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We show:

(1) ℵ1 with the order topology is effectively normal, i.e., there is a function associating to
every pair (A, B) of disjoint closed subsets of ℵ1 a pair (U , V ) of disjoint open sets
with A ⊆ U and B ⊆ V .

(2) For every countable ordinal α the ordered space α is metrizable. Hence, every closed
subset of α is a zero set and consequently the Čech–Stone extension of α coincides
with its Wallman extension.

(3) In the Feferman–Levy model where ℵ1 is singular, the ordinal space ℵ1 is base-
Lindelöf but not Lindelöf.

(4) The Čech–Stone extension βℵ1 of ℵ1 is compact iff its Wallman extension W (ℵ1) is
compact.

(5) The set L of all limit ordinals of ℵ1 is not a zero set.

© 2010 Elsevier B.V. All rights reserved.

1. Notation and terminology

Let X = (X, T ) be a topological space.
X is compact iff every open cover U of X has a finite subcover V . Equivalently, X is compact iff for every family G of

closed subsets of X having the finite intersection property, fip for abbreviation,
⋂

G �= ∅.
X is countably compact iff every countable open cover U of X has a finite subcover V .
X is Lindelöf iff every open cover U of X has a countable subcover V .
X is effectively normal if there exists a function F such that for every pair (A, B) of disjoint closed sets in X, F (A, B) =

(C, D), where C, D are disjoint open sets in X including A and B respectively.
Let (X,�) be a linearly ordered set. As usual, (∞, x), (x,∞), (x, y), x, y, x < y stand for the infinite open rays

{z ∈ x: z < x}, {z ∈ x: z > x} and the open interval {z ∈ x: x < z < y} respectively.
The canonical subbase S for the order topology T on X consists of all open infinite rays, i.e. S = {(∞, x): x ∈ X} ∪

{(x,∞): x ∈ X}.
The canonical base B for the order topology T on X consists of all finite intersections of subbase elements, i.e. B =

S ∪ {(x, y): x, y ∈ X, x < y}. Clearly, if X is well-orderable then B is well-orderable.
X = (X, T ) is subbase Lindelöf provided that each cover by elements of S contains a countable one.
X is base Lindelöf provided that each cover by elements of B contains a countable one.
X weakly Lindelöf provided that each open cover has a countable open refinement (see E9 on p. 41 in [4]).
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Let ℵ be an uncountable cardinal number endowed with the order topology. A set k is unbounded in ℵ if and only if for
any α < ℵ, there is some β ∈ k such that α < β .

The long ray L is the set ℵ1 × [0,1) endowed with the order topology produced from the lexicographical order on
ℵ1 × [0,1).

Let X be a non-empty set and let E be a collection of non-empty subsets of X . A E -filter F is called countably closed if
it satisfies the condition: If {Fi: i ∈ ω} ⊂ F then

⋂{Fi: i ∈ ω} ∈ F .
Let X be a T1 space and C be a base for the closed subsets of X. Then C is called a T1 base for X if it satisfies:

(i) ∅ ∈ C .
(ii) If B1, B2 ∈ C then B1 ∩ B2 ∈ C and B1 ∪ B2 ∈ C .

(iii) If x /∈ B ∈ C then there is Bx ∈ C such that x ∈ Bx and Bx ∩ B = ∅.

If (X,�) is a linearly ordered set then C = {A ⊂ X: A = [x,∞), x ∈ X or A = (∞, y], y ∈ X or A is a finite union of
closed intervals of X} is a T1 base for the ordered space X. We call C the canonical T1 base for X. We note that in case X is
well-orderable, as is the case when X is an ordinal number, then C is well-orderable.

Let C be a T1 base for X. W (X, C) denotes the set {F ⊂ C : F is a maximal C -filter}. The topology T W (X,C) on W (X, C)

having as a base for the closed sets the family

B = {
A∗: A ∈ C

}
, A∗ = {

F ∈ W(X, C): A ∈ F
}

is called the Wallman topology on W (X, C). W (X, C) = (W (X, C), T W (X,C)) is called the Wallman extension of X corresponding
to the base C . In case C = K(X), the family of all closed subsets of X, we shall denote W (X, C) simply as W (X).

A subset A of X is a zero set iff A = f −1(0) for some continuous real valued function f on X. Clearly, if X is completely
regular then the collection Z of all zero sets of X is a T1 base for X. We shall denote W (X, Z) and W (X, Z) by β X and
βX respectively. βX is called the Čech–Stone extension of X.

AC: Every family of non-empty sets has a choice function.
CAC: AC restricted to countable families.
CAC(R) (Form 94 in [7]) is AC restricted to countable families of subsets of the real line R.
UF(ω) (Form 70 in [7]): ℘(ω) has a free ultrafilter.
BPI(ω) (Form 225 in [7]): Every filter of ℘(ω) extends to an ultrafilter.
R(ℵ1) (Form 34 in [7]): ℵ1 is regular.

2. Introduction and some known results

As is well known (see [2]) in ZFC set theory:

(a) The Wallman extension of a T1 space X is a T1 compactification of X.
(b) The Čech–Stone extension of a Tychonoff space X is the compact Hausdorff reflection of X. The latter is usually denoted

by βX and called the Čech–Stone compactification of X.
(c) For a Tychonoff space X both extensions are isomorphic if and only if X is normal.

However in ZF set theory neither of these extensions needs to be compact.
Regarding Wallman compactifications of T1 spaces the following results are known in ZF.

Proposition 1. ([9]) In ZF, the following statements are pairwise equivalent:

(i) AC.
(ii) For every T1 space X and every T1 base C for X, W (X, C) is a compactification of X.

(iii) For every non-compact T1 space X, for every T1 base C for X, there is a free maximal C -filter.
(iv) For every T1 space X, for every T1 base C for X, every filterbase H ⊂ C extends to a maximal C -filter.
(v) “For every T1 space X, W (X) is a compactification of X” and CAC.

(vi) “For every non-compact T1 space X, every closed filterbase of X is contained in a maximal closed filter of X” and CAC.

In case X = ω, the zero sets coincide with the closed sets, so that W (ω) = βω. In case X = ω1 however closed sets may
fail to be zero sets. In particular, for regular ℵ1 the set of all limit ordinals is closed in ℵ1 but not a zero set since every
continuous function f : ℵ1 → R is known to be finally constant. So the following questions arise:

Question 1. Is W (ω1) 
 βω1?

Question 2. For a ∈ ℵ1 is W (a) 
 βa?
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Question 3. Does “W (ℵ1) is compact” imply “βℵ1 is compact”? Does “βℵ1 is compact” imply “W (ℵ1) is compact”?

Equivalently, in view of the next Proposition 2.

Proposition 2. ([9]) Let X be a T1 topological space and C a T1 base for X. Then:

(i) Every filterbase of closed subsets of X extends to a maximal closed filter iff W (X) is compact. In particular, BPI(ω) iff “βω is
compact”.

(ii) Every C -filterbase of closed subsets of X extends to a maximal C -filter iff W (X, C) is compact.

Question 3 may be rephrased as:
Does the statement “every Z -filterbase of ℵ1 extends to a maximal Z -filter” imply “every closed filterbase of ℵ1 extends

to a maximal closed filter”? Does the statement “every closed filterbase of ℵ1 extends to a maximal closed filter” imply
“every Z -filterbase of ℵ1 extends to a maximal Z -filter”?

The research in this paper is motivated by these questions. Regarding Question 1 we show that the answer is yes (The-
orem 18), even though W (ℵ1) and βℵ1 fail to be equal (Theorem 14). Regarding Question 2 we show in Corollary 6 that
the answer is in the affirmative. Regarding Question 3 we show in Theorem 18 that the answer is also in the affirma-
tive.

Besides Questions 1–3, we prove in Theorem 8 that ℵ1 with the ordered topology has a normality operator, i.e., a
function F associating to every pair (A, B) of disjoint closed subsets of ℵ1 a pair (U , V ) of disjoint open sets with A ⊆ U
and B ⊆ V .

In Theorem 16 we extend the list of equivalents of the statement “ℵ1 is regular” given in [7] by establishing its equiva-
lence to each one of the following statements: “The Wallman extension W (ℵ1) of the ordered space ℵ1 is homeomorphic to the
one-point compactification of ℵ1” and “the Čech–Stone extension βℵ1 of the ordered space ℵ1 is homeomorphic to the one-point
compactification of ℵ1”.

Before we proceed with the main results we list a known one needed in the sequel.

Proposition 3. ([5]) CAC(R) iff N is Lindelöf.

3. Some properties of the long ray L and the ordered space ℵ1 in ZF

The long ray L is a well-known counterexample in ZFC. For properties satisfied by L we refer the reader to [1] and [6].
In ZF we get, besides the curious results exhibited in [3], the following additional ones:

Theorem 4. Assume that ℵ1 is singular and that (an)n∈N is a strictly increasing cofinal sequence in ℵ1 . Then the following hold with
bn = (an,0):

(i) For each n ∈ ω the subspace [bn,bn+1] of L is homeomorphic to the subspace [n,n + 1] of the space R+ of non-negative reals, but
L is not homeomorphic to R+ .

(ii) For each n ∈ ω the subspace [bn,bn+1] of L is separable and metrizable, but L fails to be either separable or metrizable.

Proof. (i) First we prove that the linearly ordered sets X = [bn,bn+1] and [0,1] are order isomorphic. Let Q be the set
of rationals in [0,1]. Then Q is a countable, dense in itself ordered set with a first and a last element. Clearly, P =
[an,an+1) × (Q ∩ [0,1)) ∪ {bn+1} is a countable dense in itself ordered subset of X . Using Cantor’s back-and-forth argument,
we construct an order isomorphism f : Q → P . By the fact that the sets X and [0,1] are ordered continuously, f can be
extended uniquely to an order isomorphism g : [0,1] → X . Since both spaces are equipped with their order topologies, they
are homeomorphic. The conclusion now follows from the fact that [0,1] 
 [n,n + 1].

(ii) By part (i) [bn,bn+1] 
 [n,n + 1] and [n,n + 1] is both separable and metrizable.
L is not metrizable because it is known, see [3], that ℵ1 is non-metrizable. The non-separability of L follows from the

fact that separability would imply (as in the proof of (i)) that L is homeomorphic to [0,1) and thus metrizable. �
Corollary 5. For every b ∈ ℵ1 , [0,b] is homeomorphic to a closed subspace of [0,1]. In particular, for every b ∈ ℵ1 , [0,b] is metrizable.

Corollary 6. For every ordinal α ∈ ℵ1 , βα = W (α).

Proof. This follows at once from Corollary 5 and the fact that in metric spaces closed sets are zero sets. (If d is a metric on
α producing the order topology then, for every closed subset A of α, the mapping hA : α → R given by hA(x) = d(x, A) =
min{d(x, y): y ∈ A} is continuous such that h−1(0) = A.) �
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Clearly ℵ1 is first countable and thus a Frechet space. Furthermore, it is easy to see that for every ordinal b � ℵ1 the
following statements:

U(b): there is a family (Un,x)n∈N, x∈b such that, for each x ∈ b, (Un,x)n∈N is a neighborhood base of x,

and

S(b): there is a family (ai)a∈L(b), i∈ω , L(b) is the set of all limit ordinals of b, of strictly increasing sequences satisfying limi→∞ ai = a
for every a ∈ L(b) are equivalent. Furthermore, if b ∈ ℵ1 then S(b) is provable in ZF. Indeed, if d is the metric on [0,b]
which is guaranteed by Corollary 5, then for every limit ordinal a of b, (an)n∈N where, a0 = 0 and an+1 is the first
element of the open disc D(a,1/n) which is strictly greater than an , is a fundamental sequence for a, i.e., a strictly
increasing cofinal sequence in a.

For every A ⊂ L, the set of all limit ordinals of ℵ1, S(A) denotes the restriction of the statement S(ℵ1) to A. The next
proposition shows, as expected, that S(ℵ1) is not provable in ZF.

Proposition 7. S(ℵ1) implies R(ℵ1).

Proof. This follows as in Lemmas 4.1 and 4.2 in [3]. �
We show next that for every pair (A, B) of disjoint closed subsets of ℵ1 there is a choiceless construction of a pair

(U , V ) of disjoint open sets with A ⊆ U and B ⊆ V .

Theorem 8. ℵ1 is effectively normal.

Proof. Let H, K be two disjoint closed subsets of ℵ1. We will define, without the use of the axiom of choice, two disjoint
open sets U , V of ℵ1 containing H and K respectively. Let B be the canonical base of ℵ1. Since B is well-orderable, it
follows that [B]<ω is well-orderable. We consider the following cases:

(i) ℵ1 is regular. Clearly, X = ℵ1 + 1 with the ordered topology is a compact space and C = B ∪ {(x,ℵ1]: x ∈ ℵ1} is a
well-orderable base for X. We consider the following subcases:

(a) H, K are bounded. Clearly, U H = {B ∈ B: B ∩ H �= ∅ and B ∩ K = ∅} is an open cover of the compact subset H of ℵ1.
Let U ⊂ U H be the first element of [B]<ω which is covers H . Put U = ⋃

U and let G = U . Clearly, G ∩ K = ∅. Apply the
previous step with K in place of H and G in place of K to obtain an open set V including K and being disjoint from G .
Clearly, U , V are the required open sets separating H and K respectively.

(b) H is bounded and K is unbounded. Clearly, G = clX (K ) = {ℵ1} ∪ K and H ∩ G = ∅. Apply step (a) to X to obtain disjoint
open sets U , V including H and G respectively. Clearly, U and V \{ℵ1} are the required open sets.

(c) H is unbounded and K is unbounded. Since ℵ1 is regular, this case cannot occur.

(ii) ℵ1 is singular. Fix 0 = a0 < a1 < · · · a strictly increasing cofinal sequence of non-limit ordinals of ℵ1. For our
convenience, we assume that 0 /∈ H ∪ K . For every n ∈ ω, let Hn = H ∩ [an + 1,an+1], Kn = K ∩ [an + 1,an+1] and
Bn = {B ∩ [an + 1,an+1]: B ∈ B}. Since [B]<ω is well-orderable we may assume that each [Bn]<ω , n ∈ ω inherits a well
ordering from [B]<ω . Without loss of generality we may assume that for every n ∈ ω, Hn �= ∅ and Kn �= ∅. For every n ∈ ω,
let B Kn = {B ∈ Bn: B ∩ Hn �= ∅ and B ∩ Kn �= ∅} and B Hn = {B ∈ Bn: B ∩ Kn �= ∅ and B ∩ Hn �= ∅}. As ℵ1 is a T3 space, it
follows that B Kn covers Kn and B Hn covers Hn . Since Kn, Hn are closed subsets of the compact space [an +1,an+1] it follows
that they are compact. Let Un, Vn be the first elements of [Bn]<ω which are finite subcoverings of B Kn and B Hn respectively.
Clearly, U = ⋃{Un: n ∈ ω} and V = ⋃{Vn: n ∈ ω}, being countable unions of well ordered finite sets, have definable well
orderings U = {Un: n ∈ ω} and V = {Vn: n ∈ ω}. Work now as in Theorem 16.8, p. 11 from [11] to define the disjoint open
sets U and V . �
Corollary 9.

(i) For every ordinal v, the ordered space v is effectively normal.
(ii) There exists a function F that associates with any pair (A, B) of disjoint closed sets of ℵ1 a continuous map F (A, B) : ℵ1 → [0,1]

with F (A, B) being 0 on A and 1 on B.

Proof. (i) Follow the proof of Theorem 8.
(ii) By Theorem 8 ℵ1 is effectively normal and, effective normality is enough to guarantee that the proof of Uryshon’s

Lemma, as is given in [11, p. 102], goes through for ℵ1 without any use of choice. �
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Theorem 10. For an infinite ordinal x the following conditions are equivalent for the space x = (x, T ), where T is the order topology
on x.

(i) x is subbase Lindelöf.
(ii) x is base Lindelöf.

(iii) x is weakly Lindelöf.
(iv) x has a countable cofinal subset.
(v) x is compact or x has a countably infinite closed relatively discrete subset.

(vi) x is compact or x has an infinite closed relatively discrete subset.

Proof. The implications (ii) → (iii) → (i) → (iv) → (v) ↔ (vi) are straightforward.
(vi) → (ii) If x is compact then there is nothing to show. Assume x is not compact and let A be an infinite closed

relatively discrete subset of x. Let a0 be the first element of A and for n ∈ N, an+1 be the first element of A which is strictly
greater that an . Put a = sup({ai: i ∈ ω}). a = x as otherwise, by the fact that A is closed, a ∈ A and A is not relatively
discrete. Thus, {ai: i ∈ ω} is a strictly increasing cofinal subset of x. Let U be a basic cover of x. Clearly, for every i ∈ ω, U is
a cover of [0,ai]. Since [0,ai] is compact, it is covered by finitely many members of U . As the set [x]<ω of all finite subsets
of x is well-orderable, we let Vi be the first finite subcover of [0,ai] of U . Clearly, V = ⋃{Vi: i ∈ ω}, being a countable
union of finite well ordered sets, is countable and the conclusion follows. �
Corollary 11. Let x be an infinite ordinal. Then the ordered space x is countably compact iff x has no strictly increasing cofinal sequence.

Proof. (→) This is straightforward.
(←) Assume on the contrary and let G = {Gn: n ∈ ω} be a strictly descending family of closed subsets of x with empty

intersection. Clearly, {gn ∈ Gn\Gn+1: n ∈ ω} is a closed relatively discrete subset of x. Working as in the proof of Theo-
rem 10(vi) → (ii) we can construct a strictly increasing cofinal sequence (an)n∈ω in x. Contradiction. �

It is known that there are models of ZF, see the Feferman–Levy model M9 in [7], in which ℵ1 is a singular cardinal.
Clearly, in view of Corollary 11, in such models ℵ1 fails to be countably compact. We show next that in these models, ℵ1
with the ordered topology, is base Lindelöf.

Theorem 12.

(i) Assume ℵ1 to be singular. Then, every well ordered open cover U of ℵ1 has a countable subcover. In particular, ℵ1 is base Lindelöf.
(ii) It is consistent with ZF that ℵ1 is base Lindelöf but not Lindelöf.

Proof. (i) Assume on the contrary and let U = {Ui: i ∈ k} be a well ordered open cover of ℵ1 without a countable subcover.
Since k is well ordered, for every v ∈ ℵ1 we pick the first member of U containing v . So, we may assume that k = ℵ1 and
finish off the proof of (i) as in the proof of Theorem 10(iv) → (ii).

The second assertion of (i) follows from the first part and the observation that the standard base is well-orderable.
(ii) In M9, ℵ1 is singular. Hence, by part (i), ℵ1 is base Lindelöf. By Proposition 3 CAC(R) implies ℵ1 is regular. Hence,

CAC(R) fails in M9. Fix A = {an: n ∈ ω} a strictly increasing cofinal set in ℵ1. Clearly, A with the subspace topology
is homeomorphic with the discrete space N. Thus, if ℵ1 is Lindelöf then A, being a closed subset of a Lindelöf space,
is Lindelöf. Hence, N is Lindelöf and by Proposition 3 CAC(R) holds. Contradiction. Thus, ℵ1 is not Lindelöf in M9 as
required. �
Remark 13.

(i) Let C be the canonical T1 base for ℵ1. Using the well orderability of C , we can show via a straightforward transfinite
induction, that every C -filter extends to a C -ultrafilter. Thus, by Proposition 2(ii) W (ℵ1, C) is a compactification of ℵ1
in ZF. We leave it for the reader to verify that W (ℵ1, C) is actually a one-point compactification of ℵ1.

(ii) In [3] it is claimed in Corollary 3.7 that ℵ1 with the order topology is Lindelöf in the Feferman–Levy model M9.
However, in view of Theorem 12 this is not the case.

4. Zero sets of ℵ1

We know that if ℵ1 is a regular cardinal then the set L of all limit ordinals of ℵ1 is not a zero set. However, if ℵ1 is
singular, then it is not known whether L is a zero set. We show next that L is always a closed non-zero subset of ℵ1.
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Theorem 14.

(i) Every closed and bounded subset of ℵ1 is a zero set. In particular, if ℵ1 is singular, then every closed set can be expressed as a
union of a countable discrete family of zero sets.

(ii) Every C in the canonical T1 base C for ℵ1 is a zero set of ℵ1 .
(iii) Let L be the set of all limit ordinals of ℵ1 . If A ⊆ L is a zero set then there exists a family (ai), a ∈ A, i ∈ ω of strictly increasing

sequences satisfying limi→∞ ai = a for every limit ordinal a ∈ A. In particular, L is a closed but not a zero set of ℵ1 .

Proof. (i) Fix A a closed bounded subset of ℵ1. Clearly, by Corollary 5, A is a zero set of [0, sup(A)], hence of ℵ1 also.
(ii) Fix C ∈ C . We consider the following cases:

(1) C is bounded. By part (i) C is a zero set.
(2) C = [a,ℵ1). If a = v + 1 is a non-limit ordinal of ℵ1 then [a,ℵ1) = (v,ℵ1) is a clopen set and consequently the map

f : ℵ1 → R, f ([a,ℵ1)) = {0}, f ([a,ℵ1)
c) = {1} is continuous.

If a is a limit ordinal of ℵ1 then we fix a strictly increasing sequence a0 = 0 < a1 < a2 < · · · with limn→∞ an = a. Define
a function f : ℵ1 → R, by requiring:

f (x) =
⎧⎨
⎩

1 if x ∈ [0,a1],
1/n if x ∈ [an + 1,an+1],
0 if x ∈ [a,ℵ1).

Clearly, f satisfies: ∀x ∈ ℵ1, for every sequence (xn)n∈ω if limn→∞ xn = x then limn→∞ f (xn) = f (x). Hence, f is continuous.

(3) C is a finite union of disjoint closed intervals, say Ii , i � n. Let, by cases (1) and (2), for every i � n, f i be a continuous
real valued function with f −1

i (0) = Ii . Clearly, f : ℵ1 → R, f (x) = min{ f i(x): i � n} is a continuous real valued function
satisfying f −1(0) = C and C is a zero set as required.

(iii) Fix a zero set A ⊆ L and let f : ℵ1 → R be a continuous function satisfying f −1(0) = A. For every a ∈ A we define a
strictly increasing sequence, (ai)i∈ω satisfying limi→∞ ai = a as follows: Let B = {bn: n ∈ N},

bn = sup(An), An = f −1
(((

−1

n
,− 1

n + 1

]
∪

[
1

n + 1
,

1

n

))
∩ [0,a)

)
.

Clearly, bn � a. By the continuity of f , f −1(− 1
n+1 , 1

n+1 ) is an open set containing a. Therefore, there exists a basic neigh-

borhood (c,a] of a such that for all x ∈ (c,a], − 1
n+1 < f (x) < 1

n+1 . Hence, c is an upper bound of An and consequently
bn � c < a.

b = sup{bn: n ∈ N} = a. If b < a then for every x ∈ (b,a), | f (x)| � 1 but f (a) = 0 and f continuous at a means that there
exists a d ∈ a with b ∈ d such that for all x ∈ (d,a], | f (x)| < 1/2. Contradiction.

Let a0 = min B and for i = n + 1,ai = min{b ∈ B: b > an}. Clearly, (ai)i∈ω is the required sequence. We observe that in
the definition of (ai)i∈ω no choice form was involved, i.e., (ai)i∈ω is defined effectively.

The second assertion of (iii) follows at once from Proposition 7 in case ℵ1 is singular and the remark preceding Ques-
tion 1 in case ℵ1 is regular. �

From the proof of the forthcoming Theorem 16(iv) → (v) it follows that if A = {ai: i ∈ ω} is a strictly increasing closed
subset of non-limit ordinals of ℵ1 then (in ZF) A is a zero set. However, if A contains infinitely many limit points of ℵ1 then
it is not known whether A is, in ZF, a zero set. We show next that A is a zero set iff there exists a system of fundamental
sequences for its limit ordinals.

Theorem 15. Let A = {ai: i ∈ ω} be a closed set of limit ordinals of ℵ1 such that a0 < a1 < · · · . Then, the following are equivalent:

(i) A is a zero set.
(ii) There exists a family (ai,n)i∈ω, n∈ω such the for every i ∈ ω, (ai,n)n∈ω is a strictly increasing cofinal sequence in ai with a0,0 = 0

and ai,0 = ai−1 for i �= 0.

Proof. It suffices to show (ii) → (i) as (i) → (ii) follows from Theorem 14(iii). Fix A as in the statement of the theorem. With-
out loss of generality we may assume that 0 = a0. Since A is closed and relatively discrete it follows, by Theorem 16(vii),
that A is cofinal in ℵ1. We define a function f : ℵ1 → R as follows

f (x) =
{0 if x ∈ A,

1 if x ∈ ⋃{[a + 1,a ]: n ∈ ω, i ∈ N.
n+1 i,n i,n+1
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We show that f is continuous. Fix x ∈ ℵ1 and let (xn)n∈ω be a sequence of points of ℵ1 converging to x. We consider the
following cases:

(1) x = ai , i ∈ N. Fix a sequence (xm)m∈ω ⊂ [ai−1,ai) with limm→∞ xm = ai . Let ε > 0 and fix n ∈ ω with 1
n+1 < ε. Since,

limm→∞ xm = ai , it follows that there exists m0 ∈ N such that ∀m � m0, xm ∈ (ai,n+1,ai] and consequently, by the definition
of f , ∀m � m0, f (xm) � 1

n+1 < ε. Thus, limm→∞ f (xm) = f (x) as required.
(2) x /∈ ℵ1. In this case there exist i ∈ N,n ∈ ω with x ∈ [ai,n,ai,n+1]. It is straightforward to verify that for every sequence

(xn)n∈ω with limn→∞ xn = x, ( f (xn))n∈ω takes on eventually the value f (x). Thus, limn→∞ f (xn) = f (x) and f is continuous.
Hence, A is a zero set as required. �
5. Some characterizations of “ℵ1 is regular”

In this section, we enlarge the list of the equivalents of the statement R(ℵ1) (= ℵ1 is regular) given in [7, p. 29].

Theorem 16. The following are equivalent:

(i) R(ℵ1).
(ii) The collection K of all closed unbounded sets of ℵ1 is a countably closed, free, maximal closed filter.

(iii) W (ℵ1) is a one-point compactification of ℵ1 .
(iv) βℵ1 is a one-point compactification of ℵ1 .
(v) Every infinite subset of ℵ1 has a limit point.

(vi) Every sequence of ℵ1 has a convergent subsequence.
(vii) ℵ1 has no countable closed relatively discrete subsets.
(viii) ℵ1 is countably compact.

(ix) ℵ1 is not base Lindelöf.
(x) The collection T of all zero unbounded sets of ℵ1 is a free, maximal zero filter.

Proof. (i) → (ii) The fact that K is a countably closed free closed filter follows from Lemmas 7.3 and 7.4 from [8].
To see that K is maximal fix F a closed subset of ℵ1 meeting non-trivially each member of K. We show that F ∈ K.

As [a,ℵ1) ∈ K for every a ∈ ℵ1 it follows that F ∩ [a,ℵ1) �= ∅ and consequently F is unbounded. Hence F ∈ K as re-
quired.

(ii) → (iii) It is easy to see that (ii) implies ℵ1 is regular. (If ℵ1 is a singular cardinal and {ai: i ∈ ω} is a strictly increasing
cofinal subset of ℵ1, then {ai: i ∈ ω} is a closed unbounded subset of ℵ1. Hence, A = {a2i: i ∈ ω} and B = {a2i+1: i ∈ ω} are
disjoint closed unbounded subsets of ℵ1 and K is not a filter of ℵ1.)

To complete the proof of (ii) → (iii), it suffices to show that for every T2 compactification Y of ℵ1, Y \ℵ1 is a singleton.
This, given that ℵ1 is regular, is straightforward and well known.

(iii) → (iv) Clearly, (iii) implies ℵ1 is a regular cardinal. Indeed, if ℵ1 is a singular cardinal and {ai: i ∈ ω} is a strictly
increasing cofinal subset of ℵ1, then every subset of {ai: i ∈ ω} is a closed subset of ℵ1. Hence, by our hypothesis and
Proposition 2, the filterbases of closed sets A = {X ∈ ℘({a2i: i ∈ ω}): |Xc| < ℵ0} and B = {X ∈ ℘({a2i+1: i ∈ ω}): |Xc| < ℵ0}
are included in maximal closed filters of ℵ1, say F and Q respectively. Clearly, F and Q are distinct and free. Hence,
W (ℵ1) is not a one-point compactification of ℵ1. Contradiction.

In view of Theorem 14, H = {[x,ℵ1): x ∈ ℵ1} ⊂ Z is a closed filterbase of ℵ1. Thus, by the regularity of ℵ1, (i) → (ii)
and our hypothesis, K is the only maximal closed filter of ℵ1 extending H. Clearly, F = K ∩ Z is a free, maximal zero
filter of ℵ1. (If K ∈ Z meets non-trivially each member of F then K ∈ K and consequently K ∈ F .) We show that F is the
only free maximal zero filter of ℵ1. Assume the contrary and let Q, Q �= F be free maximal zero filter of ℵ1. Fix F ∈ F ,
Q ∈ Q such that F ∩ Q = ∅. By our hypothesis and Proposition 2(i), there exists a free maximal closed filter Q′ of ℵ1
extending Q. Since F ∈ K and Q ∈ Q′ , it follows that K �= Q′ and consequently W (ℵ1) is not a one-point compactification
of ℵ1. Contradiction.

(iv) → (v) Fix A an infinite subset of ℵ1. Aiming for a contradiction, we assume that A has no limit point. Then, A
is a closed relatively discrete subset of ℵ1. Without loss of generality we may assume that A = {an: n ∈ ω} is countably
infinite such that a0 < a1 < a2 < · · · . Clearly A is unbounded for otherwise sup(A) is a limit point of A. Thus, ℵ1 is
singular. By substituting, if necessary, each an with an + 1 we may also assume that the members of A are non-limit
ordinals. Hence, every subset S of A is a clopen set and consequently a zero set of ℵ1. In particular, E = {a2n: n ∈ ω}
and O = {a2n+1: n ∈ ω} are zero sets. By our hypothesis and Proposition 2(ii), there exist zero maximal filters F and H
extending {X ∈ ℘(E): |E\X | < ℵ0} and {X ∈ ℘(O ): |O\X | < ℵ0} respectively. Clearly, F , H are free and F �= H. Thus, βℵ1
is not a one-point compactification of ℵ1. Contradiction.

(v) → (vi) This is straightforward.
(vi) → (vii) Assume on the contrary and let A be a countable closed relatively discrete subset of ℵ1. Define

a0 = min(A),

an = min
(

A\{ai: i � v}) if n = v + 1, v ∈ ω.
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As A is closed it follows that a = sup({an: n ∈ ω}) ∈ A or a = ℵ1. Assume that a ∈ A. Since A is relatively discrete, it follows
that there exists a neighborhood Va of a meeting A in the singleton {a}. Contradiction. Hence, a = ℵ1 and the sequence
(an)n∈ω has no convergent subsequence, contradicting our hypothesis. Thus, ℵ1 has no countable closed relatively discrete
subset as required.

(vii) → (viii) is straightforward and (viii) → (i) is a consequence of Corollary 11.
(i) ↔ (ix) This follows at once from Theorem 12.
(i) → (x) This follows from the observation that T ⊂ K and the fact that finite intersections of zero sets are zero sets. (If

C0, C1, . . . , Cn are zero sets and f i : ℵ1 → R, i � n are continuous functions such that f −1
i (0) = Ci for every i � n, then the

function f : ℵ1 → R given f (x) = max{ f i(x): i � n} is continuous with f −1(0) = ⋂{Ci: i � n}.)
(x) → (i) If ℵ1 is singular and {ai: i ∈ ω} is a strictly increasing cofinal subset of ℵ1 consisting in non-limit ordinals, then

every subset of {ai: i ∈ ω} is a clopen, hence zero, unbounded subset of ℵ1. Since, {a2i: i ∈ ω}∩ {a2i+1: i ∈ ω} = ∅ it follows
that T is not a filter. A contradiction terminating the proof of the theorem. �
6. Consequences of “W(ℵ1) is compact”

Theorem 17.

(i) “W (ℵ1) is compact” implies either R(ℵ1) or “βω is compact”.
(ii) “W (ℵ1) is compact” and “ℵ1 is singular” imply “βω is compact”.

(iii) “W (ℵ1) is compact” and “βω is not compact” imply R(ℵ1).
(iv) “W (ℵ1) is compact” does not imply UF(ω). In particular, “W (ℵ1) is compact” does not imply “βω is compact”.
(v) “ℵ1 is singular” and “W (ℵ1) is countably compact” together imply UF(ω).

(vi) UF(ω) implies “W (ℵ1) is countably compact with respect to the base B = {A∗: A ∈ K(ℵ1)}”.

Proof. (i) Assume ℵ1 is singular. We show “βω is compact”. To this end, it suffices to show that every filter on ω extends to
an ultrafilter. Fix A = {ai: i ∈ ω} a strictly increasing cofinal subset of ℵ1. Identify ω with A and let H be a filter of A. Since
A is clearly a closed relatively discrete subset of ℵ1, it follows that H is a closed filter of ℵ1. Hence, by the compactness of

W (ℵ1) and Proposition 2, H extends to a maximal closed filter R of ℵ1. It is easy to verify that the trace F of R on A is
the required ultrafilter of ω.

(ii), (iii) These are simply rewordings of (i).
(iv) This follows from the observation that “ℵ1 is regular”, hence “W (ℵ1) is compact” also, hold in Solovay’s model

M5(ℵ) in [7], but UF(ω) fails in M5(ℵ).
(v) Fix A as in the proof of (i) and identify A with ω. Let for every n ∈ ω, Hn = {am: m � n}. Clearly, H = {H∗

n: n ∈ ω}
has the fip and consequently, by our hypothesis,

⋂
H �= ∅. Fix G ∈ ⋂

H and let F = {G ∩ A: G ∈ G}. Clearly, F is a free
ultrafilter of ω.

(vi) Let H′ = {H∗
n: n ∈ ω} ⊂ B have the fip. We show that

⋂
H′ �= ∅. Put H = {Hn: n ∈ ω}. We show that

⋂
H′ �= ∅.

As H′ has the fip it follows that H has the fip. Hence, we may assume that H is a strictly descending family of closed
subsets of ℵ1. If

⋂
H �= ∅ then the closed filter Fa generated by any a ∈ ⋂

H is a closed maximal filter included in
⋂

H′ .
Thus,

⋂
H′ �= ∅. Assume that

⋂
H = ∅. Fix for every n ∈ ω,an ∈ Hn\Hn+1. Since

⋂
H = ∅ it follows that A = {an: n ∈ ω} is

a countable closed relatively discrete subset of ℵ1. Identify A with ω and let, by our hypothesis, G be an ultrafilter of ω.
Clearly, the closed filter F of ℵ1 generated by G is in

⋂
H′ . Thus,

⋂
H′ �= ∅ as required. �

We show next that the statement “W (ℵ1) is compact” is equivalent to the proposition “βℵ1 is compact”.

Theorem 18. “W (ℵ1) is compact” iff “βℵ1 is compact”. In particular, “W (ℵ1) is compact” implies W (ℵ1) 
 βℵ1 .

Proof. If ℵ1 is regular the conclusion follows from Theorem 16. So, assume that ℵ1 is singular. Fix 0 = a0 < a1 < · · · a
strictly increasing cofinal sequence of non-limit ordinals of ℵ1.

(→) Let H be a free zero filterbase. We show that H extends to a maximal zero filter of ℵ1. Let, by our hypothesis,
G be a maximal closed filter extending H. We show that F = G ∩ Z is the required maximal filter. If not, then there exists
Z ∈ Z\G such that F ∪ {Z} has the fip. By the maximality of G , there exists G ∈ G such that G ∩ Z = ∅. By Corollary 9,
there exists a continuous function f : ℵ1 → R taking on the value 0 on G and the value 1 on Z . Hence, F = f −1(0) ∈ Z
with G ⊂ F and F ∩ Z = ∅. Since, G ∈ G and G is a filter, it follows that F ∈ G and consequently F ∈ F and F ∪ {Z} does
not have the fip. Contradiction.

(←) Let H be a free closed filterbase. We show that H extends to a maximal closed filter of ℵ1. Let, by our hypothesis, G
be a maximal zero filter extending the zero filterbase H′ = {Z ∈ Z : H ⊂ Z for some H ∈ H}. Since, {Z∗: Z ∈ Z} is a base for
the closed sets of βℵ1, it follows that {G} = ⋂{Z∗: Z ∈ Z} and consequently, {G} = ⋂{clβℵ1 (B): B ∈ K(ℵ1), G ∈ clβℵ1(B)}.
We show that F = {B ∈ K(ℵ1): G ∈ clβℵ1 (B)} is the required maximal closed filter. Since, clβℵ1 (B ∩ A) = clβℵ1(B)∩ clβℵ1 (A),
it follows that for every B, A ∈ F , (B ∩ A) ∈ F . Hence, F is a closed filterbase.
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Let K ∈ K(ℵ1) satisfy F ∩ K �= ∅ for every F ∈ F . We show that K ∈ F . Assume, aiming for a contradiction, that K /∈ F .
Then G /∈ clβℵ1 (K ) and consequently, there exists a basic neighborhood U∗

G of G with U∗
G ∩ clβℵ1 (K ) = ∅. Hence, there is a

closed set B ⊆ U G with B ∈ G . Therefore, G ∈ B∗ ⊆ U∗
G , meaning that B∗ ∈ F and B∗ ∩ K = ∅. Contradiction. Hence, F is a

maximal closed filter.
H ⊆ F . Fix H ∈ H. Clearly, H = ⋂{Z ∈ Z : H ⊆ Z} and G ∈ ⋂{clβℵ1 (Z): Z ∈ Z, H ⊆ Z}. If G /∈ clβℵ1 (H) then there exists

a clopen set U of ℵ1 such that U∗ is a neighborhood of G and U∗ ∩ clβℵ1(H) = ∅. Hence, U ∩ H = ∅. Thus, H ⊂ U c ∈ Z and
∅ = clβℵ1(U ∩ U c) = U∗ ∩ clβℵ1 (U c) meaning that G ∈ ⋂{clβℵ1 (Z): Z ∈ Z, H ⊆ Z}. Contradiction. Thus, G ∈ clβℵ1 (H) and
H ∈ F as required.

The second assertion follows as in the proof of E, p. 141 from [10]. �
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