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perimentally infected with a HPAI H7N1 virus, to examine the variation in
susceptibility to infection. Three lines showed high susceptibility to the virus, while two showed some
resistance, with 7 out of 20, and 11 out of 15 birds, respectively, remaining healthy and surviving the
experimental infection. Genotyping for the G/A polymorphism at position 2032 of Mx cDNA showed that one
line was fixed for the G allele, and two were segregating for A and G alleles. Birds in the other two lines were
selected to be fixed for the A allele. Statistical analyses indicated that the Mx genotype did not affect the
clinical status or the time course of infection after viral inoculation.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Mx proteins confer resistance to different viral families, and
antiviral activity of Mx gene products has been described in several
vertebrate species (Lee and Vidal, 2002;Watanabe, 2007). Mx proteins
belong to the dynamin family of large GTPases, and have two
subcellular localizations: nucleus and cytoplasm (Haller et al., 2007).
These proteins are suggested to interfere with viral replication by
inhibiting viral polymerases in the nucleus and by binding viral
components in the cytoplasm, thus preventing the virus functions
(Haller and Kochs, 2002; Pavlovic et al., 1992; Salomon et al., 2007;
Turan et al., 2004). Mx gene expression is induced by interferon and
the gene product has been implicated as major component in
resistance to influenza virus in mice (Grimm et al., 2007; Staeheli et
al., 1986). Mice expressing the intact Mx1 gene are protected against
human H5N1 influenza virus and pandemic 1918 influenza virus
strain, whereas the defective Mx1 allele is associated with suscept-
ibility (Salomon et al., 2007; Tumpey et al., 2007). Recent data have
shown that human and avian influenza Avirus strains exhibit different
sensitivity to inhibition by murine Mx1 and human MxA proteins,
ariani).

l rights reserved.
with avian strains beingmore sensitive than human strains (Dittmann
et al., 2008).

Duck Mx was the first avian Mx protein to be characterised, but
was not found to have antiviral activity against influenza virus when
transfected and expressed in chicken andmouse cells (Bazzigher et al.,
1993). Analysis of the chicken Mx gene promoter identified an
interferon-stimulated response element (ISRE) motif, indicating that
chicken Mx gene expression is inducible by interferon (Schumacher
et al., 1994). The chickenMxprotein ismadeup of 705 amino acids and,
as for duck Mx protein, initial studies revealed no antiviral activity
against influenza or other viruses in in vitro experiments (Bernasconi
et al., 1995). Further sequence analysis of Mx cDNA from different
chicken breeds (Ko et al., 2002) revealed a total of 25 nucleotide
substitutions, 14 of which were non-synonymous. Mouse 3T3 cells,
permanently transfected and expressing the Mx cDNA isolated from
some of these chicken breeds, revealed antiviral activity to vesicular
stomatitis virus (VSV) and H5N1 influenza virus. The antiviral activity
differed between the Mx alleles from different breeds of chicken.
Among the 14 possible amino acid variations, only one at position 631
of the chickenMx proteinwas shown to affect antiviral activity to VSV.
The variant having Asparagine instead of Serine at position 631
conferred the antiviral activity on the transfected cells. The Mx cDNA
of the chicken Shamo breed, which was shown to confer antiviral
activity against H5N1 influenza virus to the transfected cells, carried
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Fig. 1. Survival curves for the five chicken lines following experimental challenge (day “0”) with HPAI H7N1 influenza virus.

Table 1
Allelic and genotypic frequencies of the polymorphism at position 2032 of chicken Mx
cDNA in the five chicken lines

Line Na Allele frequency Genotype frequency

A G AA AG GG

Line A 19 0.00 1.00 0.00 0.00 1.00
Line B 15 0.30 0.70 0.14 0.33 0.53
Line C 20 0.20 0.80 0.05 0.30 0.65
Line D 11 1.00 0.00 1.00 0.00 0.00
Line E 20 0.98 0.02 0.95 0.05 0.00

Lines D (New Hampshire) and E (White Leghorn) were selected, as far as possible, to be
fixed for the A allele.

a Number of birds analysed for each line.
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the Asn residue at position 631 too (Ko et al., 2002). The antiviral role in
VSV infection of the Asn residue at position 631 was later confirmed in
vitro using constructed variants ofMx cDNA (Ko et al., 2004). Recent in
vitro data (Benfield et al., 2008) demonstrated that the presence of
Asparagine at position 631 of chicken Mx does not protect chicken
embryo fibroblasts against infectionwith an H1N1 influenza virus, and
does not suppress viral replication of three different influenza strains
in 293T cells transfected with chicken Mx (Benfield et al., 2008). The
S631N amino acid variation results from a G/A polymorphism at
position 2032 of chicken Mx cDNA (Acc. No. Z23168). The Mx gene is
made up of 14 exons, with one exon consisting of the 5′-UTR and 13
protein-coding exons: the polymorphism causing the S631N variation
is located in the last exon, and corresponds to the position 1892 of the
protein-coding region of the gene.

The frequency of alleles for the Mx gene 2032 G/A polymorphism
has been investigated in several studies (Li et al., 2006; Seyama et al.,
2006; reviewed by Watanabe 2007). Balkissoon et al. (2007) analysed
the allelic frequency of the G/A polymorphism at position 2032 in
commercial broiler and layer lines and found that the ancestors and
modern commercial lines of broilers showed higher frequency of the G
allele, whereas most commercial egg-layers and layer ancestor lines
have higher frequency of the A allele. The jungle fowl, the supposed
progenitor of domesticated chicken, was analysed by Seyama et al.
(2006), who found that three Red jungle fowl from Indonesia, one Gray
jungle fowl and four Green jungle fowl were homozygous for the G
allele, while one Red jungle fowl from Laos carried the A allele. This
suggests that the 2032polymorphismpredates chicken domestication.

Thepresentwork reports the responseoffivedifferent chicken lines
toH7N1 avian influenzavirus following experimental infection and the
effect of the Mx 2032 G/A polymorphism on the disease outcome.

Results

Clinical observations

Following experimental challenge of 19 birds of line A, 7 birds died
2 days PI, a further 6 died on day 3 PI, and all had died by day 7 PI. The
last 2 birds that died, 7 days PI, were serologically negative indicating
that by that time they had not produced antibodies against the virus.
Only 4 of the 15 experimentally infected birds of line B died during the
trial period, 1 bird on each of days 4, 6, 7 and 8. Eleven chickens
survived the full 3 week trial and remained healthy with no clinical
symptoms. It should be noted that birds were housed two per cage,
and that birds that died shared cages with birds that survived.
Serological analyses were carried out on the 11 surviving birds at 9, 16
and 22 days PI and all were negative. Twenty birds of line C were
experimentally challenged and 11 died at day 2 PI, 3 birds died at day 3
PI, 3 birds died at day 4 PI, and 1 at day 6 PI. Only 2 birds survived the
3 week trial: one remained healthy throughout, showing no clinical
symptoms, while the other bird was seriously ill at day 3 PI, then
recovered. Serological analyses were carried out on both these birds at
days 7, 13 and 21 PI. The bird showing no clinical symptoms was
negative at all time points, while the bird that became ill and then
recovered was sero-positive from day 13. Eleven birds of line D were
experimentally challenged: at day 3 PI 4 birds died, 2 died 4 days PI
and all had died by day 6 PI. Finally, 20 birds of line E were inoculated
with virus. The first 4 birds died on day 2 PI, 4 birds died on day 3, 4
died on day 4, and 1 bird died on day 7 PI. The other 7 chickens
survived the 3 week trial and were serologically negative throughout
the trial. The survival profiles for all lines are shown in Fig. 1.

Genotyping of Mx gene and statistical analysis

The genotype for the G/A polymorphism at position 2032 of Mx
cDNA (Acc. No. Z23168) was determined by sequencing. However, the
presence of indels in all the lines analysedmeant that for some samples
only the forward or the reverse strand could be analysed. Therefore,
genotypes were confirmed using a PCR-RFLP protocol (data not
shown). Genotyping results and allele frequencies in the five chicken
lines are given in Table 1. Line A birds were fixed for the G allele thus
having the putatively susceptible Ser residue at position 631 of the
protein product. Line B and C birds were segregating for both A and G
alleles, with A allele frequencies of 30% and 20%, respectively. Lines D
and E were pre-selected to be, as far as possible, fixed for the A allele,
although one bird of line E was heterozygous. The clinical status and
genotypes of all birds are given in Supplementary Tables 1–5.

Line B showed a high level of resistance to this AI viral strain, with
11 birds surviving the challenge. Seven of the surviving birds were
homozygous for the G allele, 3 were heterozygous AG, and only 1 bird



Table 2
Results of the statistical analysis of the association between clinical status following
viral inoculation and either the “genotype” at the 2032 Mx cDNA polymorphism or the
“line” of chicken

Source DFa SSb Mean square F value PrNF

Genotype 2 159.105562 79.552781 1.64 0.1998
Line 4 2764.936025 691.234006 14.29 b .0001

a Degrees of freedom.
b Sums of squares.
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was homozygous for the A allele. Of the 4 birds that died, only 1 was
homozygous GG (death at 7 days PI), 2 birds were heterozygous AG
(death at 4 and 8 days PI, respectively), and the last bird, which died
6 days PI, was homozygous AA. The line C bird that survived the full
3 week trial period carried the genotype AG, while the bird that fell ill
and then recoveredwas homozygous GG. Six of the birds from this line
that died carried the A allele: 1 was homozygous AA (death at day 2
PI), and 5 were heterozygous AG (dead at day 2 or 4 PI). Birds from
both lines D and E had been selected to be homozygous for the
resistant A allele. However, all line D birds died within 6 days, while
for line E, 7 birds survived the 3 week trial. Genotype data and disease
status for all individuals in the five chicken lines are given in
Supplementary Tables 1–5.

In these data no statistically significant association between
response to infection and the Mx genotype was detected. However,
the effect of chicken line on clinical status (healthy vs three levels of
disease clinical status) was statistically significant (pb0.0001), and the
model explained the 44.28% of the observed variation in disease
response (Table 2).

Discussion

The objective of the current study was to examine the possibility
that there is natural resistance to avian influenza in chicken, and to
assess the role of the Mx locus in the phenotypic variation. Earlier
work, which carried out an experimental infection of wood ducks and
chickens with HPAI H5N1 virus, showed that for chicken different viral
doses resulted in different mortality rate (Brown et al., 2007). In the
present study, which focused on the response to H7N1, an initial trial
was carried out with SPF chickens to investigate the effect of dose on
survival (data not shown). A viral dose of 105EID50 resulted in 100%
death rate in SPF chickens with a mean death time (MDT) of 2.8 days
PI. In the study by Brown et al. (2007) where 5 White Leghorn
chickens were challenged with similar viral dose, the authors also
observed 100% mortality and MDT of 2.0 days PI. However, these
authors observed that at a 103EID50 dose only 3 out of 5 chickens died
with a MDT of 4.3 days PI. In the work presented here this latter dose
resulted in 100% mortality but with a MDT of 6.5 days PI, with some
birds surviving up to 8 days. Therefore in the present study a 103EID50

dose was used as it was considered sufficient to result in infection of
all susceptible birds, but not so high that it would overcome natural
resistance to the virus.

In the data presented here, variation in susceptibility between
lines was detected, with three lines showing high susceptibility and
high mortality, and two lines showing different levels of resistance to
the virus. For line E, theWhite Leghorn, 35% of birds survived (7 out of
20), which is similar to the results obtained by Brown et al. (2007)who
observed a 40% survival of White Leghorn chickens using a viral dose
of 103EID50 of a H5N1 AI strain. Line B, a commercial broiler line,
showed a higher level of resistance with 73% survival rate. These data
suggest that in some chicken lines there is natural resistance to
influenza virus infection. The interferon-mediated induction of Mx1 is
a principal innate defence mechanism against the avian influenza
virus in mice (Grimm et al., 2007; Salomon et al., 2007; Staeheli et al.,
1986; Tumpey et al., 2007). Early studies in both duck (Bazzigher et al.,
1993) and chicken (Bernasconi et al., 1995) suggested that the avian
Mx protein does not have antiviral activity, however, later in vitro
experiments showed that at least some chicken Mx alleles have
effective antiviral activity against VSV and H5N1 (Ko et al., 2002). The
level of antiviral activity differs between Mx alleles, and seems to
depend on the presence of Asn at residue position 631 in chicken (Ko
et al., 2002). Recent data suggested that alleles with Asn at position
631 of chickenMx do not inhibit in vitro viral replication of 5 influenza
strains (Benfield et al., 2008). However, whether this polymorphism is
associated with resistance to influenza virus in vivo remained to be
proven. The present work addressed the effect of genetic variation on
disease outcome and assessed whether theMx polymorphism at 2032
of the cDNA had an effect on disease outcome in chickens.

The five chicken lines used in the present study were genotyped at
nucleotide 2032 of Mx cDNA. The genotype data presented here show
that the G allele is present at high frequency in broiler lines: 100% in
line A, 70% and 80% in lines B and C, respectively (see Table 1).
Balkissoon et al. (2007), also found higher frequencies of the G allele
compared to the A allele in broilers and their ancestor lines: the
highest frequency of the A allele they identified was in line X.3 Broiler
(0.13), which is lower than the frequencies observed in the B (0.30)
and C (0.20) lines used in the present study (Table 1). This
characteristic distinguishes these two broiler lines, especially line B,
from our line A and the other broiler stocks analysed in previous
studies. Statistical analysis of the possible association between theMx
genotype and disease outcome in the data presented here indicates
that alleles at position 2032 of Mx gene do not have an effect on the
survival of birds following infection with the H7N1 HPAI virus.
However, it is possible that polymorphisms at other positions within
the Mx gene could influence the level of antiviral activity in vivo.
Balkissoon et al. (2007) identified a non-synonymous polymorphism
(G232R) which was not detected by Ko et al. (2002) and which may
affect the protein function. One of the alleles analysed by Benfield et
al. carried the R residue at position 232 (line C1), nevertheless, none of
the alleles conferred protection to embryo fibroblasts against H1N1
virus (Benfield et al. 2008).

The in vivo effect of the Mx protein may also depend on the viral
strain: Dittmann et al. (2008) recently showed that different human
and avian strains of influenza A virus exhibit different sensitivities to
inhibition by Mx proteins. The association between the Mx 2032
polymorphism and resistance to influenza shown in vitro by Ko et al.
(2002) was based on a H5N1 strain of virus, whereas a H7N1 strain
was used in the study presented here. Rigoni et al. (2007) reported
different clinical outcomes in mice infected with 3 different H7N1
HPAI strains isolated in Italy during the 1999–2000 AI outbreak: it is
possible that similar variations in the clinical outcomes may occur in
chickens when challenged with different strains of AI. Further studies
will be necessary to address whether the clinical response differs
between strains of virus.

The data presented here shows that, although the polymorphism
at position 2032 of the Mx gene does not affect survival following
infection with this specific viral strain, there does appear to be a
genetic basis to the variations in response to influenza infection. In
particular, the genetic background of commercial broiler line B, and to
a lesser extent line E, theWhite Leghorn, seems to confer a substantial
level of resistance. The level of resistance with respect to the response
following higher viral doses than the 103EID50 used in this study, and
to other viral strains still has to be tested.

Materials and methods

Virus

The virus strain used was H7N1 HPAI A/chicken/Italy/13474/99,
isolated from chicken by the Istituto Zooprofilattico Sperimentale
della Lombardia e dell'Emilia Romagna “Bruno Ubertini” Brescia, Italy
during the 1999–2000 outbreak in Italy.
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The viral stock was propagated in 9 to 11 day-old specific
pathogen-free (SPF) embryonated chicken eggs. Allantoic fluid was
collected and evaluated for haemagglutinin activity and tested in
sandwich ELISA using a monoclonal antibody (Mab) specific for
influenza virus A nucleoprotein (NPA) (ATCC HB65), according to the
protocol by Siebinga and de Boer (1988) or by haemoagglutination test
(http://www.oie.int/eng/publicat/en_standards.htm). The virus titre
was determined using the method of Reed and Muench (1938) and
expressed in EID50 (http://www.fao.org/DOCREP/005/AC802E/
ac802e0w.htm). The virus stock was stored at −70 °C, diluted in
MEM and titred before each study.

Animals

The five chicken lines used in the present work were broiler
(commercial Lines A, B, C), one experimental White Leghorn line (Line
E), and one experimental New Hampshire line (Line D). Birds from the
latter two lines were selected to be homozygous for the A allele at
position 2032 of Mx cDNA.

Eggs of each line were hatched and the chicks were maintained in
pathogen-free conditions, fed ad libitum. At 7–10 weeks of age, groups
of 11–20 chickens per line (depending on hatching and survival rate)
were moved into a bio-containment (BSL3) laboratory for the viral
challenge and two birds per cage were housed in 80×80 cm cages.
Before experimental infection, blood samples were collected from
each bird into EDTA vacutainers and kept for genetic analyses.

Animal trial

Each group of chickens was tested for exposure to AIV before the
experimental challenge, by competitive ELISA for antibodies against
influenza virus A nucleoprotein (NPA) by using the Mab anti-NPA
ATCC HB65 (de Boer et al., 1990). All chickens were negative.

Birds were infected by intra-tracheal infection with an experi-
mental dose of 103±0.25 EID50/bird. Previous trial infections of SPF
chickens showed that at this dose all susceptible birds died between
day 4 and 8 PI, at higher doses all birds died within 3 days PI (data not
shown). After the challenge, chickens were monitored daily and their
clinical status scored daily as follows: score “0” clinically healthy, “1”
ill bird, displaying one specific clinical symptom (depression,
respiratory disorders, diarrhoea, cyanotic combs and wattles, head
and neck oedema, or neurological signs), “2” seriously ill bird, showing
at least two of the specific symptoms, “3” dead.

The serological analyses were repeated on each bird surviving the
experimental challenge to detect antibodies against AI virus A
nucleoprotein starting from day 7 PI.

Genotyping of Mx gene

Genomic DNA was extracted from whole blood collected before the
viral challenge, using the Puregene DNA Kit (Qiagen). The genotype at
2032 G/A polymorphism was determined by direct sequencing using
primers designed based on the genomic sequences available in the
Ensembl database (ENSGALG00000016142). PCRs were carried out in a
total volume of 15 μl, with 20 ng of genomic DNA as template, 6 pmol of
each forward and reverse primer (F: 5′-GGTTAGCAGAGAGAGGGAGA-3′;
R: 5′-AGGTTGCTGCTAATGGAGGA-3′), 1.5 μl of 10× buffer,1.5mMMgCl2,
0.2 mM of each dNTP, and 1 U of AmpliTaq Gold (Applied Biosystems).
The PCR protocol was as follows: 95 °C for 10 min, 35 cycles of 94 °C
for 1 min, annealing at 55 °C for 30 s, and 72 °C for 1 min, followed
by a final extension step at 72 °C for 10 min. PCR products were
analysed by electrophoresis through a 2% agarose gel in 1× TAE
buffer, and stained with Ethidium Bromide. The 611 bp amplicons
were purified using ExoSAP-IT (USB Corporation). Sequencing reactions
were performed with BigDye terminator chemistry (Applied Biosys-
tems), and sequences resolved using an ABI PRISM 3730 DNA
Analyzer (Applied Biosystems), according to the protocols from the
manufacturer. Electropherograms were visualised using Chromas 1.45
(http://www.technelysium.com.au/chromas.html). Genotypes were
confirmed with PCR-RFLP: samples were amplified using the following
primer pair: F: 5′-GCACTGTCACCTCTTAATAGA-3′, and R: 5′-GTATTGG-
TAGGCTTTGTTGA-3′. Amplicons were cleaved with the restriction
enzyme Hpy8I (Fermentas), which cuts 2 bp downstream from the
2032 polymorphism in the presence of the G allele (no cut in case of
A allele).

Statistical analysis

The association between the response to influenza virus infection
and Mx genotype was analysed using four inter-dependent variables:
clinical score, time course of disease, genotype at the Mx locus (AA,
AG, or GG), and the chicken “line” (A, B, C, D, or E). An index was
created based on the highest clinical score and the day the score was
reached. Birds missing information on one or more conditions (e.g.,
birds passed from “healthy” at day 1 PI to “dead” at day 2 PI) were
assigned a negative score to stress the rapid onset of the disease. The
following statistical model was used to assess effects of various factors
on the observed phenotypes:

yij ¼ μ þ Li þ Gi þ eij;

where y is the phenotype for either the clinical score or the time course
of the disease, μ was the population mean, L was the effect of the line
(A, B, C, D, or E),Gwas the effect of the genotype (GG, AG, AA) and ewas
the random residual. General linear models (proc GLM) and logistic
regression (proc LOGISTIC) of SAS (SAS Institute, Cary NC, USA) were
used to analyse the association between the 2032Mx genotype and the
chicken line, with clinical status and time course of the disease. Results
were further confirmed using the LIFETEST procedure of SAS program.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.virol.2008.07.022.
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