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Abstract

A new generalized function space in which all Gelfand—Shilov cla§§%$a> 1) of analytic
functionals are embedded is introduced. This spaceulohfunctionals does not possess a
natural nontrivial topology and cannot be obtained via duality from any test function space.
A canonical isomorphism between the spaces of hyperfunctions and ultrafunction&¥
constructed that extends the Fourier transformation of Roumieu-type ultradistributions and is
naturally interpreted as the Fourier transformation of hyperfunctions. The notion of carrier cone
that replaces the notion of support of a generalized function for ultrafunctionals is proposed. A
Paley-Wiener—Schwartz-type theorem describing the Laplace transformation of ultrafunctionals
carried by proper convex closed cones is obtained and the connection between the Laplace and
Fourier transformations is established.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that Sato’s hyperfunctions cannot be interpreted as continuous linear
functionals on any test function space. For this reason, the standard definition of the
Fourier transformation of generalized functions is inapplicable to hyperfunctions. This
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difficulty does not appear in the framework of Fourier hyperfunctidrig that grow at
infinity no faster than any linear exponential. KawW8] has established that the space

of Fourier hyperfunctions ofit* is naturally identified with the continuous dual of a
suitable test function space (actually coinciding with the Gelfand—Shilov sﬁ)%a(d@‘))

and is taken to itself by the Fourier transformation. However, the question is still open
whether it is possible to construct the Fourier transformation of general hyperfunctions
with no growth restrictions imposed. The aim of this paper is to fill this gap.

The proposed construction naturally arises from the consideration of analytic func-
tionals defined on Gelfand—Shilov test function spaﬁﬁﬂk) with oo > 1. According to
[2] the Fourier transformation induces a topological isomorphism bet\ﬂééi@") and
the spacesg([R"), whose continuous duai(’)“([R{") is exactly the space of Roumieu’'s
ultradistributions[10] of class{k*}. The space3(R¥) of hyperfunctions oriR* can be
thought of as the “limiting case” of the spacﬁg‘(Rk) asa | 1. Therefore, we can
try to define the Fourier transforidi(R¥) of the space3(R¥) by passing to the limit
x| 1 in the definition of the space$?(RF).

Unfortunately, we cannot just séf(R‘) = S{°(RF) because the spacg)(RY) is
trivial [2]. The way of overcoming this difficulty is suggested by the results of the
papers[13,14] concerning the localization of analytic functionals belongin§£1[R§").

In these works, the notion ofarrier cone that replaces the notion of support of a
generalized function for analytic functionals was proposed (the standard definition of
support does not work because of the lack of test functions with compact support). The
definition of carrier cones is based on introducing, for every closed Boree suitable

test function spacSS(K) in which SQ([R{") is densely embedded (the precise definition
will be given in Section2); a functionalu € S&O(IR") is said to be carried by a closed
coneK if u has a continuous extension HS(K). As shown in[13], every functional

in S29(RY) has a uniquely defined minimal carrier cone. The definition of the spaces
associated with cones is naturally extended to the easel and it turns out that the
spacesS&’(K) over proper? closed cones are nontrivial. The spd¢eR’) is obtained

by “gluing together” the generalized function spac@‘lg(K) associated with proper
closed conesk c R* (this procedure will be given a precise meaning in Sec8pn

The properties of the elements &f(R¥), which will be namedultrafunctionals are
quite similar to those of analytic functionals B’jf’([R"). In particular, the definition of
carrier cones is extended to the case of the spad@) and it turns out that every
ultrafunctional has a uniquely defined minimal carrier cone. For a closed propekKc¢one
the space/(K) consisting of ultrafunctionals carried B¢ coincides withS’lO(K ). The
spacesS(;O(K) are naturally embedded (K ) for any closed con&. If K, K1, ..., K,
are closed cones ift* such thatk = Uj=1 K, then every ultrafunctionat € U(K)
is representable in the form

w=> uj. uj UK. (1.1)
j=1

2A cone U in R* will be called proper ifU \ {0} is contained in an open half-space B¢ (the
bar denotes closure). For convex closed cones, this definition is equivalent to the usual one according to
which a cone is called proper if it contains no straight lines.
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Every exponential decreasing in an open half-space containing a convex proper closed
coneK belongs to the spac@(l(). This allows us to define the Laplace transfoffiau

of every ultrafunctionalu carried byK. We prove an elegant Paley—Wiener—Schwartz-
type theorem asserting that the Laplace transformafigninduces a topological iso-
morphism betweedd/(K) and the space of all functions analytic in the tubular domain

R* + iV, whereV is the interior of the dual cone df. The Fourier transfornu

of an ultrafunctionalu carried by a convex proper closed coleis by definition the
boundary value iB(RY) of the Laplace transform afi. For a general: € U(RK), we

take a decomposition of fornmiL(1), where allK; are convex proper closed cones, and
setFu = Z?:l Fu;. The hyperfunctionFu so defined does not depend on the chosen

decomposition. We prove that the operaf®rmapsi{(R¥) isomorphically ontoB(R*)
and that its restriction tcS;O(Rk) coincides with the ordinary Fourier transformation
determined via duality by the Fourier transformation of test functions.

The paper is organized as follows. In Sectidnwe give a brief exposition of the
results of the workg13,14] concerning the spacego(lR{") with o > 1 and obtain a
useful representation d;o(Rk) in terms of the spaces associated with proper closed
cones. In Sectior8, we introduce the spaceﬁ([() and U4(K) and give the precise
formulations of the main results. In the same section, we prove the compatibility of the
operatorF with the Fourier transformation of ultradistributions. Sectibns devoted
to a detailed study of the spacé%(K ) over proper closed cones and to the proof of
the above-mentioned PWS-type theorem. In SecBpnhe results concerning carrier
cones (the existence of a unique minimal carrier cone of an ultrafunctional and the
existence of decompositions of forr.{)) are established. In Sectid) the bijectivity
of the Fourier operatofF is proved. In Sectior?, we indicate some possible further
developments of these results. The proofs of some algebraic statements of Section
are given in Appendices A and B.

2. Localization of analytic functionals on Gelfand—Shilov spaces

The spaceSf(lRi") is by definition [2] the union (inductive limit) with respect to
A, B > 0 of the Banach spaces consisting of smooth function&®brwith the finite
norm

sup K@)
2 Bl
> Al Blul| o ||,u|/|u|

.’CERk,/L,

2.1)

where A and ¢ run over all multi-indices and the standard multi-index notation is used.

The spacesﬂf are nontrivial ifo+f > 1 orif o, f > 0 anda+ ff = 1. Fora = 0,

the spacessf consist of functions of compact support. IK® < 1, then Sf consists

of (the restrictions td®* of) entire analytic functions and an alternative description of
these spaces in terms of complex variables is posf#hleNamely, an analytic function
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f on C* belongs to the classf if and only if

|f @) <C exp(—|x/AY* + |By|Y APy, z=xtiyeCk

for someA, B > 0 depending orf. For definiteness, we assume the ndrm on RF
to be uniform, i.e.,|x| = sup < j<k Ixjl- As shown in[2], the Fourier transformation

isomorphically maps the spacﬁ onto S%. The Fourier transformation of generalized

functions on Sf is defined in a standard way, as the dual mapping of the Fourier
transformation of test functions, and ma&ﬁg onto Sg".

In what follows, we confine our discussion to the cgbe- 0 which is of primary
interest to us, but in fact only the conditigh< 1 guaranteeing the analyticity of test
functions is necessary for the constructions described in the rest of this section. We
say that a con8V is a conic neighborhood of a cong if W has an open projectioh
and containdJ.

Definition 2.1. Let « > 1 andU be a nonempty cone iR%. The Banach spac&fjf(U)
consists of entire analytic functions @i with the finite norm

1158 =sSup |f@lexp(lx/AIM" =6y (Bx) —|Byl),

z=x+iyeCk

wheredy (x) = inf < |x —x'| is the distance fronx to U. The space?S(U) is defined
by the relation

Sy=|J seiw,
A,B>0, WoU

whereW runs over all conic neighborhoods of and the union is endowed with the
inductive limit topology.

According to the above, fot/ = R¥, this definition is equivalent to the initial
definition of SS(R"). From now on and throughout the paper, all cones in question will
be supposed nonempty. As a rule, the word ‘nonempty’ will be omitted. In the rest of
this section, we assume that the nontriviality conditios- 1 is satisfied. IfU’ c U,
then the spac:(—Sg(U) is continuously embedded intsg(U’). If w c Rfis a cone
with open projection, then DefinitioB.1 gives

ssomy = |J seRowm. (2.2)
A,B>0

3The projection PW of a coneW c RF is by definition the canonical image oW in the sphere
Si_1= (RK \ {0})/Ry; the projection ofW is meant to be open in the topology of this sphere. Note
that the degenerate cor{®} is a cone with an open (empty) projection.
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The following statement is an immediate consequence of Defingignformula @.2),
and the associativity property of inductive limit topologies.

Lemma 2.2. Let U be a cone inR*. Then

sy = s2w, (2.3)
WoU

where the union is taken over all conic neighborhoods of U and is endowed with the
inductive limit topology

A closed coneK is called a carrier cone of a functional e S&O(Rk) if ucan be
extended continuously to the spasg(K). The following three basic theorems were
established ir{13,14]

Theorem 2.3. The spaces?(R¥) is dense insO(U) for any conelU c R¥.

Theorem 2.4. If both K1 and K> are carrier cones of: € S&O(Rk), then so isKk1NK>.

Theorem 2.5. Let K1 and K, be closed cones ifR‘ and u € S°(R¥) be carried by
K1 U K». Then there arer; » € S2(RY) carried by K12 and such that = ug + up.

Theorem?2.3 shows that the space of the functionals carried by a closed Koise
naturally identified with the spach(K). It follows from Theorem2.3 and Lemma2.2
that a functionalu S;O(R") is carried by a closed conK if and only if u has
a continuous extension to the spaS%(W) for every conic neighborhoodlv of K.
Theorem2.4 implies that the intersection of an arbitrary famif¥X}.,cq Of carrier
cones of a functional e S;O([RR") is again a carrier cone af. Indeed, letW be a conic
neighborhood ofK = (,.q Kw- Then by standard compactness arguments, there is a
finite family w, ..., w, € Q such thatk = -1 Ko; C W. By Theorem2.4, K is
a carrier cone ofi and, thereforeu has a continuous extension SQ(W). HenceK is
a carrier cone ofl. In particular, every functional S&O(IR{") has a uniquely defined
minimal carrier cone—the intersection of all carrier coneauof

Remark 2.6. In [13,14] only open and closed cones were considered. The space
S9(W) associated with an open coié was defined by formula2(2). For a closed
conek, the spacesg(K) was defined as the right-hand side @f3), where the union

is taken over all open coneé# such thatk \ {0} ¢ W. Definition 2.1 covers both

these cases. Using cones with open projection instead of open cones allows treating
the degenerate con@®} on the same footing as nondegenerate closed cones. Theo-
rem 2.3 was actually proved irf14] only for open and closed). This implies that
Theorem2.3 holds for cones with open projection and Lemm@& ensures that it is

valid for arbitrary U.
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Let K, K’ be closed cones ift* such thatk’ c K. We denote by x the natural
mapping fromS2(K") to SP(K) (if u € SX(K') then p%, u is the restriction ofu to
S9(K)). It follows from Theorems2.3-2.5 that

(a) The mappingg}. . are injective for anyk’ C K.

(b) Ifau € SO(K1 U K»), then there arer; » € S°(K1.2) such thatu = Pk koK1 +
pKz,KluKzuz'

(©) If ur» € S2(K12), K12 C K, and P, kU1 = p, xu2, then there is au e

S2(K1N K>) such thatuy = u anduz = i g, ki

p?(lﬂKz,Kl
Remark 2.7. Starting from the spacesg?(K), one can construct a flabby sh&&f on

the sphereS;_1 = (RF\ {0})/R,. For O C S_1, let C(Q) denote the cone iRtk
containing the origin and such that P(Q) = Q. For an open seD C Sj;_1, set

T (0) = S2(C(0))/S2(C(00)), wheredO is the boundary oD and the bar stands

for closure inS;_1. Proceeding as in Section 9.2 of the bddk, where hyperfunctions

are constructed from analytic functionals, and using properties (a)—(c) reformulated in
terms of closed subsets &j_1, one can define the restriction mappings(01) —
Ta(02) for 01 D 02 and prove thatd, is indeed a flabby sheaf. Note however
that §»(Sk—1) = SL(R)/S2({0}). Thus, passing from the spacs$(K) to the sheaf

&o leads to the loss of information concerning the functionals carried by the origin.
Moreover, sinceS&O({O}) is dense in every spacﬁ&O(K), all information about the
topology of these spaces is also lost.

Lemma 2.8. Let M be a closed cone ift* and P be a set of closed subcones of M

such thatK; N K, € P for any K1, K2 € P. Suppose there is a finite subskt of

P such thatM = |Jg.p K. Then the spaces/?(M) is canonically isomorphic as a

topological vector space tti_rr:K . SO(K) (the set P is meant to be naturally ordered
€

by inclusion).

The inductive limit in Lemma2.8 is taken, in general, over a partially ordered but
not directed set of indices. The definitions of the inductive system and inductive limit,
which are usually formulated for the case of a directed set of indices, are immediately
extended to this more general case. Moreover, the usual inductive limit universality
property remains valid in this more general case. Precise formulations concerning such
generalized inductive systems will be given in the end of this section.

Proof of Lemma 2.8. For K € P, we denote by% andix the canonical mapping from
SO(K) to lim  S/9(K) and the canonical embedding 6f°(K) into ®xcpSL(K),

— KeP
respectively. IfK, K" € P and K’ C K, then we havepk, ,, = p% yp% x and
by the inductive limit universality property, there is a unique continuous mapping
I I|m S’O(K) — S2(M) such thatp% ,, = lp% for any K € P. It follows from

property (b) thatl is surjective becaus® can be represented as a union of finitely
many cones belonging t®. We now prove the injectivity of. Let N be the subspace of
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@KGPS;O(K) spanned by all vectors of the formy u — zKpi‘“Ku, whereK, K’ € P,
K' c K, andu € SO(K’). The space lim SO(K) is by definition the quotient
— KeP

spaceeaKepS/O(K)/N It sufﬁces to show that for anKXs,..., K, € P and every
uy € S/ (K1), ...,u, € S (K,), the relat|onpK Mu1+ +pK yin = 0 implies
that 1 u1 + - + 1K, Un belongs toN. The proof is by induction om. If n = 1 and
p°,‘(1’Mu1 = 0 then by (a) we haver; = 0. We now assume > 1 and prove the
statement supposing it holds far— 1. Let K = K1 U---UK,,_1, K’ = K N K,,

andu = py gui+---+pg  gup—1. Then we havepy ,up = —p% ,u and by
property (c), there is @’ € S°(K’) such thatu, = p%‘(,’Knu’ andu = —p%, ,u'. Let
K:=K;NKy,, j=1...,n—1 SinceP is closed under finite intersections, we have

K’ e P. By property (b), there are} € S(K}),...,u;, 5 € SP(K; ;) such that
u = poltq’ PR p“K;,_l,K’”;t—l' We therefore obtain

— % ’ . o /
Un =Py g1t F Pk g Unet (2.4)

Setvj_uj+pK, i j=1...,n=1 andv =1k v1+ -+ ik, ;Up-1. By the
induction hypotheS|s we havee N because

o o o o
Pry MVL T+ Pk | yUn-1=Pg, MUL+ -+ Pk pyltn = 0.

Further, we have

/
lKlu1+ - + lKnun = V+ [lKnun — ZK:/LI/tl e — l[(n 1”11 1]
/ o !
gy — lKlpKi,Klul)
l o !
oo gy U1 = WKy aPgr |, g Un-1)-

By definition of the spacé\, the terms in the round brackets belong\@nd in view of
(2.4) the term in the square brackets also belonghl.td herefore, the expression in the
left-hand side belongs th and the injectivity ofl is proved. It remains to show that!
is continuous. Suppose at first that the B finite. SinceS'°(K) are Fréchet spaces
[14], @Keps;O(K) is also a Fréchet space. By the aboMecoincides with the kernel
of the continuous mappinduklkecr — > gep p‘}‘(’MuK. Therefore,N is a closed
subspace 0k cpSO(K) and lim S/9(K) is a Fréchet space. The continuity lof*
now follows from the open mapIE)iErfg theorem.Rfis arbitrary, then choose a finite set
P’ such thatM = | Jg.pr K. We can assume that’ is closed under intersections of
its elements (otherwise we can add P all cones that are intersections of elements
of P’). Let!’ and m be the canonical mappings from IIiKmP SO(K) to SP(M) and
— KeP’

from lim SO(K) to lim  S°(K) respectively. Then we havé = Im. By the
— KeP’ — KeP
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above,!’ is a topological isomorphism and, therefotel = mi’~1 is continuous. The
lemma is proved. U

In particular, the conditions of Lemm&8 are satisfied ifP is equal to the seP (M)
of all nonempty closed proper subconeshfWe thus have the canonical isomorphism

SOM) = lim SOK). 25
x (M) — KeP(M) x (K) (2.5)

We end this section by reformulating some standard definitions and facts related to
inductive limits for the case of partially ordered, but not necessarily directed sets of
indices. By an inductive syster of (locally convex topological) vector spaces indexed
by a partially ordered seh, we mean the following dat4:

(1) a family {X(x)},ca Of (locally convex topological) vector spaces;
(2) a family of (continuous) linear mappings;i,:)((oc) — X (') defined fora<o/
and satisfying the conditions
0] p); is the identity mapping for any. € A;
i X X ’ ’
(i) p5 = PPy, for a<o <o

In other words, X" is a covariant functor from the small categofyto the category

of (locally convex topological) vector spaces. Lzéi denote the canonical embedding

of X(x) in ®yeaX (). The inductive limit lim X («) (or simply limX) is by
— aeA -

definition the quotient spaded,c4 X' (2)]/NY, whereN is the subspace @hye 4 X' (c)
spanned by all elements of the forfix — 1% p=¥ x, x € X'(2). The canonical mapping
P X () — lim X is defined by the relatiop;’ = j¥1¥, where j is the canonical
surjection of ®,c4 X () onto limX. As usual, we have the following inductive limit
universality property: -

Let E be a(locally convex topological vector space and, be(continuou$ linear
mappings fromX («x) to E such thatha/p;‘;/ = hy for any a<¢o’. Then there is a
unique (continuous linear mappingx:lim X — E such thath, = hpf for any

aeA.

Remark 2.9. Although the above definitions are quite standard, the properties of such
generalized inductive systems may be very different from those of inductive systems
indexed by directed sets. For example, canonical mapgﬁj@snay be not injective
even if all connecting morphismpig/ are injective. Indeed, leE be a vector space
and A be the four-element sdt, 5, 7, } with the order defined by the relations<y,

a<o, f<y, and f<J. We define the inductive systerlt’ setting X' (x) = X () =

41n the rest of this section and in Secti&n where abstract inductive systems are discussed, the Greek
letter o is systematically used to denote an element of a partially orderedAsahd has nothing in
common with the index of Gelfand—Shilov spaces.



318 A.G. Smirnov/Advances in Mathematics 196 (2005) 310-345

X(y) = X(0) = E and py}, = —py = pf;y = pZ% = idg, where id: is the identity

mapping. Fixx € E and setzy = 15 x — zf,‘x, 2=15 x+15 x, 23= zf{x— 15 x, and
74 = z,j(x—zgfx. Obviouslyzi, ..., z4 € N and, therefore;t x = (z1+z2+23+24)/2

belongs toN*. This means thap;’ x = 0 for anyx € E.

3. Basic definitions and formulations of main results

We now extend the constructions of the preceding section to theocas& which
is of primary interest to us. By analogy with Definiti¢hl, we introduce suitable test
function spaces associated with conesfth

Definition 3.1. Let U be a cone inR*. The Banach spacs(l):f(U) consists of entire
analytic functions orC* with the finite norm

I fllu,a=sup |f(@)Iexp(lx/Al — oy (Bx) —|Byl),
z=x+iyeCk

wheredy (x) = inf <y |x —x'| is the distance fronx to U. The space&“l)(U) is defined
by the relation

= M.
A,B>0, WOU

whereW runs over all conic neighborhoods &f and the union is endowed with the
inductive limit topology.

For U = R¥, Definition 3.1 is equivalent to the standard definition .@f(R") given
in [2]. Therefore, the spacﬁf(U) is trivial for U = R¥. A sufficient condition for
the nontriviality of Sf(U) will be given in Lemma3.3. Representation2(2) for the
spacesSg(W) associated with cones with open projection and Lenfraobviously
remain valid fora = 1 (in fact, one can show that formul2.®) holds foro =1 even
without the assumption th&/ has an open projection, but we shall not prove this fact
here). As shown irj14], SQ(U) with o > 1 are DFS-spaces (we recall that DFS-spaces
are, by definition, the inductive limits of injective compact sequences of locally convex
spaces). In particular, they (and their duals) are reflexive, complete, and Montel spaces
[6]. The following lemma shows that the spacﬁf:{U) enjoy the same nice topological
properties.

Lemma 3.2. The spaceSf(U) is DFS for any conel C RF.
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Proof. It suffices to show that the inclusion mappiGQ”f(U) — Sf’ff(U) is compact

for any A’ > A, B’ > B and every cond/ C RF. Let {f,}nen be a sequence of
functions belonging to the unit ball of the spaﬂ%f(U). By Montel's theorem, this
sequence contains a subsequefitg } which converges uniformly on compact sets in

Ck to an entire analytic functioh To prove the statement, it suffices to show that the

sequencs f,,,} converges td in S‘l)'B,’(U). Setoy A p(x +iy) = —|x/A| + Boy (x) +

Blyl, x,y € R, Since || fn, lv.a.8 <1, we have|f,, (z)| <e?.4a5, Passing to the

limit n — oo in this inequality, we conclude thaf € S%ff(U) and || fllv.a.p<1.
Further, for anyR > 0, we have

If = fogluar g < ¥4 sup |£(2) = fu, @)
[zZ| <R

HIf = fngllv.a,5 Sup €8s 7Cua 5@
n ) k)
|z|>R

< R sup | £ (@) = fuy ()] + 2¢7ER,
lz| <R

where L = min((A’ — A)/A’A, B’ — B). ChooseR(g) andn(e) such that 27 LR®) <
/2 and eR /A sup, < gy 1 £ (@) — fm, ()| < €/2 for any n>n(e). Then || f —
Sm,lu.a.p < € for any n>n(e). The lemma is proved. ]

Lemma 3.3. Let U be a cone inR*. If U is a proper conethen the spacc—SE’(U) is
nontrivial. If U contains a straight linethen S?(U) is trivial.

Proof. Let U be a proper cone arldbe a linear functional ofit such thatt \ {0} C

{x € RF|I(x) > 0}. Then S9(U) contains the functionf(z) = ¢~/@ and, therefore,
is nontrivial. Now letU contain a straight line and’ e SS(U). Let W be a conic
neighborhood ol such thatf S‘l)”f(W) for someA, B > 0 andW be the union of

all straight lines contained iWw. Clearly, W is a cone with a nonempty interior. For
x € W\ {0} andt € C, we setg(r) = f(tx). It easily follows from Definition3.1

that g S%fml(ﬂ%) and henceg = 0. Therefore,f (x) = g(1) = 0, i.e., f vanishes on

W. By the uniqueness theorem, we conclude thit identically zero. The lemma is
proved. [J

Lemma3.3 suggests that we can try to define the desired “nontrivializatié(R*)
of the spaceS/lo(R") (and, more generally, of the spaS?(M) over an arbitrary closed
cone M) as the right-hand side o) with « = 1. We then arrive at the following
definition.

Definition 3.4. Let M be a closed cone ifit‘. The spacéf(M) is defined to be the
inductive limit lim » S’lo(K), whereP (M) is the set of all nonempty proper closed
— Ke'P(M)
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cones contained iM. The elements of/(R¥) are called ultrafunctionals. A closed cone
K is said to be a carrier cone of an ultrafunctionaif the latter belongs to the image
of the canonical mapping fro/(K) to U(R").

In this definition, the seP (M) is meant to be ordered by inclusion and the inductive
limit is taken with respect to the natural morphismg S’lo(K’) — S/lo(K) which are
defined forK’ ¢ K and map the functionals belonging S@(K’) into their restrictions
to the spaceS’?(K). The canonical mappings frotd(K’) to ¢/ (K) will be denoted by
p%,’ x- Note that ifK is a proper closed cone, théfn(K) is canonically isomorphic to
SP(K).

We shall see that/(R") is Fourier-isomorphic to the spad&R¥) which is known
to have no natural topology. Therefore, the following result is by no means surprising.

Lemma 3.5. Let M be a closed cone i* containing a straight line. Then the induc-
tive limit topology onl/(M) is trivial (i.e., U(M) and ¢ are the only open séts

Proof. It suffices to prove that any continuous linear functiohah /(M) is equal to
zero. ForK € P(M), we denote by, the canonical mapping frorﬁio(l() to U(M).
The continuity ofl means that the functiondp is continuous onS’lO(K) for any
K € P(M). By Lemma3.2, the spaceS‘f(K) is reflexive for any cone&K. Hence for
any K € P(M), there is a functionfx € SE’(K) such thatlpx u = u(fx) for every
u e SP(K). If K’ C K, then we have

u(fx) =lpgu=lpgpg xu=(pg g (fx) =u(fx), ueSPK"

and, consequentlyfx: = fx. ChoosingK’ equal to the degenerate cof@, we see
that fx = fio, does not depend ok € P(M) and, therefore, belongs to the space
L =Ngepan SYK). Let K1, ..., K, € P(M) be such that/ = K;U---UK,. Since
OK,U-UK, (X) = Min(dg, (x), ..., 0k, (x)) foranyx € R¥, it follows from Definition3.1
that S9(M) = SAK1U---UK,) = SX(K1)N---NSY(K,). HenceL c SY(M) is trivial

by Lemma3.3 and fx = 0 for any K € P(M). This means thatpy, = 0 for every

K € P(M) and, therefore] = 0. The lemma is proved.]

Thus, there is, in general, no natural way to define a reasonable topology /on
Because of this, we do not endow these spaces with any topology and consider them
only from algebraic point of view. One of the main results of this paper is that the
ultrafunctionals have the same localization properties as the analytic functionals belong-
ing to S;O([R") with o > 1. More precisely, the following analog of Theore2$8-2.5
are valid.

Theorem 3.6. The natural mapping)%,’K:L{(K’) — U(K) is injective for any closed
cones K andK’ such thatk’ c K.
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Theorem 3.7. Let {K,},cq be an arbitrary family of carrier cones of an ultrafunc-
tional u. Then(,.qo K« is also a carrier cone of u

Theorem 3.8. Let K1 and K> be closed cones iR* and an ultrafunctional u be carried
by K1 U K». Then there ara:1 » € U(R¥) carried by K1 » such thatu = uy + us.

These theorems will be proved in Sectibn

Remark 3.9. The space$/(K) determine a flabby sheaf on the sph&g_; in the
same way as the spac§§°(K) (see Remark.7).

Foru € S/lo(K ), one can in a standard way define the operators of partial differentia-
tion and multiplication by an entire functiog of infra-exponential type (i.e., satisfying
the bound|g(z)| < C.efl?l for every e > 0):

qufox;(f) = —u(@f/dx)), (gu)(f)=u(gf), feSUK), j=1... .k

These operations are obviously compatible with the connecting morphigmg and,
therefore, can be lifted to the spack$K) over arbitrary closed cones. Let > 1.
The natural mappings frons’°(K) to S’lo(K) taking functionals inS2(K) to their
restrictions toS?(K) are compatible with the connecting morphispf,’g, x andpgr g

and in view of @.5) determine a mapping fron§’°(K) to U(K) for any closed cone
K. Below we shall see that these mappings are injective, i.e., the sp%(de) can be
regarded as a subspaceléfK).

We now describe the construction of the Fourier transformation of hyperfunctions. As
a first step, we consider the Laplace transformation of analytic functionals on the spaces
S?(K) over convex proper closed cones. In the rest of this section, we idei’i?iM)
with (K for K € P(RK). For brevity, the natural embedding% e UK) = U(RF)

andp? . SO(K) — SO(RF) will be denoted bysx and¢% respectively. Let-, -) be

a symmetric nondegenerate bilinear form Bh. Given a conelU c R¥, we denote by
U* its dual cone{x € R¥| (x, n) >0 for anyn € U }. Note thatU* is always closed
and convex. A condJ is proper if and only ifU* has a nonempty interior. ¥ is an

open cone, then the functiari®% belongs toS(V*) for every{ e TV Cf Rk 4.
Given an open se0 C RF, we denote byA(0) the space of functions analytic in

an open sefl'® c C*. The spaced(0) is endowed with the topology of uniform
convergence on compact subsets7dt.

Theorem 3.10.Let K be a convex proper closed cone ®f and V = int K*. For
any u € U(K), the function{ — u(e!*-9)) is analytic in TV. The linear mapping
Lg:UK) — AWV) taking u € U(K) to this function is a topological
isomorphism
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The proof of this theorem will be given in Sectigh The functionLyu is called
the Laplace transform afi. By definition, we have

Lxuw) ) =uE ), (eRF+iintK*. (3.1)
For an open cond’ c R¥, we denote byby the linear mapping taking functions in
A(V) to their boundary values in the space of hyperfunctiBm"). Let K, K’ c R¥

be proper convex closed coneg, = intK*, and V' = intK™. If K’ c K, then
Lk pgr g u is the restriction ofLgr u to TV for anyu € S’lo(K’). This implies that

by Lx = byLg p%/),(, and by the inductive limit universality properdy,there is a
unique mappingF: U (RF) — B(R¥) such that

]:0"/* = bVEV* (32)

for any open convex con¥ C R*.
Theorem 3.11. The operatorF mapsi{/(R¥) isomorphically ontoB(R*).

This theorem will be proved in Sectidh The operatotF is naturally interpreted as

the inverse Fourier transformation of hyperfunctions. Indeed, for jaagyl, ..., k and
u € URF), we obviously have the standard relations
ou . . O[Fu]
it @ =-itrae. Fhu)e =",
0Xj 651

Moreover, the restriction of ~1 to ultradistributions of the cIasS{,“(Rk) coincides with

the ordinary Fourier transformation determined via duality by the Fourier transformation
of test functions. More precisely, let> 1 and the Fourier transformatioﬁ of a test
function f € S(R¥) be defined by the relatiorf (x) = [ f(&)e™< dé. As mentioned

in Section2, the mappingf — f is a topological isomorphism frorﬂ%(lR?") onto
SS(IR"). Let 7* denote its dual mapping acting on generalized functions. Then we
have

Fe* = i"F*, (3.3)

where e*: SP(RF) — U(RF) and i* SZ(RF) — B(RF) are canonical mappings (see
[7] for the construction of the natural embedding of ultradistributions into the space
of hyperfunctions). To prove3(3), we recall some results concerning the Laplace
transformation of analytic functionals belonging to the spaﬁ.géswith o> 1. For an

5Note that in the definition of/(RF), it suffices to take the inductive limit over all propeonvex
closed cones ifRF because the convex hull of a proper closed cone is again a proper closed cone.
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open coneV, we denote byA*(V) the Fréchet space consisting of functions analytic
in TV and having the finite norms

IVIllvier= sup  V(Olexp—ely YD), n=1Im¢
LeTV' II<R

for any ¢, R > 0 and every compact subcon& of V. The following result has been
established if14].

Theorem 3.12.Let o > 1, K be a convex proper closed cone Rf, and V = int K*.
For any u € S°(K), the functionT" > { — u(e'-%)) belongs to.A%*(V). The linear
mapping £%: S2(K) — A*(V) taking u € S2(K) to this function is a topological
isomorphism. The functiotC% u)(- + in) tends toF*s% u in the topology ofSé“(lRRk)
as n — 0 inside a fixed compact subcon& of V.

This theorem implies the existence, for every open convex thrd the continuous
boundary value operatd,: A*(V) — S(’J“([R") satisfying the relation

Let ji; be the inclusion of4*(V) into A(V) ande% be the canonical mapping from
S;O(K) to U(K) (in particular,e%k = ¢%). By definition of the mappings%, £%, and
Lk, we have the relationg) L. = Ly«e},. andoge% = e*c% for any open convex
coneV and every closed con€. Theorem 11.5 of7] ensures that for an open convex
coneV, the boundary values of functions i4*(V) in the sense of ultradistributions
coincide with those in the sense of hyperfunctions. This meansithgt = by ;. It
follows from these relations and formula3.2) and @.4) that

-0 oL O Oy O o 0L POl o o o 0
iFr0y. =0y LY« = by jy Ly« = by Lyreys = Foyrey. = Fe oy

for any open convex con¥. Relation 8.3) now follows from the inductive limit
universality property.

Lemma 3.13. The canonical mapping: S&O(K) — U(K) is injective for any closed
cone K C RF.

Proof. For K = RK, the statement follows from3(3) because the Fourier operator
F* is an isomorphism and the canonical mappifigSy*(R") — B(RY) is injective
by Theorem 7.5 of7]. The injectivity of ¢% for an arbitraryK now follows from the
relationoge? = e*s% and the injectivity of the natural mapping.: S2(K) — S2(RY)
ensured by Theorer@.3 The lemma is proved.
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We end this section by establishing the connection between the analytic wave front
set (singular spectrum) of hyperfunctions and of their Fourier transforms.

Lemma 3.14. Let an ultrafunctional u be carried by a closed convex proper c&ne
R* and let f = Fu. Then the analytic wave front s&¥ F(f) of the hyperfunction f
satisfies the relation

WFA(f) C R x (K \ {0]).

Proof. Theorem 9.3.3 of4] implies thatW F4 (byv) C [RE"x(V*\{O}) for any connected
open coneV and everyv € A(V). Hence the assertion of the lemma follows because
by definition of the Fourier operataf, we havef = binixx Lxogu. O

Lemma3.14 strengthens analogous results for tempered distributions and ultradistri-
butions given by Lemma 8.4.17 ¢4] and Lemma 2 of15], respectively.

4. SpacesS‘g(K) over proper cones

In this section, we show that the properties (a)—(c) listed in Se&ibold also for
the space§’l°(K) and the mappingg x provided that all involved cones are proper.
The verification of these properties constitutes the “functional analytic” part of the proof
of Theorems3.6-3.8. In the end of this section, we prove Theor&10 describing the
Laplace transformation of ultrafunctionals carried by proper convex closed cones.

As above, let(-,:) be a symmetric nondegenerate bilinear form @h For any
x,y € R, we have|(x, y)|<alx||y|, where

a= sup [{x,y)l (4.1)

. Iy <1

Lemma 4.1. Let A, B > 0, U be a cone inR¥, and W be a conic neighborhood of U.
Suppose; € R¥ is such that|| < 1/Aa, where a is given by4.1). Then the function
et f belongs toS2(U) for any f € S(l):f(W) and the mappingf — ¢ f from
Si’f(W) to SY(U) is continuous

Proof. Let f € S%f(W) andn € R* be such thaty| < 1/Aa. Then

1M F( ) <N fllua g expi—(1/A —alnD x| + Boy(x) + Blyll, z=x+iy.

Therefore e f e Sf’f,(W), whereA’ = A/(1—Aaln|), and the mapping — ¢ f

from Sf”f(W) to Sf_’f,(W) is continuous. It remains to note that the spaSé’ef,(W)
is continuously embedded ints)(U). O
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Corollary 4.2. Let A, B > 0 and U be a cone ifR*. Then for everyf S?(U), there
is ane > 0 such thatfe" e SY(U) for any n € R* with ] < e.

Let U be a cone inR¥, x>1, andy € intU*. We denote byM;Z’U the continuous
mapping f — fe~“ from S2(U) to SY(U).

Lemma 4.3. Let U, U’ be nonempty proper cones & such thatU’ c U. Then the
spaces{(U) is dense in the spac&(U’).

Proof. Fix o« > 1 and letf € Sf(U/). By Corollary 4.2, there is any € intU* such
that e € SQ(U"). This means that belongs to the image Is;, , of the mapping
M;Z’ o It follows from Theorem2.3 that S2(U) is dense inS3(U’). Since the image

of the closure of a set under a continuous mapping is contained in the closure of its
image, we have the inclusions IMiZ’ y CIm MZ’U - Sf(U), where the bar stands

for closure inSQ(U/). This implies thatf € m. Since f € SS(U/) is arbitrary, the
lemma is proved. OJ

Corollary 4.4. Let K, K’ be closed proper cones iR* such thatk’ c K. Then the
natural mappingp g : S’lo(K’) — S/lo(K) is injective

Corollary 4.5. Let U be a cone inR* and U’ be a proper cone containing a conic
neighborhood of U. A functional € S’lo(U/) has a continuous extension Rf(U) if
and only if u can be extended to every spé@(eW), where W is a conic neighborhood

of U contained inU’.

Proof. Only the sufficiency part of the statement needs proving¥ 1= U’ is a conic
neighborhood olJ, we denote by:y the extension ot to S?(W). By Lemma4.3 the
functionalsuw are uniquely defined and are compatible with the inclusion mappings
(e, if U c W c W c U/, thenuy: is the restriction ofuy to S&’(W’)). As
mentioned in Sectior8, Lemma2.2 remains valid foro. = 0. Moreover, the union in
(2.3) obviously can be taken only over conic neighborhoodsUotontained inU’.

The functionalsuy therefore determine a functional € S/lo(U) such thatuy are
restrictions ofi to Sf(W). Sinceuw are extensions ofi, we conclude thafi is an
extension ofu and the corollary is proved.

Lemma 4.6. Let K1 and K> be nonempty proper closed conesih such thatk;UK>
is a proper cone. Then for every Sf(KlﬂKg), there aref1 2 € Sf(Kl,g) such that

f=hn+r.

Proof. Let A, B > 0 be such thatf € Sf:f(Kl N K7). Fix o > 1 and choose; € Rk
such that|y| <1/Aa andn € int (K1 U K2)*. Then the functiong = fe!~" belongs to
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S9(K1N K») and, consequently, t62(K1 N K>2). As shown in[13] (see also Lemma 1
of [12]), there areg; 2 € SO(K12) such thatg = g1 + g2. Set f1.2 = g1.2¢~ 7. Then
fi2 € S%K12) and f = f1+ f2. The lemma is proved.

Lemma 4.7. Let K1 and K> be closed cones if®. Then for everyu € S/lo(KlLJKz),
one can findu1 2 € SP(K12) such thatu = pg, x.uk,U1+ Pry. KiUKU2-

Proof. Let I: S2(K1 U K2) — S2(K1) @ S2(K2) and m: S9(K1) ® S9(K2) — SA(K1N
K»>) be the continuous linear mappings takifigo (f, f) and (f1, f2) to f1 — f2,
respectively. The mapping has a closed image because by Definitid, we have
S(K1) N SY(K2) = SA(K1 U K>) and, therefore, Im= Kerm. In view of Lemma3.2
this implies that the space linis DFS® By the open mapping theorem, the linear
functional (f, f) — u(f) is continuous on Inh and by the Hahn—Banach theorem, there
exists a continuous extensionof this functional to the whole o89(K1) ® SY(K2).
Let u1 and u» be the restrictions of to S?(Kl) and S?(Kz), respectively. Then for
any f € S‘lJ(Klu K?), we haveu(f) = v(f, f) = u1(f) + u2(f). This means that
U= Pk, K UKH1+ Pk, kuK,42 @nd the lemma is proved.[]

Lemma 4.8. Let K1 and K> be proper closed cones ¢ such thatki U K> is a
proper cone. Letui, € SP(K12) be such thatok, x,uk,U1 = Pk, Kk UK,42- Then
there is au € SP(K1N K2) such thatuy = pyg k, k, 4 and uz = pg i, k, U

Proof. Let the mappings andm be as in the proof of Lemmd.7. By Lemma4.6, the
mappingm is surjective and by the open mapping theoréﬁi‘(,Klng) is topologically
isomorphic to the quotient spao{6f(K1) @ Sf(Kz))/Kerm. Let v be the continuous
linear functional onS9(K1) & SY(K2) defined by the relation(f1, f2) = u1(f1) —
uz(f2). The conditionpg, x,uk,U1 = Pk, k,uk,42 Means thatui(f) = ua(f) for
every f € SQ(Kl U K2). We therefore have Ker > Im/. Since Ketn = Im! (see
the proof of Lemma4.7), this inclusion implies the existence of a functionale
SiO(Kl N K7) such thatv = um. If fi12 ¢ Sf(Kl,z), then we haveu(f1) = v(f1,0) =
u1(f1) andu(f2) = v(0, — f2) = u2(f2). The lemma is proved.

Corollary 4.9. Let {K},ecq be a family of closed cones R*, K c R¥ be a proper
closed cone such thdt,, C K for everymw € Q, and K = (,cq Ko Let {uw},ecq be
a family of functionals such that,, € S’lo(Kw) and pg, g Uo = Pk, K U for every

w, ' € Q. Then there is ar € SP(K) such thatu,, = pg x,u for everyw e Q.

Proof. If Q is finite, then the statement follows by induction from LemmMa&and4.3.
Now let Q be arbitrary andk’ > K be a proper closed cone containing a conic

6Recall that the direct sum of a finite family of DFS spaces and a closed subspace of a DFS space
are again DFS spaces, sfd.
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neighborhood ofK. Clearly, the functionab = Pk, k(o) does not depend on the
choice ofw € Q. Let W C K’ be a conic neighborhood & . By standard compactness
arguments, there is a finite family1, ..., ®, € Q such thatM = ﬂ;le Ky, CW.
Since this corollary holds for finit€, we conclude that has a continuous extension
to SQ(M) and, therefore, tdf(W). Corollary 4.5 now ensures that has a continuous
extensionu to S‘f(l?). By Lemma4.3, Pic. kU coincides withu, for any o € Q

because both functionals have the same restrictio&?((K ’). The corollary is proved.
O

To prove TheorenB8.10 we need the following lemma.

Lemma 4.10. Let V be a convex open cone R and K = V*. Suppose a mapping
Vsy—ueS2K) is such thate™ "yl = u™" for anyn, ' € V. Then there is
a uniqueu € SP(K) such thatu! = e=“"y for anyn e V.

Proof. Let A, B > 0, W be a conic neighborhood df, andn € R be such that

In|<1/Aa, wherea is defined by 4.1). We denote byLZV’A’B the mappingf —

e f from S%B(W) to SY(K). Lemma4.1 shows that this mapping is well defined

and continuous. Let € V be such thaty| <1/Aa. We define the continuous functional
uw,A,p 0N S%f(W) by the relation

uw.ap(f) =u"(LYy 4 p ). f€STEW).

Although n enters in the expression in the right-hand sidg, 4 g actually does not
depend on the choice of. Indeed, lety’ € V be such thaty'|<1/Aa. Sety” =1y,
where 0< ¢ < 1. SinceV is open,y — 1" € V for t sufficiently small, and we have

”n(L’IZV,A,B f) = ur’”ﬂ”*"”)(e("”)f) =" (e<"'7”>f)
(=" Ny _ / ,7/
— " +=n )(e( n >f) = ul (LW,A,B )

forany f S(l)_jf(W). Let A’ > A, B> B, andW’ C W. If n e V satisfies the bound

n|<1/A'a, thenLy, , , is the restriction ofL}, ,, . to Si’f(W) and we have

uw,a,8(f) = M”(LZV,A,B = M"(LZV/’A/‘B/ ) =uw ap(f), fe€ Sf_’f(W)-

Thus, the functionalaw 4 g are compatible with the embedding%/’f(W)—>S%f,/(W’)

and, therefore, determine a functiomaé S/lO(K). Letyn, ' € V be such thaty'|<1/Aa
andn—n e V. Fix f e S?(K) and choosed, B > 0 and a conic neighborhodd/ of

K such that the functior~" f belongs toS%ff(W). We then obtain

(M) (f) = uwap e f) = u @I f) = (f).
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This means thae="y = u”. It remains to prove the uniqueness of Suppose
u' € SP(K) is such thate=“"u’ = u" for any n € V. Thenv = u’ — u satisfies the
relation e~y = 0 for anyn € V. Let f € S2(K). By Corollary 4.2, there is an
n € V such thate®" f e S(K). We therefore have(f) = (e~ vy f) = 0.

Thus,v = 0 and the lemma is proved.]

Proof of Theorem 3.1Q As in the preceding section, we identify(K) with S/lo(K).
Fix o > 1. Foru e S’%O(K) andn € V, we define the functional” € S/°(K) by the
relation v"(f) = u(e="" ), f € SO%(K). We then have

(Lxu)(( +in) = ") = (L%, (eTV 4.2)

and in view of Theoren8.12the function(Lxu)(-+in) is analytic inT". Sincen € V

is arbitrary, this implies that xu is analytic inT". If Lxu = 0, then by 4.2) we have
L%v" =0 for anyn € V. This implies that" = 0 for anyn € V because the Laplace
transformationC% is injective by Theoren8.12 Denoting byx" the restriction ofv” to
S?(K) and applying the uniqueness part of Lem#aQ we conclude that = 0. Thus,
the operatoiCk is injective. The mapping — v" from SP(K) to S[2(K) is continuous
for any n € V being the dual mapping of the continuous mappifig> e~ f. It
therefore follows from 4.2) and TheorenB.12 that the mapping: — (Lxu)(- + in)

is continuous as a mapping fros{°(K) to .A*(V) and, consequently, as a mapping
from SiO(K) to A(V). This implies the continuity ofCx because for every compact
set K c TV, one can find am € V such thatk —n c TV. We now prove the
surjectivity of Lg. Let v e A(V). Clearly,v(- +in) € A*(V) for anyn € V. We set
v = (L}‘()_lvc + in) and denote bw" the restrictions ofv” to Sf(K). For every
neVand{eTV, we have

(Lxu(Q) = u"(e' ) = ") = (L3N = v +in).
Hence it follows that
L e My = (Lguy (- +in) =V +i+n)) = Lxu™, nn eV

and in view of the injectivity ofCx we havee™ )yl = ™', By Lemma4.10, there
is au € SP(K) such thatu! = e~y for anyn e V. Fix { = ¢+in e TV and
choosen’ € V such thaty —#' € V. Then we have

(Lx)(©) = (=M SN = (Lgu )& + iy = 1) = V(D).

Thus, Lxu = v and, consequently; g is a continuous one-to-one mapping. Since both
S’lo(K) and A(V) are Fréchet spaces, the continuity of the inverse opera};d'r is
ensured by the open mapping theorem. Theo&® is proved. [
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5. Localizable inductive systems

The results of the preceding section show that the localization properties described
by Theorems3.6-3.8 hold for ultrafunctionals carried by proper closed cones. To prove
these theorems in their full volume, we have to show that the properties of the in-
ductive systents formed by the spaces’lo(K ) over proper closed cones are inherited
by the inductive systend/ formed by the space& (K) over arbitrary closed cones.
We shall obtain the desired localization propertieslofas a consequence of a more
general algebraic construction formulated in termspr€){ocalizable inductive systems
introduced by Definitiorb.3 below. In contrast to Sectiod, all considerations in this
section are purely algebraic.

Recall that a partially ordered sétis called a lattice if every two-element subset
{aq, a2} Of the setA has a supremumy Vv oz and an infimumag A ap. A lattice A is
called distributive ifog A (a2 Vv a3) = (a1 A a2) V (a1 A ag) for any ag, ap, a3 € A.

Definition 5.1. Let A be a partially ordered set. We say thais a quasi-lattice if every
two-element subset ok has an infimum and every bounded above two-element subset
of A has a supremum. We say that a quasi-latAcis distributive if a1 A (02 Vv a3) =

(o1 A a2) V (a1 A a3) for every bounded above paip, 03 € A and everyoy € A.

Clearly, every (distributive) lattice is a (distributive) quasi-latticeAlfs a distributive
lattice, then we have

(a1 Vo) A(agVoag) = ((og Vo) Aog) V ((0 Vo) A ag)

o1V ((ag A o) V(2 Aag)) = o V(o A og)

for any a1, a2, a3 € A. By induction, it follows that

inf (o v =aV inf 5.1
weQ(OC %) x weQ o ( )

for any o € A and every nonempty finite familyu,},co Of elements ofA.

Definition 5.2. We call a latticeA infinitely distributive if every nonempty subset &f
has an infimum and conditiorb(l) is satisfied for an arbitrary (not necessarily finite)
family {xy}neq Of elements ofA.

Note that a distributive lattice may be not infinitely distributive even if all its subsets
have an infimum (see, e.d3, Section 1.4, Exercises 17 and }38]

We call a nondecreasing mappingfrom a quasi-latticeA into a quasi-latticeB
a morphism of quasi-lattices if(a1 A a2) = A(a1) A A(a2) for any ag, 02 € A and
Aoy Vv oap) = A(o1) V A(a2) for every bounded above paif, ap € A.

In the rest of this section, we study abstract inductive systems of vector spaces
indexed by (quasi-)lattices and systematically use the corresponding notation introduced
in the end of Sectior?.
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Definition 5.3. An inductive systemY of vector spaces over a quasi-lattidds called
to be prelocalizable if the following conditions are satisfied:

(I) The mappingsz, are injective for anyx, o € A, o<o .
(I If a pair a1,02 € A is bounded above and € X(x1 V ap), then there are
x1,2 € X(x1,2) such thatx = pxxl,otl\/otz(xl) + anz,Otl\/dz(XZ)'
(1) If a pair a1, a2 € A is bounded above by an element A, x1, 2 € X (21, 2), and
Py ,(x1) = pg ,(x2), then there is aw € X (x1Ax2) such thatvs = pit, . . (x)

andxp = pxXlecz, 2 (X)-

We say that the inductive systeAi is localizable if every nonempty subset Afhas
an infimum and instead of (Ill) the following stronger condition is satisfied:

(") Let {ow}wen be a nonempty family of elements Afbounded above by ame A,
and let a family{x,},ecq be such that, € X () and py ,(x,) = p“Xw/y“(xw/)
for any w,® € Q. Then there is anx € X(&) (& = inf,ecq o) such that
Xy = p;(a (x) for any w € Q.

Let M be a closed cone ifR*. The (ordered by inclusion) s&€2(M) of all proper
closed cones contained M is a distributive quasi-lattice, while the s&i(M) of
all closed cones contained M is an infinitely distributive lattice. As shown by the
properties (a)—(c) listed in Sectid?) the inductive system ovet(R¥) formed by the
spacesS&O(K) (x > 1) is prelocalizable (in fact, it is even localizable, see the paragraph
following the formulation of Theoren2.5).

A subsetl of a quasi-latticeA will be called A-closed ifagsAap € I foranyog, ap € 1.
If 1is a finite subset of a quasi-lattide then one can find a finite-closed setl’ C A
containingl (for instance, the set consisting of infima of all subsets o&n be taken
asl’).

Lemma 5.4. Let A be a distributive latticex € A, and &’ be a prelocalizable inductive
system overY. Suppose | is ar-closed subset of A such that<a for any o € I
and o« = o1 VvV --- Vo, for someoy,...,a, € I. Then the spaceX(x) is canonically
isomorphic tolim . X (o).

—oe

The proof of this lemma is completely analogous to the algebraic part of the proof
of Lemma 2.8 and is omitted. The following result is an immediate consequence of
Corollary 4.4, Lemma4.7, and Corollary4.9.

Lemma 5.5. The inductive system S ové(R¥) formed by the spaces’lo(K) is lo-
calizable

Theorems3.6-3.8 can be reformulated in terms of localizable inductive systems as
follows.

Theorem 5.6. The inductive systertd over K(R*) formed by the space&(K) is
localizable
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Let X be an inductive system over a partially ordered AetFor everyl C A,
we define the inductive systerr’ over | setting X/ (x) = X'(«) and pﬁ; = p;"a, for
a,of € I, a<o (i.e., X! is the “restriction” of ¥ to I). If I ¢ J C A, then there
are canonical mappings; ;: lim X! - lim X7 satisfying the relatior’cfjpfl =p¥’
for any o« € I. Let A be a nondecreasing mapping frolnto a partially ordered seB.
With every f € B we associate the set; = {x € A | A(x) <} and define the inductive

systemA(X) over B setting A(X)(f) = limx4¢ and pg(;,() = Tf,;,A/,, for B, € B,
p<p. O

The inclusion mapping): P(R*) — K(RY) is clearly a morphism of quasi-lattices.
By definition of the inductive systei?, we havel/ = 0(S) and, therefore, Theore®6
follows from the following more general statement.

Theorem 5.7. Let A be a distributive quasi-latticeB be a distributive lattice and
A:A — B be an injective quasi-lattice morphism such that every elenfeat B is
representable in the fornf = A(ay) Vv --- Vv A(a,), Whereog, ..., o, € A. If X is a
prelocalizable inductive system of vector spaces ovethén A(X) is a prelocalizable
inductive system of vector spaces over BYlis a localizable inductive system over A
and the lattice B is infinitely distributivehen the inductive systeim(X) is localizable

The proof of Theoren®b.7 is given in AppendixA.

Remark 5.8. Under the conditions of Theorem.7, for every quasi-lattice morphism
¢ from A to a distributive lattice., there is a unique lattice morphisgn B — L such
that ¢ = 4. This means thaB is the free distributive latticeover the partially ordered
setA (see[3, Section 1.5, Definition 2]

Let K1, ..., K, be convex closed proper cones [itf such that J!_, K; = R* and
let | be the set consisting of all intersections of the cokgs..., K,. It follows from
Theorems3.10 and 5.6 and Lemmab5.4 that /(R*) is canonically isomorphic to the
space lim A(int K*). In the next section, we shall establish the bijectivity of the

— Kel

Fourier transformation by proving that for some choice of the cokigsthe latter

space is isomorphic tdB(R¥). To this end, we shall need to pass from the above

inductive limit representation df/(R¥) to another representation similar to that given

by Martineau’s edge of the wedge theorem for hyperfunctions. We conclude this section

by describing the corresponding procedure in terms of abstract inductive systems.
Recall [3] that a partially ordered sei is called a lower semilattice if every two-

element subsefxs, ap} of the setA has an infimunmuy A a2. Recall also that a subset

| of a partially ordered seA is called cofinal inA if every element ofA is majorized

by an element of.

Lemma 5.9. Let T be a setA be a lower semilattice¥ be an inductive system over
A, and 2 be a mapping from T to A such thd(7) is cofinal in A. LetA\/ be the
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subspace ofp.c7r X (A(1)) spanned by all vectors of the form
. X . X
JtPyymiy, o) JTPLai@, M) (5.2)

wheret,7 € T, x € X(A(zr) A A7), and j; is the canonical embedding o€ (A(t))
into @7 X (A(1)). Then we have a natural isomorphism

Drer X (A(D) /N = lim .

The proof of Lemmab.9 is given in AppendixB.

Corollary 5.10. Let A be a finite lower semilattice and be an inductive system over
A. Letoa, ..., o, be a family of elements of A containing all maximal elements of A
and N be the subspace ab’_,X(v;) consisting of the vectorsxy, ..., x,) whose
components are representable in the form

n
Xj = Z jlpian,,alxila i=1...,n, (5.3)
=1

where x;; € X(o; A oy), xii = —x5;, and j; is the canonical embedding d€(«;) into
?_1 X(0;). Then we have a natural isomorphism

By X () /N = lim X.

Proof. Obviously, a subset of a finite partially ordered seA is cofinal in A if and
only if it contains all maximal elements &, and in view of Lemmgb.9 it suffices to
show that\ coincides with the subspac€’ of &!_; X'(;) spanned by the vectors of

the form jipsy . 0.y — JiPs nsy. oY With y € X(2; Aoy). Let x € V7. Then we have

n n n
X X : X
x = E (i P nag, 0 Vil = J1P noy, oy Vi) = E Ji E P noy, 0 Vil = Vi),
i1=1 i=1 =1

where y;; € X(o; A o). Settingx;; = yi; — yii, we see that the components »f

have form 6.3) and, thereforex € A/. Conversely, lex be the element o' whose
components have fornb(3). Then in view of the antisymmetry of;; we have

n n n

_N x _1 ;X I .

X = Z Ji Z paiAa/’aixil - E Z (leO(;AO(/,O(,'xll - lea[Aal,o{[-xll)
i=1 =1 il=1

and, thereforex € N’. Thus,N'= N’ and the corollary is proved.]
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6. Bijectivity of Fourier transformation

In this section, we give the proof of TheoreBnll

We first consider the one-dimensional case, when the spaces of hyperfunctions and
ultrafunctionals have very simple structure and the bijectivity 7ofcan be derived
immediately from Theoren8.10 without any reference to algebraic constructions of
the preceding section. Le¥ (V) denote the space of functions holomorphic in an open
setV c C. According to Sato’s definition, hyperfunctions on an open®et R are the
elements of the quotient spaéB(V \ O)/H (V), whereV is an open set ifC containing
O as a relatively closed subset aifl(V) is assumed to be embedded KXV \ O)
via the restriction mapping. It is important that all such quotient spaces are naturally
isomorphic to each other and, therefore, this definition actually does not depend on the
choice ofV (see, e.g., Section 2 dB] or Section 3.1 of[9]). In particular, we can
setB(R) = H(C\ R)/H(C). Forv € H(C\ R), we denote by{v] the corresponding
element of 5(R). Let the operatorg.: H(C+) — H(C\R) be defined by the relations

. v for {eCy
(J£ve)(©) = {0 for e Cy ° vt € H(Cy).
The boundary value operatobg, : A(R+) — B(R) and br: A(R) — B(R) are given
by

br,v: = £[jrv+], brv=bg, (Vic,) =br_(V|c), (6.1)

where vy € A(Ry), v € A(R), and v|c, are the restrictions o to Ci (note
that A(Ry) = H(Cy) and A(R) = H(C)). By Theorem3.10 and the definition
of U(R), the Laplace operator€x determine an isomorphic mapping: U (R) —

lim @ A(int K*). The setP(R) contains only three element® ., R_, and {0}.
— KeP(R)
By definition of the inductive limit, we have

lim — A(int K*) = (AR) & ARy) @ AR-))/N,
KeP(R)

whereN is the subspace ol(R)® A(Ry) @ A(R-) spanned by the vectors of the form
(v, =V|c,,0) and (v, 0, —v|c_) with v € A(R). Let the mapping: A(R) ® A(Ry) @
A(R_) — B(R) be defined by the relation

S(V,vy,vo) =brv+br vy +bg v (6.2)

and lets:lim P A(nt K*) — B(R) be the mapping induced by. By definition
— KeP (R)
of the Fourier operatorF, we haveF = sL. Thus, to prove the bijectivity ofF, it

suffices to show that is one-to-one. In other words, we have to show ivav,v_) €
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N if §(v,vy,v_) = 0. In view of 6.1) and 6.2, the last condition means that
[j+VIe,)] + [j+Vv4] — [j-v—]1 = 0. In other words, there is a € A(R) such that
Vlc, +V4 =Ulc, and —v_ = u|c_. This implies that

(V, vy, Vo) = (V—u,—(V—ulc,.0 + (u,0, —ulc_).

Thus, (v,v4,v_) € N and TheorenB.11is proved for the casé = 1.

Let us now consider the general case. With everyxdet.., x! of vectors in R
we associate the con&(xL,...,x)) = {x € R¥|x = tixX + - + 1x!, 1, >0). Let
x1, ..., xk*1 be vectors inR* such thatk (x1,...,x*1) = R*. Fori, j = 1,..., k+1,
i #j, we set

E; = {&e RN (& x) >0},

1 al k+1 1 al aj k+1
Ki = K. 8 XY, K=K /R,

A ~

[ =Ein---NEN---NE1, Vij=EiN---NEN---NE;N---NExs1,

where (-, ) is the symmetric nondegenerate bilinear form Bh entering in the defi-
nitions of the Fourier and Laplace transformations and the hat means that an element
is omitted. It is easy to see thay'™; kK; = R* and k; N K; = K;;. Furthermore, we
havel’; = int K/ andV;; = int K;‘}. Let I denote the finite set consisting of all possible
intersections of the coneky, ..., Kx+1. By Lemmab5.4 and Theorenb.6, there is a
natural isomorphisni: U/ (RF) — IimK IZ/I(K). By Theorem3.1Q the Laplace opera-

— Ke

tors Lx determine an isomorphic mapping lim U (K) — lim A(nt K*). Let
— Kel — Kel

N be the subspace @f;rll/l(l",-) consisting of the elementas, ..., vi4+1) such that

k+1

Vi = Z Vij
j=1

wherev;; = —vj; belong to A(V;;). By Corollary5.10 we have a natural isomorphism
m:lim  A(ntK*) — @A) /N, Let b be the mapping froma! I A(T;) to

— Kel

B(RY) defined by the relation

k+1
b(vi, ..., Vky1) = Z br,vi,
i—1

where br, are the boundary value operators. Obviously, we have the inclusian
ker b and, thereforep determines a mapping: @f:llA(Fi)/N — B(R"). From the
definition of the Fourier operataF, it easily follows thatF = bm/LI. Thus, it suffices



A.G. Smirnov/Advances in Mathematics 196 (2005) 310-345 335

to establish thab is a one-to-one mapping. L&t be the mapping fron@fillA(l“i)
to B(RY) defined by the relation

k+1

B(V1, ..., Vit1) = Z (=1)' br,v;.
i=1

Let the mappings: ®; - ; A(V;;) — @®; AI';) be defined by

OV = Y D+ Y DT, v=(vilicg

1<i<j j<i <k+1

It is easy to see that I c KerB and, consequently3 determines a mapping
B: @ TA)/Imé — B(RF). As shown in[9] (see formula 2.5 of Chapter 7 and
Corollary 7.4.6) this mapping is one-to-one. Letbe the isomorphic mapping from
eI A(T) onto itself defined by

(V)i = (=D)'V;, V= (V1,...,Vks1).

Then we haveb = tB and Imd = (). Therefore, the bijectivity oB implies that
of b. Theorem3.11is proved.

Remark 6.1. Let
B = (Ck, TE, . . TE+), Q= (TF, . .. 7B,

where 7%/ = R* +iE;. The above isomorphisn8: @ A(T;)/Imé — B(R") gives
the Cech cohomology representation BIRY) if (B, W) is used as a relative Stein
open covering off CK, CF \ R¥) (see details if9, Section 7.2).

7. Conclusion

The obtained results suggest the way of constructing “nontrivializations” of some
seemingly trivial generalized function spaces. We conclude this paper by indicating
some possible results of this type in the framework of the Gurevich spW(,‘(}asje-
scribed in Chapter | of the boold]. Let Q and M be monotone convex nonnegative
differentiable indefinitely increasing functions defined on the positive real semi-axis and
satisfying the conditio2(0) = M(0) = 0. The spaceWA%(Rk) is the union (inductive
limit) with respect toA, B > 0 of the Banach spaces consisting of entire analytic
functions onC* with the finite norm

sup | f(z)lexpM (Ax) — Q(By)].
=x+iyeCk
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If Q and M grow faster than any linear function, then the Fourier transformation
isomorphically maps the spad&i:(R*) onto the spacM&*(Rk), where

My (s) = sup(st — M (1)), Qu(s) = sup(st — Q(1))
0

t>0 t>

are the dual functions d? andM in the sense of Young. For @ o<1 and 0<f < 1,
the spaces’ (R) coincides with the spac# 2 (R) with Q(s) = s =P and M(s) =
s¥%. In particular, SY(RF) = Wi(R"), where Q(s) = M(s) = s. By analogy with
Definitions 2.1 and 3.1, one can make

Definition 7.1. Let U be a cone inR* and Q and M be functions with the properties
specified above. The Banach spawéj:f‘(U) consists of entire analytic functions on
Ck with the finite norm

sup | f ()l exp(M(|x/Al) — Q(6y (Bx)) — Q(|Byl)),

z=x+iyeCk

where oy (x) = inf ¢y |x — x| is the distance fronx to U. The spaceWﬁ(U) is
defined by the relation

wowy = | wprhd,
A,B>0,0>U

where U runs over all conic neighborhoods &f and the union is endowed with the
inductive limit topology.

Further, we can introduce the following definition analogous to Definifah

Definition 7.2. Let K be a closed cone ifR*. The space/s(K) is defined to be

the inductive limit lim > W]’l?(l(), whereP(K) is the set of all nonempty proper
— K'eP(K)
closed cones contained K A closed coneK is said to be a carrier cone of an element

u € US(RY) if the latter belongs to the image of the canonical mapping feéfi(K)
to U (R).

The results obtained in this paper suggest the following conjecture:

Hypothesis 7.3.Let the defining function€) and M be such thatM (s) <Q(as) for
somea > 0. Then the following statements hold:

(1) The spaceZ/{A%([R{k) is nontrivial regardless of the triviality or nontriviality of
W(RF).
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(2) If WX(R¥) is nontrivial, thenZ/$(R¥) is canonically isomorphic to the space
WiH(RE).

(3) Theorems3.6-3.8 are valid for the spacelﬂ,{,}(K).

(4) One can canonically define the Fourier transformation that isomorphically maps
U (R onto L{&*(Rk).

Note that the Fourier transformation @rﬁ},(Rk) cannot be constructed as that of

ultrafunctionals because the eIementsMﬁ(R") grow faster than exponentially and
their Laplace transformation is not well defined.
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Appendix A. Proof of Theorem 5.7

This appendix is organized as follows. We first introduce some additional notation
concerning inductive systems, which will also be used in proving LerbrBan Ap-
pendix B. Then we derive several auxiliary results (Lemmad-A.5) and, finally,
prove Theorenb.7.

Let X be an inductive system over a partially ordered AeFor I C A, we denote
by TIX the set of triples(x, o, ') such thata, o’ € I, a<d/, andx € X(x). If
(x,a,0/) € T, then we setoe™(x,o,0/) = 15'x — 125 p x (recall thati¥ is the
canonical embedding of’(«) into @y 4 X (). We denote byN,X the subspace of
ByeaX (o)) spanned by alb (x, o, o) with (x, o, o) € T,X. For I Cc A, we denote
by MIX the subspace,c; X (x) of the spaced,c X (x). Obviously, the space_!im’l

is isomorphic toM* /N;¥. We denote byj;* the canonical surjection fronM;¥ onto
lim X’ If I cJ C A, then we have

X X X X
Ty Jp x=jyx, x€Myp. (A1)

We say that a subsétof a partially ordered seA is hereditary if the relations € 7
and o/ <a imply thato € 1.

Lemma A.1l. Let X be a prelocalizable inductive system of vector spaces over a dis-
tributive quasi-lattice A. If | is a hereditary subset of then Ny¥ N M;¥ = N}Y.

Proof. The inclusionNIX C NgY N M;Y is obvious. To prove the converse inclusion,
it suffices to show thatv;¥ N M¥ < N;¥ for every finite A-closed J C A. For
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o € J, we denote byk(x) the cardinality|J,| of the setJ, = {& € J|a' >0a}. It is
obvious thate = inf J,. Therefore, ifa, o’ € J, o # o, and k(¢') >k(a), then we
have J, # J, and, consequentlyk (o A o) = |Jyng| = 1J5y U Jy| > |Jo| = k(o). For
neN, setC, ={oe J|k(x)>n}. We haveJ =C1 D C2 D --- D Cyy| = {&}, where
& =inf J, andC, = ¢ for n > |J|. We shall say that an € N7* N M;¥ admits a
decomposition of orden if there are a family of vectors,, € X () indexed by the
set{(o, o) ;€ Cy, & € J\ I, o < o'} and an element ¢ N,X such that

X=X+ Z X (g, 01, o). (A.2)

aeCp, ' eJ\I, <o’

If x has a decomposition of order |J|, thenx € N,X. Therefore, the lemma will be
proved as soon as we show that every NJX OMIX admits a decomposition of order
n for any n € N. Sincel is hereditary, every € N;Y N MIX has a decomposition of
order 1, and we have to show thathas a decomposition of order+ 1 supposing it
has a decomposition of the formA.@) of ordern. To this end, it suffices to establish
that 6% (x,y, o, o) has a decomposition of order+ 1 for everyo € C,, o € J\ I
such thate < o/ andk(x) =n. Let A={fe€ C,|B <o, B # a}. Sincea’ ¢ I, the
o/-component ofx is equal to zero and byA(2) we have

anw Xoo + Z pgfx, Xpy = 0. (A.3)
PeA

If A = @, then the injectivity ofp:", implies thatx,, = 0 and o (x,y, «, o) = 0.
Therefore, in this caser™ (x,y, o, &) admits decompositions of all orders. Now let
A #£0 andB = supA (the eIementB is well defined becausé\ is a finite set
whose elements do not exceef note thatfi does not necessarily belong &. Set

Y=Y pen p;;% xpy. Then it follows from A.3) that pit, xyy + pi/}[;/ y = 0. Hence, by

(I there is az € X(B A ) such thatx,, = png L Because the quasi-lattiok is

distributive, we haveB/\oc = sUpgen Ao and by (1), there is a familyzg}pca such
thatzg e X(fAa) andz = Zﬁe,\ pg‘;a Bna zg. We thus havex,, = Z/ge/\ Pfan’QZﬁ
and, consequently,

O'X(xm/, o, o) = Z [GX(Zﬁ, aAn B, o) — GX(Zﬂ, aAf, o). (A.4)
peA
If o €1, then we sety = —a (25,2 A B, @) and y,y = Gy v Y pep. ynpy 25 Where

7,7 € J anddy o =1 fory =o' andé, , =0 fory' # o, If o ¢ I, then we set

"Here and below, we assume that the sum of a family of vectors indexed by the empty set is equal
to zero.
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Y =0, Yy =0y,0 X geA, anpey 2B — Oy 0 D_peA, anpmy - SINCEL(AAS) > k() =n
for p € A, it follows from (A.4) that

0% (s 0 0) = 5 + Z o Vs 77

YECu+1, V' EINIL, y<)
i.e., 0% (xyy, o, o) admits a decomposition of order+ 1. The lemma is proved.]

Corollary A.2. Let A be a distributive quasi-latticeY be a prelocalizable inductive
system over Aand I C J C A. If | is a hereditary subset of Athen the canonical
mappingrf‘,: lim X7 — lim &7 is injective

’ — —

Proof. Let x € lim X' and ¥ ,x = 0. By the surjectivity ofj;*, there is ant e M;*
il ,

such thatr = ji*%. It follows from (A.1) that j*% = 0, i.e., ¥ € Ni¥. Therefore,i e
M;¥ N N¥ and in view of LemmaA.1 we conclude thaf € N;' andx = j;'% = 0.
The corollary is proved. [J

Lemma A.3. Let X be an inductive system over a partially ordered set A @na@nd
I> be hereditary subsets of A. Then for everg foU,z, there arexy o € foz such
that x = x1 + x2.

Proof. Let A be the set of all pairgo, ') such thate,o’ € Iy U I and a<d/. By

definition of N;fU,Z there is a family{xyy }(50)ea SUCh thatx,, € X(x) and x =
> ayen 07 (s 0, o). We havex = x1 + xz, where

X1 = Z UX(xom’v a, O(/), X2 = Z O'X(x:m’a o, O(/)-

(a0 )N, o/ elp (o, 0 )N, o’ eI\ 11
Since I1 » are hereditary, we conclude thaf o € N;fz. The lemma is proved.

Lemma A.4. Let A be a distributive quasi-latticeX’ be a prelocalizable inductive
system over A. Lef C A, and I1, I> be hereditary subsets of A contained in J. Suppose
x1.2 € lim X12 are such thatrff JxL= rj’g ,x2. Then there is anx € lim X272 such

— ’ ’ —

_ X _ X
that x1 = Thnh. 1% and xo = Tk, -

Proof. Let ¥12 € M;¥, be such thaty » = j;* 12. We have

X X X X X X
Thul, 1T, UYL = T g X1 = T, gX2 = 1o, 101, nuLX2-



340 A.G. Smirnov/Advances in Mathematics 196 (2005) 310-345

Since the set$; » are hereditary, the s€{U > is also hereditary and by Corolla#.2,
the mappingey,, , is injective. Thereforezy¥ | . x1 =13 , ,x2 and using A.1),
we obtainj;fu,z(il — Xp) = 0. This means thaf; — &2 € foU,z. By LemmaA.3,
there arey » € N;XZ such thatiy — X2 = y1 + yo. Seti = &1 — y1 = %2 + y». Then
e MPnMy =M}

o, Setx = ji¥ % Thenx e lim XNz gnd it follows from
(A1) that

X _ X X o~ X o
Tllﬂlz, nx = ‘511012, nJnnp* =Jn (*1— yl) = X1,

X _ X X o~ X = _
Thnb, LbX = Thnb, LJhnnp* = Ji, X2+ y2) = x2.

The lemma is proved. [

Lemma A.5. Let A be a quasi-latticeB be a lattice and 4: A — B be an injective
quasi-lattice morphism such that any elemghte B is representable in the form
B =) V-V Ae,), Whereoq, ..., o, € A. Then we have

Q) If o,/ € A and A(o') < A(x), thena' <o

(@) If B,p € B, f<B, and p = i(x) for an o € A, then there is a unique/ € A
such thatp = A(o).

(3) If A’ C A has an infimum in Athen A(A’) has an infimum in Band A(inf A’) =
inf A(A).

Proof. (1) We havel(a A o) = A(o) A A(e) = A(e'). In view of the injectivity of A it
hence follows that: A &' = o’. This means that’ <.

(2) Letoyg, ..., o, € A be such thap’ = A(ag) V- - -V A(ay). Since/(x;) < B, in view
of (1) we havenx; <o for any j = 1, ..., n. Therefore, the element = a1V ---Vva, is
well defined and satisfies the relatid/) = (o) v - - -V A(ax,) = . The uniqueness
of o’ follows from the injectivity of /.

(3) Obviously, A(inf A") < B for any f/ € A(A’). Let B € B be such tha3< 8’ for
all B € A(A’). Then by (2), there is am € A such thatp = A(x), and in view of (1)
we havea <o for everyo’ € A’. This implies thatx< inf A’ and < A(inf A’) and so
J(inf A") = inf A(A)).

The lemma is proved. O]

Proof of Theorem 5.7. Let Z = A(X). Note thatA; is a hereditary subset gk for
any f§ € B. The fulfilment of conditions (I) and (lll) forZ therefore follows from
Corollary A.2 and from LemmaA.4, respectively. Letp; , € B, f = f1 Vv f,, and

x € Z(p). SinceZ(p) = lim xX4¢, there arexs, ..., o, € A andxy € X(a1), ..., xn €

X (o) such thati(x;) <p andx = Z’]’zl pfj xj, Wherepgj is the canonical mapping
from X (o) into lim X4, Chooseyi, ..., 75,73, ... 75 € A such that

Br= 20DV -V AGD,  Ba=AGH V-V AGh).
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The distributivity of B implies that

o) = o) A BV Bo) = A Ay V-V (@ AYY), J=1...,m

and by the injectivity of1, we haveoc, (o A f -V (af Ayz). Since X’ satisfies
condition (Il), for anyj = 1,...,m there arey; € X(ocj A /1) yj e X(oj Ay
andz} € X(2j A 7Y, ..., 2} € X(oc., A Y5) such that

s t
o X Ley X !
Xj= Z pa_/Ay’I, oc_/yj + pa_/Ay’z,a_,-Zj'
=1 =1

B B
Sety = Y1y Xt £, 0} 2 = St Tica 02,2} Theny € Z(hy), < € Z(p)
and we have

s mot
pﬁlﬁy+pﬁzﬂz_ZzpaA}ly1+ZprjAy2f

j=11=1 j=1I1=1

m

N
Z “/[ZpaA,lacyj+ZpocA,za, :| Zpg/x]—x

Thus, the inductive syster¥’ satisfies the condition (Il) and, consequently, is prelocal-
izable.

We now suppose that the lattid is infinitely distributive andX is a localizable
inductive system and check that satisfies condition (If). Let {f,,}wecq be a nonempty
family of elements o bounded above by A € B, and let{x,},cq be a family such
that x,, € Z(B,) andy = pgﬂﬁxw does not depend om.

We first prove the statement for the case Wlﬁe,;a = A(ap) for somewg € Q and
ag € A. For brevity, we writefiy = f,,; and xo = xw,. Setf, = f, A fo. Since
B.,<PBo, by LemmaA.5 there are (uniquely defined), € A such thatx, <o and
ﬂ/a, = A(o). BecauseZ satisfies condition (Ill), there are,, < Z(ﬁ;) such that

p? P 5 x,, = x, for every w € Q. The canonical mappln@‘(“)

w> PO s Pw

from X (x) into Z(A(x)) = lim X4 is isomorphic for anyx € A becausei(x) is
—

the biggest element of the sdt; . Therefore, for anyw € Q there exists a unique

- . A J
%o € X(uy) such thatx), pﬁwxw We havepﬂ(a,) ;(1)pr°‘) = pa(“)px,a for any

o/, € A such thato <a. Hencepggpa ke = pﬁ fo x,, = xo and, consequently,

x;, = xo and pg
w

-1 ~
paw agXm = (péfo) xo does not depend ow. Let & = infcq o, and f = A(a). By

LemmaA.5, we haveB = infy,eq B, = infy,eq B, In view of the localizability of
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X there is anx € X (&) such thatx, = p&X%i for all w € Q. Setx = pgi. Then
x € Z(p) and we have

z _ zZ z B =z By X ~_ = ;o
Pi.s, % = PB,.8,Pp. g P3* = Pp,. g, P%Pa0," = Py g Yo = Yo

We now consider the general case. lZét: inf,co B, and J be a finite A-closed
subset ofB such that/ C 4(A) and § = sup,.; A(2). As in the proof of LemmaA.1,
we denote byJ, (y € J) the set{y’ € J |y >y}. Forn e N, setC, = {y € J | |J;| >n}.
We haveJ = C1 D> C2 D --- D Cy) = {3}, wherey =inf J, andC, =9 for n > |J|.
It suffices to show that for any € N, there is a family{y,},ec, such thaty, € Z(y)
and

y=p§ﬁ§+ Z pf/})’y» (A.5)
vecll

wherey € Z(ff). We prove this statement by induction onForn = 1, the existence
of a decomposition of formA\5) follows from condition (ll). Therefore, it suffices
to show that if A.5) holds for somen € N, then for anyy € C, there is a family
{y;/}y'ecm such thaty, € Z(y') and

Z ~ zZ
Yy = pBA}’, . Yy + Z p”//, 7 y;/, (A6)

V'€Cns1

where j, € Z(B A 7). Let Q be the disjoint union o2 and a one-element sei}
(x ¢ Q). Setp, =y and f,, = B, vV supC, \ {y}) for w € Q (if C, \ {y} = 9, then
we assumef,, = B,). For everym € ', we define an element), € Z(f,,) setting
x, =y, and

- — 02 - Z
X0 =Pp, g, 0 " Pp g Y D Prp¥
Y eCn\{y}

for w € Q. It follows from (A.5) that the elemenpﬁ? x|, does not depend om €

B
Q. Let f' =inf_ o B, Sincef;, € A(A), we can apply the result of the preceding

paragraph and find an’ € Z(f') such thaty, = x}, = p;;% yx’. Because the lattic®
is infinitely distributive, we have ’

B =@Apv sup }(“/M), (B =B Ay for Cu\ {y)=0).
YeCa\ly
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Hence, by II, there arg, € Z(BN/) and a family{z, },yec,\(;} Such thatz,, € Z(y"Ay)
and y, = pi‘i% , ¥y + Xyecm p;?,zw’yy;. Becausey' Ay € Cpy1 for o',y € C,
and y’ # y, we can rewrite the last decomposition in fori.€). Theorem5.7 is
proved. [

Appendix B. Proof of Lemma 5.9

In what follows, we use the notation introduced in the beginning of AppeAdix
Let | be the linear mapping fron®.c7 X (A(1)) t0 @yea X (o) such thatlj, = zjff)
for any t € T. The operatoll carries vector §.2) to the element

X X
ly pot/\x’,cx

X — z;’?p;“/w,’a,x =V, and,d)— ¥ (x,and, ), (B.1)
whereo = A(t) ando’ = A(7'). This implies that (N) C Nj‘ and henceV c Ker j*1.
The mapping;j*! therefore uniquely determines a mapping ®.cr X (A(1))/N —
lim X. To prove the lemma, we have to show timatis an isomorphism. To this end,

it suffices to establish the opposite inclusion
N > Ker j . (B.2)

Set] = A(T). Let a mapping’: I — T be such thatl(//(«)) = « for any o € I and
let the mapping”: M¥ — @.cr X (L(1)) be defined by the relation&;' x = Jix for
any o € I andx € X(a). Clearly, Im!’ coincides with the subspade of @7 X (A(7))
spanned by all elementgx with © € 2'(I) andx € X(A(r)). Moreover, we have
I'lx = x for any x € E. Let us show that every € @.cr X (A(r)) can be decomposed
asx =n+x/, wheren € A/ and x’ € E. It suffices to consider the case= j.y,
wheret e T and y € X(A(1)). Let ¥ = J/(A(1)). Then we havel(r) = A(z’) and,
consequently, the element= j.y — jy belongs toN. Settingx’ =x —n = jyy, we
obtain the desired decomposition because A'(1).

Let A be the subspace a¥;' spanned by all vectors of the forng p\, , x —

zf,p;"’m,’a,x with o, o/ € I andx € X(a A o). We obviously have
IN)=N, I'W)CN. (B.3)
Inclusion B.2) can be easily derived from the equality
NEnMt =N (B.4)

which will be proved a little bit later. Indeed, let € Ker j*I. Then we havdx e
Ker j* = N and in view of the obvious inclusion Imc M;" it follows from (B.4)
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that Ix € N. According to the above we can write = n + x/, wheren € N and
x’ € E. By (B.3), we haveln € N and, therefore/x’ € N. Sincex’ € E, we have
x’ = U'lx’ and it follows from B.3) that x’ € A/. Thus,x € N and the implication
(B.4) = (B.2) is proved.

It remains to prove B.4). The inclusion N C Njf N M,X obviously follows from
(B.1) and we have to verify that € N supposingx € Ny N M;¥. Let o,z € A be
such thate’ <o and lety € X (¢/). Since the set is cofinal in A, there is aff € I
such thatp>«, and we haver® (v, o/, o) = ¥ (y, o/, ) — a* (pX y, o, ). Therefore,
when writing sums of the elements of the for (v, o, &), we can always assume
that o € 1. In particular, sincex € Ng“’, we can write

X = Z O'X(xm’cx, o, o)

(o, 0)eAxI, o <o

Z Z X (s o, 0) + Z X oy, o, 00), (B.5)

o' €A\l aeC (o) (o, )el xI,o <o

where C(«) = {a € I'|o/<a} and the family{xy,}w neaxs contains only finite
number of nonzero elements. It is obvious that the second sum in the right-hand side
belongs ta\. Therefore, it suffices to show thay = 3", () 0~ (xua. «'. %) belongs

to N for any giveno/ € A\ I. Since thex’-component ofx is equal to zero, equality
(B.5) implies that} ", Xwx = 0. Fixing ana € C(o), we therefore obtain

Vo= Y (0 G o 0) = 0 (i o, D).
xeC@)\(E)

Using B.1) and the relation
O-X(XOC/O( ’ oclv O() - O-X(x%/(l ’ CZ/, &) = GX(Zv oA &7 OC) - GX(Z’ oA 5(7 5()9

wherez = p?¥  _x,,, we conclude tha, € N. The lemma is proved.
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