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SUMMARY

The COP9 signalosome (CSN) is an eight-subunit
protein complex that is found in all eukaryotes. Accu-
mulating evidence indicates its diverse biological
functions that are often linked to ubiquitin-mediated
proteolysis. Here we applied an emerging mass
spectrometry approach to gain insight into the
structure of the CSN complex. Our results indicate
that the catalytically active human complex, recon-
stituted in vitro, is composed of a single copy of
each of the eight subunits. By forming a total of 35
subcomplexes, we are able to build a comprehensive
interaction map that shows two symmetrical
modules, Csn1/2/3/8 and Csn4/5/6/7, connected by
interactions between Csn1-Csn6. Overall the stable
modules and multiple subcomplexes observed here
are in agreement with the ‘‘mini-CSN’’ complexes re-
ported previously. This suggests that the propensity
of the CSN complex to change and adapt its subunit
composition might underlie its ability to perform
multiple functions in vivo.

INTRODUCTION

The COP9 signalosome (CSN) is an evolutionary conserved

multifunctional complex (Chamovitz et al., 1996; Wei et al.,

1994, 1998). It contains eight core subunits, named Csn1–8, in

order of decreasing molecular weight (Deng et al., 2000). The

complex has been shown to regulate diverse cellular processes,

ranging from cell-cycle progression and signal transduction to

transcriptional regulation (for reviews see Cope and Deshaies,

2003; Harari-Steinberg and Chamovitz, 2004; Schwechheimer,

2004; von Arnim, 2003; Wolf et al., 2003). Despite the wide spec-

trum of CSN functions, a common theme has become apparent

suggesting that many of these functions are tied to the ubiquitin-

mediated proteolysis pathway. Several studies have shown that

the CSN regulates the activity of cullin-RING E3 ligases (CRL) by

removal of the ubiquitin-like protein Nedd8 from the cullin

subunit of the cullin containing E3 ligases. Cycles of neddylation

and deneddylation of cullins appear to be needed to sustain their

ubiquitinating activity.

The intact eight-subunit CSN complex is composed of six PCI

(for proteasome, COP9, and initiation factor 3) domains found in
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Csn1, Csn2, Csn3, Csn4, Csn7, and Csn8. Csn5 and Csn6

contain an MPN domain (for Mpr1p and Pad1p N-terminal)

(Aravind and Ponting, 1998; Glickman et al., 1998; Hofmann

and Bucher, 1998). The deneddylation activity is linked to the

metalloprotease motif (EXnHXHX10D) of Csn5, which is

embedded within the MPN domain and known as JAMM

(JAB1/MPN/Mov34) or MPN+ motif (Cope et al., 2002; Maytal-

Kivity et al., 2002b). The structure of the JAMM domain has

been solved and additional amino acids outside of the domain

have been shown to be essential for the deneddylation reaction

(Ambroggio et al., 2004). Orthologous CSN complexes have

been identified in higher eukaryotes with all eight subunits being

encoded (reviewed in Wei and Deng, 2003).

The PCI and MPN domains are found almost exclusively in two

other large protein complexes: the 19S lid of the 26S proteasome

and the eukaryotic translation initiation factor eIF3. The 26S pro-

teasome is composed of the 20S catalytic core particle and the

19S regulatory particle (Voges et al., 1999). The lid is a subcom-

plex of the 19S located at the exterior ends of the 26S protea-

some, and it is required for protein selection and deubiquitination

by Rpn11, an MPN subunit. eIF3 promotes the formation of pre-

initiation complexes by interacting with other initiation factors,

and facilitates loading of the 40S subunit onto the ternary eIF2-

tRNA-Met-GTP complex (Hinnebusch, 2006). The CSN exhibits

a remarkable one-to-one similarity to subunits of the proteasome

lid (Glickman et al., 1998), suggesting that CSN and the lid might

have a common evolutionary ancestor. The eIF3 complex,

however, is more distantly related and contains 6 PCI and

2 MPN proteins among its 13 components (Damoc et al., 2007;

Hinnebusch, 2006). Recent studies indicate physical interactions

among the lid, eIF3, and CSN complexes (Huang et al., 2005;

Peng et al., 2003; Schwechheimer and Deng, 2001), leading to

proposals that the CSN acts as an alternative lid for the 26S pro-

teasome (Deshaies and Meyerowitz, 2000; Li and Deng, 2003)

and might regulate eIF3 levels (Yahalom et al., 2008).

A large number of proteins have been reported to associate

with the CSN complex (Richardson and Zundel, 2005; Wei and

Deng, 2003). Currently it is unclear whether all these proteins

are degradation targets or if they have other roles. Moreover,

numerous investigations have shown that disruption or knock-

down of one of the CSN subunit does not necessarily result in

the same phenotype as nullification or genetic modification of

other individual subunits (Bemis et al., 2004; Mundt et al.,

2002; Oron et al., 2002; Peth et al., 2007; Tomoda et al., 2002).

This implies that some CSN subunits have other physiological

roles in addition to being a component of the CSN complex.
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Biochemical size fractionation analysis indicates that few CSN

subunits are monomeric or in smaller versions of the CSN

(‘‘mini-CSNs’’). Interestingly, Csn5 the active CSN subunit, is

a common component of many of the small CSN complexes (re-

viewed in Chamovitz and Segal, 2001), and a large fraction of

overexpressed Csn5 is found in the free form (Tomoda et al.,

2002). Although the CSN-associated Csn5 is mostly nuclear,

the free form of Csn5 appears to be both cytoplasmic and nuclear

(Tomoda et al., 2002), and the latter might reflect a nuclear export

activity for Csn5. Whether individual CSN subunits, or the mini-

CSNs, have independent activities, explaining the diverse func-

tionality of the CSN complex, is unclear.

Despite the increasing list of biochemical functions assigned

to the CSN, to date there is no information regarding the struc-

tural arrangement of individual subunits. A high-resolution

structure of CSN has not been reported; however, a low-

resolution electron microscopy analysis of the purified human

CSN is available, indicating a dynamic particle (Kapelari et al.,

2000). In addition, known pair-wise interactions of CSN subunits

(summarized in Wei and Deng, 2003) provide clues about

aspects of subunit organization. Recently we have solved the

structural organization of the nine-component 19S lid by

coupling tandem mass spectrometry (MS) with cross-linking

experiments (Sharon et al., 2006). A natural continuation will be

to study the subunit topology of the related CSN complex and

compare this with our interaction map of eIF3 determined

recently (Zhou et al., 2008). A map of subunit interactions and

information about the overall stability of various subcomplexes

enables insight into the stable modules of these complexes,

which highlight potential functional subcomplexes as well as

the contribution of individual subunits to the overall activity.

Models of the subunit architecture form the basis for further

biochemical studies and are especially significant when high-

Table 1. Theoretical and Measured Masses of Protein Subunits

Csn Subunit

Theoretical

Mass (Da)

Experimental Mass (Da)

mass (Da)

Csn1 52,510 52,492 ± 4

Csn2 48,920 48,920 ± 4

Csn3a 46,615 46,611 ± 5

Csn3 45,709 45,708 ± 2

Csn4 46,493 46,493 ± 2

Csn5b 38,688 38,717 ± 5

Csn5c 38,753 38,776 ± 2

Csn6 33,800 33,799 ± 2

Csn6d 33,392 33,392 ± 9

Csn7ae 30,794 30,796 ± 3

Csn7b 27,034 27,042 ± 1

Csn8 23,450 23,449 ± 1

All masses, except those indicated otherwise, were measured using the

accurate mass method.
a Csn3 version a (see Supplemental Experimental Procedures) measured

using a C18 pipette (Zip Tip).
b Measured under denaturing conditions using a C18 pipette (ZipTip).
c Csn5 has a bound Zn atom, measured under native conditions.
d Csn6 different strain DLFF C-terminal (Zip Tip).
e Measured from tandem MS spectra.
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resolution structures of these dynamic complexes remain

elusive. To deduce our model of the CSN, we reconstituted the

human complex by coexpression in Escherichia coli of Csn1/2/3

and Csn4/6/7 and single expression of Csn5 and Csn8. This

strategy enabled us to form the intact eight-subunit complex.

We confirmed the activity of this intact complex, together with

various subcomplexes, using a deneddylation assay of neddy-

lated cullin1 (see Supplemental Data available online) and

applied a mass spectrometry (MS) approach that maintains

protein complexes in their native state (Benesch et al., 2007;

Sharon and Robinson, 2007; van den Heuvel and Heck, 2004).

Our results show that the complex contains a single copy of all

eight subunits. We also noted that the interactions of the seven-

subunit complex are maintained in solution, even without the

active Csn5 subunit. Furthermore, we discovered the tendency

of the CSN to readily dissociate to form smaller subcomplexes.

By combining the MS and tandem MS results and using

a network inference algorithm, we generated a complete subunit

interaction map containing all eight subunits of the CSN

complex. Two symmetrical protein modules become apparent

from the model, highlighting the possible origin of a number of

the mini-CSN complexes reported previously. More remarkable

is that similarities in subunit interactions are revealed when we

compare our models of the yeast 19S lid, the human COP9

signalosome, and human eIF3 complexes.

RESULTS

Correlating the Identity of the Protein Subunit
with Its Intact Mass
The ability to relate the accurate mass of a protein subunit to the

sequence of the protein is the fundamental premise upon which

our model-building takes place. The standard proteomics

method that is often used catalogs all proteins within the sample

and enables their identification in databases (Mann et al., 2001).

However, without the correlation between accurate mass and

sequence, it is often ambiguous as to which protein subunit is

present within a particular subcomplex. Moreover, protein

subunits are invariably truncated and modified to such an extent

that identification based on intact mass alone is ambiguous.

Therefore, we have developed an approach in which each

subunit is identified by its unique mass and sequence simulta-

neously (see Experimental Procedures and Figure S2). Using

this approach, subunits and subcomplexes can be assigned

unambiguously. The mass of the Csn5 subunit was determined

independently (Table 1). The remaining seven CSN subunits

were separated chromatographically and the masses of the indi-

vidual proteins, together with peptide identification, enabled us

to identify and assign each subunit by its unique mass (Table 1).

Composition of the Intact CSN and Its Subcomplexes
As a basic prerequisite for studying the structural properties of

the CSN complex, we first investigated the activity of the recon-

structed human complex using a deneddylation assay. We incu-

bated at 20�C neddylated cullin1 at 1:50 of CSN:Nedd-cullin1

with (i) Csn5, (ii) Csn4/6/7 plus Csn5, (iii) Csn1/2/3 together

with Csn5 and Csn8, (iv) the wild-type eight-subunit complex,

and (v) the intact complex with various constructs of subunit

Csn7. Results showed that for the intact CSN �50% of the
ts reserved
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cullin1 was deneddylated within 10 min (Figure S1). For the intact

complex containing different isoforms of Csn7 the activity of the

Csn7b-containing complex was indistinguishable from that con-

sisting Csn7a. The only difference was that Csn7a was margin-

ally slower than wild-type with �50% deneddylation achieved

after 30 min. The small subcomplexes (i) to (iii) showed no appre-

ciable activity in this assay. These results allow us to conclude

that the reconstituted CSN complex has appreciable catalytic

activity.

An electrospray mass spectrum recorded for an aqueous

solution of the eight-subunit CSN complex showed a major

series of peaks assigned to the charge states of the intact

complex with a mass of (321,274 ± 35 Da) confirming that all

eight subunits are present at unit stoichiometry (Figure 1A and

Table 2). Interestingly, for this complex we also observe a series

of lower-molecular-weight species under MS conditions where

most protein complexes remain intact (Sharon and Robinson,

2007). These are assigned predominantly to substoichiometric

complexes in which Csn2 and Csn5 are absent. This indicates

that both subunits have weaker interactions with other subunits,

and that they are peripheral and hence dissociate at the lowest

activation energies. Interestingly, we could also detect in the

MS spectra smaller subcomplexes corresponding to Csn1/2/3/

8 and Csn1/3/8. This implies that this complex is considerably

less stable than the majority of complexes that we have studied

Figure 1. Electrospray Mass Spectra of the Intact CSN Complexes

(A) Mass spectrum of the intact eight-component CSN complex. The predom-

inant species, in the range of 7250–8250 m/z, is assigned to the intact eight-

subunit complex. Additional well-resolved charge states are observed

between 6250 and 7250 m/z, corresponding in mass to substoichiometric

complexes from which either Csn2 or Csn5 have dissociated. Two additional

subcomplexes, assigned to Csn1/3/8 and Csn1/2/3/8, give rise to signals

centered at 5000 and 5750 m/z, respectively.

(B) MS spectrum recorded for the DCsn5 complex in which Csn5 is absent. The

major charge series in the range of 6500 to 8000 m/z corresponds in mass to

the seven-subunit complex. In addition, in the absence of Csn5, two stable

subcomplexes are detected, Csn4/6/7 and Csn1/2/3/8, centered at 4500

and 5750 m/z, respectively.
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to date. Consistent with this idea is that if we examine the

complex in the absence of Csn5, a seven-subunit complex is de-

tected. However, we find that in this case, under the same MS

conditions, more extensive dissociation has occurred yielding

smaller subcomplexes (Figure 1B). The solution phase products

include Csn1/2/3/8, observed in Figure 1A, and a stable trimer

Csn4/6/7. These results imply that binding of Csn5 confers

stability to the complex in solution.

To probe proteins at the core of the complex and to define all

possible protein-protein interactions, we generated sets of over-

lapping subcomplexes (Hernandez et al., 2006). This was done by

stepwise addition of methanol to the complex-containing solu-

tions, reasoning that this would disrupt hydrophobic interactions

and generate additional subcomplexes. A wide range of subcom-

plexes was produced including heptamers, hexamers, tetra-

mers, trimers, dimers, and monomers (Figures 2A and 2B). Under

these conditions the Csn1/2/3/8 tetramer persists, together with

a smaller trimer Csn1/3/8, implying a particular stability for this

network of interactions. By contrast, the Csn(5)/4/6/7 subcom-

plexes are of lower intensity and individual subunits are more

prevalent in the spectra, implying a reduced stability within

Csn4/5/6/7 compared with that observed for Csn1/2/3/8.

Table 2. Theoretical and Measured Masses of Complexes

and Subcomplexes Identified in MS Analysis

Subcomplex

Theoretical

Mass (Da)

Experimental

Mass (Da) mass (Da)

Intact massa 320,841 321,274 ± 35

D2a 271,921 272,587 ± 25

D3a 274,229 276,140 ± 21

D5b 277,903 278,153 ± 13

D8a 297,391 298,081 ± 74

C13188H20924N3580O3987S126

D5D2b 228,983 229,120 ± 8

D5D3b 232,195 232,317 ± 31

D5D8b 254,454 254,601 ± 20

D2D5D8b 205,534 205,982 ± 31

Csn4/5/6/7b 146,022 146,285 ± 5

Csn1/2/3/8b 170,569 170,649 ± 10

Csn1/4/6/8b 156,233 156,264 ± 4

Csn1/2/3b 147,120 147,144 ± 15

Csn1/3/8b 121,649 121,697 ± 6

Csn4/6/7b 107,334 107,343 ± 10

Csn1/2b 101,412 101,404 ± 41c

Csn3/8b 69,157 69,186 ± 8

Csn4/7b 73,535 73,567 ± 10

Csn6/7b 60,841 60,852 ± 7

Two different preparations of the complex containing different subunit

isoforms were used in the analysis (footnotes a and b) (see also Supple-

mental Data for sequences). The superscript above each complex or

subcomplex designates the isoforms (see Table 1).
a Csn3a (46,612 Da), Csn6d (33,392 Da), Csn7ae (30,794 Da).
b Csn7b (27,034 Da), Csn3 (45,709 Da), Csn6 (33,800 Da).
c In the majority of cases the experimental mass is greater than the theo-

retical mass because water and buffer ions are often trapped within the

macromolecular ions. In some instances the mass is slightly lower, but

in all cases this is within the error of the experimental measurement.
, 31–40, January 14, 2009 ª2009 Elsevier Ltd All rights reserved 33
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We assigned the subcomplexes based on their intact masses

and confirmed the assignment using tandem MS (MS/MS). In

this method, a specific well-defined mass-to-charge ratio (m/z)

that encompasses the parent ion is selected and accelerated

through a collision cell at increased pressures of argon collision

gas. The process gives rise to multiple collisions in which the

internal energy of the ions accumulates. Dissociation occurs

when this energy reaches a threshold value, yielding product

ions. This dissociation process involves unfolding of a peripheral

subunit that is released from the complex as a highly charged

individual protein subunit (Benesch et al., 2006). Concomitantly

‘‘stripped’’ complexes are formed with lower charge than the

original complex. Practically, therefore, this enables at least

one protein component of the complex to be identified through

the subunit released. Moreover, the narrowing of the peaks

due to the loss of adduct ions increases the accuracy of the

mass measurement over those of inactivated complexes (McKay

et al., 2006). As a final check on the consistency of the assign-

ment, both masses and charges of the monomeric subunits

expelled from the assembly and the stripped complexes formed

sum to the mass and charge of the original ion isolated for

tandem MS.

By applying the tandem MS strategy to the intact and DCsn5

complexes and isolating a wide range of values covering the

features of the mass spectrum, we identified 26 different sub-

complexes (Table 3). For example, to examine the composition

of the 170.6 kDa subcomplex, an MS/MS spectrum was

acquired for the 29+ charge state (Figure 3A). Two series of

ions are observed at the low-m/z region (left-hand side of the

spectrum), assigned according to their measured mass to

Csn3 and Csn8. The corresponding stripped complexes are

centered at 8,000 and 12,000 m/z and their masses are consis-

tent with Csn1/2/3 and Csn1/2/8. By using extrapolation, we can

therefore conclude that before collisional activation the subcom-

plex is a tetramer composed of Csn1/2/3/8. A more complicated

spectrum is shown in Figure 3B. The data were obtained by

isolating ions at 7000 m/z, giving rise to the dissociation of the

individual subunits Csn3, Csn4, Csn7, and Csn8 at the low-m/z

region (Csn8 is not labeled in the figure). In the high-m/z region

of the spectrum, charge states of both hexamers and pentamers

are identified, all containing Csn1 and Csn6. The assignment

process reveals that the peaks isolated arise from a number of

overlapping ions DCsn5, DCsn2DCsn5, and DCsn5DCsn8.

Figure 2. High-Energy MS Spectrum of the

CSN Complex

Harsh conditions were employed to induce disrup-

tion of the complexes both in solution (by addition

of up to 10% methanol) and in the gas phase

(by increasing the accelerating voltage). Spectra

recorded for the eight-component complex (A)

and for the DCsn5 complex (B) are shown.

Overall, from our MS/MS experiments

we can conclude that Csn7, Csn4,

Csn3, and Csn8 dissociate readily from

the intact complex. Similarly, Csn3 and

Csn8 also dissociate readily from the

Csn1/2/3/8, indicating their peripheral

position in both the intact and tetrameric complexes. Csn2 and

Csn4 are also observed, but not as readily. Interestingly, careful

analysis of all the MS/MS data generated using the intact CSN

and DCsn5 complexes (Table 3) revealed that Csn1 and Csn6

are not dissociated from either complex, suggesting that these

subunits are located within the core.

To probe the stability and integrity of the various subcom-

plexes identified in our experiments, we attempted to reassem-

ble in vitro a number of these subcomplexes from the complexes

produced by our coexpression and single-expression protocols.

Initially we analyzed two inactive trimers, Csn1/2/3 and Csn4/6/

7, and compared their stability in the mass spectra. Interestingly,

the subcomplex Csn4/6/7 was found to be very stable and able

to self-associate to form dimers and trimers of Csn4/6/7, which

is in line with our previous observation. By contrast, spectra re-

corded for the Csn1/2/3 trimer showed populations of Csn1/2,

Csn1/3, and Csn1/2/3, emphasizing its tendency to dissociate

in the absence of other subunits (data not shown). Incubating

the two trimers, Csn1/2/3 and Csn4/6/7, led to the formation of

a well-defined hexamer with a measured mass corresponding

to Csn1/2/3/4/6/7 (Figure 4A). By contrast, incubation of Csn1/

2/3/4/6/7/8 with Csn5 and MS of the resulting solution showed

that it was not possible to reconstitute the intact eight-compo-

nent complex in this way. However, it was possible to form

a Csn4/5/6/7 tetramer (Figure 4B), which was confirmed by the

observation of Csn4/5/6 and Csn5/6/7 subcomplexes, the latter

after gas phase dissociation of Csn7 and Csn4, respectively. In

summary, these results show that Csn5 could not be integrated

into the seven-subunit complex but could assemble with the

Csn4/6/7 trimer to form the tetramer Csn4/5/6/7. Interestingly,

however, the predominant species in this spectrum is the

Csn4/6/7 trimer, suggesting that interactions of Csn5 are

enhanced by the presence of the second module. This observa-

tion is in line with our previous finding that dissociation of the

Csn4/6/7 trimer is not observed in solutions of the eight-subunit

complex but the trimer is readily dissociated in the absence of

Csn5, implying a role for Csn5 in stabilizing the interactions

between the two modules.

Calculating an Interaction Network
To define a comprehensive interaction network of the CSN

complex, a total of 35 subcomplexes (Tables 1 and 2), which

were identified from the MS and MS/MS data, were submitted
34 Structure 17, 31–40, January 14, 2009 ª2009 Elsevier Ltd All rights reserved
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to SUMMIT (Taverner et al., 2008). This algorithm determines the

shortest path network that connects all subunits with their inter-

action partners. Within the set of overlapping subcomplexes, 6

were dimers, 6 trimers, 4 tetramers, 6 pentamers, and 13 were

hexameric or larger. A subset of these subcomplexes generated

for the DCsn5 complex, together with their topological arrange-

ment, is shown in Figure 5A. Interestingly, all seven subunits are

readily observed in various overlapping subcomplexes, even

over this narrow mass spectral range (3000 m/z units); conse-

quently, this increases our probability of finding a unique solution

to the interaction network. It is also noteworthy that the list of 35

Table 3. Theoretical and Measured Masses of Complexes

and Subcomplexes Identified in Tandem MS Analysis

Subcomplex

Theoretical

Mass (Da)

Experimental

Mass (Da) mass (Da)

D3a 274,229 274,395 ± 58

D7a 290,047 290,147 ± 24

D8a 297,391 297,284 ± 27d

D2D3a 225,309 225,589 ± 5

D3D7a 243,435 243,616 ± 32

D3D8a 250,779 250,652 ± 67d

D5D2b 228,983 228,970 ± 48d

D5D3b 232,195 232,200 ± 6

D5D4b 231,410 231,431 ± 20

D5D7b 250,861 250,905 ± 12

D2D3D5b 183,275 183,262 ± 35d

D3D5D8b 208,746 208,739 ± 7

D3D7D8a 219,985 220,217 ± 40

D5D7D8b 227,412 227,433 ± 22

D4D5D8b 207,961 207,957 ± 45d

Csn1/6/7/8b 136,782 136,783 ± 15

Csn1/2/3b 147,120 147,149 ± 16

Csn1/2/8b 124,861 124,869 ± 7

Csn4/5/6b 118,980 119,125 ± 25

Csn5/6/7b 99,529 99,918 ± 31

Csn1/2 101,412 101,423 ± 1

Csn1/3b 98,200 98,191 ± 8

Csn3/8b,c 69,157 69,158 ± 8

Csn4/6b 80,292 80,372 ± 3

Csn4/7b 73,535 73,583 ± 7

Csn6/7b 60,841 60,887 ± 25

Two different preparations containing different subunit isoforms were

used in the analysis (footnotes a and b) (see Supplemental Data for

sequences). The superscript above each complex or subcomplex

designates the isoforms (see Table 1):
a Contains wild-type subunits, with the exception of Csn3a (46,612 Da),

Csn6d (33,392 Da), and Csn7ae (30,794 Da).
b Contains wild-type subunits, with the exception of Csn7b, Csn3 (45,709

Da), and Csn6 (33,800 Da).
c Dissociate together in MS/MS.
d In the majority of cases, the experimental mass is greater than the theo-

retical mass because water and buffer ions are often trapped within the

macromolecular ions. In some instances the mass is slightly lower, but

in all cases this is within the error of the experimental measurement.
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subcomplexes is well above the minimum number required to

define interactions within protein complexes (Taverner et al.,

2008). As such, all interactions within the eight-subunit CSN

complex were predicted with a weighted average of 100%

leading to a high confidence interaction map (Figure 5B).

This interaction network clearly shows two distinct modules.

The first includes Csn1, Csn2, Csn3, and Csn8, whereas the

second module contains Csn4, Csn5, Csn6, and Csn7. The inter-

actions that link the two modules are between Csn1 and Csn6.

The structural organization of the two modules is highly symmet-

rical; three subunits form protein-protein interactions with each

other (Csn1/3/8 and Csn4/6/7) and two additional subunits

(Csn2 and Csn5) form stable protein-protein interactions with

only one other subunit (Figure 5B). This structural arrangement

explains our observation that Csn4/6/7 forms a more stable

Figure 3. Tandem MS Analysis of the Subcomplexes

(A) Isolation at 5900 m/z of the 29+ charge state. Peaks centered at 8000 m/z

correspond to the loss of the Csn8 subunit (black), whereas the series at

10,500–14,400 m/z correspond to the loss of the Csn3 subunit (green). At

low m/z 1600–3000 series of peaks are assigned to the corresponding

individual subunits, Csn8 (yellow), and Csn3 (light blue) subunits. By extrapo-

lation we could conclude that the subcomplex is composed of four subunits

(Csn1/Csn2/Csn3/Csn8).

(B) MS/MS spectrum showing the dissociation products of ions isolated at

7000 m/z. Charge states above 7000 m/z correspond to ‘‘stripped’’ complexes

in which one individual subunit has been dissociated from the complex. The

individual stripped subunits are observed at the low m/z values. Based on

the analysis of the spectrum, we could conclude that a mixed population of

ions (DCsn5, DCsn2DCsn5, and DCsn5DCsn8) was originally isolated. The

different species are labeled.
, 31–40, January 14, 2009 ª2009 Elsevier Ltd All rights reserved 35
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complex than Csn1/2/3. Each subunit within the Csn4/6/7

subcomplex forms interactions with two subunits, whereas in

the Csn1/2/3 subcomplex only Csn1 forms interactions with

two subunits. Moreover, the observation that neither Csn1 nor

Csn6 is dissociated from the complex during tandem MS anal-

ysis is explained because both form a hub, each with three

interacting subunits.

DISCUSSION

We have shown from a series of MS experiments that all subunits

in the reconstituted human CSN are present at unit stoichiometry

leading to a measured mass of 321 kDa. It was previously re-

ported that the CSN fractionates as a 450–550 kDa complex

during gel filtration (Wei and Deng, 2003). The discrepancy is

indicative of an irregular nonglobular shape, consistent with

our findings of two distinct modules with few connecting links

between them. From our experiments we were also able to

determine that Csn5 is not necessary for the integrity of the

complex, which is in accord with previous observations

(Dohmann et al., 2005; Oron et al., 2002; Tomoda et al., 2002).

Figure 4. Monitoring Subcomplex Association

(A) Mass spectrum revealing the interaction between the two subcomplexes

(Csn1/2/3 and Csn4/6/7). Charge series corresponding to the hexameric

particle, Csn1/2/3/4/6/7 (DCsn5DCsn8), are observed between 6800 and

7600 m/z. The dissociation of this hexamer into the individual Csn2 subunit

and its corresponding pentamer Csn1/3/4/6/7 is also detected.

(B) Mass spectrum acquired 105 min after incubating Csn5 with Csn4/6/7. The

formation of a Csn4/5/6/7 subcomplex could be probed (charge series

centered at 5400 m/z) along with an additional smaller subcomplex that corre-

sponded in mass to Csn5/6/7.
36 Structure 17, 31–40, January 14, 2009 ª2009 Elsevier Ltd All righ
However, Csn5 was found to confer additional stability to the

complex. Moreover, we could identify additional substoichio-

metric complexes present in solution as DCsn2, DCsn8,

DCsn2DCsn5, and DCsn5DCsn8, implying labile interactions

between these subunits and the core of the complex. By

coupling the MS and tandem MS results and submitting them

to a network inference algorithm, we calculated an interaction

network for the eight-component human CSN complex

(Figure 5). Interestingly, the complex is composed of two

modules, Csn1/2/3/8 and Csn4/5/6/7, connected by interactions

between Csn1 and Csn6. Within each module, three of the

subunits (Csn1/3/8 and Csn4/6/7) form compact trimers, both

binding to additional subunits Csn2 and Csn5, respectively.

It is of interest to compare our interaction network with those

published previously for the CSN from various sources.

Numerous pairwise interactions were reported for the CSN

from fungi, Arabidopsis, Drosophila, fission yeast, and humans

using the yeast two-hybrid system and filter binding assays

(reviewed in Wei and Deng, 2003). In total, 25 pairwise interac-

tions were detected forming a dense web of protein-protein

interactions. Out of the nine pairwise interactions observed in

our model, eight were detected in the yeast two-hybrid method.

Three additional interactions, Csn2/5, Csn3/4, and Csn7/8, iden-

tified in the yeast two-hybrid study, could occur if the two

modules came into contact through rotation about the

Csn1:Csn6 plane of interaction. We attribute the additional 14 re-

ported interactions to the fact that transient interactions would

not be detected by our methods as well as the tendency of the

two-hybrid system to produce false positives (Uetz et al.,

2000). For example, Csn8, the smallest subunit (23.5 kDa), was

reported to form five protein-protein interactions. A second

potential problem is that endogenous proteins might facilitate

two-hybrid interactions that are not direct, and the presence of

endogenous proteins might confuse the analysis. For instance,

Csn5 binds to Gal4 and this might turn up as false positive in

two hybrid assays (Nordgard et al., 2001). Moreover, it is note-

worthy that yeast comprises endogenous PCI and MPN,

proteins that might act as a bridge and interfere with the assay;

specifically, a C-terminal fragment of human Csn1 has been

shown to interact with yeast signaling molecules (Spain et al.,

1996). A fundamental advance of our MS approach is that

subunits that are in direct, stable interactions are identified,

and heterogeneity and subcomplex formation are apparent

from the spectra.

Our results highlight several aspects concerning the biogen-

esis pathway of the COP9 signalosome. The crucial role of

Csn1 in complex integrity was demonstrated previously:

complete loss of Csn1 in Arabidopsis abolishes accumulation

of Csn8, dissociates Csn5 from the complex, and leads to

a significant reduction in the levels of Csn4 and Csn7 (Tsuge

et al., 2001; Wang et al., 2002b). Likewise, complete depletion

of Csn6 resulted in the loss of the CSN complex and redistribu-

tion of some CSN subunits into subcomplexes accompanied by

instability of Csn1, Csn3, Csn4, Csn7, and Csn8 (Gusmaroli

et al., 2007; Peth et al., 2007). A recent study demonstrated

that knockdowns of Csn1 and Csn3 cause a proportional

reduction in all CSN subunits and a decrease in the levels of

the holocomplex (Peth et al., 2007). Our results, together with

the deletion experiments described above, highlight the
ts reserved
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essential role of the subunits Csn1 and Csn6. From our topolog-

ical model, this can be rationalized by their central location. Both

subunits provide the stable interactions that link the two protein

modules. Also of interest for biogenesis is the observation that

the seven-component DCsn5 complex could not incorporate

Csn5 under the conditions of our experiment. However, we could

clearly detect an interaction between the monomeric Csn5

subunit and the trimer Csn4/6/7 (Figure 4B) and between

Csn1/2/3 and Csn4/6/7 (Figure 4A). These results suggest that

in the course of assembly, interactions within each module are

generated initially, before interactions between the two modules.

Despite the accumulating data regarding the CSN complex,

a key question arises as to how the CSN simultaneously regu-

lates multiple pathways. Our observation that the complex is

maintained, intact in solution, without the peripheral subunits

(Csn2, Csn5, Csn7, and Csn8) suggests that these subunits

have independent roles in many pathways. This idea is sup-

ported by the fact that individual CSN subunits have been iden-

tified in interaction with a diverse set of proteins (reviewed in

Schwechheimer, 2004; Wei and Deng, 2003). Moreover,

previous studies indicate that multiple CSN-independent forms

can be found in complexes of molecular mass lower than the

intact complex (mini-CSNs) (Karniol et al., 1999; Mundt et al.,

2002; Oron et al., 2002; Serino et al., 1999; Tomoda et al.,

2002; Wang et al., 2002b). In particular, Csn4 and Csn7 readily

dissociate in our experiments, and have been found in subcom-

plexes that appear to be independent of Csn1 in Arabidopsis

(Karniol et al., 1999; Serino et al., 1999; Wang et al., 2002a)

A

B

Figure 5. Subunit Topology Map of the

Human CSN Complex

(A) An expansion of the DCsn5 mass spectrum

recorded under harsh conditions to induce sub-

complex formation labeled with the topological

arrangement of subunits deduced from our inter-

action network.

(B) The protein-protein interaction map of the

eight-subunit complex is generated after inte-

grating the MS and tandem MS data and applying

the list of identified subcomplexes to the network

inference algorithm SUMMIT. Two clusters are

clearly observed: Csn1/2/3/8 and Csn4/5/6/7.

Only one interaction between Csn1 and Csn6 links

the two modules. Within each module (Csn1/3/8 or

Csn4/6/7) each subunit forms interaction with the

other two, whereas Csn2 and Csn5, the most

peripheral subunits, form interactions with only

one subunit. A clear symmetrical modularity of

the two clusters is revealed.

and in Drosophila (Oron et al., 2002).

Considering both these observations

and our data, it seems likely that each of

the modules Csn1/2/3/8 and Csn4/5/6/7

or their smaller triads Csn1/3/8 and

Csn4/6/7 have an independent existence.

Although the relevance of these mini-

CSNs is yet to be defined, their structural

integrity is readily observed, enabling us

to propose that facile dissociation of the

intact complex leads to a plethora of subcomplexes that could

well provide a rationale for the multifunctionality of the CSN

in vivo.

The modular composition of the COP9 signalosome can also

explain the fact that some subunits of the complex are appar-

ently missing in lower eukaryotic organisms. For example, in

Candida albicans, Cyanidioschyzon merolae, and Saccharo-

myces cerevisiae (Chang and Schwechheimer, 2004; Maytal-

Kivity et al., 2002a), only four PCI proteins (Csn1, Csn2, Csn3,

and Csn7, or their derivatives) plus one MPN protein (Csn5)

have been identified. However, these five subunits are sufficient

to occupy all specific positions within the module, and it is

reasonable to speculate that three of the subunits appear twice

in the intact complex. Interestingly, within each module the two

peripheral subunits, Csn2 and Csn5, are the most conserved,

with over 60% identity between animal and plants (Wei and

Deng, 2003). These subunits form extensive interactions with

associated proteins (reviewed in Schwechheimer, 2004; Wei

and Deng, 2003) in accord with their exposed position. More-

over, in solution in the absence of Csn5, Csn2 readily dissoci-

ates from the complex, suggesting a transient interaction

between the two subunits. The observation that Csn4/6/7

dissociates readily in the absence of Csn5, but remains assem-

bled in the presence of Csn5, further supports interactions

between the two modules. Together these observations imply

that transient interactions occur between the two modules,

presumably mediated through flexibility in Csn1–6 interactions

(Figure 5B).
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Given the remarkable genetic homology shared between the

CSN, 19S lid, and the eIF3 complexes, we compared their struc-

tural similarity. Recent reports of the interactions maps of the

19S lid (Sharon et al., 2006) and eIF3 complexes (Zhou et al.,

2008) using emerging MS approaches have shown a modular

composition for all three complexes. Two protein modules

comprise the 19S lid and CSN complexes (Figure 6; Figure S3

and Table S1), whereas the larger eIF3 complex is built from

three structural modules. Each of the modules generated in solu-

tion contains between three and five proteins. Stable interactions

between two protein subunits connect the modules, forming

a relatively weak association and a possible flexible hinge region.

Remarkably, the two MPN-domain-containing subunits (Rpn8/

11, Csn5/6 and eIF3f/h) interact directly in all three complexes.

It is noteworthy that for the CSN and 19S lid the active MPN+/

JAMM subunits (Rpn11 and Csn5) are exposed whereas the

other MPN subunits (Rpn8 and Csn6) occupy a central position.

A further observation is that fewer subunits are found at substio-

chiometric levels in the 19S lid (Rpn6) than in the CSN (Csn2,

Csn5, and Csn8). This is consistent with the view that dissocia-

tion of subunits from the CSN might be a feature of its ability to

regulate multiple pathways. Moreover, both the eIF3 and the

19S lid complexes appear to be significantly more stable than

the CSN. The multiple subcomplexes and substoichiometric

binding observed here for the CSN, in contrast to the other PCI

complexes, supports our hypothesis that adaptation of its

subunit composition is linked to the capacity of the CSN to

perform its many functional roles in vivo.

EXPERIMENTAL PROCEDURES

Complex Formation

The eight-subunit human COP9 complex was reconstituted by coexpression

in E. coli (see Supplemental Experimental Procedures for subunits sequences).

Three CSN subunits were coexpressed in one vector, Csn1/2/3 and Csn4/6/7,

whereas Csn5 and Csn8 were expressed independently. The complex was re-

constituted by incubating the purified subcomplexes and individual subunits in

equimolar ratios. The reconstituted eight-subunit complex showed a robust

catalytic activity in deconjugating Nedd8 from a Cul1-Rbx1 complex

(Figure S1).

Coupling Protein Identification and Accurate Mass Measurement

We have established an approach for individual subunit separation and simul-

taneous sequence and mass determination. In this method, two identical liquid

chromatography (LC) separation runs are performed:

i) an online separation coupled to an ESI-Q-TOF (Q-star) MS for molecular

weight determination of individual subunits; and

ii) an offline LC separation coupled to a probot microfraction collector, fol-

lowed by on-plate tryptic digestion, for matrix-assisted laser desorption/

ionization time-of-flight (MALDI-TOF) analysis and protein database

search for subunit identification.

Because both runs produce the same LC chromatogram, the data can be

integrated to yield a specific protein identity and mass for each isolated

peak. In practice, conditions for efficient LC separation using a LC-Packings

Ultimate System (Dionex, Sunnyvale, CA) fitted with a monolithic capillary

column (Dionex), 200 mm i.d. 3 5 cm at a flow rate of 3 ml/min, were set up

by using a mixture of known proteins that mimic the proteins present in a large

protein assembly. Those conditions were used to separate the CSN complex

into individual subunits. Following equilibration at 90% solvent A (water/aceto-

nitrile 98:2, 0.05% trifluoroacetic acid [TFA]) and 10% solvent B (water/aceto-

nitrile 20:90, 0.04% TFA), separation was achieved using a linear gradient of

30% to 70% B in 20 min. The column effluent passed through a capillary UV

detector (set at 280 nm for detection). In both chromatographic runs

100 pmol of the seven-subunit CSN complex (excluding Csn5) was loaded.

Eluted proteins were analyzed first online by a QSTAR-XL mass spectrometer

(Applied Biosystems, Foster City, CA) using the following experimental param-

eters: capillary voltage, up to 5 kV; declustering potential, 30 V; focusing

potential, 145 V; second declustering potential, 12 V; microchannel plate

2350 V. Before the second LC run, a 4700 MALDI plate was prespotted with

0.5 ml trypsin (0.16 mg/ml, Promega, Madison, WI) and allowed to air dry. Sub-

sequently LC fractions were deposited onto the MALDI plate at 30 s intervals

(�1.5 ml/spot). Samples were overlaid with 0.5 ml 25 mM ammonium bicar-

bonate (pH 7.8) and incubated in a humidifier for 10 min for on-plate tryptic

digestion. The digestion was terminated by the addition of 0.6 ml a-cyano-4-

hydroxycinnamic acid matrix at 10 mg/ml in 50:50 water:acetonitrile with

0.1% TFA v:v. After digestion mass spectra were recorded on a 4700

Proteomics analyzer with MALDI-TOF optics (Applied Biosystems), using

a 200 Hz frequency-triple Nd:YAG laser operating at a wavelength of 355 nm.

Database searching was performed against the NCBInr protein database

using GPS Explorer (Applied Biosystems).

For the accurate mass determination of the individual Csn5 subunits, puri-

fied singly expressed subunits were washed and eluted from a C4 ZipTip

column (Millipore) under denaturing conditions (50% acetonitrile and 0.1% for-

mic acid). Mass spectrum was recorded on a QSTAR XL mass spectrometer.

Because of the observed similarity in mass of Csn3 and Csn4 (118 Da) that

precludes unambiguous assignment of the intact complex and subcomplexes,

we used a modified strain of Csn3 that gave a mass difference of 785 Da

(Table 1). In addition, we analyzed complexes in which either Csn7a or

Csn7b are incorporated. Likewise, two different strains of Csn6 were used.

MS of the CSN Complexes and Subcomplexes

For analysis of both the intact CSN complex and the seven-subunit complex

(excluding Csn5) as well as smaller subcomplexes, mass spectra were

acquired on a high mass quadrupole TOF-type instrument adapted for

a QSTAR XL platform (Chernushevich and Thomson, 2004; Sobott et al.,

2002). Before mass spectrometry, 25 ml of the 10–70 mM solution was

buffer-exchanged up to three times into 1 M ammonium acetate (pH 7.5) using

Micro Biospin 6 columns (Bio-Rad), and 2 ml aliquots were introduced via

Figure 6. Structural Organization of the

CSN and the 19S Lid Complexes

The subunit organization map of the CSN (left) and

the 19S lid (right) are colored according to signa-

ture domains (PCI domains in orange and MPN

domain in purple). The two modules that compose

the complex are highlighted by the yellow and lilac

boxes: Csn 4/5/6/7 and Rpn5/6/8/9/11 versus

Csn1/2/3/8 and Rpn3/7/12/Sem1.
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nanoflow capillaries prepared in-house. The conditions within the mass spec-

trometer were adjusted to preserve noncovalent interactions. The mass spec-

trometer was operated at a capillary voltage of 1200 V and a declustering

potential of 150 V (focusing potential, 250 V; second declustering potential,

15V; collision energy, up to 200 V; microchannel plate, 2350 V). The intact

complexes were disrupted through the addition of 5%–12.5% methanol (v/v)

or via in-source collision-induced dissociation. The assembly of individually

expressed subunits Csn5 and Csn8 with the coexpressed subcomplexes

Csn1/2/3 and Csn4/6/7 was investigated after mixing equimolar quantities fol-

lowed by 10–60 min incubation at 37�C. In MS/MS the relevant m/z value was

selected in the quadrupole and argon was used as a collision gas at maximum

pressure with collision energy ranging from 100 to 200 V. All spectra were cali-

brated externally by using a solution of cesium iodide (100 mg/ml). Spectra are

shown here with minimal smoothing and without background subtraction.

Assignment of the Subcomplexes and Building the Interaction

Network

Two hundred mass spectra and tandem mass spectra were analyzed to give

molecular masses for the various charge states of the subcomplexes and

complexes. Compositions of the subcomplexes were assigned using an itera-

tive search algorithm that explores all possible combinations of the experimen-

tally determined subunit masses within a given error limit (Taverner et al.,

2008). Where ambiguity in the assignment of a subcomplex existed, MS/MS

data was used to discriminate the different possibilities. A list of 35

subcomplexes ranging from dimers to heptamers was generated. These sub-

complexes were assigned unambiguously and no conflicts were found

between the many datasets recorded under the various MS and solution phase

conditions. We then explored all possible networks consistent with the sub-

complexes identified using the network inference algorithm SUMMIT (Taverner

et al., 2008). This algorithm examines all potential interactions and optimizes

the network with respect to the shortest interaction path.

SUPPLEMENTAL DATA

Supplemental Data include three figures, one table, and Supplemental

Experimental Procedures, and can be found with this article online at http://

www.cell.com/structure/supplemental/S0969-2126(08)00417-6.
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