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A b s t r a c t - - E x p l i c i t  solutions are calculated by the decomposition method for Burger's equation 
for comparison with other existing procedures such as similarity reduction, etc. 

Explicit solutions of wide varieties of physically significant problems modelled by nonlinear partial 
differential equations are easily calculated by the decomposition method [1-7]. No similarity 
reductions are used to reduce a nonlinear partial differential equation to a system of simpler 
partial differential equations with a lower number of independent variables; the original nonlinear 
equation is directly solvable preserving the actual physics and involving much less calculation. 
No linearization, perturbation, or discretized methods which result in intensive computation are 
necessary. The reduction techniques become mathematical exercises with essentially undefined 
problems since an equation is considered without specification of initial/boundary conditions. 
The equations then represent no known physical situation. 

A much-considered example is the Burger's equation [8,9] 

Ut "Jr- UUx - -  U x x  = O. 

This equation was only intended as an approach to the study of turbulence because it exhibited 
some essential characteristics of the more realistic (and difficult) equations. This equation involves 
nonlinearity, dissipation, and is relatively simple. Our interest arises only because comparison 
results are widely available. The decomposition method solves much more difficult systems. We 
consider it now to show the simplicity of a proper solution. 

0 2 Let Lt = o and L~x = ~-~-~. We have now 

Ltu  -}- uux = Lxxu.  

As an initial-value problem, we write 

L t u  = Lxxu  - UUx. 

Operating with L [  1 = fo (') dt, 

L 7 1 L t u  = L [ I L ~ u  - L [ l u u ~ ,  

u - u(O) = L 7 1 L ~ x u  - L-Zluu~. 

Due to the  death  of this author, this  work is published without the benefit of galley corrections. (Ed.) 
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Decompose u into ~-~=0 Un with u0 indentified as u(0) with the nonlinearity UUx written in terms 
o O  of the Adomian Polynomials An, thus u u x  = ~':~n=O A n { u U x } ,  

o o  o o  

U-:" U 0 "1"- L t l L x x  ~ u n - L t l ~ ' ~  An. 
n : 0  n : 0  

o o  
Since u = ~-,n-O un,  we can now write 

Ul = L ~ I  L x x u o  - L - t l  Ao,  

u2 = L ' t l L x x U l  - Lt-IA1, 

Un+l = L ' t l L x x u n  - L ' t l A n ,  

Thus, the components of u are calculable for n > 0. The An for this case are given by: 

A o  = uou'o, 
I 

A1 = Ulu~o + UOUl, 
= ' 

A2 u2u o + + 

' ' ulu'~ + ~o~'3, A3 = UaU o + U2U 1 -~- 

etc., which can be written as 

t U0Utn. A n  = UnU/o + Un-xU~ + " "  + UlUn_ 1 + 

Now the Un are determined. The n-term approximant 

n--1 

m = 0  

converges rapidly to u, so it serves as an excellent approximation for small n. The problem is 

completely defined when the initial condition is specified. If we specify u = x when t = 0, we 

have 
uo = u ( t  = O) = x ,  

Ul = - L 7 I  Ao = x t ,  

u2 = - L 7 1 A 1  = L 7 1 ( - 2 x t )  = x t2  
2 

Thus, u -- x(1 - t + (t2/2) . . . .  ) or u = x / ( 1  + t ) .  

We see that  the efficiency of decomposition makes it the method of choice. It  is to be noted 
that  no linearization or perturbation was used and solutions can be said to be exact since any 
desired accuracy is obtainable by the increasing n, normally a very small number. Each additional 
term depends simply on the preceding term. Randomness in the initial term is handled without 
restrictive assumptions or closure approximants. The method has been generalized to systems of 
nonlinear partial differential equations, so a single ordinary or partial differential equation is an 
easily solved special case. It can be viewed as a dynamical systems theory which is quantitative 
rather than merely qualitative. 
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