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Abstract

Due to the complex nature of turbulent fluid flow, which is the source of airfoil self-noise generation, prediction of airfoil self-
noise is a challenging problem, crucial for designing silent airfoils. In this paper, models for prediction of airfoil self-noise using 
two different algorithms namely Random Forest and Stochastic Gradient Tree Boosting have been proposed and tested on the 
NACA0012 airfoil data set, published by NASA. The parameters used to build these models were studied extensively and 10-fold 
cross validation was performed on the data set. The models predict with significantly higher accuracy compared to results 
reported by earlier computational models.
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1. Introduction

Airfoil self-noise is produced when an airfoil obstructs a uniform and steady fluid flow resulting in turbulence 
and formation of fluctuating eddies. These eddies are a source of noise which get amplified when they interact with 
the airfoil surface. There are five mechanisms of generation of self-noise as described by Brooks et al. 1, which are 
illustrated in Fig.1. At high Reynolds number ( CR ), Turbulent Boundary Layers (TBL) develop over most of the 
airfoil. Noise is generated as the turbulence passes over the Trailing Edge (TE). At low CR , largely Laminar 
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Boundary Layers (LBL) develop, whose instabilities result in Vortex Shedding (VS) and associated noise from the 
TE. For nonzero angles of attack, the flow can separate near the TE on the suction side of the airfoil to produce TE 
noise due to the shed turbulent vorticity. At very high angles of attack, the separated flow near the TE gives way to 
large-scale separation causing the airfoil to radiate low-frequency noise. Another noise source is Vortex Shedding
occurring in the small separated flow region aft of a blunt Trailing Edge.

Fig. 1.  The various mechanism of self-noise generation has been shown: (a) Turbulent Boundary Layer -Trailing Edge Noise; (b) Laminar 
Boundary Layer - Vortex-Shedding Noise; (c) Separation-Stall Noise at low angle of attack; (d) Separation-stall Noise at high angle of attack; (e) 
Trailing Edge Bluntness-Vortex- Shedding Noise; (f) Tip Vortex Formation Noise.

Prediction of airfoil self-noise is a matter of primary interest when addressing the problem of the noise generated 
by fans, wind turbines and high-lift devices. The control of TE noise, a part of airfoil self-noise, is critical to reduce 
airframe noise of civil aircrafts during approach and landing.  Strict control of TE noise from propellers and 
hydrofoils is required in order to increase the stealth of underwater and surface crafts 2. TE noise is a major part of 
the noise generated by the rotor blades of wind turbines 3 and helicopters 4, limiting their use in urban areas.

The difficulty in prediction of TE noise arises owing to the complex and stochastic nature of turbulent fluid flow, 
which is the source of the noise generated. Therefore, methods which use simplified turbulence models, have been
ineffective so far in designing new, quiet airfoils because of their limited accuracy. However, with the advent of 
computational techniques, turbulent flow can be better represented, thus opening avenues for design of new and 
quiet airfoil shapes.

Different techniques have evolved over the years to estimate TE noise which use the airfoil geometry and flow 
condition (e.g. Mach number, CR , etc.) as inputs to compute the Sound Pressure Level(SPL), as a measure of the 
noise generated. These techniques have been classified into three categories namely empirical, direct and hybrid 
methods. The empirical methods are derived directly from the analysis of wind tunnel results. In the direct method, 
noise estimation is done by calculating the turbulent flow characteristics and the noise generated in a single step. 
The hybrid method uses a two-step approach to the problem; in the first step turbulent flow field properties are 
estimated, which are used as the source in the second step to estimate the sound field.

2. Related work

Almost 40 years ago, engineers and scientists could not avail the advantage of using computation tools to 
perform complex simulations of turbulent flows. Therefore, they had to rely a lot on the models derived from 
experimental measurements. NASA developed two well-known empirical models based on boundary layer height at 
the TE and airfoil CR . Schinkler and Amiet 5 developed one such model for helicopter rotors, which was used later 
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to predict the noise of wind turbine blades very successfully 6. Other empirical methods of noise prediction were 
developed based on fluctuating surface pressure. Correct estimation of turbulence properties is the key to accurate 
TE noise prediction. Brooks and Hodgson used data obtained from measuring noise and surface pressure 
simultaneously to produce good results 7.

The recent emergence of Computational Aero Acoustics (CAA) is a direct result of the enormous increase in 
computing power. CAA has been used effectively in direct and hybrid methods of predicting airfoil self-noise.
Turbulent flow is most commonly simulated by solving the Reynolds Averaged Navier Stokes (RANS) equations,
Leipmann or Von Kármán spectra 8, for instance. Large Eddy Simulation (LES), in spite of its capability to model
turbulent flow field more accurately than RANS, has not been employed in academic research, until recently, 
because of its high computational cost. Eddy viscosity models have been used in attempts to model turbulence and 
as a result reduce computational expense by coupling turbulence and TE noise calculations 9-11. But, these models 
perform poorly when predicting noise levels at high frequencies 12. High frequency noise components must be
correctly accounted for, because they cause discomfort to the human ear and are heavily regulated.

In recent years, numerical simulation has also been used most effectively in various studies to predict the self-
noise by modelling the turbulent fluid flow. Greschner et al. 13 used an advanced method of modelling the turbulent 
boundary layer for an attached flow, which uses a novel variant of Detached Eddy Simulation (DES), called 
Improved Delayed Detached Eddy Simulation (IDDES). Jiang et al. 14 employed a numerical simulation for flow 
past NACA0018 airfoil at low Mach number to find out the hydrodynamic properties of the boundary layer and the 
noise generated thence; their reported results agree well with experimental results. Kamruzzaman et al. 15 devised a 
method to find out the properties of the anisotropic and non-homogenous flow near the trailing edge, using standard 
RANS simulation, which may be further used to predict the self-noise.  Direct Numerical Simulation (DNS) of the 
flow around a NACA0012 air foil was employed in 16 by Sandberg and Jones to investigate the hydrodynamic 
behaviour of the turbulent flow causing the self-noise in detail and subsequently reduce self-noise. Hutcheson et al. 
17 studied the effect of trailing edge bluntness and angle of attack on the self-noise generated using a NACA63-215 
air foil model. Fuglsang et al. 18 predicted and optimised the self-noise generated by wind turbines. Leloudas et al. 19

undertook a similar effort in prediction and reduction of self-noise by wind turbines. Sarradj and Geyer 20 have 
employed genetic programming and symbolic regression to analyse and predict self-noise. Very recently, Albarracin 
et al. 21 used an aero-acoustic method to predict TE noise in a turbulent flow field using three different 
Computational Fluid Dynamics codes and compared these results.

Brooks, Pope and Marcolini 1, developed a more detailed model, known as the BPM model, which incorporated 
airfoil self-noise generated by various other sources (i.e. bluntness, separation, etc.). The BPM model is 
comprehensive, easily programmable and can quickly estimate TE noise. It is based on a semi-empirical approach 
formulated by analysis of acoustic wind tunnel tests performed by NASA, using NACA0012 airfoil sections of 
varying lengths. The BPM model predicts the self-noise of an airfoil blade as a function of the angle of attack, the 
free-stream velocity and other geometric parameters of the air foil. The BPM model lacks in accuracy and 
underestimates the air foil self-noise at low values, thus creating the need for a more accurate model.

González 22 attempted to remove this drawback of BPM model by using Artificial Neural Network (ANN) based 
approach to airfoil self-noise prediction. He split the NASA (NACA0012) data set into training, validation and 
testing subsets, which represent 50%, 25% and 25% of the full data set, respectively and then proceeded to train 
three different neural networks with 6, 9 and 12 neurons in the hidden layer with the normalized squared error 
objective functional and the quasi-Newton method training algorithm with Broyden-Fletcher-Goldfarb-Shanno train 
direction and Brent train rate. The generalization performance of each neural network was estimated by measuring
the error between the outputs from the trained neural networks and the target values in the validation data set, which 
served as an indicator for under or over-fitting. He found that the validation error showed a minimum value for the 
neural network with 9 hidden neurons, therefore the optimal network architecture for the problem as suggested by 
him, included 9 hidden neurons, and was denoted as a 5: 9: 1 multilayer perceptron.

The neural network designed, as a part of a later effort by Gonzalez 23 is composed of the following parts: Inputs, 
Scaling layer, Multilayer Perceptron, Unscaling layer, Outputs. The scaling layer section utilises the minimum and 
maximum method to scale the inputs calculated from the data file. The number of parameters in this neural network 
is 64. The unscaling layer unscales the outputs, using the same method as used by the scaling layer to scale the 
inputs. The normalized squared error divides the squared error between the outputs from the neural network and the 
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targets in the data set by a normalization coefficient. The neural parameters norm is used as regularization term with 
a weight of 0.001 in the functional performance, to control the complexity of the neural network by reducing the 
value of the parameters.

In this paper, an attempt has been made to design models which predict with a greater accuracy than earlier 
models. The rest of the paper is divided into 5 sections. Section 3 gives a brief introduction to Random Forest and 
Stochastic Gradient Tree Boosting algorithms which have been used to model and predict the self-noise. Section 4
describes in detail the data set used for training and testing of the models proposed. Section 5 details the designing 
aspect of the classifiers along with result analysis. Section 6 discusses and critically analyses the results obtained.
Section 7 concludes the study undertaken.

3. Random Forest and Stochastic Gradient Boosting

3.1. Random Forest

Random Forest (RF) algorithm, proposed by Breiman 24, is a collection of tree predictors where the trees are 
formulated on the basis of various random features, hence the name “Random Forest”. It is an example of an 
ensemble learner wherein each base learner is a Classification and Regression Tree (CART).  Random vectors are 
generated to depict the growth of the trees; the trees are never pruned. A random combination of features is selected 
at each and every node to perform splitting. The training process consists of generation of  K number of Bootstrap 
sample data sets, with replacement, for K number of trees. Let the training data set be 

1 1 2 2, , , , ., ,N ND X Y X Y X Y and each feature vector is 1 2  , , ..,p p p pnX x x x where,    nX D R . For 
the growth of each tree with respective Bootstrap sample data used for training, Independently and Identically 
Distributed (IID) random set of vectors 1 2, , ., K are generated; each tree predictor is denoted by ,h X
and the random forest is the collection of such predictors 1 2, , ., Kh h h .

In order to select random features and monitor error, Breiman incorporated a technique called Bootstrap 
Aggregating or Bagging. The Bagging method claims to increase the accuracy of the RF algorithm by reducing the 
ongoing generalization error for the ensemble trees owing to the use of random features. This generalization error 
estimates are done using Out of Bag (OOB) method. In this method, trees which didn’t use a particular data 

,p pX Y for training are used to predict the value of the same data  ,p pX Y and average predicted value is 
calculated. Hence it follows that if a third of the data of the entire training data set is left out in each bootstrap 
sample data set, then the OOB estimates are based on one third of the total classifiers present in the main 
combination; in order to decrease the OOB error, number of combinations must be increased, and at the same time 
to get unbiased OOB estimates the test error must converge to a certain finite value. It has been proven that the 
generalization error almost certainly converges when the number of trees grown tends to infinity. The mean square 
generalization error for regression analysis, the main focus of this model, is given by

2
,X YE Y h X .

The error rate of RF mainly depends on the degree of correlation between any two trees and the prediction 
accuracy of an individual tree. The error rate decreases as the trees become increasingly uncorrelated and the 
prediction accuracy of each tree increases. Ease of parallelization, robustness and indifference to noise and outliers 
in most of the data set are the basic advantages of this method. The method is said to avoid over-fitting due to its 
unbiased nature of execution 25.

Algorithm 1: Random Forest
Let the number of instances be N and the number of features be n
The number of features at a node of the decision tree is determined to be m ( m n )
The following steps are repeated for each decision tree:

A subset of training data is set with replacement that represents the N instances and the rest of 
the data is used to measure the error of the tree
The following step is repeated for each of node of this tree

In order to determine the decision at this node and calculate the best split accordingly, 
m number of features is selected randomly. Tree pruning is prohibited.

End.
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3.2. Stochastic Gradient Boosting

Boosting method for both classification and regression, developed by Freund and Schapire 26, was reinterpreted 
so as to make it statistically convenient by Friedman 27, which in turn came to be known as Stochastic Gradient Tree 
Boosting (SGTB). It is a generalized method that boosts the accuracy of any learning algorithm by considering a 
series of models and then producing a weighted sum of the said models. Hence it can be interpreted as a series 
ensemble learner consisting of many simple base learners. In this paper the base learner is same as that used in the 
RF algorithm i.e. CART. This method progressively fits the base learner to the current pseudo- residual by least 
square method in every iteration. Initially the average Y value is used as an assumption for predicting all the 
observations, which is similar to fitting a linear regression model. Subsequently the residuals from the current model 
are calculated and another regression tree is fit to these residuals and this process continues till the loss function is 
minimized. The model is gradually updated by taking the sum of all previous regression trees and at the end of all 
the iterations the functional relationship can be represented as

0 1 1 1 2 2 2; ; ;k k kF X F h X a h X a h X a (1)

Where, the 0F is the initial guess function, p is the expansion coefficient, 1h represents a regression tree, pa
represents the parameter for jointly fitting the training data in a forward sequential manner. The loss function can be 
expressed as ,L Y F X and the function F X is modified in such a way as to minimize L . For solving 
the differentiable loss function L the function ;h X a is fit by least square to the current pseudo residuals i.e.

1

,

p

i i
ip

i
F X F X

Y F X
y

F X
(2)

and the value of pa can be calculated; here, m is the number of iteration. For a given ; ph X a the optimal value 
of p can be calculated as

1
1

arg    , ;
N

p i p i i p
i

min Y F X h X a (3)

The model employs a regression tree in each iteration to partition the X space i.e. the predictor variables nR into 
J disjoint regions

1

J
jp j

R , where J is the number of terminal nodes present in the regression tree. Then for each 
of the subdivided regions a separate constant value is predicted and this can be denoted as

1 1
;     

JJ
jp jpjpj j

h X R y I X R      (4)

Where,  
i jpX Rjp ipy Mean y and I is the indicator function. So the regression trees can be solved separately 

within each region jpR by the corresponding thj node of the thp iteration. Now the tree predicts a constant value 
of jpy in each region jpR and the solution to the eqn. 3 reduces into

1arg ,
i jp

jp i p i
X R

min Y F X (5)

The estimation function can simply be written as 
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1 .    p p jp jpF X F X v I X R (6)

In order to control the learning rate a Shrinkage parameter 0,1v is multiplied in each step and low values of this 
parameter avoid overfitting at time of training and lead to better generalization error.

In SGTB, bagging concept is also incorporated to create randomness in function estimation procedure. In each 
iteration, a subsample 1S of training data is chosen without replacement from the total training data set D and the 
base learner fits this data set instead of full training data set and in the next iteration the updated base learner of 
previous step fits another subsample 2S taken at random.

Algorithm 2: Stochastic Gradient Boosting
The initial guess is set to average of Y
The following steps are repeated for all regression trees:

The residuals are computed based on the current model
A regression tree (with a fixed number of nodes) is fit to the residuals
The average residual is computed for each terminal node. The average value is the estimate for 
all residuals that fall in the corresponding node
The regression tree of the residuals is added to the current best fit

End.

4. Description of the data set

The self-noise data set used was compiled by extensive aerodynamic and acoustic testing on airfoil blade 
sections, conducted in an anechoic wind tunnel by NASA in 1989 1, 28, referred hereinafter as the NASA data set. 
The NASA data set consists of different size NACA0012 airfoils with a constant span exposed to various wind 
tunnel speeds at varying angles of attack. The observer position remained the same in all of the experiments. The 
acoustic measurements were used to determine spectra for self-noise from airfoils encountering smooth airflow. This 
data was suitably processed to remove extraneous contributions and the results were presented as 1/3-octave spectra. 
The NASA data set contains 1503 entries and consists of the following variables:

Frequency (Hz)
Angle of attack (deg.)
Chord length (m)
Free-stream velocity (ms 1)
Suction side displacement thickness (m)
Scaled sound pressure level, SPL1/3 (dB)

The suction side displacement thickness was determined using an expression derived from boundary layer 
experimental data from 1.

5. System design and result analysis

The simulations of the proposed models were done using MATLAB Version 7.6.0.324 r2008a. It was executed 
on a PC with an Intel Core-i7 3630QM 2.4 GHz processor and 8GB RAM running on 64-bit Windows 7 operating 
system.

In CART, the space of input variables is partitioned into smaller rectangular regions, with the help of a regression 
tree, and a constant is assigned to each such region. The partitions can be represented by a series of IF-THEN 
decisions at each node which continues until a leaf node or a terminal node is encountered; during the splitting at 
each node, usually the right side branch is chosen when the IF condition is satisfied else the left branch is chosen. In 
this paper, the original data set is divided into 75% and 25% for training and testing respectively. The results 
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obtained from the test data are the object of all the analysis done and parameter criteria check. The Mean Square 
Error (MSE) calculated pertains to the test data, unless mentioned otherwise.

The RF regression model warrants consideration of only two main parameters i.e. the number of features to be 
selected m at the time of splitting and the total number of trees K grown in the model. Brieman suggested that the 
value of m could be any random number greater than 1, but it should not be very high compared to the total number 
of features. It has been found from empirical studies that for most data sets m n holds good. For the sake of 
verification of the previous statement, the value of m was varied from 2 to 5 and it was found that 4m results in 
the least MSE when the regression model was tested using 1000 trees. Fig. 2 depicts the MSE for variable m values. 
The RF algorithm can grow a large number of trees very rapidly 29 and the tendency to overfit diminishes with 
increasing number of trees. Therefore, on adding more trees for testing, the performance does not fluctuate and MSE 
tends to stay the same. Adding more trees does not lead to over fitting but actually decreases it. So it was observed 
that after growing 500 trees the MSE value decreases very slowly and apparently converges after 1000 trees.

Fig. 2. MSE vs. Number of Trees (for the test data with different number of variable interactions)

In the bootstrapping process, on an average 34% data from the total observations were excluded for growing 
individual tree and this data is considered OOB for that tree. On completion of the trained model, the values for the 
excluded data were predicted. The accuracy for a RF model can be estimated from the OOB error data as

2
_

1

1 N
i i pred avg

i
OOB MSE y y

N
(7)

where, _i pred avgy denotes the average prediction for the thi observation , for all OOB trees. The OOB (MSE) for 
1000 trees was found to be 3.33325 and the plot is shown in the Fig. 3. Also both 10-fold cross validation and 
training-testing of 75-25 was performed on the RF model built. The correlation coefficient for the test sample was 
found to be 0.9639 and for the 10-fold cross validation MSE was found to be 0.9636.

The design and development of a robust model using SGTB technique, on the other hand, warrants the 
consideration of three main parameters i.e. number of leaf nodes present in the tree, number of trees required or
number of iterations and the Shrinkage parameter. A - way interactive model is said to have splits. The total 
number of leaf nodes J is the number of splits incremented by one. The level of dominant interaction in X
variables is defined by the chosen value J .
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Fig. 3. OOB error vs. Number of Trees

For the sake of simplicity, SGTB prescribes that all trees be restricted to same number of terminal nodes, which 
in turn, becomes a meta-parameter for the adjustment of the boosting process. It has been suggested by Hastie et al. 
30 that using 2J yields a simple decision stump, which is insufficient, whereas cases having 10J are seldom 
encountered in analysis; values of J ranging from 4 to 8 were deemed most suitable. However, evidence contrary 
to the aforementioned statement was found earlier in 31. The mean square error for various models, taking some 
sample number of leaf nodes was compared and it was observed that on increasing the number of leaf nodes, the 
MSE decreases irrespective of the number of iterations. The MSE for the decision stump and the trees with 5, 25, 50 
and 100 numbers of leaf nodes have been shown in the Fig. 4. A high degree of precision was maintained during the 
analysis and on subsequent observation of trends, where the MSE was considered for J ranging from two to one 
hundred, it was found that the MSE remained unaffected, if the J value is incremented beyond 61.

Special care was taken in determining the number of iterations, keeping in mind that very less number of 
iterations adversely affects the robustness of the model, and at the same time, a very high number of iterations 
almost always leads to over-fitting. The number of iterations was increased gradually and 10-fold cross validation
result was calculated for each iteration. It was observed that after 1000 iterations the decrease in the MSE was 
insensitive to any change in number of iterations. No over-fitting was observed as both 10-fold cross validation and 
the test sample yielded similar results.

The Shrinkage parameter deals with the shrinkage or the reduction of impact of trees that are added in new 
iterations. Friedman suggested that the values of Shrinkage parameter 0.1v results in a smaller generalization 
error and went on to use 0.05v for large data sets 5000N and 0.005v for small data sets 500N .It
must be kept in mind that unnecessary reduction of the Shrinkage parameter leads to more number of iterations in 
order to achieve a stable model and as a result increases the run time. It was observed that on selection of v in the
range of 0.005 0.01v , yielded almost same MSE as that produced by 1000 trees, in 10-fold cross validation for 
10,000 or more number of trees. Thus in order to lessen the number of iterations, the number of trees was set to be 
1000 and the relative accuracy was measured for 0.01 0.1v and it was found that 0.02v gives lowest MSE 
when 1000 trees are considered and the MSE value increases on further increase of v in the region of 0.02-0.1. 
Hence the shrinkage parameter is set to 0.02. The Fig. 5 shows the performance of various shrinkage parameters for 
1000 trees each with 61 terminal nodes.

Owing to the incorporation of the bagging concept in SGTB method, a fraction of the sample is chosen randomly; 
decreasing the fraction-size of the selected sample increases the randomness in the system but at the same time a 
very small fraction-size reduces the amount of data available for training the base learner. Hence, as suggested by 
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Friedman 27 the bootstrap sample is chosen to be half of the total sample which is same as drawing a bootstrap 
sample in every alternate iteration.

Fig. 4. MSE vs. Number of Trees (for the test data set with different number of leaf nodes)

Fig. 5. MSE vs. Number of Trees (for the test data set with variable learn rate)

After implementation of the aforementioned features, the SGTB model was evaluated using both 10-fold cross 
validation and for a 75-25 of training testing data set and the correlation coefficients were calculated to be 0.9836 
and 0.9842 respectively.

The predicted and actual values for the scaled sound pressure level for RF and SGTB are shown in Fig. 6 (a) and 
(b) respectively. The Fig. 7 (a) and (b) depicts the error distribution for both models when applied on the testing data 
set for prediction. Table 1 provides a comparative summary of the run-time and 2R value for different methods.
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Fig. 6. (a) Predicted SPL vs. Actual SPL (for the test data set using Random Forest Prediction Model); (b) Predicted SPL vs. Actual SPL (for the 
test data set using Stochastic Gradient tree Boosting Prediction Model).

Fig. 7. (a) Histogram of Error distribution using Random Forest Prediction Model on the test data set; (b) Histogram of Error distribution using 
Stochastic Gradient Tree Boosting Prediction Model on the test data set.

Table 1. Comparative summary of different methods

Prediction Models R-Square Value Computation Time (Sec.)

ANN by González 22 0.894 2218

ANN by González 23 0.929 980

Random Forest 0.9291 4

Stochastic Gradient Tree Boosting 0.9686 3

6. Discussion

It was found that the RF model predicts with lower accuracy as compared to the SGTB method. However RF 
method has the clear advantage of having less number of parameters to be taken care of and hence a thousand trees 
or more can be easily grown, without a significant increase in computation time. In other regression tree prediction 
models, more number of trees may lead to over fitting which is their largest drawback. The processing time for RF is
very low compared to other methods like ANN, which give accurate results in their own right for real life data sets, 
owing to the power of parallelization, as a result of which all the cores in the CPU are available for processing. The 
trees are never pruned, which could potentially result in over fitting, but the deliberate injection of randomness in 
various stages of the model in order to grow trees strictly rules out that possibility. For the data set considered, each 
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data consisted of five input variables and one output variable; careful perusal of previous works of Brieman brought 
to light that best results are achieved on selecting two or three features at the time of splitting at each node, but it has 
been found in our study, that consideration of four features resulted in best prediction accuracy. 

6.1. Complexity

The running time for RF and stochastic tree boosting method to grow 1000 trees was found to be 4 seconds and 3
seconds respectively, much lower than that of the ANN approach. A salient characteristic of an ensemble method is 
that the complexity of the method is directly proportional to the complexity of growing each tree present in the 
model. The complexity of RF cannot be exactly stated, but for a data set of N instances and n attributes the 
computational cost can very nearly be approximated to   O nN log N and hence for growing K trees the expression 
becomes logO K nN N 32. However this is no exact manner of expressing the complexity of RF, as this does not 
take into account the case when partial number of features is selected, or when additional time is required to inject 
randomness into the model. The complexity of SGTB algorithms mostly depends on the number of leaf nodes 
defined for each tree and the number of iterations or the maximum number of trees to be grown. However due to the 
introduction of bagging concept to increase randomness, a smaller sample is drawn in each iteration which 
subsequently decreases the complexity. 

6.2. Variable importance

The variable importance criterion, which indicates the relative importance or contribution of input variables in 
model building and their interaction among each other, was evaluated for both the algorithms. For calculating the 
variable importance in first step for each tree t , its tOOB sample was selected and prediction error for that tree for 
the OOB sample denoted by _t errOOB was calculated. Then the values of iX (where, i denotes the X values of a 

thi selected feature) in tOOB are randomly permuted and a perturbed sample i
tOOB is used to compute the 

prediction error by the same tree 33. So, the Variable Importance (VI ) can be defined as

1i i
t t

t
VI X errOOB errOOB

K
(8)

In SGTB method, VI is defined by the number of times a variable is selected for splitting, which is weighted by 
the squared improvement to the model as a result of each split, and then averaged over all the trees 34. The predictors 
present in a tree are used as a Primary Splitter and/or a Surrogate Splitter. The VI is decided accounting not only the 
primary splitting but also the surrogate splitting criteria of the predictor, as surrogate splitters are very essential in 
tree growing process.

The relative variable importance for each variable has been shown in Fig. 8 with a comparative analysis between 
the two algorithms. It is evident from the figure that both SGTB and RF give equal and maximum importance to 
Frequency, but SGTB gives more importance to each of the other four factors as compared to RF. In SGTB the 
importance of Free-stream velocity as compared to frequency is 5.8 times higher than the relative importance given 
in RF. It can be deduced from the comparison study that the RF method is less capable in deciding the importance of 
a variable as compared to SGTB with regards to the airfoil self-noise data. 

6.3. Presence of outliers

Three types of loss functions are usually used in SGTB i.e. Least Absolute Deviation (LAD), Least Square (LS) 
and Huber-M. The analysis and model designs described herein were done by using the LS loss function, in addition 
to which, further analysis has also been done to check the suitability of other two loss functions mentioned. For 
normally distributed errors LS boosting method performs the best, whereas for very long tailed distribution LAD 
function produces superior results as compared to the other two, and Huber-M loss function produces better results 
for moderately long tailed distributions 35. By the systematic application of all the three functions it was observed 
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that LAD loss function resulted in lesser prediction accuracy as compared to other two functions. By changing the 
-

100% proves almost as accurate in prediction when compared to the LS boosting but not higher than that. It was thus 
concluded from the study that there are only a few outliers in the NASA data set.  González came to the very same 
conclusion regarding the outliers of the data set, which has been further corroborated in our study. The outlier 
detection in RF was also done using proximity analysis and no variations in results were found. As the outliers have 
very less influence on both the prediction models, in depth analysis of outliers has not been presented in this paper. 

Fig. 8.  Comparison of Relative Importance of variables in Random Forest and Stochastic Gradient Tree Boosting

7. Conclusion

On implementation of both ensemble methods, it was found that SGTB is superior to RF as far as the NASA
airfoil self-noise data set is concerned. According to the authors’ knowledge based on literature available, this level 
of accuracy has not been attained before. Although the RF method predicts with an accuracy equal to that of  the 
ANN method, the RF method is more convenient owing to the fact that it has a much lesser computational time and  
lesser parameters to deal with. In this paper, only CART was used in prediction for both models. But as the boosting 
and bagging methods are the meta-algorithms, they can be used with various types of trees or other regression 
models. The higher level of accuracy and the robustness of these models will play a vital role in optimizing the noise 
generated by various airfoil-based devices and hence will be of enormous significance in the designing of new silent 
airfoils.
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