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Model selection in fracture mapping from elastostatic data
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Abstract

In this paper, the inverse problem of imaging internally pressurized cracks from elastostatic measurements is investi-
gated with special attention to the question of model choice. The selection of the most probable model from among a finite
set of fracture geometry and loading model is carried out using Bayes factors. The modelling error variance is also esti-
mated during the inversion procedure. This Bayesian model selection method also produces a known limit for the resolu-
tion of fracture dimensions, which depends on the configuration of the measurements. Both synthetic and real field
examples in hydraulic fracture mapping applications are presented.
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1. Introduction

Model choice problems arise in inverse theory when data are analyzed to obtain a quantitative estimation
of some properties of a system whose interior characteristics are not well understood. In engineering applica-
tions, the data are usually inverted using a particular forward model, which is chosen a priori, and whose
validity is not in dispute. This is not always the case: in many instances, aspects of the model may be quite
uncertain, such as adequate knowledge of a boundary condition, or the postulated behaviour of a material,
etc. Further, the chosen forward model may fit the data but still be inadequate for prediction or extrapolation.
In such cases, one may question the usefulness and range of validity of the results obtained by inverse analysis
with a single fixed model. Quantitative model selection and hypothesis testing for data analysis have received
considerable interest in the statistical and ‘softer’ science communities (social, medical, etc.) in the last decade.
The Bayesian approach to the model selection problem has gained considerable support due to its versatility
and solid theoretical basis. Nonetheless, the investigation of model selection in engineering is nearly non-exis-
tent with the exception of Beck and Yuen (2004), though some interest has arisen in the geosciences, especially
with regard to the problem of modelling heterogeneous media (Malinverno, 2002).
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We are interested in the model selection problem arising in the mapping of internally loaded cracks from
elastostatic measurements inside or on the boundary of an elastic solid. This particular inverse problem arises
in applications such as non-destructive testing in engineering mechanics, and the detection of quasi-static
faults or man-made hydraulic fractures in geophysics. We are concerned chiefly with model uncertainties in
the parametrization of the crack geometry and loading. Our motivation is related to hydraulic fracturing, a
technique routinely used in the petroleum industry to enhance the productivity of reservoir formations. Map-
ping of the produced fracture is of great importance to oil companies for reservoir management purposes. In
practice, monitoring of the quasi-static deformation induced by such cracks is often carried out using high
precision tiltmeters: these measure a local, relative, quasi-static change of inclination due to the pressurization
and/or propagation of the hydraulic fracture. Typically, a measurement array would consist of at most a
dozen tiltmeters located either on the earth’s surface or in a monitoring borehole (see Fig. 1). Within practical
constraints, the array is designed to yield the least ambiguous data for inference of the fracture orientation and
geometry. Unfortunately, due to the elliptic character of quasi-static elasticity, the geometric signatures of the
fracture are attenuated very quickly as the distance between the measurement location and the fracture
increases. In the far-field, the fracture becomes equivalent to a Displacement Discontinuity singularity (i.e.
a dislocation dipole), which simplifies the forward modelling, but only fracture orientation and volume can
then be estimated (Lecampion et al., 2005). When measurements are located in the near-field, the shape of
the fracture has an important effect and the choice of the fracture model (geometry, internal loading) becomes
meaningfully inferable.

Several methods have been proposed for the identification of a stress free crack from redundant boundary
elastostatic data. In these cases, data are supposed to be available on part or the whole boundary of the solid
for a series of associated boundary loads (see Bonnet and Constantinescu, 2005 for a review). The methods of
solution range from the minimization of the data misfit with a parametrization of the crack (e.g. mesh char-
acteristic or geometrical parameters) (Chen and Nisitanu, 1993; Stravoulakis and Antes, 1997; Larson et al.,
1999 and Weikl et al., 2001 among others) to the use of ‘defect indicators’ such as the reciprocity gap func-
tional (Andrieux et al., 1999; Ben Abda et al., 1999) and topological sensitivity (Gallego and Rus, 2004). Very
few examples with real data have been published to our knowledge, with the exception of Larson et al. (1999).
Here, we are interested in a different problem, where the cracks are internally loaded and few measurements
inside or on the boundary of the solid are available. Further, the loading responsible for the observed data is
unknown. And unlike in the case of non-destructive testing, there is no practical freedom to adjust the loading
to better resolve the fracture.
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Fig. 1. Set-up of tiltmeter in shallow boreholes (left, After Appl. Geomechanics Inc.), and typical layout of a measurement array for
fracture monitoring (right).
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In petroleum applications, the fracture is located in a rock mass that can be rather inhomogeneous and
whose elastic properties are often poorly known. Even when the measurements are known to be located in
the near-field region of the fracture, the use of a complete mesh to model the fracture is more or less prohibited
by the unknown orientation of the fracture plane, and the limited measurements available. For engineering
purposes, it is more pragmatic to use a collection of computationally inexpensive fracture models (radial or
elliptical crack, square Displacement Discontinuity, single Displacement Discontinuity singularity, etc.) to
analyze the data, although all these models may be incorrect. Within this scope, it is natural to investigate
the problem of model selection and model uncertainty.

The remainder of this paper is organized as follows. In Section 2 we outline the forward modelling problem,
its associated inverse problem, and discuss relevant aspects of a typical measurement set-up. In Section 3 we
present a Bayesian model selection procedure. Computational and theoretical aspects are discussed. A syn-
thetic example (Section 4) shows the benefits of such an approach, especially in relation to the far-field/
near-field fracture resolution problem. Finally (Section 5), real tiltmeter data from a full scale hydraulic frac-
turing treatment are also inverted and different possible fracture geometries are tested. Section 6 summarises
our conclusions.

2. Problem description

2.1. Type of measurements

The methodology presented in this paper is valid for any type of elastostatic measurements, such as those
measured by strain gauges, LVDT (linear variable differential transformer), extensometers etc. The examples
presented in this paper focus on tiltmeter data. High precision tiltmeters with a resolution down to a nanora-
dians are used to measure the small deformation induced by remote hydraulic fractures. These instruments are
clamped to the rock formation in boreholes (Fig. 1), and record the change of inclination induced by the frac-
ture at a sampling rate of 5–10 s. The measured tilt angles w1,2 (along two orthogonal axis (e1,e2) of the instru-
ment) are related to two components of the curl of the quasi-static displacement vector u in the rock mass by
Fig. 2.
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Typically, due to practical and cost constraints; only a dozen instruments or so are used in field applications.
Fig. 2 shows the two tilts recorded by a tiltmeter during a real hydraulic fracturing treatment. The change of
tilt induced by the propagation of the hydraulic fracture can be clearly seen, as well as the beginning of the
return of the tilt toward zero after the end of the injection. This return is delayed due to fracture closure
and the consolidation effect linked with the diffusion of fracturing fluid in the rock mass.
T
ilt

s (
μ 

ra
d)

0 4 8 12 16 20 24 28 32 36

0

−0.4

−0.6

−0.8

−1

−1.2

Data

Fit

East Tilt

North Tilt

End of injection

−0.2

Time (min)

Field experiment: typical evolution of tilt data during a hydraulic fracturing treatment. The corresponding best fit obtained by
tially inverting the data with a static fracture model (DD singularity) is also displayed.
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The change of tilt between the beginning of the injection and a particular time t, obtained at several points
in the medium, provides accurate data for an inverse problem for the fracture geometry. The model used to
invert the data are static fracture models, fitted to the total deformation measured since the beginning of the
fracturing process. A likely extension of the inverse problem is sequential inversion of the data at a series of
times steps during the injection period, for monitoring the growth of the hydraulic fracture.

2.2. The forward and inverse problems

The elastostatic deformation and tilts induced by an internally loaded fracture S is a solution of the follow-
ing elastostatic boundary value problem in the domain X:
divC : eðuÞ ¼ 0 in X n S;

ðr � nÞ ¼ pðxÞ on S;
ð2Þ
where C is the tensor of elastic moduli, u the displacement field, e the small strain operator
eðuÞ ¼ 1

2
ð$uþ $TuÞ. and r = C : e(u) the stress tensor. Additional boundary conditions on the boundary of

the solid are needed to complete the elastostatic problem. In this paper, we consider only the case of a pres-
surized fracture in an infinite domain, such that the additional boundary conditions are vanishing displace-
ment and stress at infinity.

The internal fracture loading p(x) can be related to a displacement jump [D] of the fracture faces. This for-
ward problem can be recast in the framework of eigenstrain theory, so the displacements, stresses and tilts can
be obtained by a superposition of Displacements Discontinuity Singularities (see Eshelby, 1957; Mura, 1982;
Hills et al., 1996). For example, the displacement in the case of an opening mode fracture in an unbounded
medium can be expressed as
uiðxÞ ¼
Z

S
Uijkðx; x0ÞnjnkDnðx0Þdx0: ð3Þ
In our notation, (Uijk Æ Djk) denotes the displacement ui at x induced by a DD singularity of the form Djk

located at x 0. (Djk Æ nk) represents a displacement jump across an element oriented by its unit normal nk.
We define Dn = Dijninj as the normal component of the displacement jump. Similar integral representations
exists for the displacement gradient, stress and tilts. We note that the fundamental kernel Uijk – which is in
fact the jk-component of the stress tensor at x 0 generated by a unit point force along i at x – is regular every-
where except on the fracture (x = x 0). In the case of fracture monitoring, the instruments are located outside
the fracture domain, simplifying the evaluation of the integral in Eq. (3).

The inverse problem consists in finding the fracture dimensions, the orientation (S,n) and the opening pro-
file Dn(x 0) from observations of the tilts w1, w2 at N/2 different tiltmeter stations in the medium. This data
forms an observation vector d of length N.

Before discussing the solution of this ill-posed problem, we recall a recent result for the resolution of frac-
ture dimensions from elastostatic measurements (Lecampion et al., 2005). It can be shown that the details of
the fracture shape are attenuated very quickly as the distance between the measurements and the fracture
increases: a typical consequence of St. Venant’s principle in elasticity. Observations located in the far-field
deformation pattern of a pressurized fracture are only sensitive to the volume and orientation of the fracture:
in the far-field the fracture is equivalent to a Displacement Discontinuity singularity with an intensity equal to
the fracture volume. A severe non-uniqueness for fracture dimensions exists in that case. In the case of near-
field measurements, the shape as well as the internal pressure of the fracture start to have a visible effect on the
deformation field. The far-field/near-field transition has been estimated using a far-field expansion in terms of
the fracture length of a finite fracture solution in a full-space (Lecampion et al., 2005). Far-field monitoring
conditions are defined by the region
r > ‘ð1þ j cos bjÞ;

where r is the distance between the measurement and the fracture center, ‘ is the characteristic length of the
fracture and b is the angle between the fracture plane and the measurement location. This result is extremely
important in practice, as the measurements are often far from the fracture with respect to its length. By
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introducing the resolution index R ¼ ð‘ð1þ j cos bjÞÞ=r, we can distinguish between two kinds of practical
cases, near-field ðRJ 1Þ and far-field ðRK 1Þ.

For far-field fracture mapping, a simple DD singularity model (i.e. Uijk(x,x 0)njnk) with an intensity equal to
the fracture volume can be used to robustly invert the data and obtain the fracture volume and orientation.
For near-field cases, the dimensions of the fracture may be resolved but the choice of the proper geometrical
model becomes crucial. The limited information content in the data and the application of Occam’s principle
mitigate against the use of a high dimensional model for the fracture geometry. We thus deliberately avoid the
use of a discretization (using boundary elements for example) of the integral equation (3) in order to obtain a
finite linear inverse problem for the opening at each node for example. It is also obvious that the characteristic
length ‘ of the created fracture is not known a priori, so it is difficult to judge by inspection whether the data
correspond to the near or far-field regimes. In the following, simple fracture geometries and loading will be
used to analyze the data. Such simple parametrizations of the fracture, with analytical expressions for the tilts,
enable fast solution of the inverse problem.

With several candidate models, the choice of the best model requires explicit inversions for each model. For
a model Mk, the recorded tilt data d can be formally represented as:
d ¼ gkðmkÞ þ �k; ð4Þ
where gk is the model function simulating the tilt. In the case of fracture detection, gk is a nonlinear function of
the parameters mk of the model Mk. The model parameter vector mk contains the fracture orientation (with
normal n defined by Euler angles), dimensions parameters etc. The noise vector �k lumps the experimental and
modelling noise for the particular model Mk. This noise process depends on the chosen model (i.e: modelling
error) and depends on statistical parameters that must be jointly inverted with the fracture model. For sim-
plicity, we assume that the noise �k is Gaussian of zero-mean and variance r2

k : �k ¼Nð0; r2
kIÞ, which implies

assumptions of independence and stationarity.
Given a data set d representing the deformation induced by the fracture, we seek to estimate, among a set of

pre-supposed models Mk, k = 1,2, . . . the most probable model, along with its corresponding model param-
eters mk and model noise variance r2

k . To achieve this, we solve an inverse problem for each model and then
use a Bayesian criterion to rank the different models.
3. Bayesian model selection

3.1. Bayes factors

The posterior probability of model Mk, after the data have been observed, can be written using Bayes’
rule as
pðMkjdÞ ¼
pðdjMkÞpðMkÞ

pðdÞ : ð5Þ
The denominator p(d) in Eq. (5) denotes the probability that the data have been observed, and is a constant
which is taken to normalize the expression as pðdÞ ¼

P
kpðdjMkÞpðMkÞ. Here, pðMkÞ is the prior probability

of model Mk and pðdjMkÞ is the marginal probability of the data (also sometimes denoted the integrated like-
lihood) for model Mk. This last quantity involves an integral over the entire parameter space for the given
model Mk:
pðdjMkÞ ¼
Z Z

pðdjmk; rkÞpðmk; rkÞdmk drk: ð6Þ
In expression (6), the conditional probability p(djmk,rk) is the probability that the data d were generated by
model Mk with parameters mk, rk, and is usually called the Likelihood function for parameter estimation
problem. The probability p(mk,rk) is the prior probability on the model parameters and model variance for
model Mk. We shall refer to p(mk,rkjd) = p(djmk,rk)p(mk,rk) as the Bayesian posterior distribution for model
Mk.
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To compare two models, we compute the ratio of their posterior probability as in Eq. (5):
pðM1jdÞ
pðM2jdÞ

¼ pðdjM1Þ
pðdjM2Þ

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

B12

pðM1Þ
pðM2Þ

� �
: ð7Þ
The first factor B12 is the so-called Bayes factor: it is the ratio of the marginal probability of the data (6) for the
models M1 and M2. The second factor is the ratio of the model prior probability, and in many cases will be set
to unity, so model 1 and 2 are equiprobable prior choices. The main quantity of interest is thus the Bayes fac-
tor B12. As noted in Raftery (1996), when the Bayes factor B12 is greater than 10, the data clearly favours the
model M1 over the model M2. When 0.2 < B12 < 5, both models can be though to consistently reproduce the
data. Finally for B12 < 0.1, the data clearly favour the model M2 over the model M1.

In our case the set of models is discrete, so the general solution of the model selection problem can be split
into two parts. First, for each model Mk, from the posterior pdf p(mk,rkjd), we estimate the marginal prob-
ability pðdjMkÞ of the data using Eq. (6). Second, the full set of Bayes factors are computed in order to rank
the different models. The main difficulty is to compute the marginal probability of the data for model Mk,
which involves an integration over the entire parameter space in Eq. (6).

3.2. Definition and solution for a given model

In this section, we define all the required probability density functions (pdf) for a given model Mk, but drop
the reference to k for clarity. The likelihood is taken as a normal probability function for the error in Eq. (4):
pðdjm; rÞ ¼ 1

ð2pr2ÞN=2
exp � 1

2r2
ðd � gðmÞÞTðd � gðmÞÞ

� �
: ð8Þ
We assume that the prior on the model parameters p(m,r) is independent of the prior on the noise variance, so
pðm; rÞ ¼ pðmÞpðrÞ ð9Þ

and we choose normal forms for the prior on the model parameters m:
pðmÞ ¼ 1

ð2pÞh=2jC pj1=2
exp � 1

2
ðmp �mÞTC�1

p ðmp �mÞ
� �

: ð10Þ
Here mp is a vector of prior means for the h parameters of model M, and Cp is the corresponding prior covari-
ance matrix with its determinant noted as jCpj. As the error variance should be a positive scale number, we re-
parametrize and use a = logr as the unknown, where a 2 (�1,+1). We choose an uniform distribution for
a, which can be interpreted as a ‘flat prior on the order of magnitude of r’. Taking into account the Jacobian
of the transformation we obtain p(r) = 1/r (or equivalently p(logr) = 1). Such a prior is usually referred to as
Jeffrey’s prior in the literature. It may also be more formally derived from scale invariance arguments (see
Denison et al., 2002; Scales and Tenorio, 2001), and is well known to exhibit a non-integrable character.
The latter is not an issue in our application, as we form an approximate posterior pdf based on a Gaussian
approximation around the maximum a posteriori point (see below), which is a well defined pdf. Introducing
the vector z = (m,a) of dimension h + 1 as the total unknowns, we write the prior p(m,a) = p(m) = p(z) and
likelihood p(djm,r) = p(djz).

It remains only to characterize the posterior pdf p(m,rjd) = p(zjd) = p(djz)p(m)p(r) and compute the mar-
ginal probability of the data for the given model (6). The chief quantities of interest in the posterior pdf are the
mode location (most likely solution), and the dispersion about this point (parameter uncertainties). We note
that the use of Monte-Carlo Markov Chain (MCMC) methods to characterize the posterior has become very
popular in the last few decades, mainly due to the advance of computational power (Gilks et al., 1996). We do
not pursue this possibility, since respectable approximations to the quantities of interest can be obtained with
cheaper means.

The mode is located using standard Newton-based optimization techniques. For characterization of the dis-
persion, we approximate the posterior by a normal multivariate pdf centered on the mode. These approxima-
tions are much cheaper than MCMC methods, and have proved stable and accurate for our problem.
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The model marginal probability (6) in general requires a high dimensional integration, and is usually
numerically intractable. Several methods can be used in order to obtain an approximation to the integral:
we refer to Kass and Raftery (1995), Raftery (1996) for a complete discussion. We use analytical integrations
based on the normal approximation at the mode (the Laplace estimate), which provide good approximations.

Finding the mode ~z of the posterior p(zjd) is equivalent to finding the minimum of the functional
JðzÞ ¼ � log pðzjdÞ, which takes here the particular form (from Eqs. (8)–(10)):
Jðz¼ðm;aÞÞ

¼N þh
2

logð2pÞþ1

2
log jC pjþNaþ1

2
expð�2aÞðd�gðmÞÞTðd�gðmÞÞþ1

2
ðmp�mÞTC�1

p ðmp�mÞ:

ð11Þ
The minimization on a can be performed analytically, to produce an nonlinear least squares problem for m,
which can be solved using either Newton or Marquardt methods. We use a quasi-Newton algorithm (BFGS
with a Wolfe line search), which is computationally very efficient, but only converges to a local minima. In
order to globalize the algorithm, the optimization is re-started from several randomly drawn initial guesses
away from the first minima obtained (Nocedal and Wright, 2002).

The second step consists in approximating the posterior pdf around its mode. A quadratic approximation
of the functional JðzÞ ¼ � log pðzjdÞ around its minimum ~z is consistent with a normal approximation of the
posterior probability p(zjd) around ~z:
pðm; rjdÞ ¼ pðzjdÞ � pð~zjdÞ exp � 1

2
ðz� ~zÞT eC�1ðz� ~zÞ

� �
; ð12Þ
where eC is the posterior covariance matrix at ~z. This covariance matrix is the inverse of the Hessian of the
functional JðzÞ at the minimum ~z. The form of the covariance matrix is derived in Appendix A for the case
where the noise parameter is unknown. For our particular problem, and the models used, the functional JðzÞ
has proved to be relatively smooth and convex, and the normal approximation of the posterior generally ap-
pears very good in salient cross-sections of the log-posterior (see Fig. 3).

Computationally, once a minimum ~z of JðzÞ has been obtained, the covariance matrix eC can be estimated
in order to approximate the posterior. The approximation (12) enables an estimation of the marginal proba-
bility of the model defined by Eq. (6):
pðdjMÞ � pð~zjdÞð2pÞðhþ1Þ=2j eC j1=2
: ð13Þ
Other approximations have been suggested in order to estimate the marginal probability pðMjdÞ. One of the
most popular is the Bayesian Information Criterion (BIC), which originates in a simplification of (13) ob-
tained by assuming that the covariance matrix eC is diagonal. This somewhat crude approximation does
not require the computation of the covariance matrix, and seems to be adequate to compare different models
when the data is numerous (see Raftery, 1995 for a complete discussion). We prefer the more exact approx-
imation of Eq. (13) for computing the Bayes factors.

3.2.1. Effect of prior

The significance and use of prior probability distributions has been a topic of much debate in Bayesian esti-
mation (Scales and Tenorio, 2001; Denison et al., 2002). We do not intend to discuss this topic in detail, but
some aspects of the notion of ‘uninformative priors’ warrant discussion in relation to model selection.

Consider the case that, for a particular model, no a priori information on parameter mi is available.
From Eq. (10), this lack of a priori information might be interpreted as requiring a large variance (Cp)ii. Taking
ðC pÞ1=2

ii as a very large multiple of the prior value (mp)i ensures that the prior does not have an effect on the mode
of the posterior probability. This is easily seen from the form of the functional J Eq. (11) as (mi � (mp)i)

2/(Cp)ii

becomes negligible for very large (Cp)ii. Such large values also do not modify the estimated covariance matrix eC
at the mode (see Appendix A). However, the prior covariance does directly impact the term logjCpj term in Eq.
(11), which scales the value pð~zjdÞ of the posterior and thus drastically affects the marginal probability of the
model pðdjMÞ, as well as any Bayes factor computed from it. Such large non-informative priors will always
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heavily favour the model with the least number of parameters, when the Bayes factor are computed. This effect
is often called the Lindley paradox (see Denison et al., 2002).

Hence, as a rule of thumb, our non-informative priors are formed by taking standard deviations in the prior
model parameters value not more than one order of magnitude greater than the prior mean. This ensures that
the effect of the prior is minimal in the estimation of the posterior mode, but also that the Lindley paradox has
little effect on the estimation of the relative marginal model probabilities. In general, understanding of the
physics at the basis of the model provides a sound basis for choosing prior values and variances. We take
the prior covariance matrix Cp to be diagonal; since the fracture orientation is related to the initial stress, while
the length is related to the injected volume, there is no a priori reason to correlate these parameters in the
prior.
4. Synthetic example

4.1. Modelling

We have simulated tilt data due to a penny-shaped crack under constant internal pressure in a full-space for
different values of the fracture radius and internal pressure, spanning both far-field and near-field measure-
ment conditions. The simulated data corresponds to the propagation of a penny-shaped (e.g. radial) hydraulic
fracture in the so-called toughness dominated regime of propagation (Detournay, 2004). In this regime, the
propagation of the hydraulic fracture, located in a full space, is self-similar, and the pressure inside the fracture
is homogeneous. The evolution of the fracture radius R and dimensionless pressure p/E 0 are given by power
laws of time:
RðsÞ ¼ Lkckos
2=5;

pðsÞ
E0
¼ ��kPkos

�1=5; ð14Þ
where cko and Pko are constants (Detournay, 2004). The dimensionless time is defined as s ¼ t
tc

and the char-
acteristic time tc is related to the injection rate Qo, plane strain Young’s Modulus E 0, fracture toughness K 0 and
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fracturing fluid viscosity l0 : tc ¼ ððl01=5Q3
oE013Þ=K 018Þ1=2. The characteristic length scale Lk and dimensionless

number ��k are given by Lk ¼ ðE03Qol
0Þ=ðK 04Þ and ��k ¼ ðK 06=ðE05Qol

0ÞÞ1=2 respectively. In this example, we have
used Lk ¼ 160; ��k ¼ 10�3. The measurements consists of 13 tiltmeter stations (26 tilt data) located in a distrib-
uted array approximately 75 m above the center of the fracture. A number of data sets corresponding to
increasing fracture radius have been generated. The orientation of the fracture remains constant with a dip
h of 5� and an azimuth of 80� with respect to true North. A Gaussian noise component of standard deviation
rinput = 0.8l radians is added to the tilt data vectors prior to the inversion.

In this synthetic case, the knowledge of the ‘true’ length of the fracture as well as the distance between the
measurements and the fracture dictates if a particular data set corresponds to the far-field or near-field regime.
In the case of a penny-shaped crack, the characteristic length scale ‘ is equal to twice the fracture radius. For
each data set corresponding to a given value of fracture radius and internal pressure, we can compute the cor-
responding value of the resolution index R indicating far or near field conditions. For each value of R, we
perform the requisite model selection calculations. Three different models are thought to be able to explain
the data (Table 2).

• M1, a Displacement Discontinuity singularity (fundamental kernel). This model has three parameters: frac-
ture volume V and orientation (dip h and azimuth /), m = (/,h,V).

• M2, a penny-shaped crack of radius R under constant internal pressure e = po/E 0, this is the correct model,
m = (/,h,R, e).

• M3, a Square Displacement Discontinuity (DD) panel of half-length a and opening d : m = (/,h,a,d).

The different elastic solutions in an infinite medium for these models are known in analytical form and are
respectively given by Love (1927), Sneddon (1946) or Green (1948), and Rongved (1957) for the fundamental
kernel, penny-shaped crack and rectangular DD models.

The same prior information on fracture orientation is taken for all models (see Table 1). The prior on the
length-scales or volume are taken un-informative with a standard deviation about one order of magnitude
greater than the prior mean value.

4.2. Results

Fig. 4 shows the best fit of the tilt at one measurement location obtained with the different models for all the
data sets. Similar fits are visible at all measurement points. The penny-shaped and square DD models both
reproduce the data very well for any values of the resolution index simulated. The fit obtained with the
DD singularity model deteriorates for R > 1, i.e. when the measurements become ‘‘near-field’’. Similar con-
clusions can be drawn from the estimated fracture volume obtained by the different models (Fig. 5). In far-field
conditions ðR < 1Þ, all three models estimate the true fracture volume perfectly, but for near-field conditions
ðR > 1Þ, the DD singularity model clearly misestimates the fracture volume. Nonetheless, the estimation of
the fracture orientation is recovered well by all three models in the near and far-field cases.
Table 1
Table of priors used for the different models (synthetic example)

Models

h (�) / (�) V (m3)
Normal DD sing. Prior 0 85 10
M1 Prior std. deviation 15 15 100

h (�) / (�) R (m) � = po/E0 (10�3 –)
Penny-shaped Prior 0 85 10 0.5
M2 Prior std. deviation 15 15 100 10

h (�) / (�) a (m) d (10�3 m)
Square DD Prior 0 85 10 1
M3 Prior std. deviation 15 15 100 100



Table 2
Forward models used and their corresponding parameters

M1: DD singularity Volume Azimuth–Dip
V /–h

M2: penny-shaped Radius Dimensionless pressure Azimuth–Dip
R � = po/E 0 /–h

M3: square DD Half-length DD opening Azimuth–Dip
a d /–h

M4: rectangular DD Half-lengths DD opening Azimuth–Dip
a and b d /–h

M5: DDS norm and shear Volume Azimuth–Dip Shear intensity, orientation and location
V /–h I, /s, hs, ws and Xs
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Fig. 4. Evolution of the fit (2 axis of tilt, station 11) with respect to the resolution index R for the different models (synthetic example).
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Fig. 5. Volume estimated by the different models versus resolution index (synthetic example).

1400 B. Lecampion, J. Gunning / International Journal of Solids and Structures 44 (2007) 1391–1408
It is interesting to consider the fracture radius and internal pressure estimated by inverting the data using
the penny-shaped model (the ‘correct’ model). For small value of the resolution index, the estimation of
fracture radius and internal pressure are clearly wrong (Fig. 6). The results of the inversion also show, via
the posterior covariance matrix eC , a complete correlation of the two variables. Only for near-field data
ðR > 1Þ are the correct values obtained accurately.
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Figs. 7 and 8 show the evolution of the Bayes factors and estimated model noise standard deviation as the
resolution index increases. Interestingly, in the far-field cases ðR < 1Þ, the data favours either the DD singu-
larity or square DD model over the penny-shaped, since B21 and B31 are around 10�2. However, it is difficult
to discriminate between the DD singularity and square DD model. In the same regime ðR < 1Þ, the identified
noise standard deviations are similar for all three models, and close to the value of noise input on the simu-
lated data (rinput = 0.8l radians). This indicates, in the far-field, consistency between all the models and the
data.

For near-field conditions ðR > 1Þ, B21 and B31 are largely positive (Fig. 7). The Bayes factor B23 between
the penny-shaped and square DD models does not increase as fast as B21, but still rises quickly above 103. In
the near-field, as expected, the penny-shaped model is the most probable, followed by the square DD and
finally the DD singularity model. Further, the estimated noise standard deviation for the correct model
(penny-shaped crack) remains in the same order of magnitude as the input noise (rinput = 0.8l radians), while
the estimated noise is appreciably larger for both the DD singularity and square DD models as soon as R > 1
(Fig. 8).

It is important to note that conclusions regarding the most suitable model could not have been drawn from
the quality of the fit to the data alone (Fig. 4). If it is possible to eliminate for large resolution index the DD
singularity model from the lowest quality of the fit, it is impossible to chose between the penny-shaped and
square DD model as both produce a similar response. The Bayes factors are required to objectively rank these
competing models.
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5. A field example

5.1. Configuration

We examine now measured tilt data obtained during a full-scale hydraulic fracturing experiment performed
in October 2002 by CSIRO Petroleum at a mine located in New South Wales, Australia. The rock surrounding
the experiment is a hard, quartz monzonite porphyry orebody with an estimated Young’s modulus of 50 GPa.
A set of sub-vertical natural fractures (dip 85�, azimuth 130�) exist in the zone of the hydraulic fracturing
treatment. Over-coring stress measurements performed in the area indicated a stress field with near-vertical
minimum principal stresses. The induced hydraulic fracture is thus expected to propagate sub-horizontally
(i.e. perpendicular to the minimum in situ stress).

The fracture was driven by the injection of 10 m3 water over a 30 min period. The injection is localised in a
zone – isolated by inflatable packers – of a borehole drilled downward from a small underground gallery
located 500 m underground. The data was logged by an array of 13 tiltmeters positioned in two horizontal
galleries about 75 m above the fracture initiation point. Each tiltmeter was placed in a 2–3 m hole bored in
the tunnel floor. The influence of the tunnel (free surface) on the tilt response has been investigated numeri-
cally and has been found to be negligible (less than 1% difference between the tilts obtained). This can be
explained by the distance of the tiltmeter from the free surface (around 2 m) and the large distance between
the depth where the fracture was initiated (around 75 m down the level where the apparatus were located)
compared to the size of the tunnel (6 m diameter). The deformation pattern induced by the pressurized cracks
‘radiates’ around the tunnel and the ‘scattering’ effect is minimal. These tests justify the use of forward models
assuming an infinite isotropic homogeneous medium (Fig. 9).

Five different full-space fracture models have been investigated (see Tables 2 and 3). Three of them are
the previously described models: normal DD singularity, penny-shaped crack and square DD. Two addi-
tional models were also tested: a rectangular DD, as well as a model combining a normal mode DD sin-
gularity with a shear mode DD singularity. The effect of shear was added in order to take into account
any eventual shear deformation that could occur due to slip of the natural fractures surrounding the
induced fracture. In all cases, the fracture models are assumed to be centered on the injection point,
except for the model combining a normal and shear DD singularity; the shear fundamental DD is allowed
to sit anywhere in the medium, as shear is likely to occur on natural fracture surfaces, out of the hydrau-
lic fracture plane. The prior information for all model parameters is shown in Table 3. The prior standard
deviation on fracture dimensions is taken relatively loose, reflecting prior ignorance, but knowledge of the
state of regional stresses at the site has enabled us to introduce a slightly stronger prior on the fracture
orientation parameters. Note that the value of the fracture azimuth / is presented here with respect to
magnetic North.
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5.2. Results and discussion

Inversions for the different models were carried out with several data sets, corresponding to the total tilt
response at increasing time (every minute) during the injection period as well as shortly after the pump was
shut-in. The results for the different data sets are presented using their time elapsed from the beginning of
the injection as a reference. Tables 4 and 5 summarise the fracture azimuth and dip obtained by the different
models with the corresponding standard deviation estimated from the covariance matrix eC . These estimations
are consistent between models. The a priori value of fracture azimuth is recovered, indicating that the data are
uninformative with respect to azimuth. The estimated fracture dip is more refined (lower standard deviation),
but there is a larger discrepancy between models. Nonetheless, the fracture is always estimated as sub-
horizontal.

The fracture volume estimated by the different models is shown in Fig. 10 (see Table 7 for estimated value
and standard deviation at selected time). The results are in good agreement with the injected volume and the
loss of fluid (leak-off) in the formation estimated from downhole pressure records. It is interesting to note that
the fracture volume is very similar for all models, especially the DD singularities and penny-shaped crack. The
finite DD panels (square and rectangular) yield a slightly higher value. The length scales obtained for the finite
models are always highly correlated, with no particular trend with regard to fracture growth (Table 6).
Table 3
Table of priors for the different models (Field example)

Models

h (�) / (�) V (m3)
Normal DD sing. Prior 0 310 10
M1 Prior std. deviation 15 20 100

h (�) / (�) R (m) po/E 0 (10�3�)
Penny-shaped Prior 0 310 30 1
M2 Prior std. deviation 15 20 100 30

h (�) / (�) a/b (m) d (10�3 m)
Square/rectangular DD Prior 0 310 30 1
M3=M4 Prior std. deviation 15 20 100 30

Euler angles I (m3) Location (x,y,z)
Shear DD sing. Prior 0 1 Xinjection +M1 prior
M5 Prior std. deviation 60 20 50 for normal mode



Table 4
Fracture azimuth (in degrees) estimated by the different models (field example)

Time (min) DDS Penny Square DD Rectangular DD Shear + Norm. DDS

/ r/ / r/ / r/ / r/ / r/

5 131.7 19.64 129.7 19.96 143.0 17.6 120.3 18.9 130.3 6.1
10 133.3 19.45 129.9 19.92 128.3 15.4 123.5 19.0 129.9 5.1
15 133.3 19.25 128.0 19.96 137.5 17.3 158.9 8.41 129.9 4.2
20 131.9 18.89 129.9 19.91 124.7 13.5 158.1 8.86 130.3 3.2
25 132.3 18.85 126.8 19.86 137.4 14.6 132.5 15.9 130.1 2.8
30 131.4 18.60 128.2 19.85 128.2 13.3 132.1 16.7 130.1 2.4
35 129.9 18.31 130.9 19.79 130.6 13.5 91.22 6.59 130.3 2.2

Table 5
Fracture dip (in degrees) estimated by the different models (field example)

Time (min) DDS Penny Square DD Rectangular DD Shear + Norm. DDS

h rh h rh h rh h rh h rh

5 4.7 6.0 0.31 0.83 10.0 5.13 4.12 6.61 �4.99 0.17
10 5.0 5.1 0.422 1.53 9.65 4.52 9.87 7.39 �4.40 0.10
15 5.9 5.1 0.351 1.52 9.61 4.48 15.7 5.12 �4.31 0.10
20 7.7 5.4 1.044 2.17 12.7 4.84 14.6 5.32 �4.58 0.15
25 7.4 5.1 1.40 3.90 12.4 4.11 13.2 5.13 �3.65 0.10
30 8.4 5.3 1.540 5.20 14.0 4.53 15.7 5.50 �3.84 0.11
35 10.2 5.7 2.337 5.99 14.5 4.67 0.44 6.10 �4.24 0.14

Table 6
Fracture dimensions for the square DD model ðM3Þ, with posterior standard deviation and correlation of the identified values (field
example)

Time (min) Half-length Opening Correlation

a (m) ra d (mm) rd qad ¼ eCad=
ffiffiffiffiffiffiffiffiffiffi
rard
p

5 53.84 10.5 0.109 0.037 �0.95
10 59.44 8.4 0.168 0.042 �0.94
15 49.62 9.98 0.327 0.118 �0.97
20 62.65 8.30 0.280 0.071 �0.93
25 59.21 7.47 0.373 0.089 �0.93
30 60.60 7.81 0.374 0.095 �0.94
35 62.83 7.83 0.342 0.085 �0.93
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Combined with the consistency of the estimated fracture volume, this suggests that the data correspond to a
case of far-field conditions during all the injection period.

The different fits obtained are all of the same quality. In Fig. 11, tilt vectors (representing the horizontal
component of the displacement curl) are displayed for all tiltmeter stations for the data collected after
20 min of injection. Observe that the fit for two models (DD singularity and rectangular DD) present many
similarities. The same applies to the other models. Another view of the fit is presented in Fig. 12, where the
observed and computed tilt components at a given station are displayed versus time. The discrepancy between
data and estimated results for the different models is illuminated by comparing the corresponding estimated
noise standard deviations r in Fig. 13. The models M1;M2;M5 have similar values of r at all time, but these
are larger than the two other models. The noise standard deviation increases linearly for all models during the
injection (Fig. 13), so we may reasonably infer that the modelling error becomes larger as the fracture growth.
This is probably due to the simplifying assumption of homogeneity in the medium.

Table 8 shows the Bayes factors at different times for all models, taking the normal DD singularity model
ðM1Þ as a reference for comparison. It is clear that model M5 can be ruled out immediately. Despite a similar
fit for the data, the value of the Bayes factor B15 is always very large in comparison to other models. This
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Table 7
Fracture volume (in cubic meters) estimated by the different models (field example)

Time (min) DDS Penny Square DD Rectangular DD Shear + Norm. DDS

V rV V rV V rV V rV V rV

5 0.99 0.10 0.99 10.0 1.26 0.33 1.01 0.10 0.99 0.25
10 1.84 0.16 1.83 16.2 2.38 0.34 1.85 0.01 1.82 0.20
15 2.65 0.24 2.63 16.1 3.22 0.63 2.91 5.87 2.60 0.21
20 3.45 0.33 3.36 17.6 4.41 0.48 3.80 20.9 3.33 0.32
25 4.07 0.37 3.97 13.8 5.23 0.52 4.92 2.29 3.90 0.26
30 4.39 0.41 4.27 18.6 5.49 0.56 4.98 0.01 4.15 0.29
35 4.26 0.43 4.08 21.2 5.41 0.53 5.52 9.78 3.95 0.36

0.5 μ rad.

Data

Fit
0.5 μ rad. 

Data

Fit

1 4

Fig. 11. Plan view of the tilt vectors fit after 20 min of injection (field case), DD singularity (M1, left) and rectangular DD (M4, right)
model.
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particular model has the largest number of parameters (h = 10), yet does not yield a better fit to the data, as
the modelling error variance is similar to the other models. All the others Bayes factor are much lower, but still
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Table 8
Evolution of Bayes factors (field example)

Time (min) B12 B13 B14 B15

DDS/penny DDS/square DD DDS/rectangular DD DDS/shear + Norm DDS

5 164.90 27.9 13.4 4.86 · 1030

10 101.77 6.89 6.92 1021

15 156.30 6.90 5.45 1019

20 194.37 6.64 2.98 1013

25 110.12 5.39 2.31 109

30 107.80 4.18 4.6 108

35 123.28 5.21 279.4 108
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larger than one, indicating a preference for the simple normal DD singularity model. Notably, the Bayes fac-
tor B12 (normal DD singularity: penny-shaped model) is always around 100 for all data sets. This implies that
the DD singularity model is the most probable among the candidates, for all times. However, the Bayes factor
for the square and rectangular DD decreases to a value where both the DD singularity or square/rectangular
DD are nearly equi-probable (a Bayes factor under 5 indicates no real preference between two models). This
might indicate that, at large time, the fracture may be large enough to create approximate near-field condi-
tions. Observations of fracture length obtained from intersections of the fracture with monitoring boreholes
indicate a maximum fracture length of 80 m. The ratio between the distance of the measurements from the
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fracture (�80 m) and the fracture length is therefore at most unity, which means that at large time, the
conditions are close to the far-field/near-field limit for the resolution of length scales. Unfortunately, the esti-
mation of the length scales of the finite DD models are strongly correlated and therefore untrustworthy (see
Table 6). We conclude that for this particular field-case, far-field mapping conditions were always applicable,
so the normal DD singularity model remains the best choice.
6. Conclusions

In this paper an objective method of selecting the most probable model from among a set of fracture geom-
etry and loading models has been described in relation to the imaging of internally loaded cracks from elas-
tostatic data. The model choice is based on Bayes factors computed using the Laplace approximation at the
most-probable inversion parameters. The introduction of the noise standard deviation as an unknown in the
inversion facilitates testing of the model chosen to analyze the data: the estimated value of the noise must be
comparable to the measurement error for a model to be plausible.

A synthetic example demonstrates the advantage of this approach when no definitive models can be a-priori
chosen to analyze the recorded data. The far-field/near-field limit of resolution of fracture dimensions has
been recovered. In near-field cases, the correct model has been identified from the value of the Bayes factor.
For far-field cases, a simple DD singularity (i.e. dislocation dipole) is invariably the most probable model. For
an actual field data set, the analysis indicated strongly that the hydraulic fracture did not grow long enough
for the near-field effects of the fracture geometry to be meaningfully inferable. Nevertheless, the model choice
formalism applied to this actual field data demonstrates well the versatility of the Bayesian model selection
method.

In future applications, more complex geometries and fracture propagation models could be tested within
the same model selection framework. We also believe that the methodology demonstrated in this paper should
be widely applicable to engineering problems involving uncertainty in modelling decisions.
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Appendix A. A posterior covariance matrix

The quadratic approximation of the functional Jðz ¼ ðm; aÞÞ ¼ � log pðzjdÞ around its minimum ~z (where
the gradient vanishes) is
Jðz ¼ ðm; aÞÞ � Jð~zÞ þ 1

2
ðz� ~zÞTfH ðz� ~zÞ: ðA:1Þ
From this last equation (A.1) and the usual form of the normal probability distribution (12), the Hessian fH is
clearly the inverse of the covariance matrix eC�1:
pðzjdÞ ¼ expð�JðzÞÞ � expð�Jð~zÞÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
pð~zjdÞ

exp � 1

2
ðz� ~zÞTfH ðz� ~zÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

exp �1
2ðz�~zÞTeC�1ðz�~zÞ

� 	
:

The model function g(m) is a vector simulating the data vector d (length N). We define the sensitivity matrix,
or Jacobian X of dimensions (N · h) as
X ij ¼
ogiðmÞ
omj

:
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From Eq. (11), we obtain
Hij ¼
o2J

omimj
¼ expð�2aÞðXTXÞij þ ðC

�1
p Þij; i; j ¼ 1; . . . ; h;

Hi;hþ1 ¼ H hþ1;i ¼
o

2J

oami
¼ �2 expð�2aÞ

X
j¼1;N

XT
ijðdj � gjðmÞÞ; i ¼ 1; . . . ; h;

Hhþ1;hþ1 ¼
o

2J

oa2
¼ 2 expð�2aÞ

X
j¼1;N

ðdj � gjðmÞÞðdj � gjðmÞÞ;
where we have implicitly neglected the second order derivatives of the model function gðmÞ o2gi
omimj

. This classical
‘small-residuals’ style approximation is reasonable close to the minimum point (see Fig. 3).
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