TCT-317
Implementation of a Real-Time Skin Dose Tracking System in a Cardiac Catheterization Laboratory
Leire Unzue1, Daniel Bednarik2, Vijay Rand1, Stephen Radin1
1University at Buffalo, Buffalo, NY

Background: Radiation exposure levels to the skin during long fluoroscopic interven- tional procedures can exceed the threshold for deterministic effects such as erythema, epilation, desquamation and even necrosis. The interventionalist generally has little information during the procedure to accurately assess the level of skin dose and risk of these effects. We have developed a skin dose tracking system (DTS) that provides a real-time display of the cumulative dose distribution as well as the dose rate.

Methods: The DTS automatically calculates the skin dose and dose rate to the patient in real-time using a computer model of the patient and imaging system. Geometric and exposure information was acquired from the digital bus on a Toshiba Infinix Fluoroscopic C-Arm unit (TAMS, Tustin, CA). This information allows a color-coded display of the dose distribution to be provided on a 3D patient graphic model as well as a color-bar representation of the dose rate and numerical presentation of peak skin dose and current dose rate. A prototype version of the DTS has been installed in a cardiac catheterization laboratory and diagnostic and percutaneous coronary interventional procedures have been monitored. The DTS can provide a display in the procedure room for real-time feedback so the cardiologist can recognize the impact on dose of imaging techniques used such as C-Arm angulation, pulse rate, source-to-skin distance, source-to-receptor distance, image-intensifier magnification mode and imaging mode.

Results: Ionization chamber and radiochromic film verification show the dose represen- tation of the DTS to be accurate to within 10%. Our results show that other parameters such as fluoroscopic time, dose-area-product and reference air kerma have little correla- tion to the actual peak skin dose. Visualization of the dose distribution with the DTS graphic representation facilitates dose spreading during the procedure to minimize hot spots on the patient’s skin.

Conclusions: Feedback such as provided by the DTS during a fluoroscopic procedure can help the cardiologist to manage the dose given to the patient to avoid serious skin effects and to make an informed decision on the risk versus benefit tradeoff of radiation use.

TCT-318
Contrast Agent and Radiation Exposure in Revascularisation of Chronic Coronary Total Occlusions: Magnetic Navigation versus Conventional Percutaneous Coronary Intervention
Sabine Scherzer1, Berger Radolf1, Lisa Krems1, Clemens Gangl2, Christian Roth1, Natalja Lujic1, Georg Delle Karth1, Thomas Neunteufel1
1AKH Vienna Austria, Vienna, Vienna

Background: The aim of this trial was to compare magnetic navigation system (MNS) and conventional approach in revascularisation of chronic total occlusions (CTO).

Methods: Forty symptomatic patients with CTO were randomized to MNS or conven- tional approach for antegrade crossing of the occluded vessel. Crossing success, crossing time, radiation exposure, and contrast media usage were directly compared using intention-to-treat and per protocol analysis. In the per protocol analysis each study group included patients with cross over after failing wire-correct in the original group.

Results: In the intention-to-treat analysis wire-correct and revascularisation were successful in a comparable number of CTOs using MNS (n=909) and the conventional approach (n=1312). Crossing time was significantly shorter in the MNS group (415.5sec; 9.07 91.58) than in the conventional group (1131sec; 7.67 0.46). Also radiation exposure was significantly lower in the MNS group (513.5mGy; 2.55 7.83) than in the conventional group (1346.5mGy; 11.58 0.11). Our results show other parameters such as the need of an enough distance between the X-Ray tube and the patient, and the inability to use collimating systems during the images acquisition. The aim of this study is to compare the radiation doses with RA and conventional angiography (CA).

Conclusions: The use of NIRS for wire-correcting and revascularisation is feasible and can reduce crossing-time, radiation exposure, and the use of contrast agent. However, due to a better selection of crossing wires the conventional approach enables wire-correcting in cases failed by MNS and seems to be the more successful choice.

TCT-319
Improvement of coronary lesions quantification with rotational angiography “Xperswing”
Leire Unzue1, Leire Unzue1, Juan Luis Delcan2, Jose Luis Rodriguez-Lopez2
1H. MONTEPRINCIPE, MADRID, NY, 2H. MONTEPRINCIPE, BOADILLA DEL MONTE MADRID, SC.

Background: Coronary angiography (CA) has been the gold standard technique for study of coronary artery disease. Is based on the analysis of bidimensional orthogonal projections that may not be optimal to estimate deterministic coronary segments. Rotational angiography “Xperswing” (RA) is a new technique that allows the visualization of the coronary arteries from multiple views, with a single contrast injection. The aim of this study is to evaluate the coronary lesions quantification with RA compared to CA.

Methods: Quantitative coronary analysis of significant coronary stenosis (>50%) was performed. Every lesion was measured in two different projections: the “optimal projection”, obtained by RA and defined by the operator as the one with a better lesion quantification, and the “standard projection”, corresponding to the usual projection closer to the optimal one in obliquity and angulation. Measures were performed twice and by two independent operators. Intra- and inter-observer correlation was estimated by Kappa index and variables were compared with t Student test (SPSS 14.0).

Results: 208 lesions in 147 patients were analyzed. Kappa coefficient intra-observer was 0.80 and 0.86 respectively with an inter-observer correlation index of 0.72. Lesions length and maximal diameter of the vessel were significantly greater in the group of RA. In the segments analysis, calculated length was longer for the first diagonal branch, first marginal obtuse artery, middle circumflex, middle and distal RCA and posterior descending artery, with greater reference diameters for proximal LAD and distal RCA. There were not significant differences for coronary stenosis grade.

Conclusions: RA Xperswing provides a better visualization of coronary arteries improving lesions characterization, with longer measured lesions length and greater vessel diameters, especially in coronary segments with more angulation.

TCT-320
Rotational angiography with “Xperswing” technique: comparative analysis of radiation dose compared to conventional angiography
Leire Unzue1, Juan Luis Delcan2, Jose Luis Rodriguez-Lopez2
1H. MONTEPRINCIPE, MADRID, NY, 2H. MONTEPRINCIPE, BOADILLA DEL MONTE MADRID, SC.

Background: Rotational angiography (RA) Xperswing is a new technique of coronary angiography, which involves pre-programmed rotation of the X-Ray tube around the patient allowing the acquisition of multiple coronary images with a single contrast injection. The benefits of the RA decreasing contrast dose and radiation exposure have been properly demonstrated, although the use of this technique involves some particu- larities such as the need of an enough distance between the X-Ray tube and the patient, and the inability to use collimating systems during the images acquisition. The aim of this study is to compare the radiation doses with RA and conventional angiography (CA).

Methods: 60 consecutive procedures were analyzed, 30 performed with CC and 30 with CA. The total radiation was estimated with the analysis of the dose area product (DAP) for fluoroscopy and exposition. The absorbed dose in air was expressed with the Kerma (Kinetic Energy Released per unit Mass). For a uniformly exposed area, the DAP is just the product of the areaKerma and the exposed area in cm2, so that a linear relationship between both variables is established.

Results: DAP values were significantly inferior for the group of RA, without differences in Kerma dose. The group with RA presented smaller fluoroscopy time with less number of acquired images.

Lesion diameter	1.13±0.39	1.17±0.47	0.33
Lesion length	9.74±2.55	7.83±2.81	0.01
Maximal diameter	3.39±0.49	3.21±0.58	0.00
%Stenosis	82.29±9.07	91.58±7.67	0.46

Table:

<table>
<thead>
<tr>
<th>Diagnostic procedures</th>
<th>RA (30)</th>
<th>CA (30)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAP fluoroescopy (mg/m²/cm²)</td>
<td>46709.587 ± 31030.67</td>
<td>78031.75 ± 57320.99</td>
<td>0.01</td>
</tr>
<tr>
<td>DAP exposition (mg/m²/cm²)</td>
<td>21322.71 ± 13255.37</td>
<td>34642.75 ± 16951.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Total DAP (mg/m²/cm²)</td>
<td>37692.29 ± 44131.31</td>
<td>112647.50 ± 70133.99</td>
<td>0.01</td>
</tr>
<tr>
<td>Kerma in air (mg)</td>
<td>922.57 ± 641.95</td>
<td>1258.50 ± 868.27</td>
<td>0.12</td>
</tr>
<tr>
<td>Fluoroscopy time (min)</td>
<td>7.28 ± 3.3</td>
<td>11.5 ± 6.46</td>
<td>0.00</td>
</tr>
<tr>
<td>Total number of acquired sequences</td>
<td>8.14 ± 7.31</td>
<td>10.67 ± 3.21</td>
<td>0.23</td>
</tr>
<tr>
<td>Total number of acquired images</td>
<td>409.71 ± 243.54</td>
<td>720.33 ± 233.26</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Conclusions: RA Xperswing reduces total dose of radiation compared to CA. Nevertheless, given a DAP value, RA increases the expected air kerma, probably due to a greater dispersion of the radiation during images acquisition. The use of distance injection systems could solve the limitation of this technique. Further studies are required to contrast these results, due to the small sample size and the combination of diagnostic and therapeutic procedures in the analysis.

B90 | JACC Vol 60/17/Suppl B | October 22–26, 2012 | TCT Abstracts/POSTER/Cath Lab Advances