
Theoretical Computer Science 14 (1981) 79 -90
North-Holland P~blishing Company

OPTIMAL ALGORITHMS FOR SENSIT!Vr~TY ANALYSIS
| N A S S O C I A T I V E M U L T I P L I C A T | O N P R O B L E M S *

Arnon ROSENTHAL**
Department of Computer and Communication Sciences, The University of Michigan, Ann Arbor,
M148109, U.S.A.

Communicated by R. Karp
Received November 1978
Revised November 1979

AbstraeL We consider efficient ways of determining the sensitivity of a product to changes in
individual factors. The task is motivated by several interesting combinatorial and numeric
problems which can be given a unified formulation as the problem of findi.n~ the
(associative) product of N objects. Both deterministic and probabilistic changes to the factors are
considered. Algorithms for two kinds of deterministic variation schemes are considered. No atrivial
lower bounds are obtained which demonstrate the algorithms to be optimal. For prob~bilistic
choice of the parameter' to be varied, it is shown that optimal ordere6 binary search t~ees or
Huffman trees determine the optimal strategies. A number of unsolved problems are posed.

1. Introduction

We consider a number of apparently d;ifferent applications for which parameter
variation studies are performed. By 'parameter variation', we mean that each
individual input will be changed, and the effect of this change on the problem sol~ution
noted.

Parameter variation studies (or equivalently, sensitivity analyses) are necessary in
many optimization and other computational problems. When the :input dat~ is
known to be unreliable, it is desirable to study how the optimal value changes if some
of the data is altered. Such sensitivity analysis procedures may exploit duality [12] or
linearity [6] in the problem domain, or special properties of certain algori~hras for
graphical computations [3, 4, 13], or of certain branch and bound algorithms [5].
Nonserial associativity is exploited in [10, 11]. [15] exploits the simple struct~Jic of
regular languages.

We consider one-variab,..-at-a-time sensitivity ana,lysis on a very simple kind of
computation: m,altiplying N quantities Z x , . . . , ZN in some arbitrary associative
multiplication structure (i.e. semigroup). Given new values Z ~ , . . . , Z~, define

* This work was partially supported by a grant from Horace H. gackham Graduate School and by
National Science Foundation MC'$77-01753.

** Current address: Sperry Research center, Sudbury, MA 01776, U.S.A.

80 A. Rosenthal

variants by: Variantk----([Ii<kZi)Z'k(l-Ii>kZi). Vadanto will denote II~=l zi . The
Type I sensitivity analysis problem is: Compute {Variantk [k = 0, 1 , . . . , N}.

Note that there is no scalar measure of sensitivity; rather, we sl.mpl,; output all the
variants. The product operation is assumed only to be associative.

2. Applications

(1) Error correction: If a l , . . . , aN is an input.string of a finite automaton with
transition f,mction 8, 8a, can be defined as the transition function corresponding to
character ai. (That is, if q is a state of the machine, then 8a,(q) = (q, ai).)

We can then extend our definition so that 8,,~...~ k is the transition function
corresponding to the string aj • • • ak. Our goal is to compute the trahs;tion function
corresponding t~ the input string a l a 2 ' ' ' a N . The semigroup ele:nent Z~ is the
one-step transition fur tction #a,.

The parameter variation problem is to study how the function 8 ~,~... a,, is changed if
u~ is chm:ged to a~,. The scheme could be useful in error correction attempts for
regular languages. For instance, an error correcting interpreter could quickly find the
'~ c,st likely' single-chin acter errors. Attempts to insert semicolons as terminators, to
in*:erpolate multiple ch racters, or to transpose adjacent pairs of characters require
only a small modificati ~n e¢ our procedures. See [15] for a more powerful but more
conaplex approach to this problem.

(2) Consider optimization problems expressible as seria: discrete decision
p!0cesses, solvable by either forward or backward dynamic programming. A
sc,;naewhat simplified version may be expressed as. follows: Given N known func-
ti~as, f ~ , . . . , fN, each a function of two variables with finite ranges, compute the
f; nction

h(xl , xN+l)---- min
{values of

X2,X3 , XN}

Lfi(x x2) + A(x2,. x3) + " " + [N(xN, XN+,)].

The parameter variation problem is to exp!ore the effect of varying each]'~. Each Z
represent,,; a function f~. Zi.Z~+l is the function g given by

g(xi, xi+2) = rain ~ (X i , Xi+l)'{"fi+l(Xi+l, Xi4 .2)] .
~'q+l}

The next three problems may be transformed into instances of the above opti-
mization problem. The state variables of the usual dynaraic programming recur-
reJxces map to the variables xi above. The examples are iv, eluded because they are
more familiar than the general optimization problem.

Sensitivity analysis in associative multiplication problems 81

(3) Assignment of tasks to machines: Suppose a task can be decomposed into N
sequential stages, and to do stage i at location] costs p~(j). Moving the output of
stage i at location u to locatior, v costs ci(u, v). We wish to choose {x/a__ location of
task i[i = 1 , . . . , N} to minimize the total processing costs p][us communication costs.
That is, minimize

N - 1

~ = Z [pi(xi)+Ci(Xi, ti+1)]+pN(XN).
i=1

The parameter variation problem i:s to explore tile effect on rain e2' of altering each
[(p,(.) + c / (. , .)].

(4) Consider the classical reso~urce allocation problem of allocating limited
resources among competing proiects so as to maximize profit. The problem may be
formalized as: Given functions ri(.),] = 1 , . . . , N, f~r each value of TOTAL,
0 ~< TOTAL ~ LIMIT (for some known LIMIT), choose the single stage allocations
Y1, Y 2 , . . . , YN to maximize ~ r i (Y /) subject to ~ Y}=TOTAL. We change
variables with xi~Y~{ -1 ~ (so Y/= xi+l-xi) .

The functions rj are the inputs that are to be varied, and the: maximum value of
~'.r~ri(Yj) is the output, fj(x],Xi+l)~ri(xi+l--Xi), x1 is 0 by definition. H(0, XN+I)
tells the best return at:hievable with XN+I resource units. The parameter
variation problem is to explore the effect of altering each r i.

(5) Equipment replacement: A machine's operating cost change~.~ with time. At the
start of each time period, one may exchange a machine of any age for a machine of
any other age. (A cash payment may be involved in the trade.) Functions f/which tell
the trading plus operating cost during period i for each possible trading act on are
known. The problem is to choose a replacement strategy to minimize costs over some
given number of time periods.

(6) The group knapsack problem [12], (from relaxation methods for integer
programs) is: minimize cx (x >~ O, integer vector) subject to A x =- b (mod 1). Several
parameter variation problems may be defined. One may study the effect (on rain cx)
of changing columns Aj to alternate values A~, and also change b to b', while still
imposing the congruence constraint. The semigroup element Zj is the jth column
vector m i (in the ring).

(7) Multiplication of N matrices: Given equal sized square matrices M ~ , . . . , MN,
find the product M t M 2 " " MN. The parameter variation p rob ' n is to explore the
effect of changing each M~.

(8) Convoluti~,n of Nfvnct ions: The probability density fu: tion of the s~m t~f N
random variables is formed by the convolution of the individt, al densities. In one
application (noted by D. Shier) the individual randc.m .,ariables represent souroes of
measurement error, and the probability density function for total, error is desired.
The parameter variation problem is to find the effect of altering the individual
densities. The sernigroup element Z~ is the density function of the ith random
variable.

82 A. Rosenthal

3. A simple, yet optimal algo~0un |or Type | sen~Rlvity analysis

Devising sensizivity analysis algorithms is difficult only in the specific settings. (The
equipment replacement problem was our starting place.) Algorithm design is much
easier when one abstracts to a semigroup setting.

The most direct solution to the sensitivity analysis problem is tc compute each
w~riant separately. N - 1 multiplications will be needed for each k, for a total of
O(N2). With a little care, the running time can be reduced to O(N).

Define left partial l'roducts L~ for 1 <~ i <~ N, L~ _a l-Ii<<-~ Zi. Also, define right partial
products R~ a__ Nj~>~ Zj. We adopt the convention that multiplying any X by the empt~
terms L0 or RN+~ restdts in X but costs nothing.

Algorithm 1.
Step 1. Multiply the terms Zi right to left, obtaining

{R, I i = N - 1 , . . . , t}.

Step 2. Multiply the terms Zi left to right, obtaining

{L, l i = 2 , . . . , N - ~ } .

Step 3. For k = 1 ',mtil N" compute Variant~ := Lk-~Z'kRk+~.

Complexity. Exactly (N - 1) + (N - 2) + (2 N - 2) = 4 N - 5 multiplications are
performed. (~ - 2) intermediate results must be stored. (We may combine Steps 2
and 3; Rk wilt be discarded when Lk (~s computed.)

It seems desirable to relate the multiplication count to running time in each
application. For 'number of algebraic multiplications' to be a useful complexity
measure, the time for multiplications must be roughly constant. For certain appli-
cations which were deliberately omitted from our li~t (e.g. the 0--1 knapsack problem,
polynomial multiplication), ar~ elementary term Zk (which ":.'1 knapsack problems has
only two entries) requires much less time to multiply than a partial product. In this
kind of situation, it may be best to compute 1he variants directly from tbei,
definitions. O(N 2) multiplications will be required, but each multiplication will
include a simple term Zi as one operand.

40 Optimality and near-uniqueness

We will obtain a lower bound on the algorithm's worst case performance by
considering i~ts behavior in a situation without useful input-dependent relations, e.g.
the free semigroup with unequal inputs. Algorithms operating in this setting are
essentially straight line programs, performing a sequence of semigroup multi-
plications, To provide a handier description, we model an arbitrary straight line
program on given size input by a circuit. Inputs to the circuit are the values
Z1, . . . ,ZN, Z ~ , . . . , Z~v. Each gate forms the product of its two inputs. The

Sensitivity analysis in associatiw, multiplication problems 83

~.~,dtiplier outputs may be routed to any number of other multipliers but no directed
cycles are permitted. The circuit's outputs are the desired variants. A cir,~.uit is
optimal if it contains the minimum possible number of multipliers.

t h e o r e m 1 (below) shows that Algorithm 1 is optimal. Theorem 2 shows that all
optimal algorithms are nearly the same as ,Mgorithm 1.

Consider any optimal circuit, and for any k > 0 let Pk denote a path in the circuit
from Z~, to Variantk.

Lemma 1. Any optimal circuit may be transformed int9 an optimal circuit in which
(i) Lk-1 and Rk+l are available as multiplier outputs,

(ii) the output values of multipliers not ov Pk in the original circuit remain
unchanged.

ProoL First, a transformation will be defined. We begin by deleting Pk from the
circuit. Next, insert new multipliers in such a way that all the orphaned multipliers off
Pk which were inputs to Pk from lc~t [right] are multiplied together left to right [right
to left]. Now, multiply the grand left product by Z~ and the result by the grand :right
product. It is shown below that the transformed circuit still solve'~ the sensitivity
analysis problem 0.e. computes all the variants), has no more multipliers than the
original circuit, still uses a minimum number of multiplications, and satisfies con ti-
tions (i) and (ii).

We begin with some observations. Since the original circuit was optimal, it could
not compute any superfluous outputs. For inst,.nee, outputs which included the ~;ame
term twice or two 'primed' terms would not be present in an optimal circuit. Thus the
subgraph consisting of all edges cn directed paths leading to Variantk must be a tree,
with Z~, the only primed input. Each multiplier has % inputs, so all these trees are
binary. All binary trees on N leaves :we the s~me number of multipliers (i.e.
internal nodes).

It is readily seen that multipliers oa Pk are used only to compute Variantk and that
no multipliers off Pk have been altered (although the destination of some oul:puts
may have changed). Thus, variants other than Variants: are unaffected by the
transformation. Now, the grand product formed on the left includes all t~rms to the
left, and hence is L k - 1. Similarly, the gt~nd right product is Rk + 1. Multiplying these
with Z~ as. specified produces Variantk. Hence, the circuit still computes aU the
variants. This argument has also verified that coJ~ditions i and ii of the lemm~t still
hold.

The tree below Variantk in the new circuit still has N leaves, so the n,~'mber of
multipliers there is unchaged. The rest of the circuit is unaltered. Thus the new ci ccuit
has the same number of multipliers as the old, and is optimal

Lemma 2. Paths Pk' and Pk" are vertex disjoint,]'or g ' # k". In an optimal circuit,
applyb~g the transformation to Pk' will affect multiplier outputs only on Pk'. (Hence the
transfi'rmation may be applied for different values of k, without interference.,

84 A. Rosenthal

Proof. In an optimal circuit, quantit/es which are not useful for any required output
cannot be computed. All multiplier outputs on Pk' [Pk"] include Z~,, [Z~,,,]. No useful
output includes both Z ' k' and Zk~. Hence Pk' and Pk" are disjoint.

The transformation changes the values only for multipliers on P:, or off Pk and
receiving input from a vertex on Pj~. If the second case arose, the product would
include Z~, but would not be used for computing Variantk, and hence could not be
used in computing any required output. Thus, the second case does not arise.

Theorem 1. Every algorithm for the sensitivity analysis problem uses at least 4N-5
multiplications i; the worst case (i.e. Algorithm 1 is opdmal).

Proof. By Lem..,aa 2, we may start with an arbitr~try optimal circuit and apply the
transformation for every k, k = 1 , . . . , N. One obtains an optimal circuit which has
available all the variants, plus Lk-~, Lk-~Z'k, ~nd .Rk+~ for all k (asst,ming suitable
interpretations for the cases of k = I and N). But these are all the multiplier outputs
of Algorithm 1; hence, by Lemma 1 this optimal circuit ~as at least as many
multiplications as Algorithm 1, so Algorithm 1 is optimal.

A product Zi • . . Zj is called internal if i ~ 1 and / # N.

Lemma 3. No optimal circuit ma) compute any internal product.

Proof. if a sequence of transformations from Lernma 1 is applied to an arbitrary
optimal circuit, no internal products art. altered However, thc resulting circuit, that
of Algorithm 1, has no internal products. Therefoze, no optimal circuit has internal
products.

Lemma 4. I f an optimal circuit does not contain L~, it does wot contain L i, i < j < N.

ProoL An h,ternai product is required to compute Li, i < / < N without L~. But by
Lemrna 3 an optimal circuit may not contain an internal product.

The following theorem implies that any optimal circuit must be essentially th~
same as the circuit for Algorithm 1. The circuits will, in fact, differ only in the
association of the last two multiplications along the path to each Variantk (k > 0), ant!
in the value of i used in the multiplication which computes Varianto = LiR~+I.

Theorem 2. Every optimal clrcuit computes {L, l i = 2, . . . , N - 2}, {Ri [i = 3 , . . . , N -

1} and for each / (i = 2 , . . . , N - 1) one of Li -1Z[or Z~Ri+I. No optimal circuit
computes ZiZ~, ' Z ,Z j , or ZiZi unless] = i + ! and either i = 1 or / = N.

ProoL Consider an optimal circuit which does not contain L~, i ~ N - 2. By Lemma 4,
the circuit does ~qt contain L~+ 1 either. Now apply transformations independently to

Sensitivity analysis in associative multiplication problems 85

B~+~ and P~+2, by Lemma 2. A new multiplier with output Li is created as a result of
the transform on Pi÷1o As a result of the transform on P~+2, a ,lew multiplier with
output Lj+~ is created. Since the transforms are independent, L~+~ does not use input
from any vertex created by the transform on P~. But, by Lemma 3, Lj+I must receive
L~ as input. Hence, the transformations have created an optimal circuit with two
multipliers having output L~, which we observed in Lemma 1 was a contradiction.

Therefore, it mu~t be that the optimal circuit did contain L~, i ~ N - 2. It is easy to
show that as tong as L~ is available, it will be suboptimal to compute ZjZ~÷ 1 since at
the same cost one can compute I.~Z~÷I.

The argument about {Ri} and {Z~Zi+I} is analogous.

5. Type |I sensitivity analysis

In this section, a number of results for other sensitivity analysiis problems will be
presented. All the problems (including the one above) can be considered as the
execution of a series of commands of the form C H A N G E Z/ to ZI, R E S T O R E Z~ to
its previous value, and compute PRODUCT. (The command handler may wish to
store some intermediate products.) In the sensitivity analysis problem presented
above, each CHANGE command was immediately followed by P R O D U C T and
RESTORE, each Zk was CHANGEd exactly once, and the entire sequence: was
known in advance. There are several other interesting kinds of problems having
different restrictions and different advance information.

5. I. Type H sensitivity analysis in comrnut~tive semigroups

In a hill-climbing optimization procedure, one might not R E S T O R E Z'i to its
original value before altering; Zi÷l. If RESTOREs are omitted, another interesting
(open) problem could be to optim~,lly handle arbitrary sequences of CHANGE~,, We
consider in this section only the case, where CHANGEs are made successively to Z~,
Z 2 , . . . (In commutative semigroups, if the sequence of C H A N G E s is known in
advance ahd no term is CHANGEd twice, one' may reorder terms to achieve this
situation.)

As before, let Varianto denote ~ = 1 Zi, but let Variantk a__ (H/~k Zi,)(Hi >~k Zi). The
sensitivity analysis problem of this section is again to compute {Variantk [k =
0 , . . . ,N}.

A simple algorithm is optimal for this problem also. Let Rk ~ l-Ii>~k Zi (as before),
t and let L~: a__ I-Ii<<-k Zi.

Algorithm 2.
Step 1. Compute {R~, [k = N - 1, N - 2 , . . . , 1} by multiplying right to left.
S.tep 2. Compute {L~:[k = 2 , . . . , N} by multiplying left to right.
Step 3. For k = 1 until N compute Variantk := L'kRk+! (by convention multiplying

by the nonexistent RN÷I has no effect or cost).

86 A. Rosenthai

This algorithm requires 3N-3 multiplications, and storage for N-2 intermediate

results.
Theorem 3 (below) is stronger than Theorem 2 in two ways. The circu;t is

compared with circuits for the apparently easier problem set in ~ystems waere
multiplication commutes. And there is no hedging on uniqueness. In proving the
necessary lemmas below, assume inductively ,hat Theorem 3 holds ~.hrough N - 1.
(The statement is trivial for 1 and 2.) It will be useful to define the deletion of input
ZN from an algorithm (i.e. circuit). To delete ZN, eliminate all multipl~cations of the
form YZ~ (i.e. where ZN is an input). When (YZN) is subsequently used. use Y

ir~stead.
The delet$on of Z ~ is defined similarlw Note that only multipliers which receive

2,~ or Z~, as inputs are removed.
Let SENS(N) denote the sensitivity analysis problem for products ef N quantities,

and consider any optimal circuit (cahed CIRC(N)) for SENS(N). Let C1P, C (N - 1)
denote the circuit obtained by deleting ZN and Z~v from CIRC(N). (CIRC(N - 1) is
appropriately named; Theorem 3 and Lemma 5 will imply that it is the optimal
circuit.)

Lemma 5. (i) C I R C (N - 1) solves SENS(N- 1).
(if) At least three multipliers were eliminated by the deletions, two invol:~ing ZNas ~n

input, and one involving Z'N.

Proof. (i) In SENS(N - 1), the required outputs differ from those of S;ENS(N) only it1
that ZN or Z ~ should not be part of the product. The deletion of ZN and Z~,
accomplish this.

(if) Z~v was clearly involved in at least one multiplication, the one whicl~ formed
VariantN. This multiplication is deleted. ZN multiplies some primed [respectively
unprimed] terms in the course of computing VariantN_~ = (l-[~_-q ~ ZI)ZN [Variant0 =
I-I~= ~ ZN]. Hc;,ce at least two multiplications are deleted wllen Z,v is deleted.

Lemma 0. An optimal circuit CIRC(N)]'or SENS(N) h~s exactly 3N-3 multiplier:~.

Proof. CIRC(N) cannot ha~e more multipliers than the circuit for Algorithm 2,
which has 3 N - ~ . Now, by inductive hypothe, sis, Algorithm 2, which uses

3 (N - 1) - 3 multiplications, is optimal for SENS(N- 1). Hence, C I R C (N - 1)
(obtained by deleting ZN and Z~v from CIRC(N)) has at least 3 (N - 1) - 3 multi-
pliers. Since at ~east three multipliers were removed by the deletion, CIRC(N) has at
least [3(N- 1)-3]+ 3= 3 N - 3 multipliers.

Lemma 7. In every optimal CIRC(N), Z'N multiplie.~: just L'~_I, and ZN multiplies just
L'N-1 and ZN-1.

Proof, In an optimal circuit, there can be only one multiplier which computes a given
output. Let M denote the unique multipher in EIP, C (N - 1) whose output is L~-I .

Sensitivity analysis in associative multiplication prablems 87

Suppose Var;.antN =L'N-~Z'N is not computed in CIRC(N) by multiplying the
output of M by Z~r. Consider" then the multiplier in CIRC(N) whose output is
L'N-~Z'N. After Z~v and ZN are deleted to form C I R C (N - 1) , this multiplier has
output L~_~ in C I R C (N - 1) , contradicting the uniqueness of M in C I R C (N - 1) .

" 7 r Hence, VariantN nust be computed in CIRC(N) by multiplying L~v-~ by ,~ N.
An identical argument will show that VariantN_~ must be computed by multiplying

L~-I by ZN.
Two of the new multipliers have been fixed. There remains only the multiplication

of ZN by unprimed terms.
In C I R C (N - 1) , the paths which compute Varianto and VariantN--2 share ZN-~

but no other inputs or multipliers, since one has primed ~erms, and the other
unprimed. (Recall that N > 2.) But for CIRC(N) to solve SENS(N), both of these
computations must include ZN. This can be done using one additiona~ multiplier only
if ZN-~ multiplies ZN and the output is used in the later computations.

Theorem 3. For the type H sensitivity analysis problem, in commutative semigroups,
Algorithm 2 is optimal and its circuit is the unique optimal circuit.

Proof. The theorem will now be proved by induction on N. The assertion is easily
verified for SENS(1) and SENS(2). Assume N > 2 and ~.hat the theorem holds up to
N - 1 . Lemma 5 has shown that Algorithm 2 solves S E N S (N - I) . The proof of
Lemma 6 has completed the inductive proof cf ~he assertion that Algorithm 2 is op-
timal. Since every optimal CIRC(N) has 3 N - 3 multipliers, and every CIRC(N - 1)
obtained from an optimal CIRC(N) by delezion has at most [3 N - 3] - 3 =
3 (N - 1) - 3 multipliers, every C I R C (N - 1) so ot~tained is an optimal circuit for
SENS(N- 1). C I R C (N - 1) is unique, by inductive hypothesis.

By Lemma 7, the three deleted multipliers must all be in specific places in
CIRC(N), i.e. there is only one optimal circuit for SE~S(N). By Lemma 6,
Algorithm 2, which uses 3 N - 3 multiplications, is optimal.

5.2. On line computation

In previous examples, we knew in advance what variables we;e to be CHANGEd,
i.e. what variants were to be computed. Suppose now that after the initial product ~s
computed, a user at a terminal gives command~ 'CHANGE Zi and compute
PRODUCT' without any prespecified ordering. Products must be computed
immediately, i.e. on line. We will assume that N - 2 intermediate results ma~y be
stored (all the intermediates from one computation). How may the number c,f
multiplications be kept small? An elegant solution is obtained by reformulatiag the
problem using binary trees.

Left-to-right multiplication is just one way of assocating (i.e. parenthesizing) the
elements Z, to form the product. Any association may be represented by a binary
tree, with the values Zi at the leaves and each internal node representing the product

88 A. Rosenthal

ef its two sons. The original product II Zi is computed according to some binary tree,
and the intermediate results are stored. Now, sw3pose Zk is CHANGEd to Z~,. It will
be necessary to recompute values in the tree along the path from Zk tO the root; the
number of new multiplications equals the length 01~ that path.

5;.2.1. Optimal worst case
To minimize the worst-case time, the multiplication pattern should use a uniform

binary tree. With such a tree, at worst [log2 N] CHANGEs will be needed. By
contrast, the t~ ee corresponding to left-to-right multiplication has worst-case path
length N - 1.

[log2 N] is optimal, as long as only one set of intermediate results; (i.e. only one
tree) is allowed to be stored. We conjecture that keeping more than one tree would
be counterproductive in practice, as the time to update all trees after unrestored
CHANGEs would probably exceed the time saved.

5.2.2. Optimal expected number of multiplications
Let the weight of the ith leaf node be the frequency with which Zi is CHANGEd.

To minimize expected number of multiplications, we need the ordered binary tree
with minimum weighted external path length. T.C. Hu has a complicated
O(N log N) algorithm for this problem [7.i.

In many applications, multiplication commutes, ,~o it is undesirable ~o en[orce an
ordering on the leaves of the tree. To minimize the expected numt~er of multi-
plications w~th reordering permitted, one uses a Huffman tree (which is found by a
very simple O(N log N) algorithm [7]~.

5.3. Open problems

5.3.1. Off-line computation
Suppose the sequence of all future commands is known in advance, but is not of the

simple forms considered in Sections 3 or 5.1. This problem is open. A greedy strategy
may be appropriate.

5.3.2. Unknown stationary random process
No knowledge of the relative frequencies is available, but the process generating

CHANGEs iis known to be stationary, so that relative frequencies can be estimated.
This is also open. The results in [1] about adaptive trees may be relevant.

5.3.3. Multiple changes
All r, roblems considered so far have command lists with at most one CHANGE

between PRODUCT commands. Bentley has adapted techniques irom selection
problems to deal with multiple CHANGEs [2].

5.3.4. Commutativity
If multiplication commutes, then the lower bour.:d argument of Theorem 1 is no

longer valid, since it assumes Z~, must be multiplied separately on the left and right.

Sensitivity analysis in associa~:We multiplication problems 89

We know neither a way to resurrect the lower bound nor a way to speed the
algorithms by exploiting commutativity.

If multiplication commutes and has an ir verse (i.e. the semigroup is an Abeilian
' 7 I group), theia it is sufficient to multiply I-I N z~ by Z'kZk ~ to CHANGE; Zk tO --, k. To

solve our original problem, (N - 1) + 2N = 3 N - 1 multiplications plus N inverse
computations are needed. This simple procedure will probably be superior if inverse
calculations are easy.

5. 4. Circuit depth and parallelism

If the computation is to be done in parallel, one might wish a circuit of minimum
depth. Techniques developed in [8] appear applicable.

3.5. Time-space tradeoffs

The na!ve O (N 2) algorithm requires storage for only one inter nediate product; a
1 . slightly modified version of the naive scheme uses ~t,N - 1) (N + 4) multiplications and

two intermediate results. Our time-optimal method used 4 N - 5 multiplications an0
N - 2 locations° An interesting research question would be to find the time-optimai
algorithm as a function of allotted storage. [2] and [14] report schemes requiring
O(N log 2 N) time and O(log N) storage.

6. Summary

The study of associative multiplication problems has been motivated. For several
kinds of sensitivity analysis in associative multiplication problems 'we have preset~ted
algorithms and demonstrated the algorithms' oDtimality. A number of open ques-
tions have been posed,

References

[1] B. Allen and I. Munro., Self organizing binary search trees, J'. A C M 25 (1978) 526-535.
[2] J. Bentley, Persor:,al communication, Carnegie-Mell6n University.
r3] G.A. Cheston, h~cremental algorithms in graph theory, Technical Report 91, Department of

Computer Science, University of Toronto (1976).
[4] F.Y. Chin and D. Houck, Algorithms for updating minimum spanning trees, J. Compur. System Sci.

16 (3) (1978) 333-33a.
[5] A.M. Geoffrion and R. Nauss, Parametric and postoptimality analysis in integer linear program-

ming, Management $ci. 23 (5) (1977) 453--466.
[6. ~ S. Goto and A. Sangiovanni-Vincentelli, A new shortest path updating algorithm, Networks 8 (1)

(1978) 341-372.
[7] D. Knuth, The Art of Computer Programming (Add.;son-Wesley, Reading, MA, 1973).
[8] R. ~. ~ner and M. Fischer, Parallel prefix computation, International Conference on Parallel

Prot.,:~sing (1977).
[9i K. Murty, Linear and Combinatorial '~rogramming (Wiley, New York, 1976).

90 A. Ro~n~al

[10] A. Rosenthal, Sensitivity analysis in nonserial optimization problems, to appear.
[11] A. Rosenthal, De,:omposition algorithms and sensitivity analysis for probabilistic circuits and fault

trees, to appear.
[12] H. Salkin, Integer Programming (Addisen-Wesley, Readhig, MA, 1975).
[13] P. Spira and A. Pan, On finding and updating spanning tree.s and shortest paths, SIAMZ Comput. 4

(3) (1975) 375-380.
[14] N. Swami, Personal communication, University of Illinois.
[15] R. Wagner, Order-n correction for re[', lar languages, Comm. ACM 17 (5) (19"r4) 265-268.

