brouaht to vou bv

Topology and its Applications 158 (2011) 229–237

ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Remarks on the space \aleph_1 in **ZF**

Horst Herrlich^a, Kyriakos Keremedis^{b,*}

^a Feldhäuser Str. 69, 28865 Lilienthal, Germany

^b University of the Aegean, Department of Mathematics, Karlovassi, Samos 83200, Greece

ARTICLE INFO

Article history: Received 5 August 2010 Received in revised form 18 October 2010 Accepted 5 November 2010

Keywords: Axiom of choice Effectively normal spaces Compact spaces Lindelöf spaces Ordinal spaces Čech-Stone extensions Wallman extensions Compactifications

ABSTRACT

We show:

- (1) \aleph_1 with the order topology is effectively normal, i.e., there is a function associating to every pair (*A*, *B*) of disjoint closed subsets of \aleph_1 a pair (*U*, *V*) of disjoint open sets with $A \subseteq U$ and $B \subseteq V$.
- (2) For every countable ordinal α the ordered space α is metrizable. Hence, every closed subset of α is a zero set and consequently the Čech–Stone extension of α coincides with its Wallman extension.
- (3) In the Feferman–Levy model where ℵ₁ is singular, the ordinal space ℵ₁ is base– Lindelöf but not Lindelöf.
- (4) The Čech–Stone extension $\beta \aleph_1$ of \aleph_1 is compact iff its Wallman extension $\mathcal{W}(\aleph_1)$ is compact.
- (5) The set *L* of all limit ordinals of \aleph_1 is not a zero set.

© 2010 Elsevier B.V. All rights reserved.

1. Notation and terminology

Let $\mathbf{X} = (X, T)$ be a topological space.

X is *compact* iff every open cover \mathcal{U} of **X** has a finite subcover \mathcal{V} . Equivalently, **X** is compact iff for every family \mathcal{G} of closed subsets of *X* having the *finite intersection property*, fip for abbreviation, $\bigcap \mathcal{G} \neq \emptyset$.

X is *countably compact* iff every countable open cover \mathcal{U} of **X** has a finite subcover \mathcal{V} .

X is *Lindelöf* iff every open cover \mathcal{U} of **X** has a countable subcover \mathcal{V} .

- **X** is effectively normal if there exists a function F such that for every pair (A, B) of disjoint closed sets in **X**, F(A, B) = (C, D) where C, D are divising to one sets in **X** including A and B respectively.
- (C, D), where C, D are disjoint open sets in **X** including A and B respectively.

Let (X, \leq) be a linearly ordered set. As usual, (∞, x) , (x, ∞) , (x, y), x, y, x < y stand for the infinite open rays $\{z \in x: z < x\}$, $\{z \in x: z > x\}$ and the open interval $\{z \in x: x < z < y\}$ respectively.

The canonical subbase S for the order topology T on X consists of all open infinite rays, i.e. $S = \{(\infty, x): x \in X\} \cup \{(x, \infty): x \in X\}$.

The canonical base \mathcal{B} for the order topology T on X consists of all finite intersections of subbase elements, i.e. $\mathcal{B} = \mathcal{S} \cup \{(x, y): x, y \in X, x < y\}$. Clearly, if X is well-orderable then \mathcal{B} is well-orderable.

 $\mathbf{X} = (X, T)$ is subbase Lindelöf provided that each cover by elements of S contains a countable one.

X is *base Lindelöf* provided that each cover by elements of \mathcal{B} contains a countable one.

X weakly Lindelöf provided that each open cover has a countable open refinement (see E9 on p. 41 in [4]).

^{*} Corresponding author.

E-mail addresses: horst.herrlich@t-online.de (H. Herrlich), kker@aegean.gr (K. Keremedis).

^{0166-8641/\$ –} see front matter $\,\, @$ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2010.11.007 $\,$

Let \aleph be an uncountable cardinal number endowed with the order topology. A set *k* is *unbounded* in \aleph if and only if for any $\alpha < \aleph$, there is some $\beta \in k$ such that $\alpha < \beta$.

The long ray L is the set $\aleph_1 \times [0, 1)$ endowed with the order topology produced from the lexicographical order on $\aleph_1 \times [0, 1)$.

Let *X* be a non-empty set and let \mathcal{E} be a collection of non-empty subsets of *X*. A \mathcal{E} -filter \mathcal{F} is called *countably closed* if it satisfies the condition: If $\{F_i: i \in \omega\} \subset \mathcal{F}$ then $\bigcap \{F_i: i \in \omega\} \in \mathcal{F}$.

Let **X** be a T_1 space and C be a base for the closed subsets of **X**. Then C is called a T_1 base for **X** if it satisfies:

(i) $\emptyset \in \mathcal{C}$.

(ii) If $B_1, B_2 \in C$ then $B_1 \cap B_2 \in C$ and $B_1 \cup B_2 \in C$.

(iii) If $x \notin B \in C$ then there is $B_x \in C$ such that $x \in B_x$ and $B_x \cap B = \emptyset$.

If (X, \leq) is a linearly ordered set then $C = \{A \subset X : A = [x, \infty), x \in X \text{ or } A = (\infty, y], y \in X \text{ or } A \text{ is a finite union of closed intervals of } X\}$ is a T_1 base for the ordered space **X**. We call *C* the canonical T_1 base for **X**. We note that in case X is well-orderable, as is the case when X is an ordinal number, then C is well-orderable.

Let C be a T_1 base for **X**. $\mathcal{W}(X, C)$ denotes the set { $\mathcal{F} \subset C$: \mathcal{F} is a maximal C-filter}. The topology $T_{\mathcal{W}(X,C)}$ on $\mathcal{W}(X,C)$ having as a base for the closed sets the family

$$\mathcal{B} = \{ A^* \colon A \in \mathcal{C} \}, \qquad A^* = \{ \mathcal{F} \in \mathcal{W}(X, \mathcal{C}) \colon A \in \mathcal{F} \}$$

is called the *Wallman topology on* $\mathcal{W}(X, C)$. $\mathcal{W}(\mathbf{X}, C) = (\mathcal{W}(X, C), T_{\mathcal{W}(X, C)})$ is called the *Wallman extension of* **X** *corresponding to the base* C. In case $C = \mathcal{K}(\mathbf{X})$, the family of all closed subsets of **X**, we shall denote $\mathcal{W}(X, C)$ simply as $\mathcal{W}(X)$.

A subset *A* of **X** is a zero set iff $A = f^{-1}(0)$ for some continuous real valued function *f* on **X**. Clearly, if **X** is completely regular then the collection \mathcal{Z} of all zero sets of **X** is a T_1 base for **X**. We shall denote $\mathcal{W}(X, \mathcal{Z})$ and $\mathcal{W}(\mathbf{X}, \mathcal{Z})$ by βX and $\beta \mathbf{X}$ respectively. $\beta \mathbf{X}$ is called the *Čech–Stone extension* of **X**.

AC: Every family of non-empty sets has a choice function.

CAC: AC restricted to countable families.

CAC(\mathbb{R}) (Form 94 in [7]) is **AC** restricted to countable families of subsets of the real line \mathbb{R} .

UF(ω) (Form 70 in [7]): $\wp(\omega)$ has a free ultrafilter.

BPI(ω) (Form 225 in [7]): Every filter of $\wp(\omega)$ extends to an ultrafilter.

R(\aleph_1) (Form 34 in [7]): \aleph_1 is regular.

2. Introduction and some known results

As is well known (see [2]) in ZFC set theory:

- (a) The Wallman extension of a T_1 space **X** is a T_1 compactification of **X**.
- (b) The Čech–Stone extension of a Tychonoff space **X** is the compact Hausdorff reflection of **X**. The latter is usually denoted by β **X** and called the Čech–Stone compactification of **X**.
- (c) For a Tychonoff space **X** both extensions are isomorphic if and only if **X** is normal.

However in **ZF** set theory neither of these extensions needs to be compact. Regarding Wallman compactifications of T_1 spaces the following results are known in **ZF**.

Proposition 1. ([9]) In ZF, the following statements are pairwise equivalent:

(i) AC.

- (ii) For every T_1 space **X** and every T_1 base C for **X**, $W(\mathbf{X}, C)$ is a compactification of **X**.
- (iii) For every non-compact T_1 space **X**, for every T_1 base C for **X**, there is a free maximal C-filter.
- (iv) For every T_1 space **X**, for every T_1 base C for **X**, every filterbase $\mathcal{H} \subset \mathcal{C}$ extends to a maximal C-filter.
- (v) "For every T_1 space X, $W(\mathbf{X})$ is a compactification of **X**" and **CAC**.
- (vi) "For every non-compact T_1 space **X**, every closed filterbase of **X** is contained in a maximal closed filter of **X**" and **CAC**.

In case $X = \omega$, the zero sets coincide with the closed sets, so that $W(\omega) = \beta \omega$. In case $X = \omega_1$ however closed sets may fail to be zero sets. In particular, for regular \aleph_1 the set of all limit ordinals is closed in \aleph_1 but not a zero set since every continuous function $f : \aleph_1 \to \mathbb{R}$ is known to be finally constant. So the following questions arise:

Question 1. Is $\mathcal{W}(\omega_1) \simeq \beta \omega_1$?

Question 2. For $a \in \aleph_1$ is $\mathcal{W}(a) \simeq \beta a$?

Question 3. Does " $\mathcal{W}(\aleph_1)$ is compact" imply " $\beta \aleph_1$ is compact"? Does " $\beta \aleph_1$ is compact" imply " $\mathcal{W}(\aleph_1)$ is compact"?

Equivalently, in view of the next Proposition 2.

Proposition 2. ([9]) Let **X** be a T_1 topological space and C a T_1 base for **X**. Then:

- (i) Every filterbase of closed subsets of **X** extends to a maximal closed filter iff $\mathcal{W}(\mathbf{X})$ is compact. In particular, **BPI**(ω) iff " $\beta \omega$ is compact".
- (ii) Every C-filterbase of closed subsets of **X** extends to a maximal C-filter iff $W(\mathbf{X}, C)$ is compact.

Question 3 may be rephrased as:

Does the statement "every \mathcal{Z} -filterbase of \aleph_1 extends to a maximal \mathcal{Z} -filter" imply "every closed filterbase of \aleph_1 extends to a maximal closed filter"? Does the statement "every closed filterbase of \aleph_1 extends to a maximal closed filter" imply "every \mathcal{Z} -filterbase of \aleph_1 extends to a maximal \mathcal{Z} -filter"?

The research in this paper is motivated by these questions. Regarding Question 1 we show that the answer is yes (Theorem 18), even though $W(\aleph_1)$ and $\beta \aleph_1$ fail to be equal (Theorem 14). Regarding Question 2 we show in Corollary 6 that the answer is in the affirmative. Regarding Question 3 we show in Theorem 18 that the answer is also in the affirmative.

Besides Questions 1–3, we prove in Theorem 8 that \aleph_1 with the ordered topology has a normality operator, i.e., a function *F* associating to every pair (*A*, *B*) of disjoint closed subsets of \aleph_1 a pair (*U*, *V*) of disjoint open sets with $A \subseteq U$ and $B \subseteq V$.

In Theorem 16 we extend the list of equivalents of the statement " \aleph_1 is regular" given in [7] by establishing its equivalence to each one of the following statements: "The Wallman extension $W(\aleph_1)$ of the ordered space \aleph_1 is homeomorphic to the one-point compactification of \aleph_1 " and "the Čech–Stone extension $\beta \aleph_1$ of the ordered space \aleph_1 is homeomorphic to the one-point compactification of \aleph_1 ".

Before we proceed with the main results we list a known one needed in the sequel.

Proposition 3. ([5]) **CAC**(\mathbb{R}) *iff* \mathbb{N} *is Lindelöf.*

3. Some properties of the long ray L and the ordered space $\$_1$ in ZF

The long ray L is a well-known counterexample in **ZFC**. For properties satisfied by L we refer the reader to [1] and [6]. In **ZF** we get, besides the curious results exhibited in [3], the following additional ones:

Theorem 4. Assume that \aleph_1 is singular and that $(a_n)_{n \in \mathbb{N}}$ is a strictly increasing cofinal sequence in \aleph_1 . Then the following hold with $b_n = (a_n, 0)$:

- (i) For each $n \in \omega$ the subspace $[b_n, b_{n+1}]$ of **L** is homeomorphic to the subspace [n, n+1] of the space \mathbb{R}^+ of non-negative reals, but **L** is not homeomorphic to \mathbb{R}^+ .
- (ii) For each $n \in \omega$ the subspace $[b_n, b_{n+1}]$ of **L** is separable and metrizable, but **L** fails to be either separable or metrizable.

Proof. (i) First we prove that the linearly ordered sets $X = [b_n, b_{n+1}]$ and [0, 1] are order isomorphic. Let Q be the set of rationals in [0, 1]. Then Q is a countable, dense in itself ordered set with a first and a last element. Clearly, $P = [a_n, a_{n+1}) \times (\mathbb{Q} \cap [0, 1)) \cup \{b_{n+1}\}$ is a countable dense in itself ordered subset of X. Using Cantor's back-and-forth argument, we construct an order isomorphism $f : Q \rightarrow P$. By the fact that the sets X and [0, 1] are ordered continuously, f can be extended uniquely to an order isomorphism $g : [0, 1] \rightarrow X$. Since both spaces are equipped with their order topologies, they are homeomorphic. The conclusion now follows from the fact that $[0, 1] \simeq [n, n + 1]$.

(ii) By part (i) $[\mathbf{b}_n, \mathbf{b}_{n+1}] \simeq [\mathbf{n}, \mathbf{n} + \mathbf{1}]$ and $[\mathbf{n}, \mathbf{n} + \mathbf{1}]$ is both separable and metrizable.

L is not metrizable because it is known, see [3], that \aleph_1 is non-metrizable. The non-separability of L follows from the fact that separability would imply (as in the proof of (i)) that L is homeomorphic to [0, 1) and thus metrizable. \Box

Corollary 5. For every $b \in \aleph_1$, [0, b] is homeomorphic to a closed subspace of [0, 1]. In particular, for every $b \in \aleph_1$, [0, b] is metrizable.

Corollary 6. For every ordinal $\alpha \in \aleph_1$, $\beta \alpha = \mathcal{W}(\alpha)$.

Proof. This follows at once from Corollary 5 and the fact that in metric spaces closed sets are zero sets. (If *d* is a metric on α producing the order topology then, for every closed subset *A* of α , the mapping $h_A : \alpha \to \mathbb{R}$ given by $h_A(x) = d(x, A) = \min\{d(x, y): y \in A\}$ is continuous such that $h^{-1}(0) = A$.) \Box

Clearly \aleph_1 is first countable and thus a Frechet space. Furthermore, it is easy to see that for every ordinal $b \leq \aleph_1$ the following statements:

U(*b*): there is a family $(U_{n,x})_{n \in \mathbb{N}, x \in b}$ such that, for each $x \in b$, $(U_{n,x})_{n \in \mathbb{N}}$ is a neighborhood base of *x*,

and

S(*b*): there is a family $(a_i)_{a \in L(b), i \in \omega}$, L(b) is the set of all limit ordinals of *b*, of strictly increasing sequences satisfying $\lim_{i \to \infty} a_i = a$ for every $a \in L(b)$ are equivalent. Furthermore, if $b \in \aleph_1$ then **S**(*b*) is provable in **ZF**. Indeed, if *d* is the metric on [0, b] which is guaranteed by Corollary 5, then for every limit ordinal *a* of *b*, $(a_n)_{n \in \mathbb{N}}$ where, $a_0 = 0$ and a_{n+1} is the first element of the open disc D(a, 1/n) which is strictly greater than a_n , is a fundamental sequence for *a*, i.e., a strictly increasing cofinal sequence in *a*.

For every $A \subset L$, the set of all limit ordinals of \aleph_1 , $\mathbf{S}(A)$ denotes the restriction of the statement $\mathbf{S}(\aleph_1)$ to A. The next proposition shows, as expected, that $\mathbf{S}(\aleph_1)$ is not provable in **ZF**.

Proposition 7. $S(\aleph_1)$ *implies* $R(\aleph_1)$.

Proof. This follows as in Lemmas 4.1 and 4.2 in [3]. □

We show next that for every pair (A, B) of disjoint closed subsets of \aleph_1 there is a choiceless construction of a pair (U, V) of disjoint open sets with $A \subseteq U$ and $B \subseteq V$.

Theorem 8. \aleph_1 is effectively normal.

Proof. Let H, K be two disjoint closed subsets of \aleph_1 . We will define, without the use of the axiom of choice, two disjoint open sets U, V of \aleph_1 containing H and K respectively. Let \mathcal{B} be the canonical base of \aleph_1 . Since \mathcal{B} is well-orderable, it follows that $[\mathcal{B}]^{<\omega}$ is well-orderable. We consider the following cases:

(i) \aleph_1 is regular. Clearly, $X = \aleph_1 + 1$ with the ordered topology is a compact space and $C = B \cup \{(x, \aleph_1]: x \in \aleph_1\}$ is a well-orderable base for **X**. We consider the following subcases:

- (a) H, K are bounded. Clearly, $\mathcal{U}_H = \{B \in \mathcal{B}: B \cap H \neq \emptyset \text{ and } \overline{B} \cap K = \emptyset\}$ is an open cover of the compact subset H of \aleph_1 . Let $\mathcal{U} \subset \mathcal{U}_H$ be the first element of $[\mathcal{B}]^{<\omega}$ which is covers H. Put $U = \bigcup \mathcal{U}$ and let $G = \overline{U}$. Clearly, $G \cap K = \emptyset$. Apply the previous step with K in place of H and G in place of K to obtain an open set V including K and being disjoint from G. Clearly, U, V are the required open sets separating H and K respectively.
- (b) *H* is bounded and *K* is unbounded. Clearly, $G = cl_X(K) = \{\aleph_1\} \cup K$ and $H \cap G = \emptyset$. Apply step (a) to **X** to obtain disjoint open sets *U*, *V* including *H* and *G* respectively. Clearly, *U* and *V*\{ \aleph_1 } are the required open sets.
- (c) *H* is unbounded and *K* is unbounded. Since \aleph_1 is regular, this case cannot occur.

(ii) \aleph_1 is singular. Fix $0 = a_0 < a_1 < \cdots$ a strictly increasing cofinal sequence of non-limit ordinals of \aleph_1 . For our convenience, we assume that $0 \notin H \cup K$. For every $n \in \omega$, let $H_n = H \cap [a_n + 1, a_{n+1}]$, $K_n = K \cap [a_n + 1, a_{n+1}]$ and $\mathcal{B}_n = \{B \cap [a_n + 1, a_{n+1}]: B \in \mathcal{B}\}$. Since $[\mathcal{B}]^{<\omega}$ is well-orderable we may assume that each $[\mathcal{B}_n]^{<\omega}$, $n \in \omega$ inherits a well ordering from $[\mathcal{B}]^{<\omega}$. Without loss of generality we may assume that for every $n \in \omega$, $H_n \neq \emptyset$ and $K_n \neq \emptyset$. For every $n \in \omega$, let $\mathcal{B}_{K_n} = \{B \in \mathcal{B}_n: B \cap H_n \neq \emptyset$ and $B \cap \overline{K_n} \neq \emptyset\}$ and $\mathcal{B}_{H_n} = \{B \in \mathcal{B}_n: B \cap K_n \neq \emptyset$ and $B \cap \overline{H_n} \neq \emptyset\}$. As \aleph_1 is a T_3 space, it follows that \mathcal{B}_{K_n} covers K_n and \mathcal{B}_{H_n} covers H_n . Since K_n , H_n are closed subsets of the compact space $[a_n + 1, a_{n+1}]$ it follows that they are compact. Let \mathcal{U}_n , \mathcal{V}_n be the first elements of $[\mathcal{B}_n]^{<\omega}$ which are finite subcoverings of \mathcal{B}_{K_n} and \mathcal{B}_{H_n} respectively. Clearly, $\mathcal{U} = \bigcup \{\mathcal{U}_n: n \in \omega\}$ and $\mathcal{V} = \bigcup \{\mathcal{V}_n: n \in \omega\}$. Work now as in Theorem 16.8, p. 11 from [11] to define the disjoint open sets U and \mathcal{V} . \Box

Corollary 9.

- (i) For every ordinal v, the ordered space v is effectively normal.
- (ii) There exists a function F that associates with any pair (A, B) of disjoint closed sets of \aleph_1 a continuous map $F(A, B) : \aleph_1 \to [0, 1]$ with F(A, B) being 0 on A and 1 on B.
- **Proof.** (i) Follow the proof of Theorem 8.

(ii) By Theorem 8 \aleph_1 is effectively normal and, effective normality is enough to guarantee that the proof of Uryshon's Lemma, as is given in [11, p. 102], goes through for \aleph_1 without any use of choice. \Box

Theorem 10. For an infinite ordinal *x* the following conditions are equivalent for the space $\mathbf{x} = (x, T)$, where *T* is the order topology on *x*.

- (i) **x** is subbase Lindelöf.
- (ii) **x** is base Lindelöf.
- (iii) **x** is weakly Lindelöf.
- (iv) \mathbf{x} has a countable cofinal subset.
- (v) **x** is compact or **x** has a countably infinite closed relatively discrete subset.
- (vi) \mathbf{x} is compact or \mathbf{x} has an infinite closed relatively discrete subset.

Proof. The implications (ii) \rightarrow (iii) \rightarrow (i) \rightarrow (iv) \rightarrow (v) \leftrightarrow (vi) are straightforward.

 $(vi) \rightarrow (ii)$ If **x** is compact then there is nothing to show. Assume **x** is not compact and let *A* be an infinite closed relatively discrete subset of **x**. Let a_0 be the first element of *A* and for $n \in \mathbb{N}$, a_{n+1} be the first element of *A* which is strictly greater that a_n . Put $a = \sup(\{a_i: i \in \omega\})$. a = x as otherwise, by the fact that *A* is closed, $a \in A$ and *A* is not relatively discrete. Thus, $\{a_i: i \in \omega\}$ is a strictly increasing cofinal subset of *x*. Let \mathcal{U} be a basic cover of *x*. Clearly, for every $i \in \omega$, \mathcal{U} is a cover of $[0, a_i]$. Since $[0, a_i]$ is compact, it is covered by finitely many members of \mathcal{U} . As the set $[x]^{<\omega}$ of all finite subsets of *x* is well-orderable, we let \mathcal{V}_i be the first finite subcover of $[0, a_i]$ of \mathcal{U} . Clearly, $\mathcal{V} = \bigcup \{\mathcal{V}_i: i \in \omega\}$, being a countable union of finite well ordered sets, is countable and the conclusion follows. \Box

Corollary 11. Let x be an infinite ordinal. Then the ordered space **x** is countably compact iff x has no strictly increasing cofinal sequence.

Proof. (\rightarrow) This is straightforward.

 (\leftarrow) Assume on the contrary and let $\mathcal{G} = \{G_n: n \in \omega\}$ be a strictly descending family of closed subsets of x with empty intersection. Clearly, $\{g_n \in G_n \setminus G_{n+1}: n \in \omega\}$ is a closed relatively discrete subset of x. Working as in the proof of Theorem 10(vi) \rightarrow (ii) we can construct a strictly increasing cofinal sequence $(a_n)_{n \in \omega}$ in x. Contradiction. \Box

It is known that there are models of **ZF**, see the Feferman–Levy model M9 in [7], in which \aleph_1 is a singular cardinal. Clearly, in view of Corollary 11, in such models \aleph_1 fails to be countably compact. We show next that in these models, \aleph_1 with the ordered topology, is base Lindelöf.

Theorem 12.

(i) Assume \aleph_1 to be singular. Then, every well ordered open cover \mathcal{U} of \aleph_1 has a countable subcover. In particular, \aleph_1 is base Lindelöf. (ii) It is consistent with **ZF** that \aleph_1 is base Lindelöf but not Lindelöf.

Proof. (i) Assume on the contrary and let $\mathcal{U} = \{U_i: i \in k\}$ be a well ordered open cover of \aleph_1 without a countable subcover. Since *k* is well ordered, for every $v \in \aleph_1$ we pick the first member of \mathcal{U} containing *v*. So, we may assume that $k = \aleph_1$ and finish off the proof of (i) as in the proof of Theorem 10(iv) \rightarrow (ii).

The second assertion of (i) follows from the first part and the observation that the standard base is well-orderable.

(ii) In $\mathcal{M}9$, \aleph_1 is singular. Hence, by part (i), \aleph_1 is base Lindelöf. By Proposition 3 **CAC**(\mathbb{R}) implies \aleph_1 is regular. Hence, **CAC**(\mathbb{R}) fails in $\mathcal{M}9$. Fix $A = \{a_n: n \in \omega\}$ a strictly increasing cofinal set in \aleph_1 . Clearly, A with the subspace topology is homeomorphic with the discrete space \mathbb{N} . Thus, if \aleph_1 is Lindelöf then A, being a closed subset of a Lindelöf space, is Lindelöf. Hence, \mathbb{N} is Lindelöf and by Proposition 3 **CAC**(\mathbb{R}) holds. Contradiction. Thus, \aleph_1 is not Lindelöf in $\mathcal{M}9$ as required. \Box

Remark 13.

- (i) Let C be the canonical T_1 base for \aleph_1 . Using the well orderability of C, we can show via a straightforward transfinite induction, that every C-filter extends to a C-ultrafilter. Thus, by Proposition 2(ii) $\mathcal{W}(\aleph_1, C)$ is a compactification of \aleph_1 in **ZF**. We leave it for the reader to verify that $\mathcal{W}(\aleph_1, C)$ is actually a one-point compactification of \aleph_1 .
- (ii) In [3] it is claimed in Corollary 3.7 that \aleph_1 with the order topology is Lindelöf in the Feferman–Levy model $\mathcal{M}9$. However, in view of Theorem 12 this is not the case.

4. Zero sets of \$\$1

We know that if \aleph_1 is a regular cardinal then the set *L* of all limit ordinals of \aleph_1 is not a zero set. However, if \aleph_1 is singular, then it is not known whether *L* is a zero set. We show next that *L* is always a closed non-zero subset of \aleph_1 .

Theorem 14.

- (i) Every closed and bounded subset of \aleph_1 is a zero set. In particular, if \aleph_1 is singular, then every closed set can be expressed as a union of a countable discrete family of zero sets.
- (ii) Every C in the canonical T_1 base C for \aleph_1 is a zero set of \aleph_1 .
- (iii) Let *L* be the set of all limit ordinals of \aleph_1 . If $A \subseteq L$ is a zero set then there exists a family (a_i) , $a \in A$, $i \in \omega$ of strictly increasing sequences satisfying $\lim_{i\to\infty} a_i = a$ for every limit ordinal $a \in A$. In particular, *L* is a closed but not a zero set of \aleph_1 .
- **Proof.** (i) Fix *A* a closed bounded subset of \aleph_1 . Clearly, by Corollary 5, *A* is a zero set of $[0, \sup(A)]$, hence of \aleph_1 also. (ii) Fix $C \in C$. We consider the following cases:
- (1) C is bounded. By part (i) C is a zero set.
- (2) $C = [a, \aleph_1)$. If a = v + 1 is a non-limit ordinal of \aleph_1 then $[a, \aleph_1) = (v, \aleph_1)$ is a clopen set and consequently the map $f : \aleph_1 \to \mathbb{R}, f([a, \aleph_1)) = \{0\}, f([a, \aleph_1)^c) = \{1\}$ is continuous.

If *a* is a limit ordinal of \aleph_1 then we fix a strictly increasing sequence $a_0 = 0 < a_1 < a_2 < \cdots$ with $\lim_{n \to \infty} a_n = a$. Define a function $f : \aleph_1 \to \mathbb{R}$, by requiring:

$$f(x) = \begin{cases} 1 & \text{if } x \in [0, a_1], \\ 1/n & \text{if } x \in [a_n + 1, a_{n+1}], \\ 0 & \text{if } x \in [a, \aleph_1). \end{cases}$$

Clearly, f satisfies: $\forall x \in \aleph_1$, for every sequence $(x_n)_{n \in \omega}$ if $\lim_{n \to \infty} x_n = x$ then $\lim_{n \to \infty} f(x_n) = f(x)$. Hence, f is continuous.

(3) *C* is a finite union of disjoint closed intervals, say I_i , $i \leq n$. Let, by cases (1) and (2), for every $i \leq n$, f_i be a continuous real valued function with $f_i^{-1}(0) = I_i$. Clearly, $f : \aleph_1 \to \mathbb{R}$, $f(x) = \min\{f_i(x): i \leq n\}$ is a continuous real valued function satisfying $f^{-1}(0) = C$ and *C* is a zero set as required.

(iii) Fix a zero set $A \subseteq L$ and let $f : \aleph_1 \to \mathbb{R}$ be a continuous function satisfying $f^{-1}(0) = A$. For every $a \in A$ we define a strictly increasing sequence, $(a_i)_{i \in \omega}$ satisfying $\lim_{i \to \infty} a_i = a$ as follows: Let $B = \{b_n: n \in \mathbb{N}\}$,

$$b_n = \sup(A_n), \quad A_n = f^{-1}\left(\left(\left(-\frac{1}{n}, -\frac{1}{n+1}\right] \cup \left[\frac{1}{n+1}, \frac{1}{n}\right)\right) \cap [0, a)\right).$$

Clearly, $b_n \leq a$. By the continuity of f, $f^{-1}(-\frac{1}{n+1}, \frac{1}{n+1})$ is an open set containing a. Therefore, there exists a basic neighborhood (c, a] of a such that for all $x \in (c, a]$, $-\frac{1}{n+1} < f(x) < \frac{1}{n+1}$. Hence, c is an upper bound of A_n and consequently $b_n \leq c < a$.

 $b = \sup\{b_n: n \in \mathbb{N}\} = a$. If b < a then for every $x \in (b, a)$, $|f(x)| \ge 1$ but f(a) = 0 and f continuous at a means that there exists a $d \in a$ with $b \in d$ such that for all $x \in (d, a]$, |f(x)| < 1/2. Contradiction.

Let $a_0 = \min B$ and for i = n + 1, $a_i = \min\{b \in B: b > a_n\}$. Clearly, $(a_i)_{i \in \omega}$ is the required sequence. We observe that in the definition of $(a_i)_{i \in \omega}$ no choice form was involved, i.e., $(a_i)_{i \in \omega}$ is defined effectively.

The second assertion of (iii) follows at once from Proposition 7 in case \aleph_1 is singular and the remark preceding Question 1 in case \aleph_1 is regular. \Box

From the proof of the forthcoming Theorem $16(iv) \rightarrow (v)$ it follows that if $A = \{a_i: i \in \omega\}$ is a strictly increasing closed subset of non-limit ordinals of \aleph_1 then (in **ZF**) *A* is a zero set. However, if *A* contains infinitely many limit points of \aleph_1 then it is not known whether *A* is, in **ZF**, a zero set. We show next that *A* is a zero set iff there exists a system of fundamental sequences for its limit ordinals.

Theorem 15. Let $A = \{a_i: i \in \omega\}$ be a closed set of limit ordinals of \aleph_1 such that $a_0 < a_1 < \cdots$. Then, the following are equivalent:

- (i) A is a zero set.
- (ii) There exists a family $(a_{i,n})_{i \in \omega, n \in \omega}$ such the for every $i \in \omega$, $(a_{i,n})_{n \in \omega}$ is a strictly increasing cofinal sequence in a_i with $a_{0,0} = 0$ and $a_{i,0} = a_{i-1}$ for $i \neq 0$.

Proof. It suffices to show (ii) \rightarrow (i) as (i) \rightarrow (ii) follows from Theorem 14(iii). Fix *A* as in the statement of the theorem. Without loss of generality we may assume that $0 = a_0$. Since *A* is closed and relatively discrete it follows, by Theorem 16(vii), that *A* is cofinal in \aleph_1 . We define a function $f : \aleph_1 \rightarrow \mathbb{R}$ as follows

$$f(x) = \begin{cases} 0 & \text{if } x \in A, \\ \frac{1}{n+1} & \text{if } x \in \bigcup \{ [a_{i,n}+1, a_{i,n+1}] \colon n \in \omega, \ i \in \mathbb{N}. \end{cases}$$

We show that f is continuous. Fix $x \in \aleph_1$ and let $(x_n)_{n \in \omega}$ be a sequence of points of \aleph_1 converging to x. We consider the following cases:

(1) $x = a_i$, $i \in \mathbb{N}$. Fix a sequence $(x_m)_{m \in \omega} \subset [a_{i-1}, a_i)$ with $\lim_{m \to \infty} x_m = a_i$. Let $\varepsilon > 0$ and fix $n \in \omega$ with $\frac{1}{n+1} < \varepsilon$. Since, $\lim_{m \to \infty} x_m = a_i$, it follows that there exists $m_0 \in \mathbb{N}$ such that $\forall m \ge m_0$, $x_m \in (a_{i,n+1}, a_i]$ and consequently, by the definition of f, $\forall m \ge m_0$, $f(x_m) \le \frac{1}{n+1} < \varepsilon$. Thus, $\lim_{m \to \infty} f(x_m) = f(x)$ as required. (2) $x \notin \aleph_1$. In this case there exist $i \in \mathbb{N}$, $n \in \omega$ with $x \in [a_{i,n}, a_{i,n+1}]$. It is straightforward to verify that for every sequence

(2) $x \notin \aleph_1$. In this case there exist $i \in \mathbb{N}$, $n \in \omega$ with $x \in [a_{i,n}, a_{i,n+1}]$. It is straightforward to verify that for every sequence $(x_n)_{n \in \omega}$ with $\lim_{n \to \infty} x_n = x$, $(f(x_n))_{n \in \omega}$ takes on eventually the value f(x). Thus, $\lim_{n \to \infty} f(x_n) = f(x)$ and f is continuous. Hence, A is a zero set as required. \Box

5. Some characterizations of "\$\1 is regular"

In this section, we enlarge the list of the equivalents of the statement $\mathbf{R}(\aleph_1)$ (= \aleph_1 is regular) given in [7, p. 29].

Theorem 16. The following are equivalent:

(i) $\mathbf{R}(\aleph_1)$.

- (ii) The collection \mathcal{K} of all closed unbounded sets of \aleph_1 is a countably closed, free, maximal closed filter.
- (iii) $\mathcal{W}(\aleph_1)$ is a one-point compactification of \aleph_1 .
- (iv) $\beta \aleph_1$ is a one-point compactification of \aleph_1 .
- (v) Every infinite subset of \aleph_1 has a limit point.
- (vi) Every sequence of \aleph_1 has a convergent subsequence.
- (vii) \aleph_1 has no countable closed relatively discrete subsets.
- (viii) \aleph_1 is countably compact.
- (ix) \aleph_1 is not base Lindelöf.
- (x) The collection \mathcal{T} of all zero unbounded sets of \aleph_1 is a free, maximal zero filter.

Proof. (i) \rightarrow (ii) The fact that \mathcal{K} is a countably closed free closed filter follows from Lemmas 7.3 and 7.4 from [8].

To see that \mathcal{K} is maximal fix F a closed subset of \aleph_1 meeting non-trivially each member of \mathcal{K} . We show that $F \in \mathcal{K}$. As $[a, \aleph_1) \in \mathcal{K}$ for every $a \in \aleph_1$ it follows that $F \cap [a, \aleph_1) \neq \emptyset$ and consequently F is unbounded. Hence $F \in \mathcal{K}$ as required.

(ii) \rightarrow (iii) It is easy to see that (ii) implies \aleph_1 is regular. (If \aleph_1 is a singular cardinal and $\{a_i: i \in \omega\}$ is a strictly increasing cofinal subset of \aleph_1 , then $\{a_i: i \in \omega\}$ is a closed unbounded subset of \aleph_1 . Hence, $A = \{a_{2i}: i \in \omega\}$ and $B = \{a_{2i+1}: i \in \omega\}$ are disjoint closed unbounded subsets of \aleph_1 and \mathcal{K} is not a filter of \aleph_1 .)

To complete the proof of (ii) \rightarrow (iii), it suffices to show that for every T_2 compactification **Y** of \aleph_1 , $Y \setminus \aleph_1$ is a singleton. This, given that \aleph_1 is regular, is straightforward and well known.

(iii) \rightarrow (iv) Clearly, (iii) implies \aleph_1 is a regular cardinal. Indeed, if \aleph_1 is a singular cardinal and $\{a_i: i \in \omega\}$ is a strictly increasing cofinal subset of \aleph_1 , then every subset of $\{a_i: i \in \omega\}$ is a closed subset of \aleph_1 . Hence, by our hypothesis and Proposition 2, the filterbases of closed sets $\mathcal{A} = \{X \in \wp (\{a_{2i}: i \in \omega\}): |X^c| < \aleph_0\}$ and $\mathcal{B} = \{X \in \wp (\{a_{2i+1}: i \in \omega\}): |X^c| < \aleph_0\}$ are included in maximal closed filters of \aleph_1 , say \mathcal{F} and \mathcal{Q} respectively. Clearly, \mathcal{F} and \mathcal{Q} are distinct and free. Hence, $\mathcal{W}(\aleph_1)$ is not a one-point compactification of \aleph_1 . Contradiction.

In view of Theorem 14, $\mathcal{H} = \{[x, \aleph_1): x \in \aleph_1\} \subset \mathcal{Z} \text{ is a closed filterbase of } \aleph_1$. Thus, by the regularity of \aleph_1 , (i) \rightarrow (ii) and our hypothesis, \mathcal{K} is the only maximal closed filter of \aleph_1 extending \mathcal{H} . Clearly, $\mathcal{F} = \mathcal{K} \cap \mathcal{Z}$ is a free, maximal zero filter of \aleph_1 . (If $K \in \mathcal{Z}$ meets non-trivially each member of \mathcal{F} then $K \in \mathcal{K}$ and consequently $K \in \mathcal{F}$.) We show that \mathcal{F} is the only free maximal zero filter of \aleph_1 . Assume the contrary and let $\mathcal{Q}, \mathcal{Q} \neq \mathcal{F}$ be free maximal zero filter of \aleph_1 . Fix $F \in \mathcal{F}$, $Q \in \mathcal{Q}$ such that $F \cap Q = \emptyset$. By our hypothesis and Proposition 2(i), there exists a free maximal closed filter \mathcal{Q}' of \aleph_1 extending \mathcal{Q} . Since $F \in \mathcal{K}$ and $Q \in \mathcal{Q}'$, it follows that $\mathcal{K} \neq \mathcal{Q}'$ and consequently $\mathcal{W}(\aleph_1)$ is not a one-point compactification of \aleph_1 . Contradiction.

 $(iv) \rightarrow (v)$ Fix *A* an infinite subset of \aleph_1 . Aiming for a contradiction, we assume that *A* has no limit point. Then, *A* is a closed relatively discrete subset of \aleph_1 . Without loss of generality we may assume that $A = \{a_n: n \in \omega\}$ is countably infinite such that $a_0 < a_1 < a_2 < \cdots$. Clearly *A* is unbounded for otherwise $\sup(A)$ is a limit point of *A*. Thus, \aleph_1 is singular. By substituting, if necessary, each a_n with $a_n + 1$ we may also assume that the members of *A* are non-limit ordinals. Hence, every subset *S* of *A* is a clopen set and consequently a zero set of \aleph_1 . In particular, $E = \{a_{2n}: n \in \omega\}$ and $0 = \{a_{2n+1}: n \in \omega\}$ are zero sets. By our hypothesis and Proposition 2(ii), there exist zero maximal filters \mathcal{F} and \mathcal{H} extending $\{X \in \wp(E): |E \setminus X| < \aleph_0\}$ and $\{X \in \wp(0): |O \setminus X| < \aleph_0\}$ respectively. Clearly, \mathcal{F} , \mathcal{H} are free and $\mathcal{F} \neq \mathcal{H}$. Thus, $\beta \aleph_1$ is not a one-point compactification of \aleph_1 . Contradiction.

 $(v) \rightarrow (vi)$ This is straightforward.

 $(vi) \rightarrow (vii)$ Assume on the contrary and let A be a countable closed relatively discrete subset of \aleph_1 . Define

 $a_0 = \min(A),$ $a_n = \min(A \setminus \{a_i : i \le v\}) \quad \text{if } n = v + 1, \ v \in \omega.$ As *A* is closed it follows that $a = \sup(\{a_n: n \in \omega\}) \in A$ or $a = \aleph_1$. Assume that $a \in A$. Since *A* is relatively discrete, it follows that there exists a neighborhood V_a of a meeting *A* in the singleton $\{a\}$. Contradiction. Hence, $a = \aleph_1$ and the sequence $(a_n)_{n \in \omega}$ has no convergent subsequence, contradicting our hypothesis. Thus, \aleph_1 has no countable closed relatively discrete subset as required.

 $(vii) \rightarrow (viii)$ is straightforward and $(viii) \rightarrow (i)$ is a consequence of Corollary 11.

(i) \leftrightarrow (ix) This follows at once from Theorem 12.

(i) \rightarrow (x) This follows from the observation that $\mathcal{T} \subset \mathcal{K}$ and the fact that finite intersections of zero sets are zero sets. (If C_0, C_1, \ldots, C_n are zero sets and $f_i : \aleph_1 \rightarrow \mathbb{R}$, $i \leq n$ are continuous functions such that $f_i^{-1}(0) = C_i$ for every $i \leq n$, then the function $f : \aleph_1 \rightarrow \mathbb{R}$ given $f(x) = \max\{f_i(x): i \leq n\}$ is continuous with $f^{-1}(0) = \bigcap\{C_i: i \leq n\}$.)

 $(x) \rightarrow (i)$ If \aleph_1 is singular and $\{a_i: i \in \omega\}$ is a strictly increasing cofinal subset of \aleph_1 consisting in non-limit ordinals, then every subset of $\{a_i: i \in \omega\}$ is a clopen, hence zero, unbounded subset of \aleph_1 . Since, $\{a_{2i}: i \in \omega\} \cap \{a_{2i+1}: i \in \omega\} = \emptyset$ it follows that \mathcal{T} is not a filter. A contradiction terminating the proof of the theorem. \Box

6. Consequences of " $W(\$_1)$ is compact"

Theorem 17.

(i) " $\mathcal{W}(\aleph_1)$ is compact" implies either $\mathbf{R}(\aleph_1)$ or " $\boldsymbol{\beta}\boldsymbol{\omega}$ is compact".

(ii) " $\mathcal{W}(\aleph_1)$ is compact" and " \aleph_1 is singular" imply " $\beta \omega$ is compact".

(iii) " $\mathcal{W}(\aleph_1)$ is compact" and " $\boldsymbol{\beta}\boldsymbol{\omega}$ is not compact" imply $\mathbf{R}(\aleph_1)$.

(iv) " $\mathcal{W}(\aleph_1)$ is compact" does not imply **UF**(ω). In particular, " $\mathcal{W}(\aleph_1)$ is compact" does not imply " $\beta \omega$ is compact".

(v) " \aleph_1 is singular" and " $\mathcal{W}(\aleph_1)$ is countably compact" together imply **UF**(ω).

(vi) **UF**(ω) implies " $\mathcal{W}(\aleph_1)$ is countably compact with respect to the base $\mathcal{B} = \{A^*: A \in \mathcal{K}(\aleph_1)\}$ ".

Proof. (i) Assume \aleph_1 is singular. We show " $\beta\omega$ is compact". To this end, it suffices to show that every filter on ω extends to an ultrafilter. Fix $A = \{a_i: i \in \omega\}$ a strictly increasing cofinal subset of \aleph_1 . Identify ω with A and let \mathcal{H} be a filter of A. Since A is clearly a closed relatively discrete subset of \aleph_1 , it follows that \mathcal{H} is a closed filter of \aleph_1 . Hence, by the compactness of $\mathcal{W}(\aleph_1)$ and Proposition 2, \mathcal{H} extends to a maximal closed filter \mathcal{R} of \aleph_1 . It is easy to verify that the trace \mathcal{F} of \mathcal{R} on A is the required ultrafilter of ω .

(ii), (iii) These are simply rewordings of (i).

(iv) This follows from the observation that " \aleph_1 is regular", hence " $\mathcal{W}(\aleph_1)$ is compact" also, hold in Solovay's model $\mathcal{M}5(\aleph)$ in [7], but **UF**(ω) fails in $\mathcal{M}5(\aleph)$.

(v) Fix *A* as in the proof of (i) and identify *A* with ω . Let for every $n \in \omega$, $H_n = \{a_m: m \ge n\}$. Clearly, $\mathcal{H} = \{H_n^*: n \in \omega\}$ has the fip and consequently, by our hypothesis, $\bigcap \mathcal{H} \neq \emptyset$. Fix $\mathcal{G} \in \bigcap \mathcal{H}$ and let $\mathcal{F} = \{G \cap A: G \in \mathcal{G}\}$. Clearly, \mathcal{F} is a free ultrafilter of ω .

(vi) Let $\mathcal{H}' = \{H_n^*: n \in \omega\} \subset \mathcal{B}$ have the fip. We show that $\bigcap \mathcal{H}' \neq \emptyset$. Put $\mathcal{H} = \{H_n: n \in \omega\}$. We show that $\bigcap \mathcal{H}' \neq \emptyset$. As \mathcal{H}' has the fip it follows that \mathcal{H} has the fip. Hence, we may assume that \mathcal{H} is a strictly descending family of closed subsets of \aleph_1 . If $\bigcap \mathcal{H} \neq \emptyset$ then the closed filter \mathcal{F}_a generated by any $a \in \bigcap \mathcal{H}$ is a closed maximal filter included in $\bigcap \mathcal{H}'$. Thus, $\bigcap \mathcal{H}' \neq \emptyset$. Assume that $\bigcap \mathcal{H} = \emptyset$. Fix for every $n \in \omega$, $a_n \in H_n \setminus H_{n+1}$. Since $\bigcap \mathcal{H} = \emptyset$ it follows that $A = \{a_n: n \in \omega\}$ is a countable closed relatively discrete subset of \aleph_1 . Identify A with ω and let, by our hypothesis, \mathcal{G} be an ultrafilter of ω . Clearly, the closed filter \mathcal{F} of \aleph_1 generated by \mathcal{G} is in $\bigcap \mathcal{H}'$. Thus, $\bigcap \mathcal{H}' \neq \emptyset$ as required. \Box

We show next that the statement " $\mathcal{W}(\aleph_1)$ is compact" is equivalent to the proposition " $\beta \aleph_1$ is compact".

Theorem 18. " $\mathcal{W}(\aleph_1)$ is compact" iff " $\beta \aleph_1$ is compact". In particular, " $\mathcal{W}(\aleph_1)$ is compact" implies $\mathcal{W}(\aleph_1) \simeq \beta \aleph_1$.

Proof. If \aleph_1 is regular the conclusion follows from Theorem 16. So, assume that \aleph_1 is singular. Fix $0 = a_0 < a_1 < \cdots$ a strictly increasing cofinal sequence of non-limit ordinals of \aleph_1 .

 (\rightarrow) Let \mathcal{H} be a free zero filterbase. We show that \mathcal{H} extends to a maximal zero filter of \aleph_1 . Let, by our hypothesis, \mathcal{G} be a maximal closed filter extending \mathcal{H} . We show that $\mathcal{F} = \mathcal{G} \cap \mathcal{Z}$ is the required maximal filter. If not, then there exists $Z \in \mathcal{Z} \setminus \mathcal{G}$ such that $\mathcal{F} \cup \{Z\}$ has the fip. By the maximality of \mathcal{G} , there exists $G \in \mathcal{G}$ such that $G \cap Z = \emptyset$. By Corollary 9, there exists a continuous function $f : \aleph_1 \to \mathbb{R}$ taking on the value 0 on G and the value 1 on Z. Hence, $F = f^{-1}(0) \in \mathcal{Z}$ with $G \subset F$ and $F \cap Z = \emptyset$. Since, $G \in \mathcal{G}$ and \mathcal{G} is a filter, it follows that $F \in \mathcal{G}$ and consequently $F \in \mathcal{F}$ and $\mathcal{F} \cup \{Z\}$ does not have the fip. Contradiction.

 (\leftarrow) Let \mathcal{H} be a free closed filterbase. We show that \mathcal{H} extends to a maximal closed filter of \aleph_1 . Let, by our hypothesis, \mathcal{G} be a maximal zero filter extending the zero filterbase $\mathcal{H}' = \{Z \in \mathcal{Z} : H \subset Z \text{ for some } H \in \mathcal{H}\}$. Since, $\{Z^* : Z \in \mathcal{Z}\}$ is a base for the closed sets of $\beta \aleph_1$, it follows that $\{\mathcal{G}\} = \bigcap \{Z^* : Z \in \mathcal{Z}\}$ and consequently, $\{\mathcal{G}\} = \bigcap \{cl_{\beta \aleph_1}(B) : B \in \mathcal{K}(\aleph_1), \mathcal{G} \in cl_{\beta \aleph_1}(B)\}$. We show that $\mathcal{F} = \{B \in \mathcal{K}(\aleph_1) : \mathcal{G} \in cl_{\beta \aleph_1}(B)\}$ is the required maximal closed filter. Since, $cl_{\beta \aleph_1}(B \cap A) = cl_{\beta \aleph_1}(B) \cap cl_{\beta \aleph_1}(A)$, it follows that for every $B, A \in \mathcal{F}, (B \cap A) \in \mathcal{F}$. Hence, \mathcal{F} is a closed filterbase.

Let $K \in \mathcal{K}(\aleph_1)$ satisfy $F \cap K \neq \emptyset$ for every $F \in \mathcal{F}$. We show that $K \in \mathcal{F}$. Assume, aiming for a contradiction, that $K \notin \mathcal{F}$. Then $\mathcal{G} \notin cl_{\beta \aleph_1}(K)$ and consequently, there exists a basic neighborhood $U_{\mathcal{G}}^*$ of \mathcal{G} with $U_{\mathcal{G}}^* \cap cl_{\beta \aleph_1}(K) = \emptyset$. Hence, there is a closed set $B \subseteq U_{\mathcal{G}}$ with $B \in \mathcal{G}$. Therefore, $\mathcal{G} \in B^* \subseteq U_{\mathcal{G}}^*$, meaning that $B^* \in \mathcal{F}$ and $B^* \cap K = \emptyset$. Contradiction. Hence, \mathcal{F} is a maximal closed filter.

 $\mathcal{H} \subseteq \mathcal{F}$. Fix $H \in \mathcal{H}$. Clearly, $H = \bigcap \{Z \in \mathcal{Z} : H \subseteq Z\}$ and $\mathcal{G} \in \bigcap \{cl_{\beta\aleph_1}(Z) : Z \in \mathcal{Z}, H \subseteq Z\}$. If $\mathcal{G} \notin cl_{\beta\aleph_1}(H)$ then there exists a clopen set U of \aleph_1 such that U^* is a neighborhood of \mathcal{G} and $U^* \cap cl_{\beta\aleph_1}(H) = \emptyset$. Hence, $U \cap H = \emptyset$. Thus, $H \subset U^c \in \mathcal{Z}$ and $\emptyset = cl_{\beta\aleph_1}(U \cap U^c) = U^* \cap cl_{\beta\aleph_1}(U^c)$ meaning that $\mathcal{G} \in \bigcap \{cl_{\beta\aleph_1}(Z) : Z \in \mathcal{Z}, H \subseteq Z\}$. Contradiction. Thus, $\mathcal{G} \in cl_{\beta\aleph_1}(H)$ and $H \in \mathcal{F}$ as required.

The second assertion follows as in the proof of E, p. 141 from [10]. \Box

References

- [1] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [2] L. Gillman, M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960.
- [3] C. Good, I.J. Tree, Continuing horrors of topology without choice, Topology Appl. 63 (1995) 79-90.
- [4] H. Herrlich, Axiom of Choice, Lecture Notes in Math., Springer, 2006.
- [5] H. Herrlich, G.E. Strecker, When is N Lindelöf?, Comment. Math. Univ. Carolin. 38 (1997) 553–556.
- [6] H. Herrlich, M. Husek, G. Preuss, Gegenbeispiele in der Topologie, in: Felix Hausdorff: Gesammelte Werke, Bd. III, Springer, 2008, pp. 751-754.
- [7] P. Howard, J.E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr., vol. 59, Amer. Math. Soc., 1998.
- [8] T. Jech, Set Theory, Academic Press, New York, 1978.
- [9] K. Keremedis, E. Tachtsis, Wallman Compactifications and Tychonoff's Compactness Theorem in ZF.
- [10] J. Nagata, Modern General Topology, North-Holland, 1985.
- [11] S. Willard, General Topology, Addison-Wesley Publ., 1968.