Theoretical Computer Science 14 (1981) 79-90
North-Holland Publishing Company

OPTIMAL ALGORITHMS FOR SENSITIVITY ANALYSIS
IN ASSOCIATIVE MULTIPLICATION PROBLEMS*

Arnon ROSENTHAL**

Department of Computer and Communication Sciences, The University of Michigan, Ann Arbor,
MI 48109, U.S.A.

Communicated by R. Karp
Received November 1978
Revised November 1979

Abstract. We consider efficient ways of determining the sensitivity of a product to changes in
individual factors. The task is motivated by several interesting combinatorial and numeric
problems which can be given a unified formulation as the problem of finding the
(associative) product of N objects. Boti: deterministic and probabilistic changes to the factors are
considered. Algorithms for two kinds of deterministic variation schemes are considered. Noatrivial
lower bounds are obtained which demonstrate the algorithms to be optimal. For probabilistic
choice of the parameter to be varied, it is shown that optimal ordered binary search trees or
Huffman trees determine the optimal strategies. A number of unsolved problems are posed.

1. Introduction

We consider a number of apparently different applications for which parameter
variation studies are performed. By ‘parameter variation’, we mean that each
individual input will be changed, and the effect of this change on the problem solution
noted.

Parameter variation studies (or equivalently, sensitivity analyses) are necessary in
many optimization and other computational problems. When the input data is
known tc be unreliable, it is desirable to study how the optimal value changes if some
of the data is altered. Such sensitivity analysis procedures may exploit duality [12]or
linearity [6] in the problem domain, or special properties of certain algorithras ior
graphical computations [3, 4, 13], or of certain branch and bound algorithms [S].
Nonserial associativity is exploited in [10, 11]. [15] exploits the simple structuic of
regular languages.

We consider one-variable-at-a-time sensitivity analysis on a very simple kind of
computation: multiplying N qguantities Zy, ..., Zy in some arbitrary associative
multiplication structure (i.c. semigroup). Given new values Z3,..., Zn, define

* This work was partially supported by a grant from Horace: H. Rackham Graduate School and by

National Science Foundation MCS77-01753.
** Current address: Sperry Research Center, Sudbury, MA 01776, U.S.A.

80 A. Rosenthal

variants by: Variant, = ([li<k Z))Z (Ili>« Z:). Variant, will denote ML, Z. The
Type I sensitivity analysis problem is: Compute {Variant, |k =0,1,..., N}.

Note that there is no scalar measure of sensitivity; rather, we simpl" output all the
variants. The product operation is assmined only to be associative.

2. Applications

(1) Error correction: If ay, . . ., ax is an input string of a finite automaton with
transition function §, 8,, can be defined as the transition function corresponding to
character a.. (That is, if q is a state of the machine, then 8,,(q) = (q, a:).)

We can then extend our definition so that §,,...,, is the transition function
corresponding to the string g, - - - ax. Our goal is to compute the trausition function
corresponding to the input string a;a; - - - an. The semigroup element Z; is the
one-step transition furction &,,

The parameter variation problem is to study how the function § ,, ... ,,, is changed if
4, is changed to ai. The scheme could be useful in error correction attempts for
regular languages. For instance, an error correcting interpreter could quickly find the
‘most likely’ single-char acter errors. Attempts to insert semicolons as terminators, to
interpolate multiple ch: racters, or to transpose adjacent pairs of charzcters require
only a small modificaiti .n of our procedures. See [15] for a more powerful but more
complex approach to this problem.

(2) Consider optimization problems expressible as seria! Jiscrete decision
processes, soivable by either forward or backward dynamic programming. A
scnewhat simplified version may be expressed as follows: Given N known func-
tions, fi, ..., fx, each a function of two variables with finite ranges, compute the
f. nction

h(xy, xve)= min [fi(xq, x2) + f2(x2, x3)+- + - + fan(xns Xn+1)]).
{values of
X2.%3. ..., XN}

The parameter variation problem is to explore the effect of varying each f.. Each Z
represents a function f. Z,Z;., is the function g given by

8(Xi, Xi+2) = min [f:(xi, Xis1) +f.'+|(.xi+1, xi+2)]'

{41}

The next three problems may be transformed into instances of the above opti-
mization problem. The state variables of the usual dynaric programming recur-
rences map to the variables x; above. The examples are included because they are
more familiar than the general optimization problem.

Sensitivity analysis in associative multiplication problems 81

(3) Assignment of tasks to machines: Suppose a task can be decomposed into N
sequential stages, and to do stage i at location j costs r;(j). Moving the outpur of
stage i at location u to locatior. v costs c;(u, v). We wish to choose {x; £ location of
task i|i =1, ..., N}to minimize the total processing costs plus communication costs.
That is, minimize

N-1
¥ = .gl [p,-(x,-)+c.-(xf, -’Ci+1)]+pN(xN)-

The parameter variation prohlem is to explore the effect on miin & of altering each
[(pi()+ci(+,)]

(4) Consider the classical resource allocation problem of allocating limited
resources among competing proiects so as to maximize profit. The problem may be
formalized as: Given functions r;(-), j=1,..., N, for each value of TOTAL,
0<TOTAL < LIMIT (for some known LIMIT), choose the singlc stage allocations
Y1, Y2,..., Yy to maximize ¥} r;(Y;) subject to ¥ ¥;=TOTAL. We change
variables with x; = 1y (so Y; = Xj1—X;).

The functions 7; are the inputs that are to be varied, and the maximum value of
Zf'rj(Y,.) is the output. fi(x;, xj.+1) =ri(x;+1—x;). x1 is O by definition. H({0, xn+1)
tells the best return achievable with xn.; resource units. The p~arameter
variation problem is to explore the effect of altering each 7;.

(5) Equipment replacement: A machine’s operating cost changes with time. At the
start of each time period, cne may exchange a machine of any age for a machine of
any other age. (A cash payment may be involved in the trade.) Functions f; which tell
the trading plus operating cost during period i for eaci possible trading act.on are
known. The problem is to choose a replacement strategy to miniinize costs over some
given number of time periods.

(6) The group knapsack problem [12], (from relaxation methods for integer
programs) is: minimize cx (x =0, integer vector) subject to Ax =5 (mod 1). Several
parameter variation probiems may be defined. One may study the effect (on min cx)
of changing columns A, to alternate values A;, and also change b to b, while still
imposing the congruence constraint. The semigroup element Z; is the jth column
vector A; (in the ring).

(7) Multiplication of N matrices: Given equal sized square matrices My, ..., My,
find the product MM, - - - My. The parameter variation prob’ n is to explore the
effect of changing each M..

(8) Convolution of N functions: The probability density fu: -tion of the sum ¢f N
random variables is formed by the convolution of the individual densities. In one
application (noted by D. Shier) the individual randcm ariables represent sources of
measurement error, and the probability density function for tota!l error is desired.
The parameter variation problem is to find the effect of altering the individual
densities. The semigroup element Z; is the density function of the ith random
variable.

82 A. Rosenthal

3. A simple, yei optimal algorithm for Type I sensiiivity analysis

Devising sensirivity analysis algorithms is difficult only in the specific settings. (The
equipment replacement problcm was our starting place.) Algorithm design is much
easier when one abstracts to a semigroup setting.

The most direct solution to the sensitivity analysis problem is tc compute each
variant separately. N —1 multipiications will be needed for each £, for a total of
O(N?). With a littie care, the running time can be reduced to O(N).

Define left partial products L; for 1 <i <N, L; # [[;<: Z;. Also, definc right partial
products R; 2T1,~; Z. We adopt the convention that multiplying any X by the empty
terms Lo or Ry 41 resuits in X but costs nothing.

Algorithm 1.
Step 1. Multiply the terms Z; right to left, obtaining

{Rili=N-1,..., {}.

Step 2. Multiply the terms Z; left to right, obtaining
{Lili=2,...,N—1i}.

Step 3. For k =1 vntil N: compute Variant; = L, _1ZR+1.

Complexity. Exactly (N-1)+(N-2)+(2N -2)=4N -5 multiplications are
performed. (N —2) intermediate results must be stored. (We may combine Steps 2
and 3; R, wi'l be discarded when L, s computed.)

It seems desirable to relate the multiplication count to running time in each
application. For ‘number of algebraic multiplications’ to be a useful complexity
measure, the time for multiplications must be roughly constant. For certain appli-
cations which were deliberately omitted from our list (e.g. the 0--1 knapsack problem,
polynoimial multiplication), ar: elementary term Z;, (which in knapsack problems has
only two entries) requires much less time to multiply than a partial product. In this
kind of situation, it may be best to compute the variants directly from tbei.
definitions. O(N?) multiplications will be required, but each multiplication will
include a simple term Z; as one operand.

4. Optimality and near-uniqueness

We will obtain a lower bound on the algorithm’s worst case performance by
considering its behavior in a situation without useful input-dependent relations, e.g.
the free semigroup with unequal inputs. Algorithms operating in this setting are
essentially straight line programs, performing a sequence of semigroup multi-
plications. To provide a handier description, we model an arbitrary straight line
program on given size input by a circuit. Inputs to the circuit are the values
Zy,....,2n ZY,...,Z N Each gate forms the product of its two inputs. The

Sensitivity analysis in associative multiplication problems 83

multiplier outputs may be routed ic any number of other multipliers but no directed
cycles are permitted. The circuit’s cutputs are the desired variants. A circait is
optimal if it contains the minimum possible number of multipliers.

ineorem 1 (below) shows that Algorithm 1 is optimal. Theorem 2 shows that all
optimal algorithms are nearly the same as Alyorithm 1.

Consider any optimal circuit, and for any k >0 let P, denote a path in the circuit
from Z} to Variant,.

Lemma 1. Any optimal circuit may be transformed into an optimal circuit in which
(i) Li-1 and Ry, are available as multiplier outputs,
(ii) ‘the output values of muitipliers not on Py in the originai circuit remain
unchanged.

Proof. First, a transformation will be defined. We begin by deleting P, from the
circuit. Next, insert new multipliers in such a way that all the orphaned multip:iers off
Py which were inputs to P, from lcft [right] are multiplied together left to right [right
to left]. Now, multiply the grand left product by Z and the result by the grand right
product. It is shown below that tiie transformed circuit still solves the sensitivity
analysis problem (i.e. computes all the variants), has no more muitipliers than the
original circuit, still uses a minimum number of multiplications, and satisfies con i-
tions (i) and (ii).

We begin with some observations. Since the original circuit was optirnal, it could
not compute any superfluous outputs. “or instance, outputs which included the same
term twice or two ‘primed’ terms would not be present in an optimal circuit. Thus the
subgraph consisting of all edges cn dirzcted parhs leading to Variant, must be a tree,
with Z the only primed input. Each multiniier has - inputs, so all these trees are
binary. All binary trees on N leaves .>ve the szine numter of multipliers (i.e.
internal nodes).

It is readily seen that multipliers oa P, are used only to compute Variant, and that
no multipliers off P, have been altered (although the destination of some outputs
may have changed). Thus, variants other than Variani, are unaffected by the
transformation. Now, the grand product formed on the left includes all terms io the
left, and hence is L -;. Similarly, the grand right product is Ry .. Multiplying thesz
with Z} as specified produces Variant,. Herice, the circuit still computes all the
variants. This argument has also verified that conditions i and ii of the lemma still
hold.

The tree below Variant, in the new circuit still has N leaves, so the number of
multipliers there is unchaged. The rest of the circuit is unaltered. Thus tise new ci:cuit
has the same number of multipliers as the old, and is optimal

Lemma 2. Paths P, and P, are vertex disjoint, for k' # k". In an optimal circuit,
applying the transformation to P, will affect multiplier outputs only on P.. (Hence the
transf.ormation may be applied for different values of k, without interference.)

84 A. Rosenthal

Proof. In an optimal circuit, quantit.2s which are not useful for any required output
cannot be computed. All multiplier cutputs on Py [P~ linclude Z - [Z}-]. No useful
output includes both Z}- and Z-. Hence P, and P~ are disjoint.

The transformation changes the vzlues only for multipliers on P, or off P, and
receiving input from a vertex on P,. If the second case arose, the product would
include Z; but would not be used for computing Variant,, and hence couid not be
used in computing any required cutput. Thus, the second case does not arise.

Theorem 1. Every algorithm for the sensitivity analysis problem uses at least 4N-5
maultiplications i+ the worst case (i.e. Algorithm 1 is opumal).

Proof. By Lemma 2, we may start with an arbitrary optimal circuit and apply the
transformation for every k, k =1, ..., N. One obtains an optimal circuit which has
available all the variants, plus Li_1, Li-1Z}, #nd Ry, for all & (assuming suitable
interpretations for the cases of kK = 1 and N). But these are all the multiplier outputs
of Algorithm 1; hence, by Lemma 1 this optimal circuit »as at least as many
multiplications as Algorithm 1, so Algorithm 1 is optimal.

A product Z; - - - Z; is called internal if i #1 and j # N.
Lemma 3. No optimal circuit may compute any internal product.

Proof. I a sequence of transformations from Lemma 1 is applied to an arbitrary
optimal circuit, no internal products ar« altered However, the resulting circuit, that

oi Algorithm 1, has no internal products. Therefore, no optimal circuit has internal
products.

Lemma 4. If an optimal circuit does not contain L;, it does not contain L;, i <j<N.

Proef.. An wdternal product is required to compute L;, i <j <N without L;. But by
Lemma 3 an optimal circuit may not contain an internal product.

The following theorem implies that any optimal circuit must be essentially th.
same as the circuit for Algorithm 1. The circuits will, in fact, differ only in the
association of the last two multiplications along the path to each Variant, (k > 0), anci
in the value of i used in the multiplication: which computes Variantg = LR, ;.

Theorem 2. Every optimal circuit computes {L;|i =2,...,N-2},{R;|i=3,...,N -
1} and for each : (i=2,...,N-1) one of L, ,Z}| or Z!R:,,. No optimal circuit
computes Z,Z |, Z\Z;, or Z,Z; unless j =i+ 1 and eitheri=1orj=N.

Proof. Consider an optimal circuit which does not contain L, i < N —-2. By Lemma 4,
the circuit does 1t contain L;., either. Now apply transformations independently to

Sensitivity analysis in associative multiplication problems 85

P;.1 and P; .5, by Lemma 2. A new multiplier with output L; is created as a result of
the transform on P;,;. As a result of the transform on P;,,, a new multiplier with
output [, is created. Since the transforms are independent, L., does not use input
from any vertex created by the transform on P;. But, by Lemma 3, L;. ; must receive
L; as input. Hence, the transformations have created an optimal circuit with two
multipliers having output L;, which we observed in Lemma 1 was a contradiction.
Therefore, it must be that the optimal circuit did contain L, i < N —2. It is easy to
show that as long as L; is available, it will be suboptimal to compute .Z,Z;., since at
the same cost one can compute 1.,.Z ;.
The argument about {R;} and {Z|Z,.,} is analogous.

S. Type Il sensitivity analysis

In this section, a number of results for other sensitivity analysis problems will be
presznted. All the problems (including the one above} can be considered as the
executiocn of a series of commands of the form CHANGE Z; to Z], RESTORE Z; to
its previous value, and compute PRODUCT. (The command handler may wish to
store some intermediate products.) In the sensitivity analysis problem presented
above, each CHANGE command was immediately followed by PRCDUCT and
RESTORE, each Z, was CHANGEdAd exactly cnce, and the entire sequence was
known in advance. There are several other interesting kinds of problems having
different restricticns and different advance information.

5.1. Type II sensitivity analysis in commutctive semigroups

In a hill-climbing optimization procedure, one might not RESTORE Z| to its
original value before altering Z;,,. If RESTORES are omitted, another interesting
(open) problem could be to optimally handle arbitrary sequences of CHANGESs. We
consider in this section only the case, where CHANGEs are made successively to Z;,
Z,,...(In commutative semigroups, if the sequence of CHANGES is known in
advance ai.d no term is CHANGEd twice, one may reorder terms to achieve this
situation.)

As before, let Variant, denote [1/L, Z;, butlet Variant, 2 ([I;<« Z;)([1,=« Z;). The
sensitivity analysis problem of this section is again to compute {Variant, |k =
0,...,N}.

A snmple algorithrn is optimal for this problem also. Let R, 2 [[;~ Z; (as before),
and let L. 2[[i<c Z.

Algorithm 2.
Step 1. Compute {R; |k =N -1, N -2, ..., 1} by multiplying right to left.
Step 2. Compute {L;|k =2,..., N} by multiplying left to right.
Step 3. For k =1 until N compute Variant, := L; R, (by convention multiplying
by the nonexistent Ry . has no effect or cost).

86 A. Rosenthal

This algorithm requires 3N-3 multiplications, and storage for N-2 intermediate
results.

Theorem 3 (below) is stronger than Theorem 2 in two ways. The circuit is
compared with circuits for the apparently easier problem set in <ystems where
multiplication commutes. And there is no hedging on uniqueness. In proving the
necessary lemmas below, assume inductively vhat Theorem 3 holds through N —1.
(The statement is trivial for 1 and 2.) It will be useful to define the deletion of input
Zx from an algorithm (i.e. circuit). To delete Zy, eliminate all multiplications of the
form YZy (i.e. where Zy is an input). When (YZy) is subsequently used. use Y
instead.

The deletion of Z) is defined similarlv. Note that only multipliers which receive
Zy or Zy as inputs are removed.

Let SENS(N) denote the sensitivity analysis problem for products ¢f N quantities,
and consider any optimal circuit (calied CIRC(N)) for SENS(N). Let CIRC(N —1)
denote the circuii obtained by deleting Zy and Z x from CIRC(V). (CIRC(N —1) is
appropriately named; Theorem 3 and Lemma 5 will imply that it is the optimal
circuit.)

Lemma 5. (i) CIRC(N —1) solves SENS(N —1).
(i) Atleastthree multipliers were 2liminated by the deletions, twe involving Zxas an
input, and one involving Z \.

Proof. (i) In SENS(N — 1), the required outputs differ from those of SENS(N) only in
that Zy or Zx should not be part of the product. The deletion of Zy and Z
accomplish this.

(i) Zn was clearly involved in at least one multipiication, the one which formed
Varianty. This multiplication is deleted. Zx multiplies some primed [respectively
unprimed] terms in the course of computing Varianty_, = ([{I1' Z)Zx [Variant, =

L1 Zn]. Hence ai least two multiplications are deleted when Zy is deleted.

Lemma 6. An optimal circuit CIRC(N) for SENS(N) hus exactly 3N-3 multipliers.

Proof. CIRC(N) cannot have more multipliers than the circuit for Algorithm 2,
which has 3N —3. Now, by inductive hypothesis, Algorithm 2, which uses
3(N —1)-3 multiplications, is optimal for SENS(N —1). Hence, CIRC(N -1)
(obtained by deleting Zy and Z from CIRC(N)) has at least 3(N — 1) — 3 multi-
pliers. Since at ‘east three multipliers were removed by the deletion, CIRC(N) has at
least [3(N —1)—3]+3 = 3N — 3 multipliers.

Lemma 7. In every optimal CIRC(N), Z x multiplies just L1, and Zy multiplies just
L;\/_l and ZN-1.

Proof. In an optimal circuit, there can be only one multiplier which computes a given
ouiput. Let M denote the unique multiphier in CZIRC(N — 1) whose output is Ly _;.

Sensitivity analysis in associative multiplication problems 87

Suppose Varianty =Ln-;Zy is not computed in CIRC(N) by multiplying the
cutput of M by Zj. Consider then the multiplier in CIRC(N) whose output is
Ln-1Z N. After Z§ and Zy are deleted to form CIRC(N —1), this multiplier has
output Ly_; in CIRC(N —1), contradicting the uniqueness of A in CIRC(N —1).
Hence, Varianty ‘nust be computed in CIRC{N) by multiplying Lx_; by Zx.

An identical argument will show that Varianty _; must bec computed by multiplying
L;\'—l by ZN.

Two of the new multipliers have been fixed. There remains only the multiplication
of Zy by unprimed terms.

In CIRC(N —1), the paths which compute Variant, and Varianty_, share Zy_;
but no other inputs or multipliers, since one has primed terins, and the other
unprimed. (Recall that N >2.) But for CIRC(N) to solve SENS{), both of these
computations must include Z. This can be done using one additional muitiplier only
if Zy—1 multiplies Zy and the output is used in the later computztions.

Thesrem 3. For the type II sensitivity analysis problem, in commutative semigroups,
Algorithm 2 is optimal and its circuit is the urique optimal circuit.

Proof. The theorem will now be proved by induction on N. The assertion is easily
verified for SENS(1) and SENS(2). Assume N > 2 and that the theorem holds up to
N-1. Lemma 5 has shown that Algorithm 2 solves SENS(N —1). The proof of
I.emma 6 has completed the inductive proof cf the assertion that Algerithm 2 is op-
timal. Since every optima! CIRC(N) has 3N — 3 multipliers, and every CIRC(N — 1)
obtained from an optimal CIRC(N) by deleiion has at most [3N-3]-3=
3(N —1) -3 muitipliers, every CIRC(N —1) so obtained is an optimal circuit for
SENS(N —1). CIRC(N —1) is unique, by inductive hypothesis.

By Lemma 7, the three deleted multipliers must all be in specific places in
CIRC(N), i.e. there is only one optimal circuit for SEMS(N). By Lemma 6,
Algorithm 2, which uses 3N — 3 multiplications, is optimal.

5.2. On line computation

In previous examples, we knew in advance what variables were to be CHANGEGJ,
1.e. what variants were to be computed. Suppose now that after the initial product 1s
computed, a user at a terminal gives commands ‘CHANGE Z; and compute
PRODUCT’ without any prespecified ordering. Products must be computed
immediately, i.e. on line. We will assume that N —2 intermediate results may be
stored (all the intermediates from one computation). How may the number of
multiplications be kept small? An elegant solution is obtained by reformulating the
problem using binary trees.

Left-to-right multiplication is just one way of assocating (i.c. parenthesizing) the
elements Z, to form the product. Any association may be represented by a binary
tree, with the values Z; at the lzaves and each internal node representing the product

88 A. Rosenthal

of its two sons. The original product [[Z; is computed according to some binary tree,
and the intermediate results are stored. Now, suspose Z; is CHANGEd to Z . It will
be necessary to recompute values in the tree along the path from Z; to the root; the
number of new multiplications equals the length of that path.

5.2.1. Optimal worst case

To minimize the worst-case time, the multiplication pattern should use a uniform
binary tree. With such a tree, at worst [log; N1 CHANGESs will be needed. By
contrast, the tree corresponding to left-to-right multiplication has worst-case path
length N - 1.

[loga N is optimal, as long as only one set of intermediate result: (i.e. only one
tree) is allowed to be stored. We conjecture that keeping more than one tree would
be counterproductive in practice, as the time to update all trees after unrestored
CHANGES would probably exceed the time saved.

5.2.2. Optimal expected number of multiplications

Let the weight of the /th leaf node be the frequency with which Z; is CHANGEGJ.
To minimize expected number of multiplications, we need the ordered binary tree
with minimum weighted external path length. T.C. Hu has a complicated
O(N log N) algorithm for this problem [7].

In many applications, multiplication commutes, so it is undesirable to enforce an
ordering on the leaves of the tree. To minimize the expected number of multi-
plications with reordering permitted, one uses a Huffman tree (which is found by a
very simple O(N log N) algorithm [7]).

5.3. Open problems

5.3.1. Off-line computation
Suppose the sequence of all future commands is known in advance, but is not of the

simple formns considered in Sections 3 or 5.1. This probiem is open. A greedy strategy
may be appropriate.

5.3.2. Unknown stationary random process

No knowledge of the relative frequencies is available, but the process generating
CHANGE:s is known to be stationary, so that relative frequencies can be estimated.
This is also open. The results in [1] about adaptive trees may be relevant.

5.3.3. Multiple changes

All rroblems considered so far have command lists with at most one CHANGE
between PRODUCT commands. Bentley has adapted techniques irom selection
problems to deal with multiple CHANGE:S [2].

5.3.4. Commutativity

If multiplication commutes, then the lower bound argument of Theorem 1 is no
longer valid, since it assumes Z} must be multiplied separately on the left and right.

Sensitivity analysis in associative multiplication problems 89

We know neither a way to resurrect the lower bound nor a way to speed the
algorithms by exploiting commutativity. ‘

If multiplication commutes and has an ir.verse (i.e. the semigroup is an Abelian
group), thea it is sufficient to multiply [[~ Z; by Z:Z ' to CHANGE Z, to Z}. To
solve our original problem, (N —1)+2N =3N —1 multiplications plus N inverse
computations are needed. This simple prccedure will probably be superior if inverse
calculations are easy.

5.4. Circuit depth and parallelism

If the computation is to be done in parallel, one might wish a circuit of minimum
depth. Techniques developed in [8] appear applicable.

5.5. Time-space tradeoffs

The naive O(N?) algorithm requires storage for only one inter.nediate praduct; a
slightly modified version of the naive scheme uses 3(N — 1) (N +4) multiplications and
two intermediate results. Our time-optimal method used 4N — S multiplications and
N —2 locations. An interesting research question would be to find the time-optimal
algorithm as a function of allotted storage. [2] and [14] report schemes requiring
O(N log® N) time and O(log N) storage.

6. Summary

The study of associative multiplication protiems has been motivated. For several
kinds of sensitivity analysis in associative mulitiplication problems we have preseuted
algorithms and demonstrated the algorithms’ optimality. A number of open ques-
tions have been posed.

References

[1] B. Allen and I. Munr:, Self organizing binary search trees, J. ACAM 25 (1973) 526-535.

[2] J. Bentley, Fersor:al communication, Carnegie-Mellon University.

3] G.A. Cheston, Incremental algorithms in graph theory, Technical Report 91, Department of
Computer Science, University of Toronto (1976).

[4] F.Y. Chin and D. Houck, Algorithms for updating minimum spanning trees, J. Compur. System Sci.
16 (3) (1978) 333-334.

[5] A.M. Geoffrion and R. Nauss, Parametric and postoptimality analysis in integer linear program-
ming, Management Sci. 23 (5) (1977) 453-466.

[6" S. Goto and A. Sangiovanni-Vincentelli, A new shortest path updating algorithm, Networks 8 (1)
(1978) 341-372.

(7; D. Knuth, The Art of Computer Programming (Addison-Wesley, Reading, MA, 1973).

(81 R. © dner and M. Fischer, Parallel prefix computation, International Conference on Parallel
Procossing (1977).

{91 K. Murty, Linear and Combinatorial Programming (Wiley, New York, 1576).

90 A. Rosenthal

[10] A. Rosenthal, Sensitivity analysis in nonserial optimization problems, to appear.

[11] A. Rosenthal, De:omposition algorithms and sensitivity analysis for probabilistic circuits and fault
trees, to appear.

[12] H. Salkin, Integer Programming (Addiscn-Wesley, Reading, MA, 1975).

[13] P. Spira and A. Pan, On finding and updating spanning trees and shortest paths, SIAM J. Comput. 4
(3) (1975) 375-380.

[14] N. Swami, Personal communication, University of Illinois.

[15] R. Wagner, Order-n correction for reg* lar languages, Comm. ACM 17 (5) (1974) 265-268.

