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INTRODUCTION

In a finite group, there are many intriguing connections between the
lattice of subgroups and other group theoretic properties of the group. In
this article, we consider lengths of maximal chains of subgroups.

Iwasawa [Iw] proved what is now a classical result along the theme we
pursue. His result is that all maximal chains of subgroups of a finite group
G have the same length if and only if G is supersolvable. We consider here
groups in which any two maximal chains of subgroups differ in length by
at most one. These are the groups in our title and our goal is to describe
such groups.

At the beginning, we hoped to find a way to produce shortest maximal
chains. The articles by Cameron, Solomon, and Turull [CST], Solomon
and Turull [ST], and Seitz, Solomon, and Turull [SST] attack the
problem of longest maximal chains in various classical groups. Shortest
chains may, in general, be less tractable.

However, for solvable groups the picture is illuminated by the notion of
critical maximal subgroups which appears in Section 4 of Carter and
Hawkes [CH]. Kohler [Ko] has the result formulated well for our use in
Section 2. Shortest maximal chains in solvable groups and, hence, solvable
groups of chain difference one are apparent using Kohler’s result.
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Luckily, one need not know shortest chains in all simple groups to iden-
tify those of chain difference one. In Section 3 we classify the nonabelian
finite simple groups with chain difference one, using the Classification of
Finite Simple Groups, Dickson’s Theorem on subgroups of L,(¢}, known
involvement of one simple group in another and, of course, the Atlas
[AT]. Not surprisingly, any such group is isomorphic to some L,(g) where
g comes from a severely restricted set of prime powers.

For arbitrary finite groups, our concluding results in Section 4 show that
a group with chain difference one can have at most one noncyclic chief
factor which, if abelian, must have rank 2 or, if nonabelian, must be
one of the simple groups with chain difference 1 identified in Section 3.
Unfortunately this condition is not sufficient as we illustrate with
PGL(2,29).

1. NOTATION AND PRELIMINARIES

All groups considered in this paper are finite. Group theoretic notation
is standard, see [Hu].

For a positive integer n, Q(n) is the number of prime divisors of n,
counting multiplicity. For example, 2(12)=3.

A maximal chain of subgroups of a group G is a chain of subgroups
l=My<M,< --- <M,=G where each M, is a maximal subgroup of
M, ... The length of such a chain is k. We define the chain difference of a
finite group G to be the length of a longest maximal chain of subgroups
minus the length of a shortest maximal chain of subgroups and we denote
it by cd(G). With this notation, Iwasawa’s characterization becomes

Iwasawa’s THEOREM 1.1. A finite group G is supersolvable if and only if
cd(G)=0.

The groups of interest to us are those having chain difference equal to 1.
Two lemmas about the chain difference of a group will be needed later on.
The first one is obvious.

LemMma 1.2, If G is a finite group, then cd(G)=max |r—s| where the
maximum is taken over all r,s which are lengths of maximal chains of
subgroups of G. Also, cd(G) < Q(|G]).

LemMa 13, If G is a finite group, B G and A is a normal subgroup
of B, then cd(G)z=cd(B/A)+cd(A). In particular, cd(G)=cd(B) and
cd(G) = cd(B/A).
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Proof. Let 1=M,<M,< ... <M,=A4 be a longest maximal chain
of subgroups of 4 and let Ny/A <N, /A< --- <N;/A=B/A be a longest
maximal chain of B/A4, then l=M<M,<---<M,=A=N,<
N, < .-+ <N;=Bis a maximal chain of subgroups of B whose length is
k +j. Similarly, by taking shortest maximal chains instead of longest ones
we can construct a maximal chain of subgroups of B of length m + n, where
m 1s the length of a shortest maximal chain of A and n is the length of a
shortest maximal chain of A/B. By extending each of these maximal chains
of B in the same way to maximal chains of G by adding, if necessary, sub-
groups between B and G, we obtain maximal chains of subgroups of G of
length k + j+r and m+ n+ r for some r = 0. Thus, by Lemma 1.2, ¢cd(G) >
(k+j+r)—(m+n+r)=(k—m)+ (j—n)=cd(A)+ cd(B/A) from which
it follows that cd(G) > cd(B) and cd(G) > cd(B/A).

LEMMA 1.4. Suppose G is a finite group and N <Z(G), then for every
maximal chain of subgroups of G, there is a maximal chain of G of the same
length containing N as one of its terms.

Proof. We induct on |G|. Let 1=M,<M,< ... <M,=G be any
maximal chain of subgroups of G and let K= M, ,, then K is a maximal
subgroup of G and 1 =M <M, < --- <M, _, =K is a maximal chain of
subgroups of K.

First assume N <K, then N < Z(K). By induction, there is a maximal
chain of subgroups of K of length of k—1 containing ¥ as a term. By
adjoining G to that chain, we obtain maximal chain of G of length £ with
N as a term as was to be shown.

Now assume N is not contained in K, then G = NK. Since N < Z(G), K is
a normal subgroup of G. Hence, G/K has order p for some prime p. In addi-
tion, N/Kn N = G/K and so we see that K n N is a maximal subgroup of N,

By induction again we obtain a maximal chain of subgroups of K,
l=Ly< L, < - <L;=KnN< --- <L, =K, having Kn N as a term.
Clearly, 1=L,/KnN<L; /[KAnN< ---<L, /KNnN=K/KNnN is a
maximal chain of subgroups of K/K ~ N and, via the natural isomorphism
K/KnNto G/IN,l=NL,/N< -.- <NL, ,/N=G/N is a maximal chain of
subgroups of G/N.

Recalling that K~ N is a maximal subgroup of N, we have 1=17L,<
Li<--.<L,=KnN<N<NL, < ---<NL,_,=G is a maximal chain
of subgroups of G visibly containing N as a term and having length k. The
proof of the lemma is complete.

CoroLLARY 1.5. For any finite group G, cd(G)= cd(G/Z(G)).

Proof. By Lemma 1.4, there are longest and shortest maximal chains of
subgroups of G each having Z(G) as a term. By Iwasawa’s Theorem 1.1,



182 BREWSTER, WARD, AND ZIMMERMANN

the number of terms contained in Z(G) is the same in each chain and so
the number of terms containing Z(G) is, respectively, the length of a
longest and shortest maximal chain of G/Z(G). The corollary follows by
subtraction.

2. SoLVvABLE GRoOUPS HAVING CHAIN DIFFERENCE ONE

The chain difference of a finite solvable group is easy to compute using a
theorem of J. Kohler.

KoHLER’S THEOREM 2.1 [Ko, Theorem 2]. The length of a shortest
maximal chain in a finite solvable group G is the length of a chief series of G.

COROLLARY 2.2. If G is a finite solvable group, then cd(G)=
3 (rank C — 1) where the sum is over all factors C in any fixed chief series
of G. In particular, cd(G)=1 if and only if any chief series of G has exactly
one noncyclic chief factor, that factor having rank 2.

Proof. Clearly a composition series of G is a longest maximal chain of
G because its length is £(|G}). Take any chief series of G. Using Kohler’s
Theorem 2.1, cd(G) = (|G|} — (length of the chief series) =3 rank C—3 1 =
Y (rank C — 1), the sum taken over the factors C in the chief series. From
the formula, we see ¢d(G)=1 if and only if rank C =1 except in one case
wherein rank C=2. Thus, every chief factor is cyclic except one which is
of rank 2.

3. NONABELIAN SIMPLE GROUPS HAVING CHAIN DIFFERENCE ONE

To determine which nonabelian simple groups have chain difference one,
we use the classification of finite simple groups and simply check each
family of simple groups. For low order and sporadic simple groups, the
reader is frequently referred to the Atlas [AT] to check necessary details.
The notation we use for the simple groups is that of the Atlas. Of course,
by Iwasawa’s Theorem 1.1, the chain difference of any nonabelian simple
group is at least 1.

LemMma 3.1 A simple group isomorphic to an alternating group A, has
chain difference 1 if and only if n=15 or 6.

Proof. 1t is easy to check (using the Atlas if nothing else) that 45 and
Ag have chain difference one. Likewise, it is easy to check c¢d(A,) = 2. Thus,
by Lemma 1.3, cd(A,) = cd(A;)=2forn=17.
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LEMMA 3.2. A simple group isomorphic to L,(q) has chain difference 1 if
and only if

(i) g=4, 5,9 (i.e. the group is isomorphic to As or A), or
(1) g is an odd prime, 5|g> —1 0or 169> — 1, and 3<Q(qg+ 1)< 4, or

(i) g is an odd prime, 5-16 | ¢> — 1 (equivalently, g=3, 13, 27, 37
(mod 40)), and 2<Q(g+ 1)< 3.

Proof. First we show sufficiency. If (i) holds, then from above the
group has chain difference 1. If (ii) holds then, by Dickson’s Theorem,
[(Hu, I1.8.27] the possible maximal subgroups are the Borel subgroups
of order ¢g(q—1)/2, dihedral subgroups of orders g+ 1 and subgroups
isomorphic to 45 (when 5|g>—1) or S, (when 16]|g>—1). All maximal
chains of L,(¢) through the Borel subgroups have length Q(¢—1)+1 as
do those through a dihedral subgroup of order ¢— 1. Maximal chains
through dihedral subgroups of order ¢ + 1 have length Q2(g+ 1)+ 1 while
those through a copy of 45 or §, have length 4 or 5. Since 3<Q(g+1)<4,
we see that the difference in this case is 1. If (iii) holds, Dickson’s Theorem
tells us that the maximal subgroups are as in case (ii} except with sub-
groups isomorphic to A4, replacing those isomorphic to 45 or S,. Now we
may calculate a chain difference of 1 just as in case (it).

Now we show necessity. Suppose G=L,(q), ¢>3 and G has chain
difference 1.

First suppose g is even. The Sylow 2-subgroup of G is elementary abelian
of order ¢ and is a minimal normal subgroup of a Borel subgroup, its
normalizer Thus when ¢=2", n> 3, a Borel subgroup already has chain
difference greater than 1 by Corollary 2.2 because it has a minimal normal
abelian subgroup of rank n > 3. Hence G also has chain difference greater
than 1 by Lemma 1.3.

Next suppose g is odd, say g = p” where p is an odd prime. When n > 3,
we see, exactly as in the preceding paragraph, that a Borel subgroup of G
has chain difference greater than 1 and, hence, so does G. Thus, n<2.

Consider the case where n=2. By examining the possible last digit of the
prime p, we see that either p=15or 5| (p*—1) (true for any odd number).
If p=35, L,(5%) has chain difference greater than 1 (see the Atlas again).
Thus, p#5 and we have 5| p®— 1. Thatis, 5| p*—1or 5| p*>+ 1.

Assume 5| p>+1, then 5 does not divide p?>—1 so neither L,(p) nor
PGL(2,p) has a subgroup isomorphic to A;. Therefore, by Dickson’s
Theorem, L,(p*) has a maximal subgroup isomorphic to As There is a
maximal chain containing this subgroup having length 4 (take one through
A,). Also by Dickson’s Theorem L,(p?) has a maximal subgroup which is
dihedral of order p?—1 or else p=3, in which case 4=9 and we are
finished. For p> 3, any maximal chain of the maximal dihedral subgroup
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has length Q(p?—1)+ 1 since it is supersolvable. Suppose Q(p*—1)=3,
then p? — 1 = 4r where r is a prime and so p— 1 =2, 4, r or 2r. The first and
third cases imply p = 3 which is not so. The second case implies p = 5 which
we already eliminated. The fourth case implies p + 1 =2 which is absurd.
Thus, 2(p®—1)>3 and a maximal chain of L,(p*) through a Borel
subgroup has length Q(p*~— 1)+ 2> 5. Comparing this chain to the one of
length 4 located earlier, we see that L,(p?) has chain difference greater than
1in case 5| p?+ 1.

Assume 5 | p> — 1, then L,(p) has a maximal subgroup isomorphic to A4,.
The small cases p=35, 7, 11 are handled separately (again, using the Atlas
or brute force) and only p =35 yields a group with chain difference 1. For
p> 11, L,(p) has dihedral maximal subgroups of orders p+ 1 and p— 1. If
either 2(p+1)<2 or 2(p—1)<2 then by looking at a maximal chain of
L,(p) containing the corresponding dihedral subgroup and comparing with
a maximal chain of length 5 containing the copy of 45, we find L,(p),
hence L,(p?), has chain difference greater than 2. Thus, 2(p+1)= 3. Now
consider a maximal chain of L,(p?) containing the Borel subgroup first
passing through the Sylow p-subgroup. The length of this chain is
24+ Q2(p+1)+Q(p—1)=8. In L,(p), take a maximal chain of length 4
containing 4, then extend it to a maximal chain of L,(p?), by moving up
to PGL(2, p) and then to L,{p?). This gives a maximal chain of length 6.
Comparing the two maximal chains just constructed shows L,(p?) has
chain difference at least 2 in this case as well.

So now we have n=1 or, in other words, ¢ = p is an odd prime. We need
to show ¢ satisfies the conditions in (ii) or (iii). As before we may assume
g>11. If 5|/¢*—1 or 16| g°>—1, L,(q) contains maximal subgroups
isomorphic to A5 or S, respectively (by Dickson’s Theorem, of course).
Either way, we obtain maximal chains of L,(q) of lengths 4 and 5. Com-
paring with the lengths of chains through a Borel and maximal dihedral
subgroups gives 3 < Q(p+1)<4 since the chain difference 1s 1. If 5-16
does not divide ¢*> — 1, L,(g) contains a maximal subgroup isomorphic to
A4. A calculation like the one just outlined shows 2<Q(p+ 1)< 3 in this
case.

THEOREM 3.3 There are no nonabelian simple groups having chain
difference equal to one except those found in Lemma 3.1 and Lemma 3.2
above.

Proof. Having already analyzed the alternating groups in Lemma 3.1
and the family L,(g) in Lemma 3.2, we simply examine the remaining
simple groups family by family.

The Family A,(q)=L,,,(g), n=2. First consider the case n=2.
Suppose g is even. Then Li(gq) contains L(2) as a subgroup. L;(2)
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(= Ly(7)) has chain difference greater than 1 by 3.2. Thus, L,(g) has chain
difference greater than 1 by Lemma 1.3.

Now suppose g =p”" where p is an odd prime. L;(gq) contains L;(p) as a
subgroup so it suffices to show SL(3, p) has chain difference greater than
1, by Corollary 1.5 and Lemma 1.3. Consider the following subgroups of
SL(3,p):

0
0 e SL(3,p):d=(xv—yu) !
d

bﬂ
Il
o R ¥
=R

and

1 0 a
M=<]0 1 b)eSL3,p)
0 0 1

M is elementary abelian of order p2, T= GL(2, p) and T acts irreducibly on
M. (TM, in fact, is a maximal parabolic subgroup of SL(3, p).) GL(2, p) is
not supersolvable so it is possible to find two maximal chains of different
lengths. Call the lengths r and s where r<s. T is a maximal subgroup of
TM (by the irreducible action of T on M) so by using the chain of length
r in T, we obtain a maximal chain of TM of length r+ 1. By first going
through M, then using the chain of length s in 7, we obtain a maximal
chain of TM of length s+ 2. The chain difference in TM then is at least
s+2—(r+1)=s5—r+122 Thus, the chain difference in SL(3, p) is at
least 2 as was to be shown.

For n>2, L,,,(q) contains L;(q) as a subgroup and so, by the
preceding, L, . ,(¢g) has chain difference at least 2.

The Families B,(q), n=3; C,(q), n=23; D,{q), n=4, E,(q), n=6, 7, 8§,
Fi(q), °D,(q), n=4, 2E,(q). The diagrams for the above families each
contain a subdiagram of type A, (ie. 0—0). Thus, each group involves
A,(q) which has chain difference greater than 1 as has just been shown.
(For a discussion of this involvement, see [Go, pp. 77-78] or p. xv of the
Atlas.)

The Family *A,(q) = U,(q). First suppose g=p", n>1. A Borel sub-
group of U,(g) is a semidirect product QK where Q is a normal Sylow
p-subgroup of order ¢* and K is cyclic. Moreover, Q/Z(Q) is elementary
abelian of order ¢* and K acts irreducibly on it [O’N]. Thus, with n> 1,
Q/Z(Q) is a chief factor of QK of rank at least 4. By Corollary 2.2, KQ
already has chain difference at least 3. Therefore, cd(U;(g)) = 3 in this case.

Now suppose g=p, then p must be odd because U;(2) is solvable.
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Moreover, we may assume p>5 by simply checking U;(3) and U;(5) in
the Atlas.

For the moment, we will work in SU,(p). Consider SU,(p) acting on a
3-dimensional vector space V over GF(p*) where V has a nondegenerate
Hermitian form which defines SU;(p). We may take a basis {w,, w,, w;}
for V as in [Hu, Satz I1.10.12]. Set U=<{w,), a !-dimensional
nonisotropic subspace, and U'(=U*)=<{w,,w;>. U’ contains a
1-dimensional isotropic subspace (e.g. {w,)>). By the theorem on page 373
of [Ki], the stabilizer of U in SU,(p), call it M, is a maximal subgroup of
SU,(p). Furthermore, since M preserves the Hermitian form, a matrix in

* « 0
M has the form ((*) : 0) with respect to the basis {w,, wy, w,} and it may
be seen that

a b 0 b
a
M= c d 0 :(C d>eGU2(p) = GU,(p).
0 0 (ad—bc) !

In GU,(p), GU,(p)/SU,(p) is cyclic of order p+ 1, Z(SU,(p))) has
order 2 and SU,(p)/Z(SU,(p))= L,(p). Let r be the length of a longest
maximal chain of L,(p). By suitably refining the chain 1 < Z(SU,(p})<
SU,(p)<GU,(p) to a maximal chain, we obtain a maximal chain of
GU,(p) of length 1 + r+ Q(p + 1). Taking the image of this chain in M and
recalling that M is a maximal subgroup of SU,(p) we have a maximal
chain of SU,(P) of length 2+ r+ Q(p+1). Lemma 1.4 implies there is a
maximal chain of the same length having Z(SU,(p)) as one of its terms.
Factoring out that center, which has order (p + 1, 3), we obtain a maximal
chain of Us(p) of length 2 +r+Q(p+1)—-Q((p+1, 3)).

Now we construct a shorter maximal chain of U;(p). The entries of
U,(p) are in GF(p?). Let ¢ be a field automorphism of GF(p?) having
order 2. We see that ¢ induces an automorphism of U,(p). Furthermore,
by Theorem 2, p. 388 of [BGL], C, the centralizer in Us(p) of o, is a
maximal subgroup of U,(p). Furthermore C= PSO;(p}= PGL,(p) (the
first isomorphism is not hard to check by hand and the second is [Hu,
IL.10.117).

Let s be the length of a shortest maximal chain in L,{p). Using the
image of such a chain in C and recalling that L,(p) is maximal in
PGL,(p)= C and C is maximal in U,(p), we construct a maximal chain of
subgroups of U,(p) of length s+ 2.

From those two maximal chains and Lemma 1.2, we obtain

cd(Us(p)=[24r+2(p+1)—Q(p+1,3))]—(s+2)
=(r—)+Q(p+1)—-2((p+1,3))=1+2—1=2.
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The Family *A,(q)=U,, (g), n>=3. By thinking of unitary matrices,
we see U, (g), n=3, involves Us(g) and U,(g). For g=2, U,2) has
chain difference greater than 1 from the Atlas. Otherwise, U;(g) has chain
difference greater than 1 from the previous result. Lemma 1.3 thus implies
the desired concluston.

The Families Gy(q), *Da(q)=D3(q). PSp(4,q)=B,(q)=C,(q). For ¢
even, *D,(q) involves L,(¢*) (as may be seen from the diagram or from
p. 376 of [Th] and thus it has chain difference greater than one. For the
other groups, ¢ =>4 (neither B,(2) nor G,(2) are simple). Now, B,(4) and
G,(4) have chain difference greater than 1 from the Atlas and for ¢ >4,
B,(g) and G,(q) each involve L,(g¢), which has been shown to have chain
difference greater than 1.

For ¢ odd, the centralizer of an involution in each of these groups has
a subgroup L,L, of index 2 with [L,,L,]=1, [L,nL, =2 and
L;=SI1(2,q,), q; odd [Hr, p. 80]. SL(2, ¢,) is not supersolvable and so it
has chain difference at least one. Thus, even a centralizer of an involution
has chain difference at least 2 using Lemma 1.2,

The Families *B,(27), *F,(2"), r Odd, r>1. The groups 2B,(27), r
odd, r> 1, are the Suzuki groups. Suzuki’s paper [Su62, Theorem 9 of
Sect. 15] gives the maximal subgroups. One of them is the Borel sub-
group H of order g*(g—1) where H modulo its Sylow 2-subgroup is
cyclic of order g— 1. A maximal chain of 2B,(2") containing H and its
Sylow 2-subgroup has length 2r+ Q(¢—1)+1. Another maximal sub-
group is B, which is dihedral of order 2(¢4—1). A maximal chain con-
taining B, has length Q(g— 1)+ 2. Thus, the chain difference is at least
2r—1>2.

Parrott [Pa, p. 343] shows 2B,(2') is involved in 2F,(2") and so the
previous paragraph and Lemma 1.3 give cd(*F,(27)) > 2.

The Family *G,(3"), r>1, r Odd. Centralizers of involutions in this
family of Ree groups involve L,(3") [Wa, p. 3327 and, thus, since r is odd
and r> 1, the chain difference is greater than 1.

The Sporadic Simple Groups and the Tits Group *F,(2). Here one can
simply glance at the Atlas and readily find a subgroup in each group that
already has chain difference greater than 1. For the sporadic groups, it
saves time to note that the table on p. 238 of the Atlas indicates the
involvement of M, in all the sporadic groups except J,, M,,, J,, J;, He,
Ru, and Th.
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4. NONSOLVABLE GROUPS HAVING CHAIN DIFFERENCE ONE

LemMa 4.1, Suppose G/H is a finite simple group and the chief factors of
G in H are cyclic, then G/Z(G)= C/Z(G)x H/Z(G), where C= Cgs(H),
C/Z(G)=G/H.

Proof. First we show G/C;(H) is solvable. Let 1 =H, <H, _,;< --- <
Hy,= H <G be a chief series of G and 4 = {ae Aut(H): H?=H,, 0<i<k}.
By hypothesis, each H/H, , is cyclic so Aut(H/H,,,) is abelian. Thus,
A/C (H/H,; ) is abelian and A'< C, (H/H;,,) for each i. By Hall’s
Theorem [Ha], 4’ is nilpotent. Thus, A is solvable. Since G/Cs(H) embeds
in A, it is also solvable.

Let C=Cs(H); CH is normal in G. The simplicity G/H implies
CH=G or C<H. The latter is impossible since we have shown G/C is
solvable. Thus, CH=G and G/Cn H=C/Cn Hx H/C~ H. It suffices to
show Cn H=Z(G). Clearly, Cn H=Z(H)< Z(G). Conversely, Z(G) < C,
obviously, and Z(G) < H because G/H is simple.

THEOREM 4.2. Suppose G is a nonsolvable finite group with at least two
noncyclic chief factors in any chief series, then cd(G) = 2.

Before proving the theorem, we state and prove a corollary that along
with Corollary 2.2 gives the result stated in the Introduction.

CoroLLARY 4.3. Suppose G is a nonsolvable finite group with ¢cd(G) =1,
then G has exactly one noncyclic chief factor in any chief series and that
Sfactor is isomorphic to L,(q) where gq=4, 5, 9 or q is an odd prime with
3<Q(g+1)<4 when 5 or 16 divides > — 1 and 2 < 2(q+1)<3 when 5-16
does not divide q> — 1.

Proof. That G has only one noncyclic chief factor in any chief series
follows from the theorem. Nonsolvability implies such a chief factor is a
direct product of nonabelian simple groups. If there is more than 1 direct
factor in the chief factor we may apply Theorem 1.1 and Lemma 1.3 to see
that cd(G)=2 (take 4/C as the chief factor, choose B with C<B, B
normal in 4 and A/B simple then note that in the case of more than one
direct factor in 4/C, B is not supersolvable). Thus, the chief factor is a
nonabelian simple group. By Lemma 1.3 again, it must be a simple group
of chain difference one and, therefore, is one of the groups listed in the
corollary by the results of the previous section.

Now we turn to the proof of the theorem.

Fix a chief series for G. By hypothesis, the series has at least two
noncyclic chief factors. Suppose it has more than two such chief factors.
Then there is a nontrivial normal subgroup L in the chief series with G/L
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having a chief series with exactly two noncyclic factors. By induction,
cd(G/L) = 2. Hence, cd(G)>2. Thus, we may assume G has precisely two
noncyclic chief factors. If either factor is the direct product of more than
one nonabelian simple group, then the same argument as used in the proof
of the corollary gives cd(G)> 2. Thus, we may assume G has precisely two
noncyclic chief factors. If either factor is the direct product of more than
one nonabelian simple group, then the same argument as used in the proof
of the corollary gives ¢d(G) = 2. If both factors are nonabelian, then there
is a factor 4/B with both A and B nonsolvable so once again we employ
Lemma 1.3 to give the desired result. In summary, we may henceforth
assume our chief series for G has precisely two noncyclic factors: one
simple and one elementary abelian.

Let K/H be the simple noncyclic chief factor and let N/L be the noncyclic
elementary abelian chief factor. If K< L, then by Corollary 2.2 cd(G/K) = 1.
Thus , cd(G) 2z cd(G/K) + cd(K) = 2. Hence we may assume N< H. If L #1,
we may use induction to obtain ¢d(G) = cd(G/L) = 2. Thus we may suppose
L=1 and N is a minimal normal subgroup of G.

We consider separately the cases K< G and K=G.

Case 1. K< G. If K has a noncyclic chief factor other than K/H, then
we are done by induction.

If all the chief factors of K contained in H are cyclic, then Lemma 4.1
shows there is a subgroup C < K with C/Z(K)= K/H and C is normal in
G. Let S be the terminal member of the derived series of C. Since C is non-
solvable, S5 1 and § is not contained in Z(K). Thus, SZ(K)/Z(K) is a
nontrivial normal subgroup of the simple group C/Z(K), so SZ(K)= C and
C/IZ(K)=S/(SnZ(K)). In as much as SNZ(K)<Z(S) and Z(S) is
normal in S, we have S Z(K)=Z(S). Hence, by [Su82, 9.18(3), (5) and
9.14(2)], S is a homomorphic image of the representation group of C/Z(K)
with Z(S) a homomorphic image of the center of the representation group.

We may assume cd(C/Z(K)) =1, otherwise we are finished. From our
examination of the simple groups in the previous section, C/Z(K) 2 L,(p),
for some odd prime greater than 3, or L,(9). In either case the representa-
tion groups of the corresponding simple groups have cyclic centers [Hu,
V.25.7]. Thus, Z(S) is the image of a cyclic group and is therefore cyclic.

If Z(S)+# 1, then any chief series of G/Z(S) has two noncyclic chief
factors and we are done by induction. If Z(S)=1, then S is a minimal
normal subgroup of G. By refining 1 < S < G to a chief series for G we see
G/S is solvable and has one noncyclic chief factor and so ¢d(G/S)= 1.
Thus, cd(G) = cd(G/S) + cd(S) = 2 as was to be shown.

Case 2. K= G. Recall we have a noncyclic elementary abelian subgroup
N. Let |[N|=r° a>1, r a prime.
If N is not contained in @(G), then there exists a maximal subgroup M
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not containing N. Thus, G=NM and N M =1. M is not solvable or else
G would be solvable. Hence, cd(M) = 1. Take a shortest maximal chain of
subgroups of M, say of length s, by adjoining G we get a maximal chain
of subgroups of G of length s+ 1. Next build another maximal chain of G
by taking one of length g in N and extending it by adjoining the preimage
of a longest maximal chain in G/N= M. The length of this chain is 1+ a
where ¢ is the length of a longest maximal chain in M. Comparing these
two chains we see cd(G)=2(t+a)—(s+ 1)=cd(M)+(a—1} =1+ 1. Thus,
we may now assume N < @P(G). The simplicity of K/H=G/H implies
D(GYKH.

If &(G) is not an r-group, then a chief series of G/O,(@(G)) has two
noncyclic chief factors (isomorphic to N and G/H) and, hence, we are
finished by induction. Next we show @(G)= H by mimicking [Ko]. Sup-
pose @(G)< H. Let R/®(G) be a minimal normal subgroup of G/®(G)
contained in H/®(G); R/D(G)+# 1 and so there is a maximal subgroup M
of G not containing R. Thus, RM = (G. Moreover, H is solvable and so
R/®(G) is abelian which implies R< F(G)=() C4z(C) where the inter-
section is taken over all chief factors C of G. Therefore, M acts on chief
factors of G in the way G does. In particular, N is a minimal normal
subgroup of M. M is not solvable and so it has two noncyclic chief factors:
N and a nonabelian one, By induction, ¢cd(M)<2 and we are finished.
Therefore, we may take @(G)= H.

Now suppose r=2 or r=3. Let P be a Sylow p-subgroup of G where p
is a prime divisor of |G| different from 2 and 3. By Maschke’s Theorem, N
is a completely reducible P-module. The dimension of each irreducible
P-submodule of N, except possibly one, is 1 and the exception can have
dimension at most 2; for otherwise, ¢d(PN) =2 by Corollary 2.2 and there
is no more to show. The possible automorphism groups of the irreducible
P-submodules are, therefore, 1, Z, and subgroups of GL,(2) or GL,(3), all
12,3 }-groups. Thus, P < C(N). Since G/®(G) = K/H is simple and P is not
a subgroup of ®(G), PY®(G)=G. Thus, G= P® < C4(N), a contradiction
because N is a noncyclic chief factor.

Finally, we consider the case r 2 and r # 3. If the simple group G/®(G)
has chain difference greater than 1, we are finished. Thus, by the previous
section, we may assume G/P(G)= L,{q) where ¢ i1s odd so, by Dickson’s
Theorem, there is B< G with B/@(G)= A,. Let A4 be an Hall {2,3}-sub-
group of B, then A= 4,. By Maschke’s Theorem again, N is a completely
reducible A-module. Each irreducible A-submodule of N has dimension 1,
for otherwise, since cd(A4) =2, cd(AN) =2 by Corollary 2.2. Therefore, each
irreducible A-submodule has an abelian automorphism group which
implies A’ centralizes each submodule and, consequently, A’ centralizes N.
As before with P, it follows that G =(A4")" < C,;(N), a contradiction. The
proof of theorem is complete.
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The converse of the Corollary is false. For example, from the Atlas,
PGL,(29) has a "novel” maximal subgroup isomorphic to S,. Comparing
a short maximal chain of PGL,(29) containing that copy of S, with a long
maximal chain containing A5 and L,(29), we see ¢d(PGL,(29)) =2 even
though the only noncyclic chief factor of PGL,(29) is L,(29).

[CST]
[CH]
[AT]
[BGL]
[Go]
{Ha]
[HR]
(Hu]
{Iw]
[Ki]
[Ko]
(O'N]
(Pa]
[SST]
[8T]
[Su62]

(Su82]
[Th]

{Wa]

REFERENCES

P. CaMmeroN, R. Sotomon, anp A, Turuirr, Chains of subgroups in symmetric
groups, J. Algebra 127 (1989), 340-352.

R. CArTER AND T. HawkEs, The #-normalizers of a finite soluble group, J. Algebra
5 (1967), 175-202.

J. H. Conway, R. T. CurTis, S. P. NorTON, R. A. PARKER, aAND R. A. WILsON,
“Atlas of Finite Groups,” Clarendon, Oxford, 1985.

N. BurGOYNE, R. Griess, anp R. Lyons, Maximal subgroups and automorphisms of
Chevalley groups, Pacific J. Math. 71 (1977), 365-403.

D. GorensTEIN, “Finite Simple Groups, An Introduction to Their Classification,”
Plenum, New York, 1982.

P. HaLL, Some sufficient conditions for a group to be nilpotent, linois J. Math. 2
(1958), 764-786

M. E. HARRIS, A characteristic of the odd order extensions of the finite simple groups
PS,{4, ¢). Galg). Dilq), Nagoya Math. J. 45 (1971), 79-96.

B. HupperT, “Endliche Gruppen 1,” Springer-Verlag, Berlin/Heidelberg/New York,
1967.

K. Iwasawa, Uber die endlichen Gruppen und die Verbinde Untergruppen, J. Unit.
Tokoy 4 (1941), 171-199

O. KinG, Maximal subgroups of the classical groups associated with non-isotropic
subspaces of a vector space, J. Algebra 73 (1981), 350-375.

J. KoHLER, A note on solvable groups, J. London Math. Soc. 43 (1968), 235-236.
M. O'NaN, Automorphisms of unitary block designs, J. Algebra 20 (1972), 495-511.
D. ParROTT, A characterization of the Ree groups >Fu(q), J. Algebra 27 (1973),
341-357

G. SeiTz, R. SoLoMON, AND A, TuruLL, Chains of subgroups in groups of Lie type,
I, J. London Math. Soc. (2) 42 (1990), 93--101.

R. SoLoMon axp A. TurtLL, Chains of subgroups in groups of Lie type, I, J. Algebra
132 (1990), 174-184

M. Stzuki, On a class of doubly transitive groups, Ann. of Marh. (2) 75 (1962),
105-145.

M. Svzuky, “Group Theory, I,” Springer-Verlag, Berlin/Heidelberg/New York, 1982.
G. THOMAS, A characterization of the Steinberg groups D2(¢%), ¢ =2, J. Algebra 14
(1970), 373-385

J. H. WaLTER, Finite groups with abelian Sylow 2-subgroups of order 8, [nven:.
Math. 2 (1967), 332-376



