Pn�2ðtÞÞ�
� ����cosh1

cosh2

;

ð34aÞ
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bn ¼
nðnþ 1Þ
ð2nþ 1Þ

nþ 2
ð2nþ 3Þð2nþ 5Þ ðPnþ3ðtÞ � Pnþ1ðtÞÞ
�

� 1
ð2n� 1Þð2nþ 3Þ ðPnþ1ðtÞ � Pn�1ðtÞÞ

� ðn� 1Þ
ð2n� 1Þð2n� 3Þ ðPn�1ðtÞ � Pn�3ðtÞÞ�

����cos h1

cos h2

ð34bÞ

Fig. 4b shows the plot of rSSI
zz stress component of SSI along z-axis for

a segmented inclusion bounded by spherical surface of radius R0

and two planes: z1 ¼ R0 cos p
3 and z2 ¼ R0 cos p

2. In general, plot char-
acter agrees with the results for the segmented inclusion published
by Wu and Du (1999). These authors had shown pick-like peculiar-
ities of the stresses at the vicinity of inclusion plane boundaries.
However our calculations demonstrate no pick-like peculiarities.
Exploring Eq. (33) with limitsh1 ¼ 0 and h2 ¼ p we plotted in
c
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Fig. 5. Regions A, B, C, and D for the expansion of Lipschitz-Hankel integrals.
Fig. 4c the stresses for a complete spherical inclusion with uniaxial
eigenstrain. These results completely agree with the plots, which
can be done on the basis of formulas obtained earlier by Bert et
al. (2002), by a different technique.
5. Summary and conclusions

In the present study the elastic fields of circular twist disclina-
tion loops and circular prismatic dislocation loops were found in
the form of series with Legendre polynomials, i.e. in terms of
spherical harmonics. The representations are based on the expan-
sions of Liphschitz-Hankel integrals (LHIs) with two Bessel func-
tions into Legendre series. The expansions of LHIs were given for
two regions defined by a sphere of expansions, i.e. inside and out-
side the sphere. The radius of the sphere of expansion is deter-
mined by defect loop radius and the position of the spherical
coordinate origin.

Found representations for elastic fields of circular twist discli-
nation loops were used in the solutions of axisymmetric elasticity
boundary-value problems of the theory of defects. New solutions
for stresses of a twist disclination loop in a spherical particle and
near a spherical pore are given in concise form. The elastic problem
for a screw dislocation in a spherical particle is revisited. These
solutions were obtained in the framework of general scheme of vir-
tual dislocation–disclination loops.

Spherical harmonics representation for prismatic dislocation
loop fields was applied in calculation of elastic fields of segmented
spherical inclusions. The easy and straightforward way for calcula-
tions of elastic fields of segmented spherical inclusion with uniax-
ial eigenstrain was demonstrated.
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Appendix A. Expansion of Lipschitz-Hankel integrals with two
Bessel function into series with Legendre polynomials

Let us use the following substitution of variables c ¼ j=c; r ¼
R sin h; c ¼ R0 sin h0; z ¼ R cos h; z0 ¼ R0 cos h0 (see Fig. 1) to trans-
form the LHI with indexes m, n; p, which is given by Eq. (1), to the
form:

Jðm;n; pÞ ¼
Z 1

0
JmðcR0 sin h0ÞJnðcR sin hÞe�csgnðz�z0ÞðR cos h�R0 cos h0ÞRpþ1

0

� sinpþ1 h0cpdc:
ðA1Þ

For clarity we assume cos h0 > 0 and find the expansion of Eq. (A1)
in Legendre polynomials for each of regions A, B, C, and D in spher-
ical coordinates as shown in Fig. 5, separately.

Region A: R > R0; ðz� z0Þ > 0.

With the designation ~c ¼ cR Eq. (A1) becomes:

Jðm;n; pÞ ¼
Z 1

0
Jm ~c

R0

R
sin h0

� 

Jnð~c sin hÞe�~c cos he~cR0

R cos h0
R0

R

� 
pþ1

� sinpþ1 h0~cPd~c;
ðA2Þ

With the help of known expansion (Prudnikov et al., 1986):

Jm ~c
R0

R
sinh0

� 

e~cR0

R cosh0 ¼ð�1Þm
X1
k¼0

1
ðkþmÞ!

~ck R0

R

� 
k

Pm
k ðcosh0Þ;ðA3Þ

where Pm
k are Legendre polynomials (m = 0) or associated Legendre

polynomials ðm – 0Þ of the first kind: Pm
k ðtÞ ¼ ð�1Þmð1� t2Þ

m
2

dm

dtm PkðtÞ;m ¼ 1;2;3 . . . (Bateman and Erdélyi, 1953), Eq. (A2) can
be integrated for each term in the sum (Prudnikov et al., 1983):

Jðm;n; pÞA ¼ ð�1Þm sinpþ1 h0

X1
k¼0

1
ðkþmÞ!

R0

R

� 
kþpþ1

Pm
k ðcos h0Þ

�
Z 1

0
Jnð~c sin hÞe�~c cos h~ckþpd~c ¼ ð�1Þm sinpþ1 h0

�
X1
k¼0

Cðkþ pþ 1þ nÞ
ðkþmÞ!

R0

R

� 
kþpþ1

� Pm
k ðcos h0ÞP�n

kþpðcos hÞ ¼ ð�1Þm sinpþ1 h0

�
X1
k¼0

ðkþ pþ nÞ!
ðkþmÞ!

R0

R

� 
kþpþ1

Pm
k ðcos h0ÞP�n

kþpðcos hÞ; ðA4Þ

Here the property Pm
k ¼ 0 for k < m, m P 1 is used.

Region B: R < R0; ðz� z0Þ < 0.

In this case the designation ~~c ¼ cR0 is used to write (A1) as:

Jðm;n; pÞ ¼
Z 1

0
Jmð~~c sin h0ÞJn

~~c
R
R0

sin h

� 

e

~~c R
R0

cos he�
~~c cos h0

� sinpþ1 h0
~~cpd~~c ðA5Þ
With the help of the known expansion (Prudnikov et al.,
1986):

Jn
~~c

R
R0

sin h

� 

e

~~c R
R0

cos h ¼ ð�1Þn
X1
k¼0

1
ðkþ nÞ!

~~ck R
R0

� 
k

Pn
kðcos hÞ: ðA6Þ
Eq. (A5) becomes:

Jðm; n; pÞB ¼ ð�1Þn sinpþ1 h0

X1
k¼0

1
ðkþ nÞ!

R
R0

� 
k

Pn
kðcos hÞ

�
Z 1

0
Jnð~~c sin h0Þe�

~~c cos h0 ~~ckþpd~~c ¼ ð�1Þn sinpþ1 h0

�
X1
k¼0

Cðkþ pþ 1þmÞ
ðkþ nÞ!

R
R0

� 
k

P�m
kþpðcos h0ÞPn

kðcos hÞ

¼ ð�1Þn sinpþ1 h0

X1
k¼0

ðkþ pþmÞ!
ðkþ nÞ!

R
R0

� 
k

� P�m
kþpðcos h0ÞPn

kðcos hÞ; ðA7Þ
Region C: R < R0; ðz� z0Þ > 0.
By analogy with the expansion for region B we write (without
proof!):
Jðm; n; pÞC ¼ ð�1Þn sinpþ1 h0

�
X1
k¼0

ðkþ pþmÞ!
ðkþ nÞ!

R
R0

� 
k

P�m
kþpð� cos h0ÞPn

kð� cos hÞ:

ðA8Þ
Region D: R > R0; ðz� z0Þ < 0
By analogy with the expansion for region A we write (without
proof!):

Jðm; n; pÞD ¼ ð�1Þm sinpþ1 h0

�
X1
k¼0

ðkþ pþ nÞ!
ðkþmÞ!

R0

R

� 
kþpþ1

Pm
k ð� cos h0ÞP�n

kþpð� cos hÞ:

ðA9Þ
We have checked the expansions Eqs. (A4), (A7), (A8) and (A9)
numerically for various combination of indexes in LHIs Jðm;n; pÞ.
We have found that these series give correct results for cos h0 < 0,
too. Obtained formulas have the useful properties relating the in-
dexes m, n; p with particular terms in the Legendre expansions: in-
dex m in J(m,n;p) enters in Legendre polynomials that depend on
the loop position – P�m

k ð� cos h0Þ, index n enters in Legendre polyno-
mials that depend on the current position P�n

k ð� cos hÞ, index p is in-
cluded in terms of the type sinpþ1 h0.

Four expansion with Legendre polynomials Eqs. (A4), (A7), (A8)
and (A9) can combined in only two series each of them being valid
either for internal region of the sphere of expansion R < R0 or for
external region of the sphere of expansion R > R0. We give these
results for LHIs Jðm;n; pÞwhich are used in displacement and stress
fields of a twist disclination loop (TL), see Eqs. (2), (3), and a pris-
matic dislocation loop (PL), see, Eqs. (4), (5):



Jð1;0; 0Þ ¼
�sgnðz� z0Þ sin h0

P1
k¼1

1
ðkþ1Þ

R0
R

� �kþ1
P1

kðcos h0ÞPkðcos hÞ; R0 < R

1þ sgnðz� z0Þ cos h0 þ sgnðz� z0Þ sin h0
P1

k¼1
1
k

R
R0

� 	k
P1

kðcos h0ÞPkðcos hÞ; R < R0

8><>: ðA10aÞ

Jð1;0; 1Þ ¼
� sin2 h0

P1
k¼1

R0
R

� �kþ2
P1

kðcos h0ÞPkþ1ðcos hÞ; R0 < R

� sin2 h0
P1

k¼0
R

R0

� 	k
P1

kþ1ðcos h0ÞPkðcos hÞ; R < R0

8><>: ; ðA10bÞ

Jð1;0; 2Þ ¼
�sgnðz� z0Þ sin3 h0

P1
k¼1ðkþ 2Þ R0

R

� �kþ3
P1

kðcos h0ÞPkþ2ðcos hÞ; R0 < R

sgnðz� z0Þ sin3 h0
P1

k¼0ðkþ 1Þ R
R0

� 	k
P1

kþ2ðcos h0ÞPkðcos hÞ; R < R0

8><>: ; ðA10cÞ

Jð1;1; 0Þ ¼
sin h0

P1
k¼1

1
kðkþ1Þ

R0
R

� �kþ1
P1

kðcos h0ÞP1
kðcos hÞ; R0 < R

sin h0
P1
k¼1

1
kðkþ1Þ

R
R0

� 	k
P1

kðcos h0ÞP1
kðcos hÞ; R < R0

8><>: ; ðA10dÞ

Jð1;1; 1Þ ¼
sgnðz� z0Þ sin2 h0

P1
k¼1

1
ðkþ1Þ

R0
R

� �kþ2
P1

kðcos h0ÞP1
kþ1ðcos hÞ; R0 < R

�sgnðz� z0Þ sin2 h0
P1

k¼1
1

ðkþ1Þ
R

R0

� 	k
P1

kþ1ðcos h0ÞP1
kðcos hÞ; R < R0

8><>: ; ðA10eÞ

Jð1;1; 2Þ ¼
sin3 h0

P1
k¼1

R0
R

� �kþ3
P1

kðcos h0ÞP1
kþ2ðcos hÞ; R0 < R

sin3 h0
P1

k¼1
R

R0

� 	k
P1

kþ2ðcos h0ÞP1
kðcos hÞ; R < R0

8>><>>: ; ðA10fÞ

Jð2;0; 2Þ ¼
sin3 h0

P1
k¼2

R0
R

� �kþ3
P2

kðcos h0ÞPkþ2ðcos hÞ; R0 < R

sin3 h0
P1

k¼0
R

R0

� 	k
P2

kþ2ðcos h0ÞPkðcos hÞ; R < R0

8><>: ; ðA10gÞ

Jð2;1; 0Þ ¼

�sgnðz� z0Þ sin h0
P1

k¼2
1

kðkþ1Þðkþ2Þ
R0
R

� �kþ1
P2

kðcos h0ÞP1
kðcos hÞ; R0 < R

sin h
sin h0

R
R0

� 	
þ sgnðz� z0Þ cot h0 þ 1

4 sin 2h0
� �

sin h R
R0

� 	
þ

þsgnðz� z0Þ sin h0
P1

k¼2
1

ðk�1Þkðkþ1Þ
R

R0

� 	k
P2

kðcos h0ÞP1
kðcos hÞ; R < R0

8>>>><>>>>: ; ðA10hÞ

Jð2;1; 1Þ ¼
� sin2 h0

P1
k¼2

1
ðkþ1Þðkþ2Þ

R0
R

� �kþ2
P2

kðcos h0ÞP1
kþ1ðcos hÞ; R0 < R

� sin2 h0
P1

k¼1
1

kðkþ1Þ
R

R0

� 	k
P2

kþ1ðcos h0ÞP1
kðcos hÞ; R < R0

8><>: ; ðA10iÞ

Jð2;1; 2Þ ¼
�sgnðz� z0Þ sin3 h0

P1
k¼2

1
ðkþ2Þ

R0
R

� �kþ3
P2

kðcos h0ÞP1
kþ2ðcos hÞ; R0 < R

sgnðz� z0Þ sin3 h0
P1

k¼1
1

ðkþ1Þ
R

R0

� 	k
P2

kþ2ðcos h0ÞP1
kðcos hÞ; R < R0

8><>: ; ðA10jÞ

Jð2;2; 1Þ ¼
sgnðz� z0Þ sin2 h0

P1
k¼2

1
kðkþ1Þðkþ2Þ

R0
R

� �kþ2
P2

kðcos h0ÞP2
kþ1ðcos hÞ; R0 < R

�sgnðz� z0Þ sin2 h0
P1

k¼2
1

kðkþ1Þðkþ2Þ
R

R0

� 	k
P2

kþ1ðcos h0ÞP2
kðcos hÞ; R < R0

8><>: ; ðA10kÞ
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To derive Eqs. (A10) we used the following formulas (Bateman and
Erdélyi, 1953; Prudnikov et al., 1986): P�1

0 ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� t
p

=
ffiffiffiffiffiffiffiffiffiffiffi
1þ t
p

;

P�2
1 ðtÞ¼

ð1�tÞð2þtÞ
6ð1þtÞ ;P�m

k ðtÞ¼ ð�1Þm ðk�mÞ!
ðkþmÞ!P

m
k ðtÞ ðk P mÞ;Pm

k ð�tÞ¼ ð�1Þkþm

Pm
k ðtÞ ðk P mÞ; Pm

k ¼ 0 at k < m, m P 1.
Note that the first term in the in series for Jð1;0; 0Þ in the re-

gion R < R0 is 1, see Eqs. (A10a). This constant describes the
jump that is peculiar to uPL

z component of PL total displacement.
In a similar manner the expansion Eqs. (A10h) of Jð2;1; 0Þ in
Legendre series in the region R < R0 contains the term sin h

sin h0
,

which describes the jump in uTL
u component of TL total

displacements. Therefore we can conclude that Legendre series
representation explicitly defines the jump in total
displacements and allows to separate plastic part out from total
displacements.
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Appendix B. Analysis of J(1,0;0) at h ¼ 0

In the following we perform the detailed analysis of the LHI
Jð1;0; 0Þ at h ¼ 0. The expansion in this case can be compared with
the results reported by Willis et al. (1983).

Integral Jð1;0; 0Þjh¼0 can be presented in terms of elementary
functions (Prudnikov et al., 1983):

Jð1; 0; 0Þjh¼0 ¼
Z 1

0
J1ðccÞe�jz�z0 jccdc ¼ 1� jz� z0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ ðz� z0Þ2
q ðB1Þ

From this relation the Legendre series representation follows imme-
diately (see, for example, Arfken, 1985):

Jð1; 0; 0Þjh¼0;z>R0
¼ 1� ðz� z0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ ðz� z0Þ2
q

¼ 1� ðz� z0Þ
z

X1
k¼0

R0

z

� 
k

Pkðcos h0Þ

¼ 1�
X1
k¼0

R0

z

� 
k

Pkðcos h0Þ

þ cos h0

X1
k¼0

R0

z

� 
kþ1

Pkðcos h0Þ

¼ �
X1
k¼1

R0

z

� 
k

Pkðcos h0Þ

þ cos h0

X1
k¼0

R0

z

� 
kþ1

Pkðcos h0Þ

¼ �
X1
k¼1

R0

z

� 
k

½Pkðcos h0Þ

� cos h0Pk�1ðcos h0Þ�; ðB2aÞ

Jð1; 0; 0Þjh¼0;z<R0
¼ 1� jz� z0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ ðz� z0Þ2
q

¼ 1� jz� z0j
R0

X1
k¼0

z
R0

� 
k

Pkðcos h0Þ

¼ 1� sgnðz� z0Þ
X1
k¼0

z
R0

� 
kþ1

Pkðcos h0Þ

þ sgnðz� z0Þ cos h0

X1
k¼0

z
R0

� 
k

Pkðcos h0Þ

¼ 1þ sgnðz� z0Þ cos h0

� sgnðz� z0Þ
X1
k¼0

z
R0

� 
kþ1

Pkðcos h0Þ

þ sgnðz� z0Þ cos h0

X1
k¼1

z
R0

� 
k

Pkðcos h0Þ

¼ 1þ sgnðz� z0Þ cos h0 � sgnðz� z0Þ

�
X1
k¼1

z
R0

� 
k

Pk�1ðcos h0Þ � cos h0Pkðcos h0Þ½ �:ðB2bÞ

On the other hand from Eq. (A10a) we can write:

Jð1; 0; 0Þjh¼0;R>R0
¼ � sin h0

X1
k¼1

1
ðkþ 1Þ

R0

R

� 
kþ1

P1
kðcos h0ÞPkð1Þ

¼ ð�1Þ sin h0

X1
k¼0

1
ðkþ 1Þ

R0

R

� 
kþ1

P1
kðcos h0Þ

¼ �
X1
k¼1

R0

R

� 
k

½Pkðcos h0Þ

� cos h0Pk�1ðcos h0Þ�; ðB3aÞ
Jð1;0; 0Þjh¼0;R<R0
¼ 1þ sgnðz� z0Þ cos h0 þ sgnðz� z0Þ sin h0

�
X1
k¼1

1
k

R
R0

� 
k

P1
kðcos h0ÞPkð1Þ

¼ 1þ sgnðz� z0Þ cos h0 � sgnðz� z0Þ

�
X1
k¼1

R
R0

� 
k

½Pk�1ðcos h0Þ

� cos h0Pkðcos h0Þ�: ðB3bÞ

Here we have used recurrence relations given by Bateman and Er-
délyi (1953):

ðm� lþ 1ÞPl
mþ1ðtÞ � ðmþ lþ 1ÞtPl

m ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
Plþ1

m ðtÞ;

ðm� lÞtPl
m ðtÞ � ðmþ lÞPl

m�1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
Plþ1

m ðtÞ:

It is clear that final results in Eqs. (B2) and (B3) are identical.
It is worthy to note that Eqs. (A8) and (A9), which were given

without proof, provide the right results but further analysis is
needed.

Formally, at the boundary of expansion, i.e. at R ¼ R0, one can
use the series (A4), (A7), (A8) and (A9) with the conditions
Jðm;n; pÞAjR¼R0

¼ Jðm; n; pÞC jR¼R0
; Jðm;n; pÞBjR¼R0

¼ Jðm;n; pÞDjR¼R0
to

be fulfilled. Numerical calculations do not allow to check this prop-
erty at the boundary of expansion for arbitrary indexes m, n; p and
arbitrary values of the variable h.

We however are able to demonstrate the property
Jðm;n; pÞAjR¼R0

; h ¼ 0 ¼ Jðm;n; pÞC jR¼R0 ;h¼0 on the example of
Jð1;0; 0Þ. Expansions for Jð1;0; 0ÞAjR¼R0 ;h¼0 and Jð1;0; 0ÞC jR¼R0 ;h¼0 are
found from Eqs. (A10a)

Jð1;0; 0ÞAjR¼R0 ;h¼0 ¼ �
X1
k¼1

½Pkðcos h0Þ � cos h0Pk�1ðcos h0Þ�

¼ 1�
X1
k¼0

Pkðcos h0Þ þ
X1
k¼0

cos h0Pkðcos h0Þ

¼ 1� 1� cos h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos h0Þ

p ; ðB4aÞ

Jð1;0; 0ÞC jR¼R0 ;h¼0 ¼ 1þ cos h0 �
X1
k¼1

½Pk�1ðcos h0Þ

� cos h0Pkðcos h0Þ�

¼ 1�
X1
k¼0

Pkðcos h0Þ þ
X1
k¼0

cos h0Pkðcos h0Þ

¼ 1� 1� cos h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos h0Þ

p : ðB4bÞ

Here the relationship
P1

k¼0Pkðcos h0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�cos h0Þ
p was used (Prudni-

kov et al., 1983). Comparison of Eqs. (B4a) and (B4b) proves the
equality Jð1;0; 0ÞAjR¼R0 ;h¼0 ¼ Jð1;0; 0ÞC jR¼R0 ;h¼0.
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