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We consider two ferromagnetic nanoparticles coupled via long-range dipolar interactions. We model
each particle by a three-dimensional array of classical spin vectors, with a central spin surrounded by
a variable number of shells. Within each particle only ferromagnetic coupling between nearest neighbor
spins is considered. The interaction between particles is of the dipolar type and the magnetic properties
of the system is studied as a function of temperature and distance between the centers of the particles.
We perform Monte Carlo simulations for particles with different number of shells, and the magnetic
properties are calculated via two routes concerning the dipolar contribution: one assuming a mean-field
like coupling between effective magnetic moments at the center of the particles, and other one, where
we take into account interactions among all the pairs of spins, one in each particle. We show that the
dipolar coupling between the particles enhances the critical temperature of the system relative to the
case in which the particles are very far apart. The dipolar energy between the particles is smaller when
the assumption of effective magnetic moment of the particles is used in the calculations.

© 2012 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

Magnetic nanostructured systems have been investigated in the
last years, especially due to their interesting technological and
biomedical properties [1–3]. The physics of a single domain parti-
cle is already very complex [4], where the reversal of the magnetic
moment depends crucially on the magnitude of the uniaxial en-
ergy barrier, temperature and magnetic field. However, when a set
of these particles are put close together, the long-range dipolar in-
teraction between pairs of particles becomes important. Despite
the dipolar energy between two spins be much weaker than the
exchange interaction, it assumes a real importance in the case of
the interaction between two single domain magnetic particles, be-
cause they contain hundreds or thousands of individual spins.

When we are in the regime of very high concentrations of mag-
netic nanoparticles, the purely uniaxial energy barrier seen by each
nanoparticle is modified due to the presence of the long-range
dipolar coupling, and the magnetic properties of the system, like
coercive field, remanence and blocking temperature change accord-
ingly [5–9]. Besides the concentration, the way the nanoparticles
are arranged is also important to describe the ground state prop-
erties of the system [10–14]. For instance, in three dimensions,
the lowest energy state of a collection of classical dipoles is fer-
romagnetic in a face centered cubic lattice whereas it is antifer-
romagnetic in a simple cubic lattice. In two dimensions, a square
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lattice of classical point dipoles exhibits an antiferromagnetic ar-
rangement of the moments while in the case of a triangular lattice
the arrangement is ferromagnetic.

In order to understand the behavior of interacting magnetic
nanoparticles, we investigate the magnetic properties of a pair of
nanoparticles, each one with an internal structure where the in-
dividual spins interact through exchange coupling. In a previous
paper [15] we studied a similar system of two identical particles,
in two dimensions, each one formed by Ising spins. We have cal-
culated the magnetization, susceptibility, and critical temperature
as a function of the number of layers in each particle, temperature,
as well as, distance between them. We have shown that the dipo-
lar energy calculated by using the true distance between individual
spins is lower than approximating it by the coupling between the
effective magnetic moments of the particles.

In the present work our particles are formed by classical spin
vectors interacting via nearest neighbor isotropic exchange cou-
pling of the Heisenberg type. As before, the particles interact via
the long-range dipolar interaction depending on the distance be-
tween their centers. Our system is similar to the two-particle
model considered by Politi and Pini [13], however our particles are
not single domain ones, and the total magnetic moment of each
particle can change with temperature. In the last years we have
considered the magnetic properties and phase diagram of single
nanoparticles with a variable number of shells as a function of
temperature and external magnetic field [16–19]. In all these stud-
ies, Ising or vector spins, are coupled by ferro- or antiferromag-
netic interactions, and dipolar interactions were not considered. In
the present study, we add dipolar interaction between the single
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Fig. 1. Projection of the three-dimensional particles sites onto the x–y plane. The
spins of the particles are placed on the sites of a simple cubic lattice with lattice
parameter a, centered at the point (0,0,0). We also show the distance between the
particles’ center, and the linear size of the lattice, D and L, respectively.

particles made of continuous spins. The magnetic properties are
then considered as a function of the number of shells in each par-
ticle, distance between centers of the particles, and temperature.
We employ in our calculations Monte Carlo simulations along with
the Metropolis algorithm. Similarly, as for Ising spins, the differ-
ence in the values of the dipolar energy, calculated assuming effec-
tive spins in the center of the particles, and by directly computing
the interactions among all the pairs of spins, one in each parti-
cle, presents the same dependence on distance as observed in the
case of single domain interacting particles [13]. In Section 2, we
describe the Hamiltonian model, the calculations based on Monte
Carlo simulations, and present our results. Finally, in Section 3, we
summarize the results of this work.

2. The model and results

The Hamiltonian of the model we consider in this work is the
following:

H = − J
∑
〈i, j〉

�Si .�S j − J ′ ∑
〈k,l〉

�Sk.�Sl

+ Ω

2

∑
(i,k)

[ �Si .�Sk

r3
ik

− 3
(�Si .�rik)(�S j .�rik)

r5
ik

]
, (1)

where �Si is the spin variable associated to the site i, with |�Si | = 1,
and �Si = (Six, Siy, Siz). The first two sums represent the ferromag-
netic exchange contributions calculated over all the distinct pairs
of nearest neighbor spins of each particle, Ω is the magnitude of
dipolar interaction between all the pairs of spins �Si and �Sk , one in
each particle, and rik is the distance between them, measured in
units of the lattice parameter a. One particle is centered at the ori-
gin of the coordinate system, and the spins are located at the sites
of the cubic lattice built around the origin. The center of the other
particle is located a distance D apart from the origin, and the spins
are distributed on the sites of a simple cubic lattice. We show in
Fig. 1, the projection on the x–y plane, of the sites of the parti-
cle, where the parameters a, D , and L are shown. In the first sum
of Eq. (1) J is the exchange coupling between nearest neighbor
spins in particle 1, and J ′ is the corresponding exchange coupling
between nearest neighbor spins in the particle 2. We have consid-
ered an equal number N of spins in each particle. The spins are
disposed into shells, and in this work we have considered parti-
cles with up to n = 10 shells. In this particular case, the number
of spins located in this shell (n = 10) is 402, and the total num-
ber of spins of the system is N = 1561, which means that around
26% of them are located at the surface of the particle. The dipolar
parameter is Ω = (gμB)2/a3, where g is the gyromagnetic factor
and μB is the Bohr magneton. In the ground state of the system,
each particle behaves as a single domain particle, with spins of
both particles pointing in the same direction. The dipolar inter-
action minimizes the energy of the two-particle system, and the
ground state is ferromagnetic, with the total magnetic moment of
the particles oriented along the line joining the particles’ center.
Even if the particles are very far apart, we have chosen this direc-
tion to break the rotational symmetry of the Hamiltonian of each
particle. When they approach each other, the effective dipolar field
of one particle on the other, minimizes the energy of the system
for any values of n, D and L. Therefore, as the result of the dipo-
lar interaction, each particle feels an effective magnetic field due
to the presence of the other.

We have employed Monte Carlo simulations for the two-par-
ticle ferromagnetic system through the Metropolis algorithm [20].
In each Monte Carlo step (MCs) we performed (2N) random tri-
als to change the spins of both particles. The procedure we used
to determine the equilibrium states of the system is based on the
minimization of the free energy. In each trial, a given spin is se-
lected at random, in particle 1 or particle 2, and we try to move it
to a new position in such way that the deviation from the old state
is random, but within a maximum solid angle. Then, we calculate
the change in energy of the system (�E), and if �E � 0, the tran-
sition to a different configuration is accepted. On the other hand,
if �E > 0, the transition to a different configuration is made with
probability exp(− �E

kB T ). To determine the average magnetic proper-

ties, we considered 3.3 × 105 MCs, where the first 3.0 × 104 MCs
were discarded due to the thermalization process. This number of
MCs to reach the equilibrium state was chosen by taking the maxi-
mum solid angle variation to be 0.1π , where approximately 50% of
the attempted moves were successful. We have taken 100 indepen-
dent samples to determine the thermal properties. We calculated
the average magnetization, as well as its components in the x, y
and z directions as a function of temperature. These average values
were obtained, first, by calculating the mean values of the mag-
netization and susceptibility of the system for each MCs after the
thermalization process. Afterward, an average is performed over all
the selected samples. The expressions we used are the following:

mx =
1
N

∑
i Six + 1

N

∑
k Skx

2
, (2)

my =
1
N

∑
i Siy + 1

N

∑
k Sky

2
, (3)

mz =
1
N

∑
i Siz + 1

N

∑
k Skz

2
, (4)

mt =
√

m2
x + m2

y + m2
z , (5)

χ = 2βN
[〈

m2
t

〉 − 〈mt〉2]. (6)

In these expressions, the indices i and k run over the sites of the
particles 1 and 2, respectively. The components of magnetization
per spin are mx , my and mz , mt is the total magnetization per spin,
and χ is the susceptibility per spin. For simplicity, we assume the
same value for the exchange coupling between nearest neighbor
spins inside the particles, J = J ′ . We also use in our calculations
arbitrary units, Ω = 1 and J = 1. We did not consider in this work
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Fig. 2. Total magnetization as a function of temperature for particles with 4 shells.
Triangles, noninteracting particles (D/L � 1), circles and squares, spin–spin and
particle–particle calculations, respectively, for (D/L = 1.2). Magnetization and tem-
perature are in arbitrary units.

the dipolar interaction between spins inside the same particle be-
cause the dipolar coupling is hundreds or thousands weaker than
the exchange coupling. If we had used Ω = 1 and J = 1 inside the
particles, the ground state would be very complicated with a non-
uniform distribution of spins, and internal fields would need to be
taken into account due to the cubic symmetry of our particles [21].

The dipolar interaction between the particles 1 and 2 is calcu-
lated in two different manners: one assuming effective magnetic
moments in the centers of the particles, which we call particle–
particle interaction, and the other directly computing the interac-
tions among all the pairs of spins, one in each particle, which we
call spin–spin interaction. Although the calculation based on the
spin–spin interaction is more accurate, we will see next that the
particle–particle calculation is a good approximation for the mag-
netic properties of the pair of interacting particles. When the two
particles are very close, the dipolar interaction between pairs of
spins in the spin–spin calculation, is locally minimized for spins
oriented parallel and along the direction of their relative positions.
However, due to the cubic symmetry of our particles, the overall
orientation is not uniform inside each particle, and this is more
pronounced for spins on the boundaries, where the coordination
number is also reduced.

We show in Fig. 2, the magnetization as a function of tempera-
ture for particles with n = 4 shells, each one containing 129 spins.
We compare the cases where the particles are very close D = 1.2L,
and when they are far apart (D/L � 1), for which particles are
essentially noninteracting. D and L are the distance between the
centers of the particles and the linear size of the cubic lattice,
respectively. Note the difference between the two types of cal-
culations at low temperatures: the magnetization is lower when
the calculation of the dipolar contribution is made via spin–spin
interaction. Fig. 3 exhibits the susceptibility as a function of tem-
perature for the same particles of Fig. 1. We observe that, due
to the dipolar interaction, the peak of susceptibility moves to
high temperatures. The peaks in these curves indicate the crit-
ical temperature of the system. It is important to mention that
the critical temperatures obtained in these Monte Carlo simula-
tions for small particles are, actually, pseudocritical temperatures.
On physical grounds, a finite system cannot display a true singular-
ity at non-zero temperatures, but the pseudocritical temperature,
as usual, can be associated with the peak in the susceptibility. It
is also interesting to note that the critical temperature determined
from the spin–spin calculation is smaller than the one calculated
Fig. 3. Susceptibility as a function of temperature for particles with 4 shells. Trian-
gles, noninteracting particles (D/L � 1), circles and squares, spin–spin and particle–
particle calculations, respectively, for (D/L = 1.2).

Fig. 4. Critical temperature as a function of the ratio D/a, where D is the distance
between the particles’ center, and a is the lattice parameter, for particles with 4
shells, and spin–spin calculation.

via particle–particle approximation. This is somehow expected, be-
cause the particle–particle calculation is a kind of mean field ap-
proximation that, as it is well known, overestimates the critical
temperature of the magnetic systems. Fig. 4 displays the plot of the
critical temperature as a function of distance between the centers
of the particles for the same pair of particles considered in Fig. 2.
As to be expected, the critical temperature decreases with distance
between the centers, and for D/a ≈ 18, the effects of the dipo-
lar interaction are negligible. Fig. 5 shows the critical temperature
as a function of the number of shells for two values of the rela-
tive distance between the particles, one for noninteracting particles
(D/L � 1) and the other for D = 1.5L. We would like to make an-
other comment regarding the arbitrary units we have used in this
work. In any real system the ratio between the exchange and the
dipolar couplings ( J/Ω) is very large. For instance, if we had used
a value like 100 for this ratio in our calculations, the only effect
would be a reduction in the difference between temperatures, for
each value of n of Fig. 5, by an equivalent amount.

Fig. 6 displays the dipolar contribution to the total energy of
the system for a particle with 4 shells as a function of the distance
between the centers of the two particles, and at very low tem-
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Fig. 5. Critical temperature as a function of the number of shells, for noninteract-
ing (circles) and interacting (squares) particles, for which D/L = 1.5, and spin–spin
calculation.

Fig. 6. Dipolar energy as a function of the distance between the centers of the two
particles, each one with 4 shells, and temperature T = 0.1. Circles and squares are
based on the particle–particle and spin–spin calculations, respectively.

peratures. The calculation, made within particle–particle proce-
dure, gives slightly lower values than that employing the spin–spin
method. In the particle–particle calculation, dipolar contribution to
the energy is determined assuming that the distance between any
two spins is approximated by the distance between the centers
of the particles, while in the spin–spin calculation we take into
consideration the true distance between all the pairs of spins, one
in each particle. When the distance between the particles is large
enough, there is no difference between both calculations. However,
when the particles are very close, the particle–particle dipolar en-
ergy is smaller than the spin–spin dipolar energy. In Fig. 7, we plot
the difference between these two values of the dipolar energy as a
function of the distance between the centers of the particles. The
fit to these points is consistent with a dependence (D/a)−5. Note
that this result is similar to the one obtained earlier by Politi and
Pini [13] on the dipolar interaction between two-dimensional mag-
netic particles, where they showed that the first correction term
to the dipolar coupling between particles of finite sizes decays as
(D/a)−2. We also show in Fig. 8 the behavior of the dipolar energy
as a function of the distance between the centers of the particles,
each one with 4 shells, for three different temperatures below the
Fig. 7. Difference between the values of the spin–spin and particle–particle dipolar
energies as a function of the distance between the particles’ center. The fit to the
data points is the power law (D/a)−5.

Fig. 8. Spin–spin dipolar energy as a function of the distance between the particles’
center for three different temperatures, and particles with 4 shells. T = 0.1 (trian-
gles), T = 0.3 (circles) and T = 0.6 (squares).

critical temperature, and within the spin–spin calculation. As we
can see from these plots, for temperatures below the critical one
the dipolar energy between particles does not change significantly,
and becomes independent of temperature for distances larger than
D/a ≈ 30.

3. Conclusions

In this Letter, we have investigated the magnetic properties of
two small ferromagnetic particles that are coupled through long-
range dipolar interaction. The particles present an internal struc-
ture, cubic symmetry, and are arranged into a variable number of
shells. The sites of the particles are occupied by continuous spin
vectors, and we assume a ferromagnetic coupling between nearest
neighbor spins. We take into consideration a dipolar coupling be-
tween the particles, and we calculate this energy by two different
procedures. In the first one, which we call particle–particle inter-
action, the effective dipolar contribution is calculated by assuming
that the distance between any two spins is equal to the distance
between the particles’ centers. In the second one, called spin–spin
interaction, the true distance between all the pairs of spins, one
in each particle, is considered. We employed Monte Carlo simu-
lations in our calculations, and we determined the magnetization
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and susceptibility as a function of temperature, number of parti-
cle shells, and distance between the particles. In this work we did
not investigate the super-paramagnetic behavior because we have
disregarded any type of anisotropy and demagnetizing fields, for
which the orientation of x, y and z axes in the particles would
change the magnetic state of the system. Our particles are not
single domain ones, and the concept of blocking temperature is
meaningless in our case. We focused our attention only on the
critical properties of the system. Our results show that the dipolar
coupling between the particles enhances the critical temperature
of the system relative to the case in which the particles are far
apart. The dipolar energy between the particles is smaller when
the assumption of particle–particle interaction is taken into ac-
count. This contribution represents a first-order term to the dipolar
coupling between the particles. The difference in energies, calcu-
lated employing the spin–spin and particle–particle procedures be-
haves as (D/a)−5, which is in agreement with the results of Politi
and Pini [13] for a pair of two-dimensional single domain particles.
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