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Abstract

We consider a model of quasigeostrophic turbulence that has proven useful in theoretical studies
of large scale heat transport and coherent structure formation in planetary atmospheres and oceans.
The model consists of a coupled pair of hyperbolic PDEs with a forcing which represents domain-
scale thermal energy source. Although the use to which the model is typically put involves gathering
information from very long numerical integrations, little of a rigorous nature is known about long-
time properties of solutions to the equations. In this first paper we define a notion of weak solution,
and show using Galerkin methods the long-time existence and uniqueness of such solutions.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Among several challenging aspects of weather prediction, one recognized very early
was the large range of time and space scales involved if attempts are based on fundamen-
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tal equations of continuum mechanics. “Weather” here refers to motions of relatively low
frequency when compared with sound or gravity waves. Pioneering attempts [3,4] with the
first computers to predict extra-tropical weather patterns on spatial scales of order 1000 km
used a series of observationally motivated approximations to derive a system of equations
which “filtered” out relatively high-frequency motions, thereby substantially reducing the
range of timescales and easing the computational burden to the point where the goal of a
useful forecast came within reach. The assumptions and approximations, now collectively
called quasigeostrophic theory, placed special emphasis on observations that the evolu-
tion of the horizontal velocity and pressure gradient fields appeared to nearly preserve
a “geostrophic” balance between Coriolis and pressure gradients forces, on large space
scales and time scales exceeding a day. While computational technology now allows fore-
casts using equations derived under less restrictive assumptions, and the theory is now but
one of a class based on geophysically relevant “balances” (see [16,17]), quasigeostrophic
theory and its numerical models remain of interest to meteorologists and oceanographers
because they capture a number of physically important features while possessing a struc-
ture amenable to mathematical analysis and extensive numerical experimentation.

This paper concerns a simple quasigeostrophic model used by one of authors [14] to
study a problem of pattern formation believed to be import in climate studies. The same
model has been used for other purposes [8,9,11,12]. It is a coupled pair of 2D vorticity
equations, in which the coupling term has the physical interpretation of a temperature field
and is of central importance to its use. The system is forced by stimulation of a geophys-
ically important instability present in the system. Numerical integrations indicate that the
instability is typically arrested by nonlinearity, and all variables of interest come eventu-
ally to fluctuate irregularly about a suitably defined average value. Different variables take
differing amounts of integration time to reveal this behavior; if this occurs for all variables
of interest, the system is judged to be at “statistically steady state.” Statistically steady
states are not always observed: for some choices of model parameters the system energy
grows without bound and integrations must be stopped because of exponential overflow.
No analysis has been done that explains this experience.

The model is typically used when many long-time numerical integrations of geophys-
ical turbulence are required for purposes related to climate studies, purposes for which
use of a climate models would be unnecessarily (and often prohibitively) demanding of
computational time. Reliance on the model has been based on the convincing represen-
tation it gives of certain observed phenomena. Data from long numerical integrations are
subjected to various averaging procedures to extract information about statistically steady
states; these averages constitute the “climate” of the model, and sensitivity of these aver-
ages to parametric changes in the model is of interest to theories of climate behavior. No
analytical guidance exists for the proper construction, or interpretation, of these averages.

Our primary motivation in undertaking this study is to put on a firm mathematical
ground the calculations in [14]. We expect that this analytic study will clarify the the-
oretical difficulties referred to in the preceding paragraph. Also, as the reader will see
in the next section, the model system sits in an interesting position between 2D and 3D
Navier–Stokes, so the problem may have some independent interest. The most closely re-
lated analytical work appears to be that of [1], which establishes finite-time existence and
uniqueness for the quasigeostrophic model proposed by [2], with estimates of that finite
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time based on the size of initial data and the size of the forcing. (We mention recent work
on a less closely related equation in the next section.) What we report here is the infinite
time existence and uniqueness of a particular kind of weak solution to the equations of [14]
(and [8,9,11,12]). Subsequent papers will discuss regularity of such a solution, examine in
detail its long-time behavior, and numerical methods.

The plan of the paper is as follows. In Section 2 we present the model in physical space
variables, place it in context with recent related work, give some discussion of the forcing,
and motivate an energy norm chosen for the subsequent analysis. In Section 3 we refor-
mulate the model in wave-vector space, define relevant function spaces and norms, and
present our notion of a weak solution. Sections 4 and 5 follow an approach presented in
[7] for study of the Navier–Stokes equations. In Section 4 we define a sequence of approx-
imating Galerkin systems. Each system is a finite set of ODEs with quadratic nonlinearity,
constructed by truncating the full wave-vector system at a wavenumber N . The long time
existence of a classical solution (called there an N -solution) for each such system follows
from the theory of ordinary differential equations. Key steps involve obtaining bound on
energy injection by the forcing and certain algebraic observations that are analogues of
integration-by-parts arguments. Section 5 then establishes (Theorem 5.3) the existence of
a weak solution by first verifying equicontinuity and uniform boundedness of the family of
N -solutions, for a fixed wavenumber and time interval [0, T ] of integer length T . Applica-
tions of the Arzela–Ascoli theorem, diagonalizing over wave-numbers and T , produces a
limit which is then shown to be a weak solution. Section 6 demonstrates the uniqueness of
the weak solution. In each of these sections the main effort is to control the nonlinear term:
key steps in the proof of Theorem 6.3 involve combinations of Holder’s and Ladyzhen-
skaya’s inequalities with a Gronwall argument. In [13] we will show that our unique weak
solution is in fact a classical solution. In addition we will prove that the mentioned solution
is time and space analytic. Meantime, L. Panetta, E. Titi and M. Ziane have announced in
[15] existence and uniqueness results (as well as a dissipativity property) for the strong
solutions of our system under a more restrictive condition on the dissipative terms of the
system.

2. The model system

In this section we employ non-dimensionalizations that we do not discuss. Details can
be found in [14,16,17]. Common to all versions of quasigeostrophic theory is the assump-
tion that the horizontal velocity field has a stream-function

�u = ∇⊥ψ (1)

(a non-dimensional form of geostrophic balance), together with an evolution equation for
a quantity Q

∂Q + ∂ψ ∂Q − ∂ψ ∂Q = F [ψ] + D[ψ]. (2)

∂t ∂x1 ∂x2 ∂x2 ∂x1
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Here ∇⊥ψ = (− ∂ψ
∂x2

,
∂ψ
∂x1

), (x1, x2) are horizontal coordinates, F and D are forcing and
dissipation terms, and Q is related to ψ by a linear differential operator L in space variables

Q = L[ψ]. (3)

Different choices for L give different versions of the theory: the general form is

L[ψ] = βx2 + �ψ + a(x3)
∂

∂x3

(
b(x3)

∂

∂x3
ψ

)
. (4)

Here � ≡ ∂

∂x2
1

+ ∂

∂x2
2

, β � 0 is a constant and a(x3), b(x3) are functions related to a refer-

ence state density structure which is not explained by the theory. In this form Q is called
the continuously stratified version of potential vorticity; in numerical models the vertical
dependence is expressed in terms of fluid layers or modes, with appropriate treatments of
the vertical derivatives. Thorough discussions from different points of view are given by
[16] and [17].

The quantity

τ ≡ ∂ψ

∂x3
(5)

appearing in (4) plays an important role in the theory: it is a representation of temperature
(or buoyancy), and in view of (1), its horizontal gradient is related to vertical shear:

∂ �u
∂x3

= ∇⊥τ. (6)

The presence of nonzero τ also allows a form of vorticity generation not present in 2D flow.
Versions of the theory that assume τ ≡ 0, are called barotropic, and ones that do not are
called baroclinic. (Note that barotropic versions with β = 0 are simply 2D incompressible
Navier–Stokes equations.) For baroclinic versions, an equation for evolution of tempera-
ture on the boundary is included. Recent interest has in fact focused on the model that
emerges when Q is assumed constant within the interior of the domain, and the evolution
equation (2) is replaced by one governing boundary temperature field: this model, with
L[ψ] = −(−�)−1/2ψ is called “surface geostrophic theory” and presents an interesting
connection with the 3D Euler and Navier–Stokes equations [5,6,10].

The model we study here uses the same vertical discretization of (2), (4) used in the
early forecast attempts [4], but with the periodic boundary conditions motivated by [2] and
with a special form of forcing that we describe briefly. Details are in [8,14]. The model is
defined in terms of a pair of stream-functions (ψ1,ψ2). In the physical interpretation, the
flow given by ψ1 is at a greater altitude (x3 value) than that given by ψ2. The analogue of
the temperature variable (5) is

ψ̂ = ψ1 − ψ2 (7)

2
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and there is a relation corresponding naturally to (6) between horizontal derivatives of ψ̂

and vertical velocity differences. It is assumed that the flow takes place in the presence of an
imposed, horizontally uniform temperature gradient, with a strength sufficient to excite an
exponential instability at a number of scales. This gradient, like the reference stratification,
cannot be altered by the flow evolution. It is a stronger physical assumption than a simple
imposition of a temperature drop across the domain. What actually appears in the equations
is the vertical velocity difference related to the temperature gradient, which we denote in
this section by 2Û . The equations are

∂q1

∂t
+ ∂ψ1

∂x1

∂q1

∂x2
− ∂ψ1

∂x2

∂q1

∂x1
= −

[
2Û

∂q1

∂x1
+ (β + Û )

∂ψ1

∂x1

]
− ν(−�)pq1, (8)

∂q2

∂t
+ ∂ψ2

∂x1

∂q2

∂x2
− ∂ψ2

∂x2

∂q2

∂x1
= −

[
(β − Û )

∂ψ2

∂x1

]
− ν(−�)pq2 − κM�ψ2. (9)

Here the qi are related to the ψi by

q1 = �ψ1 − ψ̂, (10)

q2 = �ψ2 + ψ̂ (11)

Solutions (ψ1(x1, x2, t),ψ2(x1, x2, t)) to these equations are sought which are periodic on
the domain Ω ≡ [0,2πL̂]2, where L̂ is a non-dimensional real number. It is also assumed
in [14] that such solutions have vanishing horizontal average. (Note: the velocity differ-
ence 2Û is actually used to non-dimensionalize the equations in [8,14], and so should be
replaced by the value 1/2. We keep it, in this section alone, to mark terms related to the
forcing and to show below how the imposed temperature gradient enters in the energy
equation.)

The linear term involving β is a representation in this planar geometry of an effect of
sphericity in planetary scale flow [16,17]; nonzero β is crucial to the formation of jets and
introduces long timescales in the solutions [14]. (Getting estimates regarding this effect
is one of our aims.) The term involving κM is a parameterization of a boundary layer
effect called Ekman pumping [16,17]. In the terms involving ν, choices of p > 1 are not
as directly based on physical principles, and have more to do with expectations regarding
energy and enstrophy cascades, and most often are made for computational convenience:
they are designed to produce dissipative terms, and to concentrate the dissipation processes
in simulations at the smallest small spatial scales included in the calculation. The hope is
that this does not affect in any important way nonlinear interactions at larger scales. When
p > 1 the value of ν has only phenomenological justification. (We note that in [14] the
high order Laplacian operator is not applied to the qi , but instead to the ψi . The analysis
we present for the equations here differs inessentially from what would be needed in that
case. We choose this form of the equations because it the one being used in currently
ongoing numerical studies, and it also agrees with [9,11,12].)

A useful view of the roles of the terms on the right-hand sides of (8), (9) comes from
deriving the energy equation for the model. To do this, each layer equation is multiplied
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by its stream-function, the equations are integrated horizontally, and the results are added.
Using the notation (in this section alone)

〈F 〉 =
∫
Ω

F(x1, x2, t) dx1 dx2

what results after several integrations by parts and uses of periodicity is

∂E

∂t
= 2Û

〈
∂ψ̃

∂x1
ψ̂

〉
− κM

〈|∇ψ2|2
〉 − νP (12)

where ψ̃ ≡ ψ1+ψ2
2 and the total energy E is defined by

E = 〈|∇ψ1|2 + |∇ψ2|2〉
2

+ 〈
ψ̂2〉 (13)

is the sum of terms representing the kinetic energies in each layer and the model’s form of
potential energy. The term P is positive definite:

P =
{ 〈(�m+1ψ1)

2 + (�m+1ψ2)
2 + 2|∇(�mψ̂)|2〉 if p = 2m + 1,

〈|∇(�mψ1)|2 + |∇(�mψ2)|2 + 2(�mψ̂)2〉 if p = 2m.
(14)

The only term not clearly sign-definite is that involving Û and is the energy source term
for the model. It corresponds to the net flux of heat down the mean temperature gradient
represented by the imposed vertical shear Û . This is as in models of thermal convection,
where the energy generation for turbulent motions may also be related to the net down-
gradient heat flux.

Notice that formal use of Cauchy–Schwartz and Poincaré inequalities (recall the as-
sumption of zero horizontal average for the ψi ) gives the crude estimate〈

∂ψ̃

∂x1
ψ̂

〉
�

(〈|∇ψ̃ |2〉)1/2(〈|ψ̂ |2〉)1/2 � L̂
(〈|∇ψ̃ |2〉)1/2(〈|∇ψ̂ |2〉)1/2

= L̂

2

〈|∇ψ1|2 + |∇ψ2|2〉
2

� L̂

2
E.

So from the energy equation (12) we get

∂E

∂t
+ νP + κM

〈|∇ψ2|2
〉
� Û L̂E. (15)

An analogue of this argument will be used in Section 4. Notice that no mention of the
parameter β occurs in this estimate of the domain-integrated energy. (It does, however,
appear in the equation for enstrophy equation.) Nevertheless, experience with the model
has indicated that the presence of the term β fundamentally affects the manner in which
energy transfers within the domain occur, and the timescales present in numerical solutions.

We now drop further mention of the constant Û , using instead its value 1/2.
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3. The equations

Let L̂ > 0, Ω be the square [0,2πL̂]2 ⊂ R
2 and α be an arbitrary nonnegative real

number. We consider the Eqs. (8)–(11) in Ω with periodic boundary conditions:

∂q1

∂t
+

(
∂ψ1

∂x1

∂q1

∂x2
− ∂ψ1

∂x2

∂q1

∂x1

)
= −∂q1

∂x1
−

(
β + 1

2

)
∂ψ1

∂x1
− ν(−�)1+αq1, (16)

∂q2

∂t
+

(
∂ψ2

∂x1

∂q2

∂x2
− ∂ψ2

∂x2

∂q2

∂x1

)
= −κM�ψ2 −

(
β − 1

2

)
∂ψ2

∂x1
− ν(−�)1+αq2, (17)

where

q1 = �ψ1 − ψ1 − ψ2

2
and q2 = �ψ2 + ψ1 − ψ2

2
. (18)

If ϕ is a 2πL̂-periodic complex-valued scalar or vector function which is integrable over Ω ,
we define its Fourier coefficients by

ϕ(k) = 1

(2πL̂)2

∫
Ω

e−(i/L̂)k·xϕ(x) dx, k ∈ Z
2.

Its Fourier series will then be ∑
k∈Z2

ϕ(k)e(i/L̂)k·x.

Moreover, if ϕ = ϕ(x, t): R
2 × [0, T ] (or [0,∞)) → C

d , d ∈ N, is 2πL̂-periodic in the
plane variable, we denote by {ϕ(k, t)}k∈Z2 the Fourier coefficients of ϕ(·, t).

By formally replacing in (16)–(18) ψj (x, t) with
∑

k∈Z2 ψj (k, t)e(i/L̂)k·x and qj (x, t)

with
∑

k∈Z2 qj (k, t)e(i/L̂)k·x, j = 1,2, and identifying the corresponding Fourier coeffi-
cients we obtain the following equations:

d

dt
q1(k, t) + 1

L̂2

∑
h+l=k

(h2l1 − h1l2)ψ1(h, t)q1(l, t)

= − i

L̂
k1q1(k, t) −

(
β + 1

2

)
i

L̂
k1ψ1(k, t) − ν

( |k|
L̂

)2(1+α)

q1(k, t), (19)

d

dt
q2(k, t) + 1

L̂2

∑
h+l=k

(h2l1 − h1l2)ψ2(h, t)q2(l, t)

= κM

|k|2
L̂2

ψ2(k, t) −
(

β − 1

2

)
i

L̂
k1ψ2(k, t) − ν

( |k|
L̂

)2(1+α)

q2(k, t), (20)
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with

q1(k, t) = −|k|2
L̂2

ψ1(k, t) − ψ1(k, t) − ψ2(k, t)

2
, (21)

q2(k, t) = −|k|2
L̂2

ψ2(k, t) + ψ1(k, t) − ψ2(k, t)

2
, (22)

for every k ∈ Z
2. Since ψj(x, t), j = 1,2, are real-valued functions we have that

ψj(−k, t) = ψj(k, t), k ∈ Z
2, j = 1,2, (23)

where for a complex number z we denote by z̄ the complex conjugate of z. Equations
(19)–(23) are called the wave-vectors formulation of Eqs. (16)–(18) for plane 2πL̂-perio-
dic solutions. Let

K := { �ψ = ({
ψ1(k)

}
k∈Z2,

{
ψ2(k)

}
k∈Z2

)
: ψj(k) ∈ C,ψj (−k) = ψj(k), j = 1,2,

k ∈ Z
2,ψ1(0) + ψ2(0) = 0

}
(24)

and

H :=
{

�ψ ∈K: | �ψ |2 :=
∑
k∈Z2

E( �ψ)(k) < ∞
}
, (25)

where

E( �ψ)(k) := |k|2
L̂2

(∣∣ψ1(k)
∣∣2 + ∣∣ψ2(k)

∣∣2) + |ψ1(k) − ψ2(k)|2
2

.

The space K with the metric

d( �ψ, �ϕ) :=
∑
k∈Z2

(
2∑

j=1

|ψj (k) − ϕj (k)|
1 + |ψj(k) − ϕj (k)|

)
2−|k|2 , (26)

is a Fréchet space, and H with the norm (as above) given by the scalar product

〈 �ψ, �ϕ〉 :=
∑
k∈Z2

[ |k|2
L̂2

(
ψ1(k)ϕ1(k) + ψ2(k)ϕ2(k)

) + (ψ1(k) − ψ2(k))(ϕ1(k) − ϕ2(k))

2

]

is a Hilbert space. For each γ > 0 define

Vγ :=
{

�ψ ∈ H : | �ψ |2γ :=
∑

2

( |k|
L̂

)2γ

E( �ψ)(k) < ∞
}
. (27)
k∈Z
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We denote by C([0,∞),K) the space of all K-valued continuous functions on [0,∞),
where the continuity is with respect to the metric defined by (26). We also define the spaces
L∞

loc([0,∞),H) and L2
loc([0,∞),Vγ ) by the following:

L∞
loc

([0,∞),H
) =

{ �ψ : [0,∞) → H : ess- sup
0�t�T

∣∣ �ψ(t)
∣∣ < ∞, for every T ∈ [0,∞)

}
and

L2
loc

([0,∞),Vγ

) =
{

�ψ : [0,∞) → Vγ :

T∫
0

∣∣ �ψ(t)
∣∣2
γ

dt < ∞, for every T ∈ [0,∞)

}
.

Now we are ready to give the definition of a weak solution for (19)–(23) with initial
data �ψ0 ∈ H .

Definition 3.1. Let �ψ0 ∈ H . A H -valued function �ψ is called weak solution for
Eqs. (19)–(23) with initial data �ψ0 if it has the following properties:

(1) �ψ ∈ C
([0,∞),K

) ∩ L∞
loc

([0,∞),H
) ∩ L2

loc

([0,∞),V1+α

)
,

(2) q1(k, t) = q1(k,0) −
t∫

0

{
1

L̂2

∑
h+l=k

(h2l1 − h1l2)ψ1(h, τ )q1(l, τ ) + i

L̂
k1q1(k, τ )

+
(

β + 1

2

)
i

L̂
k1ψ1(k, τ ) + ν

( |k|
L̂

)2(1+α)

q1(k, τ )

}
dτ,

q2(k, t) = q2(k,0) −
t∫

0

{
1

L̂2

∑
h+l=k

(h2l1 − h1l2)ψ2(h, τ )q2(l, τ ) − κM

|k|2
L̂2

ψ2(k, τ )

+
(

β − 1

2

)
i

L̂
k1ψ2(k, τ ) + ν

( |k|
L̂

)2(1+α)

q2(k, τ )

}
dτ, ∀t ∈ [0,∞),

∀k ∈ Z
2, where q1(k, t) = −|k|2

L̂2
ψ1(k, t) − ψ1(k, t) − ψ2(k, t)

2
,

q2(k, t) = −|k|2
L̂2

ψ2(k, t) + ψ1(k, t) − ψ2(k, t)

2
, ∀k ∈ Z

2, and

(3) ψj (k,0) = ψ0
j (k), j = 1,2, ∀k ∈ Z

2.

4. Galerkin approximations

In order to prove the existence of a weak solution for Eqs. (19)–(23) we will use the
Galerkin approximations technique. Notice that
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(
q1(k)

q2(k)

)
=

(−( |k|2
L̂2 + 1

2

) 1
2

1
2 −( |k|2

L̂2 + 1
2

)
)(

ψ1(k)

ψ2(k)

)
.

Denote

Ak =
(−( |k|2

L̂2 + 1
2

) 1
2

1
2 −( |k|2

L̂2 + 1
2

)
)

and note that Ak is invertible for every k �= 0. For every k ∈ Z
2\{0}, Eqs. (19) and (20)

become

d

dt

(
ψ1(k, t)

ψ2(k, t)

)
= A−1

k

(− 1
L̂2

∑
h+l=k(h2l1 − h1l2)ψ1(h, t)q1(l, t)

− 1
L̂2

∑
h+l=k(h2l1 − h1l2)ψ2(h, t)q2(l, t)

)

+ A−1
k

( − i

L̂
k1q1(k, t) − (

β + 1
2

)
i

L̂
k1ψ1(k, t) − ν

( |k|
L̂

)2(1+α)
q1(k, t)

κM
|k|2
L̂2 ψ2(k, t) − (

β − 1
2

)
i

L̂
k1ψ2(k, t) − ν

( |k|
L̂

)2(1+α)
q2(k, t)

)
. (28)

For N ∈ N fixed we consider the system:

d

dt

(
ϕ1(k, t)

ϕ2(k, t)

)

= A−1
k

(− 1
L̂2

∑
h+l=k(h2l1 − h1l2)ϕ1(h, t)r1(l, t)

− 1
L̂2

∑
h+l=k(h2l1 − h1l2)ϕ2(h, t)r2(l, t)

)

+ A−1
k

( − i

L̂
k1r1(k, t) − (

β + 1
2

)
i

L̂
k1ϕ1(k, t) − ν

( |k|
L̂

)2(1+α)
r1(k, t)

κM
|k|2
L̂2 ϕ2(k, t) − (

β − 1
2

)
i

L̂
k1ϕ2(k, t) − ν

( |k|
L̂

)2(1+α)
r2(k, t)

)
, (29)

for k �= 0, |k| � N , and

d

dt

(
ϕ1(0, t)

ϕ2(0, t)

)
=

(
0
0

)
, (30)

where

r1(k, t) = −|k|2
L̂2

ϕ1(k, t) − ϕ1(k, t) − ϕ2(k, t)

2
, (31)

r2(k, t) = −|k|2
L̂2

ϕ2(k, t) + ϕ1(k, t) − ϕ2(k, t)

2
. (32)

We will be referring to Eqs. (29) and (30) together with (31) and (32) as the N -system.
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Definition 4.1. Let Z
2
N = {k ∈ Z2 | |k| � N}. A N -solution is a family of functions

{(ϕ1(k, ·), ϕ2(k, ·))}k∈Z
2
N

satisfying the N -system.

Lemma 4.2. Let N ∈ N and �ψ0 ∈ H . Then

(a) there exist t0 > 0 and {(ϕ1(k, ·), ϕ2(k, ·))}k∈Z
2
N

such that

(i) ϕj (k, ·) ∈ C∞([0, t0];C),
(ii) {(ϕ1(k, ·), ϕ2(k, ·))}k∈Z

2
N

is a N -solution with ϕj (k,0) = ψ0
j (k), ∀|k| � N , j =

1,2, and
(iii) ϕj (k, t) = ϕj (−k, t), ∀|k| � N , j = 1,2,

(b) for every T ∈ (0,∞) with the property that the above solution exists on [0, T ) there
exists M > 0 such that∣∣ϕj (k, t)

∣∣ � M, ∀t ∈ [0, T ), ∀|k| � N, j = 1,2. (33)

Moreover, the N -solution {(ϕ1(k, ·), ϕ2(k, ·))}k∈Z
2
N

with initial data �ψ0 is unique in the
interval of existence.

Proof. Part (a) follows immediately from the classical theory of systems of ordinary dif-
ferential equations and the fact that {ϕj (k, t)}|k|�N,j=1,2 and {ϕj (−k, t)}|k|�N,j=1,2 are

solutions for the same system of ODEs with the same initial data (since ψ0
j (k) = ψ0

j (−k),

for every k ∈ Z
2). For (b) we start by noticing that from (30) we have that

ϕj (0, t) = ψ0
j (0), ∀t ∈ [0, T ), j = 1,2. (34)

Using Eqs. (31) and (32) we also get

Re
∑

|k|�N

((
d

dt
r1(k, t)

)
ϕ1(k, t) +

(
d

dt
r2(k, t)

)
ϕ2(k, t)

)

= Re
∑

|k|�N

{
−|k|2

L̂2

(
d

dt
ϕ1(k, t)

)
ϕ1(k, t) − |k|2

L̂2

(
d

dt
ϕ2(k, t)

)
ϕ2(k, t)

−
(

d

dt

(
ϕ1(k, t) − ϕ2(k, t)

2

))
ϕ1(k, t) +

(
d

dt

(
ϕ1(k, t) − ϕ2(k, t)

2

))
ϕ2(k, t)

}
= −1

2

d

dt

∑
|k|�N

{ |k|2
L̂2

(∣∣ϕ1(k, t)
∣∣2 + ∣∣ϕ2(k, t)

∣∣2) + |ϕ1(k, t) − ϕ2(k, t)|2
2

}
. (35)

We will extend a N -solution in a natural way to a function �ψN such that for every t in the
interval of existence of our N -solution we have �ψN(t) ∈ K, namely,

ψN(k, t) = ϕ(k, t), if |k| � N and ψN(k, t) =
(

0
)

, if |k| > N. (36)

0
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For �ψN we then obtain from (35) that

1

2

d

dt

∣∣ �ψN(t)
∣∣2 = −Re

∑
|k|�N

(
d

dt
r1(k, t)

)
ϕ1(k, t) +

(
d

dt
r2(k, t)

)
ϕ2(k, t),

and using (29) we get

1

2

d

dt

∣∣ �ψN(t)
∣∣2 = −Re

∑
|k|�N

{(
− 1

L̂2

∑
h+l=k

(h2l1 − h1l2)ϕ1(h, t)r1(l, t)

− i

L̂
k1r1(k, t) −

(
β + 1

2

)
i

L̂
k1ϕ1(k, t) − ν

( |k|
L̂

)2(1+α)

r1(k, t)

)
ϕ1(k, t)

+
(

− 1

L̂2

∑
h+l=k

(h2l1 − h1l2)ϕ2(h, t)r2(l, t) + κM

|k|2
L̂2

ϕ2(k, t)

−
(

β − 1

2

)
i

L̂
k1ϕ2(k, t) − ν

( |k|
L̂

)2(1+α)

r2(k, t)

)
ϕ2(k, t)

}
,

which implies that

1

2

d

dt

∣∣ �ψN(t)
∣∣2 = 1

L̂2
Re

∑
|k|�N

∑
h+l=k

(h2l1 − h1l2)
(
ϕ1(h, t)r1(l, t)ϕ1(k, t)

+ ϕ2(h, t)r2(l, t)ϕ2(k, t)
) + Re

(
i

L̂

∑
|k|�N

k1r1(k, t)ϕ1(k, t)

)

− κM

∑
|k|�N

|k|2
L̂2

∣∣ϕ2(k, t)
∣∣2

+ ν Re
∑

|k|�N

( |k|
L̂

)2(1+α)(
r1(k, t)ϕ1(k, t) + r2(k, t)ϕ2(k, t)

)
. (37)

Using (iii) from part (a) of Lemma 4.2 we deduce that

S1 :=
∑

|k|�N

∑
h+l=k

(h2l1 − h1l2)ϕ1(h, t)r1(l, t)ϕ1(k, t)

=
∑

h+l+k=0, |h|,|l|,|k|�N

(h2l1 − h1l2)ϕ1(h, t)r1(l, t)ϕ1(k, t),

and after we interchange h with k we obtain
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S1 =
∑

h+l+k=0, |h|,|l|,|k|�N

(k2l1 − k1l2)ϕ1(k, t)r1(l, t)ϕ1(h, t)

=
∑

h+l+k=0, |h|,|l|,|k|�N

(
(−h2 − l2)l1 − (−h1 − l1)l2

)
ϕ1(k, t)r1(l, t)ϕ1(h, t)

=
∑

h+l+k=0, |h|,|l|,|k|�N

(−h2l1 + h1l2)ϕ1(k, t)r1(l, t)ϕ1(h, t) = −S1.

Therefore, S1 = 0. Similarly,

S2 :=
∑

|k|�N

∑
h+l=k

(h2l1 − h1l2)ϕ2(h, t)r2(l, t)ϕ2(k, t) = 0.

Thus, (37) becomes

1

2

d

dt

∣∣ �ψN(t)
∣∣2 + κM

∑
|k|�N

|k|2
L̂2

∣∣ϕ2(k, t)
∣∣2

= Re

(
i

L̂

∑
|k|�N

k1r1(k, t)ϕ1(k, t)

)

+ ν Re
∑

|k|�N

( |k|
L̂

)2(1+α)(
r1(k, t)ϕ1(k, t) + r2(k, t)ϕ2(k, t)

)
. (38)

From (31) and (32) we easily get that

r1(k, t)ϕ1(k, t) + r2(k, t)ϕ2(k, t) = −E( �ϕ)(k) and (39)

S3 := Re

(
i

L̂

∑
|k|�N

k1r1(k, t)ϕ1(k, t)

)

= Re
i

L̂

(
−

∑
|k|�N

k1

( |k|2
L̂2

+ 1

2

)∣∣ϕ1(k, t)
∣∣2 + 1

2

∑
|k|�N

k1ϕ2(k, t)ϕ1(k, t)

)

= Re

(
i

2L̂

∑
|k|�N

k1ϕ2(k, t)ϕ1(k, t)

)
. (40)

Using (39) and (40), (38) becomes

1

2

d

dt

∣∣ �ψN(t)
∣∣2 + κM

∑
|k|�N

|k|2
L̂2

∣∣ϕ2(k, t)
∣∣2

= Re

(
i

2L̂

∑
k1ϕ2(k, t)ϕ1(k, t)

)
− ν

∑ ( |k|
L̂

)2(1+α)

E( �ψN)(k). (41)

|k|�N |k|�N
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Next we notice that

∣∣∣∣ i

2L̂

∑
|k|�N

k1ϕ2(k, t)ϕ1(k, t)

∣∣∣∣
� 1

2L̂

∑
|k|�N

|k|∣∣ϕ2(k, t)
∣∣∣∣ϕ1(k, t)

∣∣
� L̂

2

∑
|k|�N

( |k|
L̂

∣∣ϕ1(k, t)
∣∣)( |k|

L̂

∣∣ϕ2(k, t)
∣∣)

� L̂

4

∑
|k|�N

|k|2
L̂2

(∣∣ϕ1(k, t)
∣∣2 + ∣∣ϕ2(k, t)

∣∣2) � L̂

4

∣∣ �ψN(t)
∣∣2

. (42)

From (41) and (42) we obtain

1

2

d

dt

∣∣ �ψN(t)
∣∣2 + κM

∑
|k|�N

|k|2
L̂2

∣∣ϕ2(k, t)
∣∣2 + ν

∑
|k|�N

( |k|
L̂

)2(1+α)

E( �ψN)(k)

� L̂

4

∣∣ �ψN(t)
∣∣2

, ∀t ∈ [0, T ). (43)

Therefore, 1
2

d
dt

| �ψN(t)|2 � L̂
4 | �ψN(t)|2, ∀t ∈ [0, T ) which implies that | �ψN(t)|2 �

e(L̂/2)t | �ψ0|2 � eL̂/2)T | �ψ0|2, ∀t ∈ [0, T ). From here and relation (34) we easily get that
∃M > 0 such that |ϕj (k, t)| � M, ∀t ∈ [0, T ), ∀|k| � N , j = 1,2. �

From Lemma 4.2(b) and the classical theory of ODEs it follows immediately:

Corollary 4.3. For given �ψ0 ∈ H there exists a unique N -solution with initial data �ψ0

defined on [0,∞).

Corollary 4.4. The function �ψN defined by (36) belongs to C([0,∞),K).

Proof. Recall that ϕj (k, t) = ϕj (−k, t),∀|k| � N,j = 1,2, and notice also that ϕ1(0, t)+
ϕ2(0, t) = ψ0

1 (0) + ψ0
2 (0) = 0, ∀t ∈ [0,∞). Therefore,

�ψN(t) ∈K, ∀t ∈ [0,∞).

Since ϕj (k, ·) is continuous on [0,∞), ∀|k| � N,j = 1,2, we see that �ψN(·) ∈
C([0,∞),K). �
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5. Existence of weak solutions

Applying the process in Section 4 for every N ∈ N we get the sequence { �ψN(·)}N∈N ⊂
C([0,∞),K). On the space C([0,∞),K) we define the metric

dist
( �ψ(·), �ϕ(·)) =

∑
T =1,2,...

1

2T

sup{d( �ψ(t), �ϕ(t)): 0 � t � T }
1 + sup{d( �ψ(t), �ϕ(t)): 0 � t � T } .

Remark 5.1. The convergence dist( �ϕm(·), �ϕ(·)) → 0 as m → ∞ is equivalent to, for every
k ∈ Z

2 and t0 ∈ [0,∞), ϕm,j (k, t) → ϕj (k, t) uniformly on [0, t0], j = 1,2.

The proof of the existence of weak solutions for (19)–(23) with initial data �ψ0 ∈ H

will be split in two parts. First we prove that there exists a subsequence { �ψNp(·)}p∈N of

{ �ψN(·)}N∈N converging to some �ψ(·) in C([0,∞),K). After that we will show that the
limit �ψ(·) is our desired weak solution. The first part is covered by the following lemma.

Lemma 5.2. There exist a subsequence { �ψNp(·)}p∈N of { �ψN(·)}N∈N and a function �ψ(·) ∈
C([0,∞),K) such that limp→∞ dist( �ψNp, �ψ) = 0.

Proof. Let T , N ∈ N be fixed. Using (29) we can write

d

dt

(
r1(k, t) + r2(k, t)

)
= − 1

L̂2

∑
h+l=k, |h|,|l|�N

(h2l1 − h1l2)
(
ϕ1(h, t)r1(l, t) + ϕ2(h, t)r2(l, t)

)
− i

L̂
k1r1(k, t) −

(
β + 1

2

)
i

L̂
k1ϕ1(k, t) −

(
β − 1

2

)
i

L̂
k1ϕ2(k, t)

+ κM

|k|2
L̂2

ϕ2(k, t) − ν

( |k|
L̂

)2(1+α)(
r1(k, t) + r2(k, t)

)
. (44)

Next we add (31) with (32) and we divide by −|k|2
L̂2 . With the use of (44) we get

d

dt

(
ϕ1(k, t) + ϕ2(k, t)

)
= 1

|k|2
∑

h+l=k, |h|,|l|�N

(h2l1 − h1l2)
(
ϕ1(h, t)r1(l, t) + ϕ2(h, t)r2(l, t)

)
+ iL̂k1

|k|2 r1(k, t) +
(

β + 1

2

)
iL̂k1

|k|2 ϕ1(k, t) +
(

β − 1

2

)
iL̂k1

|k|2 ϕ2(k, t)

− κMϕ2(k, t) − ν

( |k|)2(1+α)(
ϕ1(k, t) + ϕ2(k, t)

)
. (45)
L̂
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Now define ϕ̃(k, t) := ϕ1(k, t) + ϕ2(k, t) and ϕ̂(k, t) := ϕ1(k, t) − ϕ2(k, t). For s, t ∈
[0, T ], s < t , from (45) we obtain

∣∣ϕ̃(k, t) − ϕ̃(k, s)
∣∣

� 1

|k|2
∣∣∣∣∣ ∑

h+l=k, |h|,|l|�N

t∫
s

(h2l1 − h1l2)
(
ϕ1(h, τ )r1(l, τ ) + ϕ2(h, τ )r2(l, τ )

)
dτ

∣∣∣∣∣
+ L̂

|k|
t∫

s

∣∣r1(k, τ )
∣∣dτ +

(
β + 1

2

)
L̂

|k|
t∫

s

∣∣ϕ1(k, τ )
∣∣dτ

+
(

β − 1

2

)
L̂

|k|
t∫

s

∣∣ϕ2(k, τ )
∣∣dτ + κM

t∫
s

∣∣ϕ2(k, τ )
∣∣dτ

+ ν

( |k|
L̂

)2(1+α)
t∫

s

(∣∣ϕ1(k, τ )
∣∣ + ∣∣ϕ2(k, τ )

∣∣)dτ. (46)

Recall that we proved that

∣∣ �ψN(t)
∣∣2 =

∑
|k|�N

( |k|2
L̂2

(∣∣ϕ1(k, t)
∣∣2 + ∣∣ϕ2(k, t)

∣∣2) + |ϕ1(k, t) − ϕ2(k, t)|2
2

)

� eL̂T /2
∣∣ �ψ0

∣∣2
,

for every t ∈ [0, T ]. Therefore, for k �= 0, we have

∣∣ϕj (k, t)
∣∣ � L̂

|k|e
(L̂T )/4

∣∣ �ψ0
∣∣, ∀t ∈ [0, T ], j = 1,2.

Using this we see that all the integrals from the right-hand side of (46) except the first one
are bounded by c1(t − s) where c1 is some positive constant which does not depend on N .
From (31) we obtain∑

h+l=k, |h|,|l|�N

(h2l1 − h1l2)ϕ1(h, τ )r1(l, τ )

= −
∑

h+l=k, |h|,|l|�N

(h2l1 − h1l2)
|l|2
L̂2

ϕ1(h, τ )ϕ1(l, τ )

− 1

2

∑
h+l=k, |h|,|l|�N

(h2l1 − h1l2)ϕ1(h, τ )
(
ϕ1(l, τ ) − ϕ2(l, τ )

)
. (47)
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We notice that

S4 :=
∑

h+l=k, |h|,|l|�N

(h2l1 − h1l2)
|l|2
L̂2

ϕ1(h, τ )ϕ1(l, τ )

=
∑

h+l=k, |h|,|l|�N

(h2l1 − h1l2)
l · (k − h)

L̂2
ϕ1(h, τ )ϕ1(l, τ )

= 1

L̂2

∑
h+l=k, |h|,|l|�N

(h2l1 − h1l2)(l · k)ϕ1(h, τ )ϕ1(l, τ )

− 1

L̂2

∑
h+l=k, |h|,|l|�N

(h2l1 − h1l2)(l · h)ϕ1(h, τ )ϕ1(l, τ ). (48)

By interchanging h with l in the last sum of (48) we get that the indicated sum is 0, and,
therefore

S4 = 1

L̂2

∑
h+l=k, |h|,|l|�N

(h2l1 − h1l2)(l · k)ϕ1(h, τ )ϕ1(l, τ )

= 1

L̂2

∑
h+l=k, |h|,|l|�N

(
h2(k1 − h1) − h1(k2 − h2)

)
(l · k)ϕ1(h, τ )ϕ1(l, τ )

= 1

L̂2

∑
h+l=k, |h|,|l|�N

(h2k1 − h1k2)(l · k)ϕ1(h, τ )ϕ1(l, τ ). (49)

From (47) and (49) we deduce that∣∣∣∣ ∑
h+l=k, |h|,|l|�N

(h2l1 − h1l2)ϕ1(h, τ )r1(l, τ )

∣∣∣∣
� 1

L̂2

∑
h+l=k, |h|,|l|�N

|h||k|2|l|∣∣ϕ1(h, τ )
∣∣∣∣ϕ1(l, τ )

∣∣
+ L̂2

2

∑
h+l=k, |h|,|l|�N

|h|
L̂

∣∣ϕ1(h, τ )
∣∣ |l|
L̂

∣∣ϕ2(l, τ )
∣∣,

and using Cauchy–Schwartz inequality we get that the left term in the above inequality is
less or equal then

|k|2
( ∑ |h|2

L̂2

∣∣ϕ1(h, τ )
∣∣2

) 1
2
( ∑ |l|2

L̂2

∣∣ϕ1(l, τ )
∣∣2

) 1
2

|h|�N |l|�N
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+ L̂2

2

( ∑
|h|�N

|h|2
L̂2

∣∣ϕ1(h, τ )
∣∣2

) 1
2
( ∑

|l|�N

|l|2
L̂2

∣∣ϕ2(l, τ )
∣∣2

) 1
2

�
(

|k|2 + L̂2

2

)∣∣ �ψN(τ)
∣∣2 �

(
|k|2 + L̂2

2

)
eL̂T /2

∣∣ �ψ0
∣∣2

, ∀τ ∈ [0, T ]. (50)

Similarly, ∣∣∣∣ ∑
h+l=k, |h|,|l|�N

(h2l1 − h1l2)ϕ2(h, τ )r2(l, τ )

∣∣∣∣ � c2, ∀τ ∈ [0, T ], (51)

where c2 is a positive constant which does not depend on N . Thus, there exists c̃ > 0 which
does not depend on N such that∣∣ϕ̃(k, t) − ϕ̃(k, s)

∣∣ � c̃(t − s), ∀t, s ∈ [0, T ], s < t. (52)

Using the same idea we can easily get that ĉ > 0 such that∣∣ϕ̂(k, t) − ϕ̂(k, s)
∣∣ � ĉ(t − s), ∀t, s ∈ [0, T ], s < t. (53)

From (52) and (53) we obtain that there exists c > 0 which does not depend on N such that∣∣ψN,j (k, t) − ψN,j (k, s)
∣∣ � c(t − s), ∀t, s ∈ [0, T ], j = 1,2. (54)

Notice that we can choose c such that the following is also true∣∣ψN,j (k,0)
∣∣ = ∣∣ψ0

j (k)
∣∣ � c

∣∣ �ψ0
∣∣. (55)

The relations (54) and (55) allow us to apply Arzela–Ascoli theorem for the sequence
{ψN,j (k, ·)}N∈N. We get that for T = 1 and a fixed k ∈ Z

2 there exist a subsequence{
ψNh,j (k, ·)}

h∈N
of

{
ψN,j (k, ·)}

N∈N

and a function ψ1,j (k, ·) ∈ C([0,1],C) such that {ψNh,j (k, ·)}h∈N converges to ψ1,j (k, ·)
uniformly on [0,1]. By applying Cantor’s diagonal method for k ∈ Z

2 (written as a se-
quence) we prove the existence of a subsequence of { �ψN(·)}N∈N which converges to a
function �ψ1(·) in C([0,1],K). For this subsequence we repeat the above argument with
T = 2 to get another subsequence which converges to a function �ψ2(·) in C([0,2],K).
We continue with T = 3,4, . . . , and we apply Cantor’s diagonal method to obtain that
there exist a subsequence { �ψNp(·)}p∈N of { �ψN(·)}N∈N and �ψ(·) ∈ C([0,∞),K) such that

{ �ψNp(·)}p∈N converges to �ψ(·) in C([0,∞),K). �
Now we are ready to prove the main theorem of this section.

Theorem 5.3. The function �ψ provided by Lemma 5.2 is a weak solution for (19)–(23) with
initial data �ψ0.
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Proof. Since { �ψNp }p∈N converges to �ψ in C([0,∞),K) we get that for every T ∈ [0,∞)

ψNp,j (k, t) → ψj (k, t) uniformly on [0, T ], j = 1,2. (56)

If �θ ∈ K and M ∈ N define PM
�θ ∈K by

(PM
�θ)(k) = θ(k) if |k| � M, and (PM

�θ)(k) = 0, if |k| > M.

Then, if M ∈ N and Np � M we have

∣∣PM
�ψNp(t)

∣∣ �
∣∣ �ψNp(t)

∣∣ � eL̂T /4
∣∣ �ψ0

∣∣, ∀t ∈ [0, T ].

Letting p → ∞ and using (56) we obtain

∣∣PM
�ψ(t)

∣∣ � eL̂T /4
∣∣ �ψ0

∣∣, ∀t ∈ [0, T ], ∀M ∈ N,

and by letting M → ∞ we get

∣∣ �ψ(t)
∣∣ � eL̂T /4

∣∣ �ψ0
∣∣, ∀t ∈ [0, T ],

which shows that �ψ ∈ L∞
loc([0,∞),H). By integrating (43) we deduce that

ν

T∫
0

∑
|k|�Np

( |k|
L̂

)2(1+α)

E( �ψN)(k) dt � 1

2

∣∣ �ψ0
∣∣2 + L̂

4

T∫
0

∣∣ �ψN(t)
∣∣2

dt

�
(

1

2
+ L̂T

4
eL̂T /2

)∣∣ �ψ0
∣∣2

. (57)

If M ∈ N and Np � M we have

ν

T∫
0

∑
|k|�M

( |k|
L̂

)2(1+α)

E( �ψNp)(k) dt � ν

T∫
0

∑
|k|�Np

( |k|
L̂

)2(1+α)

E( �ψNp)(k) dt

�
(

1

2
+ L̂T

4
eL̂T /2

)∣∣ �ψ0
∣∣2

.

Therefore, by using (56), if p → ∞ we obtain

ν

T∫ ∑
|k|�M

( |k|
L̂

)2(1+α)

E( �ψNp)(k) dt �
(

1

2
+ L̂T

4
eL̂T /2

)∣∣ �ψ0
∣∣2

, ∀M ∈ N.
0
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Now we apply Beppo–Levi theorem to get that

T∫
0

∣∣ �ψ(t)
∣∣2
1+α

dt � 1

ν

(
1

2
+ L̂T

4
eL̂T /2

)∣∣ �ψ0
∣∣2

, ∀T ∈ [0,∞),

which proves that �ψ ∈ L2
loc([0,∞),V1+α). Thus �ψ satisfies condition (1) from Defini-

tion 3.1. From (29) and (30) we easily get that

qNp,1(k, t) = qNp,1(k,0) −
t∫

0

{
1

L̂2

∑
h+l=k

(h2l1 − h1l2)ψNp,1(h, τ )qNp,1(l, τ )

+ i

L̂
k1qNp,1(k, τ ) +

(
β + 1

2

)
i

L̂
k1ψNp,1(k, τ )

+ ν

( |k|
L̂

)2(1+α)

qNp,1(k, τ )

}
dτ, ∀Np � |k|. (58)

Using (56) it is clear that all the terms under the integral except the first one converge to
the corresponding ones for �ψ . We need to show that

δ :=
t∫

0

∑
h+l=k

(h2l1 − h1l2)
(
ψNp,1(h, τ )qNp,1(l, τ ) − ψ1(h, τ )q1(l, τ )

)
dτ → 0 (59)

as p → ∞. For this we have

∑
h+l=k

(h2l1 − h1l2)
(
ψNp,1(h, τ )qNp,1(l, τ ) − ψ1(h, τ )q1(l, τ )

)
=

∑
h+l=k

(h2l1 − h1l2)
|l|2
L̂2

(
ψNp,1(h, τ )ψNp,1(l, τ ) − ψ1(h, τ )ψ1(l, τ )

)
+ 1

2

∑
h+l=k

(h2l1 − h1l2)
(
ψNp,1(h, τ )ψNp,1(l, τ ) − ψ1(h, τ )ψ1(l, τ )

)
+ 1

2

∑
h+l=k

(h2l1 − h1l2)
(
ψNp,1(h, τ )ψNp,2(l, τ ) − ψ1(h, τ )ψ2(l, τ )

)
.

The first sum on the right-hand side is equal to

∑
(h2l1 − h1l2)

l·(k − h)

L̂2

(
ψNp,1(h, τ )ψNp,1(l, τ ) − ψ1(h, τ )ψ1(l, τ )

)

h+l=k
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=
∑

h+l=k

(h2l1 − h1l2)
l · k

L̂2

(
ψNp,1(h, τ )ψNp,1(l, τ ) − ψ1(h, τ )ψ1(l, τ )

)
−

∑
h+l=k

(h2l1 − h1l2)
l · h

L̂2

(
ψNp,1(h, τ )ψNp,1(l, τ ) − ψ1(h, τ )ψ1(l, τ )

)
and since the last sum is zero we get that

∑
h+l=k

(h2l1 − h1l2)
|l|2
L̂2

(
ψNp,1(h, τ )ψNp,1(l, τ ) − ψ1(h, τ )ψ1(l, τ )

)
=

∑
h+l=k

(h2l1 − h1l2)
l · k

L̂2

(
ψNp,1(h, τ )ψNp,1(l, τ ) − ψ1(h, τ )ψ1(l, τ )

)
=

∑
h+l=k

(
h2(k1 − h1) − h1(k2 − h2)

) l · k

L̂2

(
ψNp,1(h, τ )ψNp,1(l, τ ) − ψ1(h, τ )ψ1(l, τ )

)
=

∑
h+l=k

(h2k1 − h1k2)
l · k

L̂2

(
ψNp,1(h, τ )ψNp,1(l, τ ) − ψ1(h, τ )ψ1(l, τ )

)
.

It follows that∣∣∣∣ ∑
h+l=k

(h2l1 − h1l2)
(
ψNp,1(h, τ )qNp,1(l, τ ) − ψ1(h, τ )q1(l, τ )

)∣∣∣∣
�

∣∣∣∣ ∑
h+l=k

(h2k1 − h1k2)
l · k

L̂2

(
ψNp,1(h, τ )ψNp,1(l, τ ) − ψ1(h, τ )ψ1(l, τ )

)∣∣∣∣
+ 1

2

∣∣∣∣ ∑
h+l=k

(h2l1 − h1l2)
(
ψNp,1(h, τ )ψNp,1(l, τ ) − ψ1(h, τ )ψ1(l, τ )

)∣∣∣∣
+ 1

2

∣∣∣∣ ∑
h+l=k

(h2l1 − h1l2)
(
ψNp,1(h, τ )ψNp,2(l, τ ) − ψ1(h, τ )ψ2(l, τ )

)∣∣∣∣
�

(
|k|2 + L̂2

2

) ∑
h+l=k

( |h|
L̂

∣∣ψNp,1(h, τ ) − ψ1(h, τ )
∣∣ |l|
L̂

∣∣ψNp,1(l, τ )
∣∣

+ |h|
L̂

∣∣ψ1(h, τ )
∣∣ |l|
L̂

∣∣ψNp,1(l, τ ) − ψ1(l, τ )
∣∣)

+ L̂2

2

∑
h+l=k

( |h|
L̂

∣∣ψNp,1(h, τ ) − ψ1(h, τ )
∣∣ |l|
L̂

∣∣ψNp,2(l, τ )
∣∣

+ |h|
L̂

∣∣ψ1(h, τ )
∣∣ |l|
L̂

∣∣ψNp,2(l, τ ) − ψ2(l, τ )
∣∣)

�
(|k|2 + L̂2)(∣∣ �ψNp(τ) − �ψ(τ)

∣∣∣∣ �ψNp(τ)
∣∣ + ∣∣ �ψ(τ)

∣∣∣∣ �ψNp(τ) − �ψ(τ)
∣∣).
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Using the last estimate and Holder’s inequality we get that

δ � 2
(|k|2 + L̂2)( t∫

0

∣∣ �ψNp(τ) − �ψ(τ)
∣∣2

dτ

)1/2√
t eL̂t/4

∣∣ �ψ0
∣∣.

Now we can see that in order to prove (59) it suffices to show that

t∫
0

∣∣ �ψNp(τ) − �ψ(τ)
∣∣2

dτ → 0 as p → ∞.

Since ψNp,j (k, τ ) → ψj (k, τ ) uniformly for τ ∈ [0, t], for each fixed k ∈ Z
2, we have for

each M = 1,2, . . .

λ := lim sup
p→∞

t∫
0

∣∣ �ψNp(τ) − �ψ(τ)
∣∣2

dτ

= lim sup
p→∞

t∫
0

∣∣(I − PM)
( �ψNp(τ) − �ψ(τ)

)∣∣2
dτ

� lim sup
p→∞

[
2

t∫
0

∣∣(I − PM) �ψNp(τ)
∣∣2

dτ

]
+ 2

t∫
0

∣∣(I − PM) �ψ(τ)
∣∣2

dτ. (60)

We also have

∣∣(I − PM) �ψNp(τ)
∣∣2 =

∑
|k|>M

E
( �ψNp(τ)

)
(k) � L̂

M

∑
|k|>M

|k|
L̂

E
( �ψNp(τ)

)
(k)

� L̂

M

∣∣ �ψNp(τ)
∣∣2
1+α

. (61)

From (57) and (61) we get

t∫
0

∣∣(I − PM) �ψNp(τ)
∣∣2

dτ � L̂

M

t∫
0

∣∣ �ψNp(τ)
∣∣2
1+α

dτ � L̂

νM

(
1

2
+ L̂t

4
e

L̂t
2

)∣∣ �ψ0
∣∣2

. (62)

Applying Lebesgue’s dominated convergence theorem we have that

lim
M→∞

t∫ ∣∣(I − PM) �ψ(τ)
∣∣2

dτ = 0. (63)
0
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Using (62) and (63) we let M → ∞ in (60) and we obtain that λ = 0. Next we let p → ∞
in (58) to get the first equation of (2) in Definition 3.1. In a similar fashion we deduce the
second equation of (2) in Definition 3.1. It is easy to see that ψj (k,0) = ψ0

j (k), ∀k ∈ Z
2,

j = 1,2, and the proof that �ψ is a weak solution for (19)–(23) with initial data �ψ0 is
complete. �

6. Uniqueness

In this section we prove that �ψ (the weak solution found in the previous section) is the
unique weak solution for (19)–(23). For this we need a few preliminary results.

Lemma 6.1. Let ϕ0, ψ0 ∈ R
d , f,g ∈ L2([0, T ];R

d) and let

ϕ(t) = ϕ0 +
t∫

0

f (τ) dτ, ψ(t) = ψ0 +
t∫

0

g(τ) dτ, ∀0 � t � T . (64)

Then

ϕ(t) · ψ(t) = ϕ0 · ψ0 +
t∫

0

(
f (τ) · ψ(τ) + ϕ(τ) · g(τ)

)
dτ, ∀0 � t � T . (65)

Proof. If f,g ∈ C([0, T ];R
d) then from (64) we get that ϕ′(t) = f (t),ψ ′(t) = g(t) and

(65) is easily obtained by integrating

d

dt
(ϕ · ψ) = dϕ

dt
· ψ + ϕ · dψ

dt
. (66)

The proof is complete by noticing that C([0, T ];R
d) is dense in L2([0, T ];R

d). �
Corollary 6.2. Let ϕ0 ∈ C, f ∈ L2([0, T ];C) and let

ϕ(t) = ϕ0 +
t∫

0

f (τ) dτ, ∀0 � t � T .

Then

∣∣ϕ(t)
∣∣2 = |ϕ0|2 + 2 Re

t∫
0

f (τ)ϕ(τ) dτ, ∀0 � t � T .



C. Onica, R.L. Panetta / J. Differential Equations 226 (2006) 180–209 203
The next result that we will use in the proof of uniqueness is the following variant of
Ladyzhenskaya’s inequality.

With Ω = [0,2πL̂]2 ⊂ R
2 there exists cL > 0 such that

‖u‖L4(Ω) � cL‖u‖1/2
L2(Ω)

‖∇u‖1/2
(L2(Ω))2, (67)

for every u in

H 1
per(Ω) =

{
v ∈ L2(Ω):

∑
k∈Z2

|k|2
L̂2

∣∣v(k)
∣∣2

< ∞
}

(68)

with average zero (i.e.,
∫
Ω

u(x)dx = 0). (Recall that in (68), {v(k)}k∈Z2 are the Fourier
coefficients of v.)

Next we prove the main theorem of this section.

Theorem 6.3. For every given initial data in H Eqs. (17)–(21) have a unique weak solu-
tion.

Proof. Suppose that �ϕ is another weak solution for (19)–(23) with initial data �ψ0. Let
�w = �ψ − �ϕ and �y = �q − �r , where

rj (k, t) = −|k|2
L̂2

ϕj (k, t) + (−1)j
ϕ1(k, t) − ϕ2(k, t)

2
, j = 1,2.

Since �ψ and �ϕ are weak solutions we have that

q1(k, t) = q1(k,0) −
t∫

0

{
1

L̂2

∑
h+l=k

(h2l1 − h1l2)ψ1(h, τ )q1(l, τ ) + i

L̂
k1q1(k, τ )

+
(

β + 1

2

)
i

L̂
k1ψ1(k, τ ) + ν

( |k|
L̂

)2(1+α)

q1(k, τ )

}
dτ (69)

and

r1(k, t) = r1(k,0) −
t∫

0

{
1

L̂2

∑
h+l=k

(h2l1 − h1l2)ϕ1(h, τ )r1(l, τ ) + i

L̂
k1r1(k, τ )

+
(

β + 1

2

)
i

L̂
k1ϕ1(k, τ ) + ν

( |k|
L̂

)2(1+α)

r1(k, τ )

}
dτ. (70)
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By subtracting (70) from (69) we get that

y1(k, t) = y1(k,0) −
t∫

0

{
1

L̂2

∑
h+l=k

(h2l1 − h1l2)
(
ψ1(h, τ )q1(l, τ ) − ϕ1(h, τ )r1(l, τ )

)

+ i

L̂
k1y1(k, τ ) +

(
β + 1

2

)
i

L̂
k1w1(k, τ ) + ν

( |k|
L̂

)2(1+α)

y1(k, τ )

}
dτ. (71)

Similarly,

q2(k, t) = q2(k,0) −
t∫

0

{
1

L̂2

∑
h+l=k

(h2l1 − h1l2)ψ2(h, τ )q2(l, τ ) − κM

|k|2
L̂2

ψ2(k, τ )

+
(

β − 1

2

)
i

L̂
k1ψ2(k, τ ) + ν

( |k|
L̂

)2(1+α)

q2(k, τ )

}
dτ,

r2(k, t) = r2(k,0) −
t∫

0

{
1

L̂2

∑
h+l=k

(h2l1 − h1l2)ϕ2(h, τ )r2(l, τ )

− κM

|k|2
L̂2

ϕ2(k, τ ) +
(

β − 1

2

)
i

L̂
k1ϕ2(k, τ ) + ν

( |k|
L̂

)2(1+α)

r2(k, τ )

}
dτ,

and

y2(k, t) = y2(k,0) −
t∫

0

{
1

L̂2

∑
h+l=k

(h2l1 − h1l2)
(
ψ2(h, τ )q2(l, τ ) − ϕ2(h, τ )r2(l, τ )

)

− κM

|k|2
L̂2

w2(k, τ ) +
(

β − 1

2

)
i

L̂
k1w2(k, τ ) + ν

( |k|
L̂

)2(1+α)

y2(k, τ )

}
dτ.

(72)

Next we define w̃ = w1 + w2 and ŵ = w1 − w2. An easy calculation gives us that

y1(k) + y2(k) = −|k|2
L̂2

w̃(k) and y1(k) − y2(k) = −
( |k|2

L̂2
+ 1

)
ŵ(k).

Adding (71) and (72) we obtain that

|k|2
L̂2

w̃(k, t) = |k|2
L̂2

w̃(k,0) +
t∫

0

{
1

L̂2

∑
h+l=k

(h2l1 − h1l2)
(
ψ1(h, τ )q1(l, τ )

− ϕ1(h, τ )r1(l, τ ) + ψ2(h, τ )q2(l, τ ) − ϕ2(h, τ )r2(l, τ )
) + i

k1y1(k, τ )

L̂
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+
(

β + 1

2

)
i

L̂
k1w1(k, τ ) − κM

|k|2
L̂2

w2(k, τ ) +
(

β − 1

2

)
i

L̂
k1w2(k, τ )

+ ν

( |k|
L̂

)2(1+α)(
−|k|2

L̂2
w̃(k, τ )

)}
dτ. (73)

Applying Corollary 6.2 with ϕ(t) = |k|
L̂

w̃(k, t), for every k �= 0 we obtain

|k|2
L̂2

∣∣w̃(k, t)
∣∣2

= |k|2
L̂2

∣∣w̃(k,0)
∣∣2 + 2 Re

t∫
0

{
1

L̂2

∑
h+l=k

(h2l1 − h1l2)

× (
ψ1(h, τ )q1(l, τ ) − ϕ1(h, τ )r1(l, τ ) + ψ2(h, τ )q2(l, τ ) − ϕ2(h, τ )r2(l, τ )

)
w̃(k, τ )

+ i

L̂
k1y1(k, τ )w̃(k, τ ) +

(
β + 1

2

)
i

L̂
k1w1(k, τ )w̃(k, τ ) − κM

|k|2
L̂2

w2(k, τ )w̃(k, τ )

+
(

β − 1

2

)
i

L̂
k1w2(k, τ )w̃(k, τ ) − ν

( |k|
L̂

)2(2+α)∣∣w̃(k, τ )
∣∣2

}
dτ. (74)

Subtracting (72) from (71) we get( |k|2
L̂2

+ 1

)
ŵ(k, t)

=
( |k|2

L̂2
+ 1

)
ŵ(k,0) +

t∫
0

{
1

L̂2

∑
h+l=k

(h2l1 − h1l2)
(
ψ1(h, τ )q1(l, τ )

− ϕ1(h, τ )r1(l, τ ) − ψ2(h, τ )q2(l, τ ) + ϕ2(h, τ )r2(l, τ )
)

+ i

L̂
k1y1(k, τ ) +

(
β + 1

2

)
i

L̂
k1w1(k, τ ) + κM

|k|2
L̂2

w2(k, τ )

−
(

β − 1

2

)
i

L̂
k1w2(k, τ ) + ν

( |k|
L̂

)2(1+α)(
−

( |k|2
L̂2

+ 1

)
ŵ(k, τ )

)}
dτ.

Applying again Corollary 6.2 we deduce that( |k|2
L̂2

+ 1

)∣∣ŵ(k, t)
∣∣2

=
( |k|2

L̂2
+ 1

)∣∣ŵ(k,0)
∣∣2 + 2 Re

t∫ {
1

L̂2

∑
h+l=k

(h2l1 − h1l2)
(
ψ1(h, τ )q1(l, τ )
0
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− ϕ1(h, τ )r1(l, τ ) − ψ2(h, τ )q2(l, τ ) + ϕ2(h, τ )r2(l, τ )
)
ŵ(k, τ )

+ i

L̂
k1y1(k, τ )ŵ(k, τ ) +

(
β + 1

2

)
i

L̂
k1w1(k, τ )ŵ(k, τ ) + κM

|k|2
L̂2

w2(k, τ )ŵ(k, τ )

−
(

β − 1

2

)
i

L̂
k1w2(k, τ )ŵ(k, τ ) − ν

( |k|
L̂

)2(1+α)( |k|2
L̂2

+ 1

)∣∣ŵ(k, τ )
∣∣2

}
dτ. (75)

Recall that

| �w|2 =
∑
k∈Z2

( |k|2
L̂2

(∣∣w1(k)
∣∣2 + ∣∣w2(k)

∣∣2) + |w1(k) − w2(k)|2
2

)

= 1

2

∑
k∈Z2

( |k|2
L̂2

∣∣w̃(k)
∣∣2 +

( |k|2
L̂2

+ 1

)∣∣ŵ(k)
∣∣2

)
.

Using this and relations (74) and (75), after summing over k ∈ Z
2 we obtain

∣∣ �w(t)
∣∣2 = ∣∣ �w(0)

∣∣2 + 2 Re

t∫
0

{
1

L̂2

∑
k∈Z2

∑
h+l=k

(h2l1 − h1l2)
(
ψ1(h, τ )q1(l, τ )

− ϕ1(h, τ )r1(l, τ )
)
w1(k, τ ) + 1

L̂2

∑
k∈Z2

∑
h+l=k

(h2l1 − h1l2)
(
ψ2(h, τ )q2(l, τ )

− ϕ2(h, τ )r2(l, τ )
)
w2(k, τ ) + i

L̂

∑
k∈Z2

k1y1(k, τ )w1(k, τ )

− κM

∑
k∈Z2

|k|2
L̂2

∣∣w2(k, τ )
∣∣2 − ν

∑
k∈Z2

( |k|
L̂

)2(1+α)

E( �w)(k)

}
.

Therefore,

∣∣ �w(t)
∣∣2 + κM

t∫
0

∑
k∈Z2

|k|2
L̂2

∣∣w2(k, τ )
∣∣2

dτ + ν

t∫
0

∑
k∈Z2

( |k|
L̂

)2(1+α)

E( �w)(k) dτ

= 2 Re
i

L̂

t∫
0

∑
k∈Z2

k1y1(k, τ )w1(k, τ ) dτ + 2 Re
1

L̂2

2∑
j=1

t∫
0

∑
k∈Z2

∑
h+l=k

(h2l1 − h1l2)

× (
wj(h, τ )qj (l, τ )wj (k, τ ) + ϕj (h, τ )yj (l, τ )wj (k, τ )

)
dτ. (76)

Using the same steps as when we proved that S1 = 0 we can show that∑
2

∑
(h2l1 − h1l2)wj (h, τ )qj (l, τ )wj (k, τ ) = 0, j = 1,2.
k∈Z h+l=k
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Also we have

∑
k∈Z2

∑
h+l=k

(h2l1 − h1l2)ϕ1(h, τ )y1(l, τ )w1(k, τ )

=
∑

h+l+k=0

(h2l1 − h1l2)ϕ1(h, τ )w1(k, τ )

(
−|l|2

L̂2
w1(l, τ ) − w1(l, τ ) − w2(l, τ )

2

)
,

and

∣∣∣∣ 1

L̂2

∑
h+l+k=0

(h2l1 − h1l2)ϕ1(h, τ )w1(k, τ )
|l|2
L̂2

w1(l, τ )

∣∣∣∣
=

∣∣∣∣∣ 1

L̂2

∑
h+l+k=0

(h2k1 − h1k2)ϕ1(h, τ )w1(k, τ )
h · l

L̂2
w1(l, τ )

∣∣∣∣∣
�

∑
h+l+k=0

( |h|2
L̂2

∣∣ϕ1(h, τ )
∣∣)( |k|

L̂

∣∣w1(k, τ )
∣∣)( |l|

L̂

∣∣w1(l, τ )
∣∣).

Next we define the auxiliary functions

f (x) =
∑
k∈Z2

|k|2
L̂2

∣∣ϕ1(k, τ )
∣∣e(i/L̂)k·x and g(x) =

∑
k∈Z2

|k|
L̂

∣∣w1(k, τ )
∣∣e(i/L̂)k·x.

Then,

S :=
∑

h+l+k=0

( |h|2
L̂2

∣∣ϕ1(h, τ )
∣∣)( |k|

L̂

∣∣w1(k, τ )
∣∣)( |l|

L̂

∣∣w1(l, τ )
∣∣)

= 1

(2πL̂)2

∫
Ω

f (x)g2(x) dx.

Applying Holder’s and Ladyzhenskaya’s inequalities we obtain that

|S| � 1

(2πL̂)2
‖f ‖L2(Ω)‖g‖2

L4(Ω)
� 1

(2πL̂)2
c2
L‖f ‖L2(Ω)‖g‖L2(Ω)‖∇g‖(L2(Ω))2

� c
∣∣ �ϕ(τ)

∣∣ ∣∣ �w(τ)
∣∣∣∣ �w(τ)

∣∣ , ∀τ ∈ [0, T ].
1 1
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Using the above estimate and similar estimates for the other terms, from (76) we get

∣∣ �w(t)
∣∣2 + ν

t∫
0

∣∣ �w(τ)
∣∣2
1+α

dτ �
∣∣ �w(0)

∣∣2 + c

t∫
0

∣∣ �w(τ)
∣∣2

dτ

+ c

t∫
0

∣∣ �ϕ(τ)
∣∣
1

∣∣ �w(τ)
∣∣∣∣ �w(τ)

∣∣
1 dτ, (77)

for every t ∈ [0, T ], where c > 0 depends on T . In the last integral of (77) we use the
inequality 2ab � a2 + b2 to get

∣∣ �w(t)
∣∣2 + ν

t∫
0

∣∣ �w(τ)
∣∣2
1+α

dτ �
∣∣ �w(0)

∣∣2 + c

t∫
0

∣∣ �w(τ)
∣∣2

dτ + ν

t∫
0

∣∣ �w(τ)
∣∣2
1 dτ

+ c̃

t∫
0

∣∣ �ϕ(τ)
∣∣2
1

∣∣ �w(τ)
∣∣2

dτ,

which implies that

∣∣ �w(t)
∣∣2 �

∣∣ �w(0)
∣∣2 + ĉ

t∫
0

∣∣ �ϕ(τ)
∣∣2
1

∣∣ �w(τ)
∣∣2

dτ.

Using Lemma 6.4 (below) we deduce that | �w(t)|2 � | �w(0)|2eĉ
∫ t

0 | �ϕ(τ)|21 dτ , ∀t ∈ [0, T ]. But
�w(0) = 0, and thus, �w(t) = 0, ∀t ∈ [0, T ]. Since T was arbitrary we conclude that �ψ(t) =
�ϕ(t), ∀t ∈ [0,∞), and the proof is complete. �

The lemma below is a generalization of Gronwall’s inequality. The proof is elementary
and it is omitted.

Lemma 6.4. Let f0 � 0 and f ∈ L∞([0, T ],R), g ∈ L1([0, T ],R) be nonnegative func-
tions such that

f (t) � f0 +
t∫

0

g(τ)f (τ) dτ, ∀t ∈ [0, T ].

Then

f (t) � f0e
∫ t

0 g(τ) dτ , ∀t ∈ [0, T ].
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Remark 6.5. Since every limit point in C([0,∞),K) of { �ψN }N∈N is a weak solution for
(19)–(23) we easily get as a consequence of uniqueness that { �ψN }N∈N converges to �ψ in
C([0,∞),K).
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