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Two routing problems are considered. Although these two are related to each other, one is 

polynomially solvable and, by contrast, the other is NP-complete. First an efficient solution pro- 

cedure is developed for the polynomially solvable problem. Then we establish NP-completeness 

of the other problem. 

Introduction 

Consider a traffic network N= (V, A) where V is the set of vertices, A is the set 

of undirected arcs. Assume N is connected. A length au>0 is associated with each 

arc (i, j) between vertices i and j. There are p refueling vertices, including a depot. 

The others are referred to as non-refueling vertices. A vehicle starts from the depot 

and can move at most distance L after filling up with fuel. 

On receiving a service call from any vertex, it travels from the depot to the vertex 

and returns to the depot. During this trip, the vehicle may visit some refueling 

vertices for fear of running out of fuel, even though the route may not be shortest. 

The problem considered here, denoted by (Pl), is to determine the minimum 

value of L, subject to the constraint that the vehicle can travel to any vertex of N 

and return to the depot without running out of fuel on the way. Or equivalently, 

(PI) min L 

subject to the following constraints: 

(i) each non-refueling vertex is connected to at least one refueling vertex through 

a path of length s+L; 

(ii) each refueling vertex is reachable from the depot along a path on which the 

lengths between successive refueling vertices are IL. 

There is a routing problem related to (Pl), see [4]. The objective there is to find 

a shortest path between two specified refueling vertices along which the vehicle can 

travel without running out of fuel, when the value of L is fixed. 

In Section 2 an efficient algorithm is developed for problem (Pl) and the com- 

putational complexity is estimated. In Section 3 another routing problem (or 
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location of refueling vertices) is considered and its NP-completeness is established. 

Finally a simple numerical example of problem (Pl) is worked out in Section 4. 

2. Solution procedure 

Let p refueling vertices be x1, x2, . . . , xp, let xl be the depot, and let the other 

vertices, non-refueling vertices, be yl, y2, . . . , yq where q = 1 V 1 -p. 
First, consider the problem of finding shortest paths between all pairs of p refuel- 

ing vertices in N= (V, A). This problem can be easily solved by applying Dijkstra’s 

shortest path algorithm [2] p times. Since the computational complexity of 

Dijkstra’s algorithm is O(n’), the problem posed here is solvable in time O(pn2), 
where n=lV/l. 

Let uti denote the length of the shortest path between refueling vertices xi and Xj 

which has been found above. Construct the reduced network N’= (V’, A) which 

contains an undirected arc (i, j) with length uij in A’ and vertices i and j in I/‘. 

Secondly, consider the problem of finding a minimum (or shortest) spanning tree 

of the reduced network N’. This problem can be solved in time 0(p2) by im- 

plementing Prim-Dijkstra’s minimum spanning tree algorithm [l, p. 1381. 

Let T be the resulting minimum spanning tree. And let maxc,,iIE7 uV = U* and let 

L* denote the minimum value of L in (Pl). 

Lemma 1. L* is greater than or equal to u*. 

Proof. Obviously, we can see that the shortest path of N corresponding to each arc 

contained in the minimum spanning tree T of N’ does not contain any refueling 

vertex except the endpoints of the path. Since the vehicle must traverse the shortest 

path of N without refueling which corresponds to the longest arc with length U* in 

T and since a minimax (or bottleneck) spanning tree is exactly a minimum spanning 

tree (e.g. see [l, p. 139]), the conclusion follows. q 

Now, consider the problem of finding a path between each non-refueling vertex 

y, and its nearest refueling vertex XL in the original network N, letting uk denote 

the path length. This problem is also solved by implementing Dijkstra’s shortest 

path algorithm path algorithm q times, hence in time O(qn2). 

Let maxk=l,2,...,q “k= 0 *. Then apparently L* must be greater than or equal to 

2v*. Hence we have the following important fact. 

Theorem 2. L*=max(u*,2u*). 

From what we have mentioned above, we can present the following algorithm. 
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Algorithm 1. (1) Compute uii for all pairs of p refueling vertices. 
(2) Construct the reduced network N’. 
(3) Compute the minimum spanning tree T. 
(4) Set ~*=max,,,,..u~. 
(5) Compute uk for q non-refueling vertices. 

(6) Set u*=maxk=,,Z ,.__, 4uk. 
(7) Set L*=max(u*,2u*). 

Remark. The theoretical time bound for the entire algorithm is 0(pn2) + 0(qn2) = 
0(n3). Although the actual construction of routes for L* in N is not explicitly 
described here, such an issue is relatively straightforward and hence omitted. (See 
Proposition 3 below.) 

Finally we conclude this section by presenting the following proposition whose 
proof is omitted. 

Proposition 3. There exists a spanning tree of Nsuch that the routes in the tree give 
L*. (See the result of the numerical example in Section 4.) 

Remark. The routes identified by a spanning tree of N are not shortest paths in 
general (but feasible for L*) from the depot to the vertices. Such shortest paths may 
constitute cycles (see [4] for more details). 

3. Another routing problem 

In the preceding sections, the number p of refueling vertices is fixed and L is a 
variable. Here we fix the value of L and minimize the number of refueling vertices, 
i.e., p is a variable. (In addition, the routing of the vehicle and location of the 
refueling vertices are desired to be found if possible. However, the following 
theorem strongly suggests that this will be intractale.) We will show that the follow- 
ing problem, denoted by (PZ), is NP-complete. (P2) is as follows: 

(P2) min p 

subject to the same constraints as (Pl). 

Theorem 4. (P2) is NP-complete. 

Proof. We will show that ‘Vertex Cover’ reduces to (P2). Note that Vertex Cover 
is NP-complete (see [3]). 

Let G be an undirected connected graph in which each arc length is unity. let 
d(i, j) denote the shortest path length between vertex i and vertex j as before. Let 

Cl,GZ,..., Cp be covering vertices, Di, D2, . . . , D,_, be the others. Then Vertex 
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Cover can be written as follows: 

(VC) min p 

subject to the constraint that there is at least one covering vertex Ci such that 

d(D,, CL) = 1 for each Dk. 

Here it should be noted that the following fact holds in Vertex Cover: For each 

covering vertex C;, there is at least one covering vertex Cj such that d(C,, Cj) = 1 or 

2 on any path emanating from C;. Hence, Vertex Cover remains as it is if the 

above fact is imposed on it as an additional constraint. 

We construct an instance of (P2) by letting N= G (i.e. ati = 1 for all arcs), L = 2. 

The instance is as follows: 

min p 

subject to constraints: 

(i) d(y,, x,L) = 1 for k= 1,2, . . . , n -p, 
(ii) each refueling vertex is reachable from the depot along a path on which the 

lengths between successive refueling vertices are one or two. 

It is obvious that the instance of (P2) started above is the same as Vertex Cover 

with the additional constraint imposed, which implies (P2) is NP-complete. 0 

4. Numerical example of (Pl) 

Consider the numerical example of (Pl) shown in Fig. 1, where the number on 

each arc is the length. The reduced network N’ is as shown in Fig. 2. Since the 

minimum spanning tree T of N’ is {(1,2), (1,3), (3,4)}, U* = 5. Since the nearest 

refueling vertices of yl, yz, y,, y,, y5 and y6 are respectively x2, x1, x1, x1, x2 and 

x4, u * = 2. Hence L* = 5. The routes for L* = 5 are shown in Fig. 3. Here note that 

a spanning tree results. 

Fig. 1 
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Fig. 2. 

Fig. 3. 
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