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Abstract. Regular expressions are generalized to the effect that, besides letters from a finite 
alphabet, they may also contain natural numbers. Within the framework of these generalized 
expressions the task of the inductive synthesis of programs from its sample run is formalized. 
Special automata recognizing the sets defined by generalized expressions are introduced, and 
their equivalence problem is shown to be reeursively solvable. The set-theoretic properties of the 
sets defined by generalized expressions are also studied. 

O. Introduction 

Program synthesis from example computations has been extensively studied in 
recent years [1-6]. One of the possible approaches introduced by Barzdin [1, 3] is 
based upon a search of "regular' substrings containing arithmetical progressions. In 
[1], a formal language and an algorithm that synthesizes programs containing 
for-loops are presented. In [2], a different version of the language is used to handle 
programs with while-loops. However, none of these programming languages supports 
branching (except on a truncation condition). 

Let us consider sort-merge. Let a and b be two areas which we should merge 
into area c. Evidently, one of the most natural informal descriptions of the algorithm 
is the following one. 

Example 0.1 

input a, b; 
if a (1 )~  > b(1)? 
if a(2) >~ b(1)? 
ff a(3)>~ b(1)? 
if a(3)>~b(2)? 
if a(3) I> b(3)? 
if  
if  

ff 

let it be; then c(1) := a(1); 
let it be; then c(2) := a(2); 
let it be not; then c(3):= b(1); 
let it be not; then c(4):= b(2); 
let it be not; then c(5) := b(3); 

a(3) i> b(4)? let it be; then c(6) := a(3); 
a(4) is empty, then 
c(7) := b(5); c(8):= b(6); c(9):= b(7); 
b(8) is empty, then halt; 
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if b(5) is empty, then 
c(7) := a(4); c(8):= a(5); 

if a(6) is empty, then halt; 
return c; 

The next example is well known from the theory of computability--the algorithm 
enumerating domains of partial recursive functions. One of the possible descriptions 
used to explain the algorithm is the following. 

Example 0.2. Let ~0 be a partial recursive function (p.r.f.). Let 

f ' (n ,  m) ~f a 

where n, m ~ N and A is a special symbol. 
Let f ( k )  =if(n ,  m), where k is the Cantor number of the pair (n, m). Now, the 

general recursive function F enumerating the domain of the function tp can be 
computed as follows: 

compute f(1);  let f(1)  = A; 
compute f(3) ;  let f(3) # A; 

then F(1)=f (3) ;  
compute f(4);  let f(4) = A; 

then F(2) =f(5); 
compute f(6); let f(6) ~ A; 

then F(3)=f(6); 
compute f(7); let f(7) ~. A; 

if the computation of ~o (n) halts after m or less 
than m steps, 

otherwise, 

compute f(2);  let f(2)  = A; 

compute f(5) ;  let f(5) ~ A; 

compute f(8);  let f(8) = A; 

and so on. 

Both of these inductive descriptions include branching ('if a(i) >- b(i)? '  in the 
first, and 'let f ( i ) =  A' or ' f ( i ) ~  A' in the second description; neither the language 
from [1] nor the language from [2] are fit for formalization. To allow for the 
formalization of such descriptions which include branching we will introduce a new 
language---the language of generalized regular expressions. 

Here we understand 'formalization' in the following sense. Any generalized regular 
expression describes a definite set of words which in our context actually represents 
a set of sample computations of some algorithm. The generalized expression defining 
the set that is equal to the set of all possible sample computations of the given 
algorithm can be regarded as a program of this algorithm. Therefore, the language 
of generalized regular expressions can be regarded as a programming language. The 
task of synthesis is to find the correct program using only a finite set of sample 
computations. 
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In this paper  we will first strictly define the language of  generalized regular 
expressions and  show how programs for the algorithms from Examples 0.1 and 0.2 
can be written in this language. Then we will study the properties of  the language 
and finally, discuss the problem of synthesis. 

1. The definition of generalized regular expressions 

Let A = A' u I~1 be an alphabet  where A' is a finite set of  characters and N is the 
set of natural  numbers. Numbers are represented in decimal notation. Substrings 
representing numbers are underl ined (except for one-digit numbers) and the under- 
lined string is regarded as one letter. 

Let X = {x, y , . . . ,  z} be a finite set of so-called variables such that A c~ X = ~ holds. 
In the definition of  generalized regular expressions we will use the following 

operation symbols: *: iteration, u :  union,  ÷: taking of  the next natural number, 
+:  plus, :=: awarding of  a value, and the following signs: ,, ( , ) ,  I, and 1. We assume 
that none of  these symbols is in the alphabet  A (for distinction we use the bold-face 
type for them). 

To define a generalized regular expression we first define its frame: 
(i) if a ¢ A, then a is a frame; 

(ii) if x ~ X, then x, x ÷, [x + c] and [x ÷ + c] are frames; 
(iii) if P and R are frames then (P)*, P u R and P R  are frames; 

(iv) if P is a frame, xl,  x 2 , . . . ,  xk e X, ~1, ( 2 , . . . ,  ~:k E X k.) N, ~:x E {~:i, ~+}, then 
((xl := ~ , . . . ,  xk := ~ ) ( P ) )  is a frame; 

(v) there are no other frames. 

Now, if P is a frame, x ~ , . . . ,  Xk ~ X are all the variables of  P and c~, c 2 , . . . ,  Ck ~ N, 

then 

(Xl ' =  e l ,  X2 := C2, • • • , Xk := Ck)(P) 

is a generalized regular expression. 
For example, 

P l =  (x  := O)(ax+) * , 
Df 

e2 = (x:=O,y:=O)((ax+)u(by+)) *, 
Df 

P3 ~ f  ( x  :-~- 0, y := 0, Z 1= 0, ill := 0 ) ( ( a x + y z  +) k..) ( b x y + z + ) ) $ ( ( n  :~-- z)(cM+)~:), 

(x  := o, y := o)((.v := + + 1])*)*,  

P5 ~f (x := 0, .V := 0, z := 0)((y := 0, z := x+)b(az.v+)*) * 

are generalized regular expressions if x, y, z, u ~ X and a, b, c ~ A. 
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Usually, we will call generalized regular expressions programs. We will call any 
substring of  a program in parentheses a subprogram. In the sequel we will restrict 
our class of programs to programs that contain no subprograms: 

( Q , u  Q 2 w . - " w  Q,)*, 

where at least one Q~ is of  the type 

( X 1  : =  ~[£1 , " " " , Xk :'~" [~k)" 

Let P be a program. We apply to P the following routine: First, we replace each 
subprogram (R)*  by R R . . .  R (k  times), where k is an arbitrary natural number 
possibly different for different subprograms. Then we replace each subprogram 
(R) u (S) either by R or by S. Thus we obtain some program/3 called the realization 
of  the program P. For example, 

/31 = (x :=OXax+ax+ax+ax+ax+), 

/32= (x := O, y := O)(ax4. ax+by+by + ax+by+by + ax+), 

P3 = (x ~- O, .v := O, z = O, u := OX ax4..vz ÷ ax+yz + ax+.vz + 

bxy+ z+bxy+ z+bxy+z+bxy+z+X(u :=z)(cu+ cu + cu+)), 

15,, = (x :=0, y := OX(y := x+)(axLv + + 1 ]axLv + + 1 ]ax[.v + + 1])0, :=x +) 

(axLv+ + llaxl.v+ + 11)), 

t3 5 = (x :=0, y :=0, z := OX(y :=0, z :=x+)b(azy+azy+azy+)O, :=0, z ~ x  +) 

b( azy + azy + az.v +)(y :=0, ~ = x +)b( azy + azy + azy + azy +)) 

are realizations of  the programs P1-Ps. 

Note, that  the set of all realizations of  the program P equals the regular set 
defined by the regular expression obtained from P, ignoring the semantics of 

• +, and +. operations .=, 

In order to define the value of  a realization/5, let us first enumerate all occurrences 
of each variable in t3. For example, for t3 2 we obtain 

.__. . . _ .  4" 4.  4.  4. 4. 4. 4. + 4. 
( X ( 1 )  ~ " 0 ,  . ~ ( 1 ) * - - O ~ a x ( 2 ) a x ( 3 ) b ~ ( 2 ) b y ( 3 ) b Y ( 4 ) a x ( 4 ) b y ( 5 ) b . ~ ( 6 ) a x ( 5 ) ) .  

Let us define the value v ( t )  of the given entrance of  variable t, as follows: 
- if x(o is in operat ion x(o := ~, then v(x(o)  = v(~); 

+ 
if  x(o is in operat ion x(o , then v(x(o ) = v ( x , - l ) ) +  1; 

- otherwise, v(xco) = v(x<i_~)). 

Now we obta in  the value of  the realizat ion/5 by replacing in P every occurrence 
t<o of  each variable t by its value v(t<o), computing all Sums [ v(tco ) + c] and removing 
all square brackets and all subprograms of the sort (x~ := I ~ 1 , . . . ,  Xk := ~k)- For 
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example, 

v ( ~ ) =  ala2a3a4a5, 

v(P2) = ala2blb2b3a3b4b5a4, 

v(P3) = a 101 a202b213b224b235c6c7c8, 

v( ~}4) = a13a14a15a24a25, 

v(Ps) = ba 11 a 12a 13 ba21 a22a23 ha31 a32a 33 a34. 

The set of values of a program P is the set of values of all realizations of P. We 
denote the set of values of a program P by V(P). We will call any element from 
V(P) an example of the program P. 

Now, let us present the programs (the generalized regular expressions) for sort- 
merge and an algorithm enumerating the domains at partial recursive functions. 

Example 1.1 (sort-merge). 

(x := 1, y := 1, z := 0, u := 0) 
(input a, b; 
if a(1)1>b(1) 

((let it be; then c(z+):=a(x); if a(x +) I> b(y)) 
u(let  it be not; then c(z+):=b(y); if a(x)>~ b(y+))) * 

((let it be; then c(z +) :=a(x)) 
u(let  it be not; then c(z*)~b(y)))  

if a(x +) is empty; then (u :=yXc(z +) := b(u+)) * 
if b(u +) is empty; then halt; 
if b(y +) is empty; then (u:=xXc(z +) ~a(u+))  * 
if a(u +) is empty; then halt; 
return c;) 

(We assume all the symbols used in the program to be in alphabet A, except for 
those which are in bold-face). 

Evidently, Example 0.1 is the example of the program from Example 1.1. 

Note that from the point of view of our formalism such strings as "c(z  +) := a(x)" ,  
"halt",  " i f"  etc. do not have any semantics. This is important for synthesis because 
the supposed synthesizer as in [1, 2] can work entirely on syntactic level. On the 
other hand, to get an algorithm from the given program, we should interpret these 
strings as instructions. 

Example 1.2 (enumeration of the domains of partial recursive functions ). 
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(x := 0, y := 0) 
(compute f (x+) ;  

((let f ( x )  = A;) 
u(let f ( x )  ~ A; thenF(y +) = f ( x + ) ) )  * 

and so on) 

Example 0.2 is the example of this program. 

The languages of [1] and [2] are based on formalizations of the notions 'dots', 
which helps to represent a 'regular string' containing arithmetical progressions. In 
generalized regular expressions this is achieved by the operations + and *. In 
comparison to [1, 2], new in our language is the operation union: " w " ,  which 
supports the express branching. In [1, 2, 3], the algorithms are given that synthesize 
programs by one sutticiently long example. The algorithms are based on search for 
'regular strings' and their substitution for appropriate 'dots terms'. Due to the 
operation of  union, to synthesize a generalized regular expression by one example 
is evidently impossible. Therefore, the algorithm of synthesis should be more 
complicated here. To develop the theoretical framework for synthesis of generalized 
regular expressions we present special automata recognizing the sets defined by 
these expressions and study their properties. 

Denote the set of programs by ~. 

2. The definition of the class  of  automata 

Let A and X be finite sets, A c~ X = ~. Elements x ~ X will be called variables. 

Definition 2.1. The a u t o m a t o n ' s  d i a g r a m  is a finite oriented graph in which arcs can 
be labelled. Depending on the type of labels, the arcs are divided into three classes: 
A-arcs, X-arcs and  A-arcs. Namely, 

(a) every A-arc is labelled by a single label a ~ A; 
(b) every X-arc is labelled by a single label x ~ X or x +  c with c e N; additionally, 

the operator x ~ - x +  1 can be associated with an X-arc labelled by the same x e X 
(or x+c); 

(c) a finite sequence of  the following operators 

x ~ c, where c ~ N,  x e X ,  

x ~ - y ,  where x, y ~ X, 

x ~ y + l ,  wherex ,  y e X  

is associated with every A-arc so that every x e X can be presented in the left part 
of no more than one operator associated with the given arc; 

(d) there is an initial state, say, qo; 
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(e) a single A-arc leaves qo; a sequence of  operators 

XI ~ Cl , X2 ~ C2 , . . . , Xk ~ Ck, 

where {cl, c 2 , . . . ,  ck} c N, is associated with it. 
The arc qoq~ in Fig. 1 below is a A-arc, the arc q2ql is labelled by x e X, and the 

operator x ~ x + 1 is associated with it. 

The set Q ( D )  of vertices of  the automaton's  diagram D is said to be the set of 
states. A subset F ( D )  ~ Q ( D )  is called the set of  accepting states. 

We assume that  every automaton 's  diagram D defines some automaton 92 = 92(D); 
in the sequel, we do not  distinguish these two notions. Further, we also regard only 
automata that contain no A-loops (loops containing only A-arcs). Let ~t denote the 
class of the automata defined above. 

Now let us fix an automaton 92 e M and define the language L(92) accepted by 

92. For each arc l in 92 let to(1) denote the label of  I (in case of a A-arc, to(1)=A).  

Definit ion 2.2. By a path in 92 we mean any path in the graph D(92) from the initial 
state q0 to a state q (called the end of the path) in which some arcs (and loops, 
respectively) can be passed more than once. If  the end of a path q is in F(92), then 
the path is called accepting. 

Let a = l~, 12 , . . . ,  lk be an arbitrary path in 92 with the end q. 

Definition 2.3 (word u(a) ) .  We define the value u(x, i, a ) ~ N  of a variable x ~ X  
after passing li as follows. Define u (x, 0, a )  = 0. Now, let u(x, i, a) be already defined. 
Then, 

(1) if no operator containing the left x is associated with li+l, then u(x, i+ 
1, a) =i~ u(x,  i, or); 

(2) if an operator x* - c  is associated with 1i+1, then u(x, i+ 1, a) =r~ c; 

(3) if an operator x ~ y + c ,  c~{O, 1} is associated with I~+~, then: if  there is an 
operator containing the left part  y before x * - y  + c in the sequence of  operators 
associated with li+~, then u(x, i + 1 ,  a) =r~U(y, i+1 ,  a)+c ,  otherwise, u(x, i+ 
1, a )  =Df u(y, i, Or)+ C. 

Now, let for every i e {1, 2 , . . . ,  k} 

I :  (l,) if li is an A-arc, 

u(/, a )  = ifl~ is a A-arc, 

D f l u ( x  ) i) Ol)'~t'C ifli  is an X-arc and to(li) = x + c .  

Let u (a)  = u(1, a )u(2 ,  a ) . . .  u(k, a) .  

Definition 2.4 (the language L(92)). The language accepted by the automaton 92 is 
the following set: { u ( a ) [ a  is an accepting path}. 
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X/X " -  X + ¢ 

X-.--O 

% 
Fig. 1. 

Example 2.5. (1) The automaton 9 t  with F ( ~ )  = {qt} in Fig. 1 accepts the language 

V ( P , ) .  

(2) The automaton 92 in Fig. 2 with F(92)= {q2} accepts V ( P 2 ) .  

x l x  ...- X + ,I 

~O 
X.,.-O 
y-.-O 

Fig. 2. 

3. Programs and automata 

There is an evident connection between the classes ~ and M. Namely, a version 
of Kleene's theorem for regular languages holds for ~ and M. 

Let ~ ( ~ )  = { V(P)IP e ~} and Ag(M) = {L(9)  19 ~ M}. 

Theorem 3.1. ~ ( ~ )  = oT(~). 

Proof. In fact, the proof  is a copy of Kleene's proof  for regular languages (see, for 

instance, [6]). It is only to be noted that, given an automaton 9 ,  in order to construct 
a corresponding program P, the empty word must be associated with each A-arc. 
In addition, if  the operator x *-x + 1 is associated with an X-arc I labelled by x+°c, 
then x + + c must  be associated with l; otherwise, x + c must be associated with L [] 

4. The inclusion problem for languages in -~(~0  

Theorem 4.1. The inclusion problem is decidable for arbitrary automata 9,  ~ ~ ~. 

Proof. A pa th  a in the diagram of an  arbitrary automaton ~ is said to be simple 

iff a passes an arbitrary loop in ~ no more than one time. 
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Let us fix a simple path  ao in 92 which leads to q ~ F(92). Let us consider the set 
S of paths a in 92 such that  

(1) the set of  loops belonging to pa th  a is equal to that same set for ao, and 

(2) a differs from ao only by the number  of by-passes of the loops. Let °//(S) = 
{ u ( a ) [ o t ~ S } .  Our goal is to construct an algorithm that checks the inclusion 

U ( S )  c L(92). Let LF be the set of all l inear expressions Co+ clzl + c2z2+" • • + CkZk, 

where Co, cl , • . . ,  Ck ~ N, k ~ N, and Zl, z 2 , . . . ,  ZK are variables defined on N. 
We have to define a procedure that,  given S and 92, constructs two finite trees; 

the vertices of  the trees will correspond to states of 92 (belonging to the S-part) and 

92, respectively; the arcs of the trees correspond to arcs in ao and 92; some expressions 
h ~ LF will correspond to every X-arc in the trees. 

To illustrate some necessary notions we will use the following example (Fig. 3). 
So, let ao be the simple path that defines S (say, 

a o = l~121314151719161s11.olls1215Ii~1121131141~2I~f11J~61~31~51~7 

in our example). The path  ao defines some fragment 92(ao) of the diagram 92 (see 
Fig. 3). Select in 92(ao) the simple loopsmsequences  of arcs and vertices containing 

only one vertex exactly twice. (In our example, 

C1 = 121slls, C2 = 1314, Ca = 1719, 

C4 = 161sllo, C5 = 112113114, C6 = 113115116.) 

Now, for every vertex p on ao that  lies on a loop, let us define some order 
C~,  C~, . . . .  , C ~  for the simple loops including p (for example, for P4 in Fig. 3, say, 

= 118121 , c 2  = 17g ,  = IAl o). 

Let X = {xl, x 2 , . . . ,  x,~,} be the X-a lphabet  of 92 and Y = {y~, Y2, ..  •, Ym,} be the 
corresponding alphabet  of 92. Let G O = (gl ,  g2,--- ,  gm~) and G O = (g~, g ~ , . . . ,  g '~)  

2 

Fig. 3. 
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be two trains of  expressions g ~ LF. Let a = d i d  2 . . .  d e  be an arbitrary path in 92(tz0) 
with initial vertex p. Using g~ as a value of  x~, 1 ~< i ~< ml,  in the initial vertex p of 
a, our intention is to define an element in LF that is the value of  xi at the end of 
a. By the way, we will define values in LF for all variables associated with arcs in 
a. Then it will be possible to associate with tz some sequences of  A-symbols and 
expressions in LF that  are, in some sense, similar to u(a) .  

So let us define, for every j e {1, 2 , . . . ,  m~}, g~(do, G °) = g~ and for every arc dr, 
l <~r~e, 

gj(dr, = ,  
Df 

Now, set 

'gA dr_,)  + 1 
¢ 

g,( d,_l) 

g i (d r -1 )+ l  

g,(dr) 

gi(dr)+ 1 
gAar-,) 

if  the operator  xj ~ xj + 1 is associated with dr, 

if the operator  xj ~- c is associated with dr, 

if the operator xj ~ xi is associated with dr and no 
operator before xj * xi in the sequence associated 
with d, has the left part  x ,  

if xj ~-xi + 1 is associated with dr and no operator 

before xj ~ x~ + 1 in the sequence associated with dr 
has the left part  xi, 

if  the operator  xj ~ x~ is associated with dr and some 
operator with the left part x~ associated with dr 
precedes xj ~ x~, 

if xj ~ x~ in the above case is replaced by xj * xi + 1, 

otherwise. 

f !  if d, is a A-arc, 
b(dr, G °) ~f i f  d, is an A-arc and a = oJ(dr), 

+gj(dr, G °) i f  dr is an X-arc and to(dr)= c+xj. 

(Recall that  to(d) is the label associated with d.) Finally, set 

/~(a, G ° ) =  b(d~, G°)b(d2, G°)... b(d~, G°). 

Define also 

Gl(ot, G°)=(gl(d,, G°),gz(de, G°),...,gmg(d,, G°)). 

In a similar way, for an arbitrary pa th /3  in 92 with the initial vertex q,/~(/3, ~o) 
and G2(/3, G °) can be defined. 

Now, let q be a vertex in 92, p and p '  be two consecutive vertices on the pa th  ao, 
G °, G o be two trains defined as above. We will define an auxiliary procedure 
PROCI(p, p ' ,  q, G °, G °) that, given arbitrary p, p',  q, G °, G °, constructs two finite 
trees R and T and sets G~(a, G °) and (72(/3, G °) for paths t~ in R, respectively 
paths /3 in T. The procedure also glues together initial vertices and leaves (final 
vertices) in, respectively, R and T. Vertices and arcs in R and T will correspond 
to vertices and arcs in respectively, 92 and 92. 
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Procedure PROC~(p, p', q, G G, GO). Glue together p and q. 
Let a be the fragment of So from p to p'. Find/~(a, G G) = a l a 2 . . ,  a4. Then search 

for all paths/3 in 92 with the initial state q such that 

b(/3, G °) = b( a, G o ) ( 1 ) 

holds. If  no such/3 is found, then let R be the vertex p and T be the vertex q; p 
in R and q in T are marked as dead vertices. Otherwise, let R = a and T be the 
tree with the initial vertex q that contains all found paths/3 (note that the set of 
all different/3 is finite since the automaton 92 contains no A-loops). Find G~(a, G °) 
and (32(/3, G °) for all/3 in T. Glue together the leaf in R with the leaves in T Stop 
the procedure. 

Now, let q be a state of 92, and let p be a vertex on ao in 92 such that at least 
one loop contains it. We will define an auxiliary procedure PROC2(p, q, G G, G G) 
which, given arbitrary p, q, G G, G G, constructs two finite trees R and T, trains 
G~(a, G G) for paths a in R with the ends in leaves, and trains G2(a, G G) for paths 
/3 in T with the ends in leaves; some vertices in R and T may be glued together. 

PROC2 is the main tool of our proof, so we will describe this procedure firstly 
using one simple example. The example is chosen so that all main ideas of the 
procedure can be demonstrated. 

So, let the fragment of the automaton 92 reachable from p be the following 
automaton 92' (Fig. 4). Let the fragment of 92 reachable from q be the following 
automaton 92' (Fig. 5). 

P 
X/X-'- X+~ 

G 

I 
Fig. 4. 

Let also G1 = (0, 2) and (32 = (0, 2) (we omit superscripts in G~ n) and G~ ") when 
describing only the first stage of the procedure). 

First, we will try to explain the general idea of the procedure. In the first stage 
the procedure finds the linear fragments of 92' corresponding (i.e., defining the same 
word) to the shortest path from p to p'  in 92'. Then the procedure passes the loop 
from Pl to Pl in 92' one time and finds the corresponding extensions of the paths 
in 92' the loops with initial vertices ql and q2 will be these extensions. But now 
the trains of linear forms GI in the vertices corresponding to the beginning and the 
end of one pass around the loop in Fig. 6 are equal. Similarly, the trains G2 in the 
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u/u + I 

. . -q+4 

Fig. 5. 

vertices corresponding to the beginnings q~, q2 and the ends q~, q2 of similar loops 
are equal. In this case, the procedure changes G1 and (32 to (0, 2 + Zl), where zl is 
a variable defined by the path from Pl to Pl in 9/' and the paths qlql and q2q2 in 

(the coefficient 1 in 1 • zt shows that the variable y changes its value for 1 on the 
paths P~P2, qlql, q2q2). Then the procedure removes the fragments corresponding 
to the loop in Fig. 1 from the trees constructed above. Further, the procedure acts 
similarly. 

Fig. 6. 

Now we will describe the procedure's working more explicitly by using our 
example. 

The procedure acts on 9.I' and ~ '  as follows: 
Step 1. PROC2 applies PROC1(p, pl ,  q, GI, G2). The following trees R (1) and 

T (1) (Fig. 7) will be obtained. The vertex p(t) also will be glued together with q~), 
qt21) ' qgl). Gl(pO))=Gl(p)  and G2(q~l))=G2(q), i= 1, 2, 3. 

Step 2. PROC2 is (recursively) applied to all trains (pO), q~l), Gl(pO)), G2(q~))), 
i = 1, 2, 3. The trees R ¢2) and T ~2~ (Fig. 8) will be obtained. The vertex p(2) will be 

R a). T (~): 
fO 

r4 r 2  Y3  

Fig. 7. 



Generalized regular expressions 187 

f. 

R "p~ 

X 
T('~} 

Y 
o ;o "C 

Fig. 8. 

glued together with q~2) and q(2), but q~) will be marked as dead.  G l ( p  (2)) --- G~(p~) 
and G2(q~2)) G2(q(22)) . (1)) = = = G2(q2 , G2(qt31)) again, but in this case, these equalities 
are used in order to: 

(a) remove the path pO)p(2) f r om R (2) and identify p(2) wi th  pO); 
(b) remove the paths q~2~)q~ 2) and q~31)q~22) from T (2) and identify q[2)with q<21) and 

q~22) with q~3 ~) (remark: therefore, the trees in Fig. 7 will be obtained again); 
(i) - (I)~ (c) change O,(p(1)), G2(q2 ), G2(q3 / to (0, z l+2) ,  where Z 1 is a new variable. 

Step 3. PROC~ is applied to the trains (p(1), p~, q~2~), G~(p(1)), GE(ql~))), i =  2, 3. 
Now, the trees R (3) and T (3) (Fig. 9) will be obtained, and the vertex p(3) will be 
glued together with q~3), i = 1, 2, 3, 4, 5, 6. We also have: 

G,(p (3)) = (0,  2 +  z , )  = G , ( p ( 1 ) ) ,  
(2) 

G2(q~3)) (0, 2 +  z,) " ('>~ = = = =O2(q2 , G2(q(3~)), i 1,2,3,4,5,6. 

The vertices p(~) and p(3) correspond to one vertex in 92', and similarly, q~a), i = 1, 
2, 3, 4, 5, 6 and q(2 ~), q(3 I) correspond to one vertex in 92'. In this case, in view of 
the equalities (2), the procedure 

(a) removes the path p(~)p(3) from R ~3) and identifies p(3) with p(~); 
^(I),,(3) .,O).,(3) _(I).,(3) _(1).,(3) ,,(I),,(3) qO)q(3) from T (3) (b) removes the paths (£2 ~1 , ~2 ~2 , (£2 ~3 , (£3 ,14 , ,13 ~5 , 

and identifies q[3), q(3) q(33)with q(2 ~) and q(3), qp), q(3) with q(3'); 
(c) changes G~(p(~)), G2(q(21)), " (~)3 G2(q3 , to (2z2,2+z~),  where z2 is defined by 

the train of  the paths in 92' and 92' that correspond to the train of the paths removed 

R (39. 

P 

p ~  

p~}, 

X 

X T (3).. 

X 

/ o  ] \ o c') 
J" I 

/ y r  7"th 
Fig. 9. 
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in (a) and (b). The coefficient 2 shows that the variable x is increased by 2 on all 
removed paths. 

Therefore, the trees in Fig. 7 are obtained again, but there are new G~ and G: 
for their leaves. 

Steps 4, 5, 6. The similar sequence of actions is applied to the trees obtained 
above (Steps 1, 2, and 3). After Step 6, we will again obtain trees like in Fig. 7. 
Moreover, in this case, 

- (1)~ = = G,(p(1))=G~(q2 , G2(q~3 ')) (2z~,2+z,) (3) 

as after the Step 3. In view of the equalities of the trees and equalities (3), the 
procedure stops its work. 

Now we will give the formal definition of PROC~. 

Procedure PROC2(p, q, G1, G2). Let k denote the number of simple loops passing 
through p. Assume that, before a step n, 

(a) the trees R,-1 and T,_I have been constructed; 
(b) every living (not-dead) leaf in T,-1 is glued together with a single leaf in R,-1; 
(c) the leaves of the subtrees Rj, j  < n, and Tj, j < n, in R,_I and T,_1 respectively, 

are marked; 
(d) some leaves in R,_~ and T,_I are marked as dead; 
(e) for every path a in R,_~ (T,_I) with living end, the train G~-l(a) (respectively 

G~-l(a))  is defined. 
Step n. Perform the procedure described below for every i ~< k, every living leaf 
in T,-1, and the leaf/~ in R,_~ glued together with q. 

Procedure PR(4,/~, i). Let ~ be the path in R,-1 that leads from the root to p, and 
let/3 be the path in T,-1 leading from the root to (/. The vertex/~ in R,-1 evidently 
corresponds to/~ in 9/. Similarly for q. Find the first vertex p'  (p~ in our example 
above) after iO on cr such that p' lays on at least one loop equal to no C~, C ~ , . . . ,  C~ 
(in our example it will be Pl)- Compute PROCI(/~, p', q, G~'-~(6), G~-I(/~)) • Then, 
some trees R, T (see Fig. 7) and the trains G~(a, G~-I(~)) and (32(/3, G~-1(/3)) are 
obtained. If, computing PROC~, paths fl satisfying (1) have not been found, then 
stop PROC2(p, q, G °, G°), and set R,.i =of R,-1, T~,i =DfT,-~. Otherwise, set 

= R(1) --n,,R(l") =Df R T(I~ Df T. Then, for each path a in --,~i with end in a leaf/~, set 
T(1) G~'(/~) =bf  Gl(a,  G~'-I(&)) and, for each path/3 in -n.~ with the end in a leaf ~, 

set G~(~) =Dr (32(/3, G~-I(~)). Further, for every i~ mentioned above and for every 
glued with/~, perform PROC2(/~, ~, G~'(/~), G~(~)) (again, some vertices in 9/and 

~R correspond to/~ and ~; in our example above, this stage is Step 2 for instance). 
Now, some trees, say 

R =  

(for example, the path p(Op(2) in Fig. 8) and trains G~'(s)= G~(a', G~'(/~)) for the 
paths a '  in R with ends in the leaves s are obtained. Also, some trees, say 

T =  T(/~, ~, G~'(l~), G~(~)) 
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(respectively, the paths q[~)q~2) and q~al)q~ 2) in Fig. 8) and trains G~(t)= 
G2(fl', G~(~)) for paths fl '  in T with ends in the leaves t are obtained. Identify the 
roots of all R(~,~,  G'~(fi), G~(~)) with p in R ~k) and the roots of all 

n - T 0 )  T(g ~, G, (p), G~(~)) with ~ in _,.~. Denote the trees obtained by the above action 
~,(2) and T(:) respectively. by --.,i --.,i, 

Further, find the next vertex p" after p' on the loop C~ such that at least one 
loop going through p" is equal to no C~, C ~ , . . . ,  C~. Compute 

PROC~(p',p", q', G~'(p'), G'~(q')) 

T(2) glued together with q' (actually, for every leaf p '  in --n,i~(2) and for every leaf q' in _.,i 
perform PROC~ for p' and q' in 92 and 92 corresponding to p '  in ...,~R <2) and q' in 
T(2h Now, the trees R(p',  q', G]'(p'), G~(q')) (see Fig. 9) and the trains G'~(s)= 

n ,  l l ° 

G~(a, G~(p')) are obtained for the paths a '  with ends in the leaves s of the above 
trees. Also the trees T(p', q', G'~(p'), G~(q')) (again, see Fig. 9) and the trains 
G'~(t) = G2(fl', G~(q')) are obtained for the paths/3' with ends in the leaves t. 

n p D ( 2 )  Identify the roots of all R(p', q', GI (p) ,  G~(q')) with p' in ~x.,~, and the roots 
n , ~ ( 3 )  of all T(p', q', GI (p) ,  G~(q')) with q' in T ~2.) Denote the obtained trees by _..,, ~ n , z  ° 

and T(3) respectively. Now perform PROC2(/~, q, G~(/~), G~(t])) for every leaf/~ in ~ n , i ,  

R ~  and every leaf t~ in _,,~T ~a) glued together with/~. Then, repeating the above actions, 
• ,(4) T(4) and the trains G~'(p'), G~(q') for all leaves p '  in R(4) and all the define ~,~i, --n.,, ~ - r t ,  i 

T (4) leaves q' in _,,~ glued together with p'. 
Then, define similarly 

p,,,, R(5.) T(5~, R(6) T(6). R(2k-]) T(2k-1) ~(2k) ,]..(2k) 
~ ' n , ~ ,  p ( k ) ,  n,~ , ~ n , i  , ~ - n , i  , - n , i  , . . . .  

Finally, for some m, p(m) will coincide with p. In this case, find only ,xn, iD(2m-1), --n.iT(2m-1) 
R ( 2 m - l )  __ R n ,  i, and G~(fi), G~(~) for leaves/~ in ~2m-~) and ~ in T <2~-1) Define ...,~ - ~ ' r g i  . ~ n , i  • 

T(:m-~) _ T. ~. Stop PR(~,/~, i). n , i  ~ , 

Procedure PROC2(p, q, G], G2) (continued). Now, for every /, identify the root of 
R.,i = R,~i(ff, t]) wi th#  in R._I and the root of T,~i = T,~(/~, t]) with F/in T._I. Denote 
the obtained trees by R. and T,. 

Now, let p '  be an arbitrary leaf in R.. Let a be the path from p to p' in R.. Let 
fl~,/32,. . . ,  fl, be the paths in T. that go from the root to the leaves ql, q~ , . . . ,  q', 
glued together with p'. Check whether there is a vertex p" on a such that 

(a) p" is a leaf in some of the trees Rj, j < n; 
(b) p" is glued together with vertices ql', q~ , . . . ,  q~ in T. such that q'[, q~, . . . ,  q~ 

and q~, q~, . . . ,  q' correspond to the same states in 92; and 
(c) the following equalities hold 

= G I ( F ) ,  (4) 

Vm ~ r 3 k ~  s: ( G~(q')= G~(I~)). (5) 

If such a p" is not found, then check whether R. coincides with Rs for some s < rL 
If such an s exists, then stop the procedure, otherwise go to step n + 1. 
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Now, if a vertex p" is found,  let p" be among the vertices nearest to p '  in a. Let 
6 denote the fragment of  a from p" to p'. Let /31, /32, . . . , /3~ denote the fragments 
of  f l~ , /32 , . . . , /3r  such that  their beginnings are glued together with p" and their 
ends are glued together with p'. Remove the fragment 6 from R (leaving the part 
of  ~ that contains paths to other leaves) and glue together (identify) the vertices p'  
and p". Then, in a similar way, remove fragments /3m, m = 1, 2 , . . . ,  r, from every 
tim (we performed these actions in our example in Steps 2 and 3). 

Note now that 6 and/3~,/3-2, •. • , / ~  correspond to paths ~ in 92 and/~l, /~2,  - - •,/~r 
in 92, respectively (consisting of the same arcs). Associate some variables z 
(=  z(~,/ff~,/32, • • •,/3r)) with the train ( ~,/3~,/32, • •.,/~r)- For every j e { 1, 2 , . . . ,  m~}, 
let gj be the j th  element in G'~(p'). Two cases are possible for the variable xj: 

Case 1" there is a number  hoe N such that, for every n e N, if nl is the value of 
xj at the beginning of  ~, then n~ + no is the value of  xj at the end of  t~; 

Case 2: the value of  xj at the end of  ~ does not depend on its value at the 
beginning of  t~ (this means,  in fact, that a sequence of operators xj~ := c~, x~ := 
x j~ , . . . ,  xj := xj, changes the value of x~ when passing through a ) .  

It is not difficult to see that'  Cases 1 and 2 can be checked effectively. I f  Case 1 
holds and cz is not a member  of gj, then exchange gj to gj + cz. 

Similarly, regarding the behaviour of  all variables gj, j = {1, 2 , . . . ,  m2}, exchange 
G'~(q') for all vertices q' in T, glued together with p'. 

Further, if R ,  coincides with Rj for some j  < n, then stop the procedure.  Otherwise, 
go to step n + 1. 

This ends the definition of  PROC2(p, q, G~, G2). 

Proof of Theorem 4.1 (continued). Now, let R = U,.,~N R,  and T = U~N T,. 

Lemma 4.2. For every p, q, GI, (32, PROC2(p, q, G1, G2) terminates. 

Proof. It follows from the definition of  PROC2 that every new member  cz in an 
arbitrary form g in 

U (  U (G~(p')uG~(q'))) (6) 
n~N (p',q') is  a pair 

of  leaves glued 
together on  Rn a n d  T n 

is defined by a train (t~,/31, f12 , . . . , /3 , )  of paths t~ in 92 a n d / 3 1 , / 3 2 , - . . , / 3 ,  in 
such that ~ is a loop in 92(a0) , /31, /32, . . . ,  fl, are loops in ~ ,  and words defined 
by ~ correspond (see ( I ) )  to words defined by i l l ,  f12 , - . . ,  fir. 

Evidently, the trains ( t~ , /31, . . . , /3 , )  mentioned above are the shortest in the 
following sense: if t~ is a concatenation of two consecutive fragments t~ I and t~ 2, 
if  every /~i, 1 <~ i <~ r, is a concatenation of  consecutive fragments / ~ , / ~ 2  and if 
( t~,/~],/~2~,. . . , /~I),  (t~2,/~,/~22,.. . ,/~2) (some/3~ may be equal) are of  the above 
type, then the trains ( t~I , /~] , /~ , . . . , /~ I , )  and (or) (t~2,/~,/322,... ,/~2), but not 
(t~,/~, f12,. - - ,  fl,) may  specify a variable z. Here we use the fact that  the vertex p" 
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nearest to p with the necessary properties is to be taken on the path from the root 
of R, to p '  (see the definition of PROC2). Now it can be easily seen that the set of 
members cz used in the linear forms of (6) is finite. Hence, there is only a finite 
number of  different trains G~(p') and G~(q'), n ~N. 

Now, let Y be a sufficiently long path from the root in R. Let pl ,  P 2 , . . . ,  P j , . . .  
be the vertices on this path corresponding to the same vertex in 9.I (say, p). There 
are paths fl~, f12, . . . ,  f l~, . . ,  in T corresponding to y such that, for each j, there is 
a vertex q; in fl, glued together with p~. For every j, the finite set Qj= 
{q~, q ~ , . . . ,  q ; , . . . }  corresponds to a finite set (~j in the graph ~.  I f j  is a sufficiently 
long path in R, then, obviously, i and j exist such that 

(a) 0,  = (~j; 
! !  1 ! i  2 (b) G~ (p~) = G2 (p~), where n~ and n2 are such that p~ is a leaf in R,, and p~ is 

a leaf in R~; 
(c) for every r, 

G~,(q;) = G~(q;). 

In this case, the fragment of y from p~ to p~ has to be removed. From these 

considerations it follows that all paths in R are of bounded length. Therefore, 

R, = R: for some j and n > j. Thus we have obtained the necessary assertion. [] 

Proof of Theorem 4.1 (continued). Note that T is also a finite tree. 
Now, we return to the construction of the procedure checking the inclusion 

U(S)~_ L(~). 
Let Po and qo be the initial states in 9A and ~ respectively. Denote by Pl the first 

vertex from Po on ao laying on the loop. Further, denote by P2 the first vertex on 
the fragment of a0 with beginning Pl such that simple loops passing through P2 
differ from simple loops containing Pl. In a similar way, define P3, P 4 , . . . ,  Pk (we 
have pl ,  P2, P4, Ps, P9 in Fig. 3). Let Pk+1 be the end of no. 

Define Gl(Po) = (0, 0 , . . . ,  0) (ml times) and G2(qo) = (0, 0 , . . . ,  0) (m2 times). 
Perform PROC~(po, Pl, qo, G~(po), G2(qo)). Then the trees R ~, T 1 and the trains 
G1(p~), G2(q~) for leaves p~ in the tree R '  and the leaves q~ in T ~ glued together 
with pl are obtained. Perform PROC3(p~, q, G~(p~), G2(q)) for every q in ~ corre- 
sponding to leaves in T ~, and corresponding trains G2(q). 

Now, the trees R2(pl, q) and T2(p~, q) and corresponding trains GI(p') and 
G2(q') for leaves p' of R2(pl, q) and leaves q' of T2(p~, q) glued together with p' 
are obtained. Identify the roots of all R2(p~, q) with the leaf corresponding to pl 
in R. Identify the roots of all T2(p~, q) with the leaves corresponding to q in T I. 
Denote the obtained trees by R 2 and T 2. 

Now, let, for an arbitrary i < k, R 2i, T 2i, and Gl(p), G2(q) for leaves in R 2~ and 
leaves q in T 2i glued with p be defined. Compute PROC~(p,p~+I, Gt(p) ,  GE(q)) 
for every p in 9A corresponding to a leaf p in R 2i, and for corresponding q in ~.  
Then we obtain R2~+~(p~+~, q), T2~+~(p~+~, q), and GI(p"), G2(q') for leaves p' in 
R2i+l(p~+~, q) and leaves q' in T2~+~(p~+~, q) glued together with q'. Identify the 



192 A. Brazma, E. Kinber 

roots of all t rees  R2i+l(pi+l, q) with the leaf  in R 2i corresponding to pi+l. Identify 
the roots of  all T2i+~(pi+l, q) 's  with the leaves q in T 2i glued together with p~+~. 
Denote the obtained trees by R 2~+1 and T 2~+1. 

Perform now PROC2(p~+~, q, G~(pi+~), G2(q)) for all vertices q in 92 correspond- 
ing to leaves in T 2i+1 glued together with p~+~ in R 2~+~. Then trees R2~+2(p~+~, q), 
T2~+2(pi+~, q) and corresponding trains G~(p'), G2(q') for the leaves p '  in 
R2~+2(p~+~, q) and the leaves q' in T2~+2(pi+~, q) glued together with p '  are obtained. 
For every leaf  q in T 2i+1, identify the root of  T2i+2(p~+~, q) with q and the root of 
R2~+2(p~+~, q) with the leaf  in R 2~+~ glued together with q. Denote the obtained 
trees by R 2~+2 and T 2~+2 respectively. 

Define R = R 2k+3, T = T 2k+3. 

Now, let  z~, z 2 , . . . ,  ze be the variables contained in the linear forms of G~(p), 
G2(q) for all vertices p in R and q in T. Let a be an arbitrary branch in R. We will 
associate a path a(k~, k2 , . . . ,  ke) in 9~ with arbitrary ka, k 2 , . . . ,  ke ~N as follows. 

Let zj correspond to a loop Cj in 92 (see the definition of PROC2). Among all 
the loops cj, 1 ~<j ~< e, select Cj~1, Cj~:, C! such that they are fragments of  no 

• . • , Jn I 

other Cj. From the description of  PROC~ it follows that there are vertices correspond- 
ing to the beginning (and, therefore, to the final) vertices of some loops C e (~  = 
{ C~,, Cj~: , . . . ,  C~,1} in a. Insert  into a the loop C~, kj, times in corresponding vertices, 
the loop C~I:/% times, and so on; if the beginning vertex of C 1J, is in a more than 
once, then insert C), so that  the common number  of  its copies in a is equal to k~,. 
So a path a 1 in 92 is obtained. Now, select the set 

= c o)_ 

of the loops C~ that are fragments of no other loop in { C ~ } ~ \ t ~ .  In a similar 
way, insert eVery Cj 2 e t~ 2 into a ~ k~, times in corresponding places. Denote the path 
obtained above by a 2. Similarly, define a 3, a 4 , . . . ,  a m, . . . .  Finally, some path a m 
in 92 will be obtained. Denote  this path by a(k~,  k 2 , . . . ,  k,). 

Clearly, in general, a(k~, k2, . . . ,  k,) may be not uniquely defined. Hence, we 
have to regard the set [a(k~, k2, . . . ,  k~)] of  all the possible paths a(k~, k2, . . . ,  Ice) 
that may be obtained by the above procedure. 

In a similar manner,  one can associate the set of  paths [f l (kl ,  k 2 , . . . ,  k~)] in 
with every branch fl in T. Note  only that in this ease, a whole set {C~, C ~ , . . . ,  C~} 
of loops in 92 with a common beginning (and final) vertex corresponds to every 
variable z~ (recall that every variable z is associated with a train (J,/3~, J ~ 2 ,  • • • , J ~ r )  

of paths J in 92, a n d / 3 ~ , / 3 2 , . . . , / 3 ,  in ~ ) ,  and the common number  of  copies of 
loops CI, C2, . . . ,  C~ to be inserted into ~(k~, k~, . . . ,  k~) is equal to /9 .  

Note now that if the ends of  paths a in R and /3  in T are glued together, then 
paths a(k~, k2, . . . .  , Ice) and  fl(k~, k2, . . . .  , k~) may be chosen consistently in the 
following sense: insertions of  a loop C '  into a and loops C~, C2, . . . ,  C~ into fl 
associated with one variable z are made in vertices glued together during the process 
of  constructing R and T. 

Let us return now to the test for checking U(S)~_ L(~), 
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Assume that  for some (t ~ S, u (6 )  ~ L(92). The procedure of  constructing trees R 
and T associates with 5 some path a in R and some pa ths /31 , /32 , . . . , / 3 ,  in T such 
that their vertices are consecutively glued together with vertices on a. It is not 
difficult to see that  5 ~ [ a ( k l ,  k 2 , . . . ,  ke)] for some kl, ~ , . . . ,  k ~ N .  

Now, let G1 be the train of  mi forms 0~ LF, and (72 = (0, 0 , . . . ,  0) (m2 times). Let 

/~(ot, GI) = a l a 2  . . . a r ( ~ ) ,  

and, for every pa th /3  in T, 

5(,6, G:) = bl(fl )bz(/3 ) . . . b,(a)(/3 ). 

Let zl, z : , . . . ,  z~ be the variables contained in all forms g e G I ( p ) w  G2(q) for all 
vertices p in R and q in T 

Now we are going to define a procedure that, given an a (and, therefore, 5) ,  
effectively constructs a path 

t~(kl, k 2 , . . . ,  k , ) e [ a ( k l ,  k 2 , . . . ,  k~)] 

such that, for every /3 in T and /3(kl, k 2 , . . . , k , )  in ~ consistent with 
a(k l ,  k2, . . . , ke) 

a (  k l ,  k E , . . . ,  k~) # /3(kl, k2, .  . . ,  ke). 

The procedure searches for paths /3 in T such that /~(a, G1) = b-(/3, G2). Let a 
path/3  in T be found such that the length of/~(/3, G2) is equal to r and, for all 
j<~r, bs(/3)=a j. If  there are 3"1, ) z , . . . ,  3"k in T with/~(3'~, G2) of  length r + l  that  
continue /3 and have b,+1(7)= a,+l,  then continue the procedure u'sing the paths 
3'1, 72, . .  . ,  3"k instead of/3.  If  there is no such y in T, then, for each 7 in T, the 
two following cases are, evidently, possible: 

(1) br+l(3") is an A-letter; 
(2) b~+~(3') ~ LF. 
For 7 with b,+1(7)~ A we have, evidently, 

u ( a ( k l ,  k2, • • . ,  ke)) # u(/3(kl ,  k 2 , . . . ,  k,)) 

for all kl,  k 2 , . . . ,  ke and all consistent or(k1, k 2 , . . . ,  ke) and /3 (k l ,  k 2 , . . . ,  k~). For 
all paths 3" with b,+~(3") ~ LF we use the following evident assertions. 

Assertion 4.3. Let f o , f ~ , . . .  , f p e  LF, Z1 ,  Z 2 , . . .  , Z e be the variables contained in one 
of f e { f o , f l , . . . , f p }  at least. Let fj(fft) be the value of  fj on an e-tuple k =  
(kl, k 2 , . . . ,  ke), k j eN,  l <~j<~e. Let fo be equal to no f ~ , f 2 , . . .  , f r  Then a k. can be 
effectively found  such that 

(vj p) # 

Proof of Theorem 4.1 (continued). Using Assertion 4.3 one can effectively find an 
e-tuple/~ such that, for every y that continues fl, the value of  a,+l on/~ is not equal 
to the value of  b,+l(y) on/¢. Clearly, then u ( a ( k l , . . . ,  ke)) # u ( y ( k l , . . . ,  ke)) also 
holds for all consistent a ( k l , . . . ,  ke) and y ( k l , . . . ,  k~). 
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Assume now that, for branch a in R, all paths Yl, Y2,- . . ,  Y,,, in T are found 
such that their ends ql, q2 , . . . ,  qm are glued together with the end p of a, and 

/~(a, GI)=/~(Tj, G2), l<~j<~m. 

Clearly, u ( a ( k l , . . . ,  ke)) = u ( y j ( k l , . . . ,  ke) holds for every j, l<~j~< m, for every 
e-tuple ( k l , . . . ,  ke) of values of the variables z~, z2 , . . . ,  ze contained in the forms 
in 

b(a,  G1), /~(Tj, G2), 1 <~j<~ m, 

and for every consistent path a ( k ~ , . . . ,  ke) in 9A and Tj(k~, . . . ,  ke) in ~2. On the 
other hand, there is no 8 in T such that 

u ( a ( k l , . . . ,  ke))=u(8(k, , .  . ., k,)) 

holds for any k l , . . . ,  ke. However, the path a in R is taken so that, for some 
numbers k l , . . . ,  k, and for some a ( k l , . . . ,  k,), 

t /=  a ( k l , .  • . ,  k¢). 

From this reasoning it follows that q~, q2,- • . ,  qm correspond to nonaccepting states 
of 92. 

Consider now some path a(1) in 92, where 1=  (1, 1 , . . . ,  1) (e times). Clearly, 
u(a(1)) • U(S). On the other hand, u(Ti(1)) ~ L(~)  for each j • {1, 2 , . . . ,  m} and 
for each yj(1) consistent with a(1). However, u(y) = u(a(1)) holds for no y in 
differing from Tj(T), 1 ~<j<~ m. Therefore, if u(&) • U(S) \L(~) ,  then u(ot(i)) • 

The procedure constructed above shows that to check the inclusion U(S) ~ L(~),  
it is sufficient to check whether u(a(k~ , . . . ,  k~)) • L(?R) 

(1) for all branches a in R; 
(2) for all e-tuples (k~ , . . . ,  k,) of values of the variables contained in the linear 

forms in/~(a,  G1),/~(y, G2), y •  T, where all ~<~/~ for some constant/~ effectively 
defined by R, T, G~(p), G2(q); and finally, 

(3) for all possible a ( k l , . . . ,  k~) • [a(k~ , . . . ,  k~)]. 
So the inclusion U(S)c_L(~) can be effectively checked. The theorem is 

proved. [] 

Corollary 4.4. The emptiness and equivalence problems are decidable for languages 
in ~e( s~). 

5. Intersection and difference of the languages in .T(~9  

Theorem 5.1. The class .~(M) is closed under c~ and \. 

The proof is based on a procedure similar to the one in the proof of Theorem 
4.1, constructing trees R, T, and trains G1(p), G2(q). The reader can easily make 
the necessary modifications himself. 
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6. The problem of synthesis 

The task of a synthesis is to trace the correct program P ~ ~ using a finite set of 
examples from V(P). Obviously, this problem is solvable by an exhaustive search. 

Unfortunately, algorithms of exhaustive search are clearly unpractical. In [1, 2, 3] 
polynomial algorithms synthesizing programs by one sufficiently long example are 
presented. In our case, because of the possible branching in sample computations, 
it is clearly impossible. On the other hand, the operations: * and +, which are in 
fact a tool for representing regularities like arithmetical progressions, allow us to 
hope that an effective synthesis algorithm for programs p e ~ by one example is 
possible if some additional information is given. One possibility is to synthesize 
programs from one long example if approximate positions of the boundaries of the 
loops and the relations between the value sof the same variable in the sample 
computation are given. The authors hope to investigate this problem in a forthcoming 
paper. 
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