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1. Introduction

Let H and K be separable, infinite dimensional, complex Hilbert spaces. We denote the set of all

bounded linear operators from H into K by B(H,K) and by B(H) when H = K. For A ∈ B(H,K), let
A∗,R(A) andN (A) be the adjoint, the range and the null space of A, respectively. An operator A is said

to be positive if (Ax, x) � 0 for all x ∈ H. If A is positive, the positive square root of A is denoted by A
1
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(see [16,32]). An operator P ∈ B(H) is said to be an orthogonal projector if P2 = P = P∗. Clearly, any
orthogonal projector is positive. The orthogonal projector onto a closed subspace U ⊂ H is denoted

by PU . The identity on U is denoted by IU or I if there does not exist confusion. Let K denote the closure

of K ⊂ H. An operator P ∈ B(H) is said to be idempotent if P2 = P. We use the usual notation

P = I − P. Let PU,V denote the idempotent with R(PU,V ) = U and N (PU,V ) = V . The direct sum and

the orthogonal direct sumaredenotedbyU⊕V andU⊕⊥V , respectively. A bounded linear idempotent

PU,V induces a splitting ofH into the direct sum of two subspaces:R(PU,V )⊕N (PU,V ) = U ⊕V = H.

This equation is equivalent to that the operator PU −PV is invertible or equivalent to ‖PU +PV − I‖ < 1

[13,25]. It is clear thatR(PU) ⊕⊥ N (PU) = H.

An operator T is called generalized invertible, if there is an operator S such that (I) TST = T . The
operator S is not unique in general. In order to guarantee its uniqueness, further conditions have to be

imposed. The most likely convenient additional conditions are

(II) STS = S, (III) (TS)∗ = TS, (IV) (ST)∗ = ST, (V) TS = ST .

Elements S ∈ B(H) satisfying (I, II, V) are called group inverses, denoted by S = T#. Similarly, (I, II, III,

IV)-inverses are called Moore–Penrose inverses (for short MP-inverses), denoted by S = T+. It is well

known that T has the MP-inverse if and only if R(T) is closed, and the MP-inverse of T is unique and

T+ = T∗(TT∗)+ (see [8,15,38,40–42]). Moreover, (I, II, III, IV, V)-inverses are called EP elements (i.e.,

T+ = T#).

Recall that a linear operator M is said to be closed, if it satisfies the condition that xn ∈ dom(M)
converges to x and Mxn converges to y ∈ H, then x ∈ dom(M) and y = Mx. It is well-known that a

densely defined, closed linear operatorM is bounded if and only if dom(M) = H [1]. In this paper, we

only consider bounded linear operators in a Hilbert space H. If M ∈ B(H) is a closed range operator,

then M+ ∈ B(H) and the orthogonal projectors MM+ and M+M ∈ B(H) have the relations:

R(M) = R(MM+), N (M+) = N (MM+), H = R(M) ⊕⊥ N (M+),

and

R(M+) = R(M+M), N (M) = N (M+M), H = R(M+) ⊕⊥ N (M).

TheMP-inverse has been proved useful in systems theory, difference equations, differential equations

and iterative procedures. It would be helpful if these results could be extended to infinite dimensional

situations.Applications could thenbemade todenumerable systems theory, abstractCauchyproblems,

infinite systems of linear differential equations, partial differential equations and other interesting

topics (see, for example [12,35]).

The definition below introduces six types of operators which are important from the point of view

of the present references (see, for example [5,6,10] for the matrix cases). Although these kinds of

operators can be generalized to much more general settings, they have been studied specially in the

space of complexmatrices. In this paper, we study the EP, GP, RD, SR, co-EP andweak-EP on the algebra

B(H) of bounded operators in a Hilbert space H. Since many of the usual techniques used in finite

dimensional spaces (as pseudoinverses or singular value decompositions) are no longer available for

general Hilbert spaces, we introduce new techniques, which allow us to show that almost all known

properties which hold for matrices can be extended to operators acting in a Hilbert space H, and to

obtain simpler proofs. Indeed, several results of [2–7,9–11,19–22,28] are recovered in this paper, if

we consider the finite dimensional spaces. On the other hand, we show several properties for general

Hilbert spaces which are unknown even in the finite dimensional setting, particularly those results

concerning the relationship between the projector and range relations. First we need to extend the

notions to bounded linear operators in an infinite-dimensional Hilbert space.

Definition. The closed range operator M ∈ B(H) is called:

(1) GP whenever R(M) = R(M2) and N (M) = N (M2).
(2) EP whenever R(M) = R(M∗).
(3) DR whenever R(M) ∩ R(M∗) = {0}.
(4) SR whenever R(M) + R(M∗) = H.
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(5) co-EP whenever R(M) ⊕ R(M∗) = H.

(6) weak-EP whenever PR(M)PR(M∗) = PR(M∗)PR(M).

The classes of EP and GP operators, the so-called range-Hermitian and group invertible operators, re-

spectively, were extensively investigated in the literature (see [6, Lemma 2,8, Chapter 4.4,15, Chapter

4,28, Corollary 6]). The DR and SR operators, the so-called disjoint ranges and spanning ranges op-

erators, respectively, were introduced by Baksalary and Trenkler [5, Definition 1]. The class of co-EP

operatorswas investigated by Benítez and Rakočević [10]. It is obvious that, for a closed range operator

M ∈ B(H) (see [5, Lemma 1] for the matrix cases),

(1) M is EP (resp. GP, DR, SR, co-EP and weak-EP)

⇐⇒ M+ is EP (resp. GP, DR, SR, co-EP and weak-EP)

⇐⇒ M∗ is EP (resp. GP, DR, SR, co-EP and weak-EP).

(2) M is simultaneously EP and DR, if and only if M = 0.

(3) M is simultaneously EP and SR, if and only ifM is invertible.

(4) M is simultaneously DR and SR, if and only if M is co-EP.

In [39], Šemrl discussed possible extensions of the concept of the minus partial order from matrices

to bounded linear operators acting on an infinite-dimensional Hilbert space. Dolinar and Marovt in

[20], using orthogonal projectors, introduced the equivalent definition of the star partial order on

B(H). And some properties of the generalized concept of order relations on B(H), defined with the

help of idempotent operators, are investigated in [20]. The aim of this paper is to present several

representations of M ∈ B(H) in terms of operator matrix forms and several descriptions of range

relations by using orthogonal projectors P = MM+ and Q = M+M, when R(M) is closed.

2. Some lemmas

In this section we shall recall some lemmas. If T ∈ B(H) and G ∈ B(K) both are invertible, and

Y, Z ∈ B(K,H), then T + YGZ∗ is invertible if and only if G−1 + Z∗T−1Y is invertible (see [27,33]). In

this case, we have the Sherman–Morrison–Woodbury formula (for short SMW-formula)

(T + YGZ∗)−1 = T−1 − T−1Y(G−1 + Z∗T−1Y)−1Z∗T−1.

The original SMW-formula is used to consider the inverse of 2 × 2 block matrices. In particular, the

SMW formula implies the following result.

Lemma 2.1. Let A, B ∈ B(H). I − AB is invertible if and only if I − BA is invertible. In this case,

(I − AB)−1 = I + A(I − BA)−1B. (1)

Proof. Assume that I − AB has the inverse I − W and let V = B(W − I)A. Then I − V is the inverse

of I − BA and (1) is the special case of the SMW formula by replacing T, Y, G, Z∗ with I, −A, I, B,
respectively. �

We also need the following well-known criteria about range. The following item (i) is from [24,

Theorem 2.2].

Lemma 2.2 (see [23,29,24, Theorem 2.2]). Let A, B ∈ B(H). Then

(i) R(A) + R(B) = R((AA∗ + BB∗) 1
2 ) and N (AB) = N (A∗AB).

(ii) R(A) is closed if and only if R(A) = R(AA∗).
(iii) If R(B) is closed, thenR(AB) = R(ABB∗) and R(B+) = R(B∗).
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(iv) If A � 0 is a positive operator, then R(A
1
2 ) = R(A), R(A) ⊆ R(A

1
2 ). R(A) is closed if and only if

R(A) = R(A
1
2 ).

Let P andQ be two orthogonal projectors. Now, we consider the invertibility of P−Q . This problem

is the theme of Buckholtz’s papers [13,14], Koliha and Rakočević’s paper [31] and a special case of [30,

Theorem 3.1]. The next results were also proved in [15] in the setting of rings.

Lemma 2.3 (see [30, Corollary 3.2,14, Theorem 1]). LetM andN be closed subspaces of a Hilbert space

H and let P and Q be the orthogonal projectors with the ranges M and N , respectively. The following

statements are equivalent:

(i) P − Q is invertible.

(ii) I − PQ and P + Q − PQ are invertible.

(iii) H = M ⊕ N .
(iv) P + Q and I − PQ are invertible.

When we consider the operator matrix representation of M ∈ B(H ⊕ K), we need the following

lemmas.

Lemma 2.4 [34, Theorem 2.1]. Let M =
(

A11 A12
A21 A22

)
be a bounded linear operator on H ⊕ K. If A22 is

invertible, then M is invertible if and only if the Schur complement S = A11 − A12A
−1
22 A21 is invertible. In

this case,

M−1 =
(

S−1 −S−1A12A
−1
22

−A
−1
22 A21S

−1 A
−1
22 +A

−1
22 A21S

−1A12A
−1
22

)
.

As for the orthogonal projectors P and Q , we have the following 6× 6 operator matrix representa-

tions.

Lemma 2.5 (see [22, Lemma 1] and [26]). Let M and N be closed subspaces of a Hilbert space H and

let P and Q be the orthogonal projectors with the ranges M and N , respectively. Denote H1 = M ∩ N ,

H2 = M∩N⊥,H3 = M⊥ ∩N ,H4 = M⊥ ∩N⊥,H5 = M� (H1 ⊕H2) andH6 = H � (⊕5
i=1Hi).

Then P and Q can be represented as

P = I ⊕ I ⊕ 0 ⊕ 0 ⊕
⎛
⎝ I 0

0 0

⎞
⎠ ,

Q = I ⊕ 0 ⊕ I ⊕ 0 ⊕
⎛
⎝ Q0 Q

1
2
0 (I−Q0)

1
2 D

D∗Q
1
2
0 (I−Q0)

1
2 D∗(I−Q0)D

⎞
⎠

(2)

with respect to the space orthogonal direct sum decomposition H = ⊕6
i=1Hi, where Q0 is a positive

contraction on H5 such that neither 0 nor 1 belongs to the point spectrum of Q0, D is a unitary operator

from H6 onto H5.

Lemma 2.6. Let M ∈ B(H). Then

(i) (See [16, page 38]) According to the space decomposition H = R(M) ⊕⊥ N (M∗), M has the 2 × 2

block operator matrix form

M =
⎛
⎝ A B

0 0

⎞
⎠ , where A ∈ B(R(M)), B ∈ B(N (M∗),R(M)). (3)



2370 C. Deng et al. / Linear Algebra and its Applications 437 (2012) 2366–2385

(ii) (See [17, Lemma 4]) M is MP-invertible if and only if R(M) = R(A) + R(B) is closed. In this case,

� = (AA∗ + BB∗)−1 exists and

M+ =
⎛
⎝ A∗(AA∗ + BB∗)−1 0

B∗(AA∗ + BB∗)−1 0

⎞
⎠ =

⎛
⎝ A∗� 0

B∗� 0

⎞
⎠ . (4)

(iii) The orthogonal projectors P = MM+ and Q = M+M have the forms

P =
⎛
⎝ I 0

0 0

⎞
⎠ and Q =

⎛
⎝ A∗�A A∗�B

B∗�A B∗�B

⎞
⎠ . (5)

As we know, the ranges of GP, EP, idempotent and orthogonal projector are all closed. By Lemma

2.6, we have the following observations:

(1) M is GP if and only if A is invertible.

(2) M is EP if and only if A is invertible and B = 0.

(3) M is an idempotent if and only if A = I.

(4) M is an orthogonal projector if and only if A = I and B = 0.

3. The operator matrix structures for DR, SR and co-EP operators

The type of square matricesM such thatMM+ − M+M is nonsingular was investigated by Benítez

and Rakočević [10]. We first consider several characterizations of operator MM+ − M+M in the case

thatR(M) is closed. In Lemma2.5, if we setM = R(M) andN = R(M∗), then Lemma2.5 and Lemma

2.6 imply that A∗�A as an operator onH1 ⊕⊥ H2 ⊕⊥ H5, A
∗�B as an operator fromH3 ⊕⊥ H4 ⊕⊥ H6

intoH1 ⊕⊥ H2 ⊕⊥ H5 and B∗�B as an operator onH3 ⊕⊥ H4 ⊕⊥ H6 can be represented as diagonal

operators:

A∗�A =
(

I
0
Q0

)
, A∗�B =

(
0
0

Q
1
2
0 (I−Q0)

1
2 D

)
, B∗�B =

(
I
0
D∗(I−Q0)D

)
, (6)

respectively. Here, the omitted elements stand for zero operators of the appropriate sizes.We have the

following equivalent relations:

Theorem 3.1. Let M ∈ B(H) be such that R(M) is closed, M and M+ be represented as in (3) and (4),

respectively. The following statements are equivalent:

(i) MM+ − M+M is EP.

(ii) MM+(
I − M+M

)
MM+ is EP.

(iii) MM+(
I − M+M

)
is MP-invertible.

(iv) I − A∗�A is EP.

(v) B∗�B is EP, where � = (AA∗ + BB∗)−1.

Proof. Let orthogonal projectors P = MM+ and Q = M+M. By (5) and (6), we have

(P − Q)2 =
⎛
⎝ I − A∗�A

B∗�B

⎞
⎠ =

⎛
⎜⎜⎝

(
0
I
I−Q0

)
(
I
0
D∗(I−Q0)D

)
⎞
⎟⎟⎠ . (7)

Hence

P − Q is EP if and only if (P − Q)2 is EP if and only if I − Q0 is invertible, (8)
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since D is unitary and Q0 is a positive contraction onH5 and 1 is not the point spectrum of Q0. Hence
(i) ⇐⇒ (iv) ⇐⇒ (v). From

P(I − Q)P =
⎛
⎝ I − A∗�A 0

0 0

⎞
⎠ ,

we get (ii) ⇐⇒ (iv). Note that P(I − Q) =
⎛
⎝ I − A∗�A −A∗�B

0 0

⎞
⎠ and

P(I − Q)
[
P(I − Q)

]∗ =
⎛
⎝ I − A∗�A 0

0 0

⎞
⎠ =

( (
0
I
I−Q0

)

0

)
.

Since P(I−Q) is MP-invertible if and only if P(I−Q)
[
P(I−Q)

]∗
is EP, if and only if I−Q0 is invertible,

we derive (iii) ⇐⇒ (iv). �

Note that MM+ − M+M is EP if and only if R(MM+ − M+M) is closed if and only if I − Q0 is

invertible. In this case, by (7),

R(MM+ − M+M) = R(P − Q) = R((P − Q)2) = H2 ⊕⊥ H3 ⊕⊥ H5 ⊕⊥ H6.

SinceH = ⊕6
i=1Hi,H1 = R(P) ∩ R(Q) = R(M) ∩ R(M∗) andH4 = R(P)⊥ ∩ R(Q)⊥ = R(M)⊥ ∩

R(M∗)⊥, we get

H = R(MM+ − M+M) ⊕⊥ [R(M) ∩ R(M∗)] ⊕⊥ [R(M)⊥ ∩ R(M∗)⊥].
In particular,MM+−M+M is invertible if and only ifM is co-EP,which can be found from the following

results.

Theorem 3.2. Let M ∈ B(H) be such that R(M) closed, M and M+ be represented as in (3) and (4),

respectively. The following statements are equivalent:

(i) MM+ − M+M is invertible.

(ii) MM+ + M+M is invertible and ‖MM+ · M+M‖ < 1.
(iii) H = R(M) ⊕ R(M∗) (resp.M is co-EP).

(iv) I − A∗�A and B∗�B are invertible, where � = (AA∗ + BB∗)−1.

(v) According to the space decomposition H = R(M) ⊕⊥ N (M∗), M has the 2 × 2 block operator

matrix form

M =
⎛
⎝ A B

0 0

⎞
⎠ , where B is invertible. (9)

(vi) MM+ + M+M is invertible and R(M) ∩ R(M∗) = {0}.
(vii) (M + M∗)(I − MM+) ± (I − MM+)(M + M∗) is invertible.
(viii) (M − M∗)(I − MM+) ± (I − MM+)(M − M∗) is invertible.

Proof. Let orthogonal projectors P = MM+ and Q = M+M. By Lemma 2.6, item (iii), we have

I − PQ =
⎛
⎝ I − A∗�A −A∗�B

0 I

⎞
⎠ and P + Q − PQ =

⎛
⎝ I 0

B∗�A B∗�B

⎞
⎠ .

Note that ‖PQ‖ < 1 ⇐⇒ I − PQ is invertible (see also [9, Lemma 1.2]). By Lemma 2.3 we know

(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv).
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(iv) ⇒ (v) By (3) we know B ∈ B(N (M∗),R(M)) and BB∗ ∈ B(R(M)). So

I − A∗�A is invertible ⇐⇒ I − �AA∗ is invertible [by Lemma 2.1]

⇐⇒ �BB∗ is invertible [by I = �(AA∗ + BB∗)]
⇐⇒ BB∗ is invertible [by Lemma 2.2.(ii)]

⇐⇒ R(B) = R(M).

(10)

Since B∗�B ∈ B(N (M∗)) is invertible and R(B) = R(M), we obtain

N (M∗) = R(B∗�B) = R(B∗).
Hence B, B∗ are surjective and therefore B is invertible.

(v) ⇒ (i) By (3) and (4) we have

MM+ − M+M =
⎛
⎝ A B

0 0

⎞
⎠

⎛
⎝ A∗� 0

B∗� 0

⎞
⎠ −

⎛
⎝ A∗� 0

B∗� 0

⎞
⎠

⎛
⎝ A B

0 0

⎞
⎠

=
⎛
⎝ I − A∗�A −A∗�B

−B∗�A −B∗�B

⎞
⎠ .

(11)

If B is invertible, then
(
B∗�B

)−1 = B−1�−1(B∗)−1 and the Schur complement(
I − A∗�A

) − ( − A∗�B
)( − B∗�B

)−1( − B∗�A
) = I.

Hence MM+ − M+M is invertible by Lemma 2.4.

(vi) ⇐⇒ (iii) It is clear (iii) ⇒(vi). So we only need to show (vi)⇒(iii). Since P + Q is invertible,

(P + Q)
1
2 is invertible and, by Lemma 2.2,

R(M) + R(M∗) = R(P) + R(Q) = R((P + Q)
1
2 ) = H.

Hence R(M) andR(M∗) are complementary spaces and therefore (iii) holds.

(vii) ⇐⇒ (v) By Lemma 2.6, we have

M + M∗ =
⎛
⎝ A + A∗ B

B∗ 0

⎞
⎠ , I − MM+ =

⎛
⎝ 0 0

0 I

⎞
⎠

and

(M + M∗)(I − MM+) ± (I − MM+)(M + M∗) =
⎛
⎝ 0 B

±B∗ 0

⎞
⎠ .

Hence

(M + M∗)(I − MM+) ± (I − MM+)(M + M∗)
is invertible if and only if B is invertible. The result follows immediately.

(viii) ⇐⇒ (v) Similar to the proof of (vii) ⇐⇒ (v). �

Theorem 3.3. Let the assumptions of Theorem 3.2 hold and M be represented as in (9). Let also � =
(AA∗ + BB∗)−1.

(i) (
I − A∗�A

)−1 = I + A∗(
BB∗)−1

A and
(
B∗�B

)−1 = I + B−1AA∗(
B∗)−1

.
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(ii)

(
M ± M∗)−1 =

⎛
⎝ 0 ±(B∗)−1

B−1 ∓B−1(A ± A∗)(B∗)−1

⎞
⎠ .

(iii) (
MM+ − M+M

)−1 = (
M + M∗)−1(

M∗M − MM∗)(
M + M∗)−1

=
⎛
⎝ I −A∗(B∗)−1

−B−1A −I

⎞
⎠

and

(
MM+ + M+M

)−1 =
⎛
⎝ I −A∗(B∗)−1

−B−1A B−1(2AA∗ + BB∗)(B∗)−1

⎞
⎠ .

Proof. (i) Let M be represented as in (9) and � = (AA∗ + BB∗)−1. By (11), we get

(
MM+ − M+M

)2 =
⎛
⎝ I − A∗�A −A∗�B

−B∗�A −B∗�B

⎞
⎠

2

=
⎛
⎝ I − A∗�A 0

0 B∗�B

⎞
⎠ .

Next, we only prove
(
I − A∗�A

)−1 = I + A∗(
BB∗)−1

A. The relation
(
B∗�B

)−1 = I + B−1AA∗(
B∗)−1

can be proved in the same way. In fact,

(
I − A∗�A

)[
I + A∗(BB∗)−1A

] = I − A∗�A + A∗(BB∗)−1A − A∗�AA∗(BB∗)−1A

= I − A∗�A + A∗�
(
AA∗ + BB∗ − AA∗)

(BB∗)−1A

= I

and [
I + A∗(BB∗)−1A

](
I − A∗�A

) = I − A∗�A + A∗(BB∗)−1A − A∗(BB∗)−1AA∗�A

= I − A∗�A + A∗(BB∗)−1
(
AA∗ + BB∗ − AA∗)

�A

= I.

(ii) It is obvious that

(
M ± M∗)−1 =

⎛
⎝ A ± A∗ B

±B∗ 0

⎞
⎠

−1

=
⎛
⎝ 0 ±(B∗)−1

B−1 ∓B−1(A ± A∗)(B∗)−1

⎞
⎠ .

(iii) By item (i), we have(
MM+ − M+M

)−1 = (
MM+ − M+M

)(
MM+ − M+M

)−2

=
⎛
⎝ I − A∗�A −A∗�B

−B∗�A −B∗�B

⎞
⎠

⎛
⎝ I + A∗(

BB∗)−1
A 0

0 I + B−1AA∗(
B∗)−1

⎞
⎠

=
⎛
⎝ I −A∗(B∗)−1

−B−1A −I

⎞
⎠ .
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It follows from item (ii) that⎛
⎝ I −A∗(B∗)−1

−B−1A −I

⎞
⎠ = I −

⎛
⎝ 0 0

B−1A I

⎞
⎠ −

⎛
⎝ 0 A∗(B∗)−1

0 I

⎞
⎠

= I − (
M + M∗)−1

M − M∗(
M + M∗)−1

= (
M + M∗)−1[

(M + M∗)2 − M(M + M∗)

− (M + M∗)M∗](
M + M∗)−1

= (
M + M∗)−1(

M∗M − MM∗)(
M + M∗)−1

.

Note that

MM+ + M+M =
⎛
⎝ I + A∗�A A∗�B

B∗�A B∗�B

⎞
⎠

and B∗�B is invertible. The representation for
(
MM+ + M+M

)−1
follows immediately by

Lemma 2.4. �

The following is the immediate corollary of Theorem 3.2.

Corollary 3.4 (see [10, Theorem 2.9] for matrix case). Let M ∈ B(H) be such that R(M) is closed. The
following statements are equivalent:

(i)H = R(M) ⊕⊥ R(M∗) (or,R(M∗) = N (M∗)).
(ii) According to the space decompositionH = R(M) ⊕⊥ N (M∗), M has the 2 × 2 block operator matrix

form

M =
⎛
⎝ 0 B

0 0

⎞
⎠ , where B is invertible. (12)

Let P and Q be orthogonal projectors. If P,Q ∈ C
n×n, where C

n×n is the set of n × n complex

matrices, an important tool in constructingorthogonal projectors ontogiven columnspaces is provided

in the literature. Baksalary and Trenkler (see (2.16) and (2.17) in [3]) showed that

PR(P)∩R(Q) = In − (In − PQ)(In − PQ)+,

and

PN (P)+N (Q) = (In − PQ)(In − PQ)+.

Several alternative formulae for PR(P)∩R(Q) are given in [36, Theorem 4 ], with

PR(P)∩R(Q) = 2P(P + Q)+Q

proved by Groß [37, Corollary 3] and

PR(P)∩R(Q) = P − P(PQ)+, PR(P)+R(Q) = P + P(PQ)+

provided by Baksalary and Trenkler in [4, Lemma 7]. If P,Q ∈ B(H) and I − PQ (or P − Q ) is MP-

invertible, then the relations

PR(P)∩R(Q) = P − P(PQ)+, PR(P)+R(Q) = P + P(PQ)+

still hold (see, for example [18, Theorem 2.6]). In the following theorem, we consider some range

relations under the case thatR(MM+ − M+M) is closed.
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Theorem 3.5. Let M ∈ B(H) be represented as in (3) so that R(M) andR(MM+ − M+M) are closed.

(i) M is DR ⇐⇒ R(B) = R(M) (i.e., B is surjective).

(ii) M is SR ⇐⇒ R(B∗) = N (M∗) (i.e., B∗ is surjective).

(iii) M is co-EP ⇐⇒ B is invertible.

Proof. Since R(M) is closed, M+ exists. Let M, M+, P = MM+ and Q = M+M be represented as in

(3)–(6), respectively.

(i) SinceR(P −Q) is closed, P −Q is MP-invertible. Since P −Q is selfadjoint, we know that P −Q

is EP. Hence, by (8), P − Q is MP-invertible if and only if I − Q0 is invertible. By (5) and (6), we have

PQ =
⎛
⎝ I − A∗�A −A∗�B

0 0

⎞
⎠ =

⎛
⎝

(
0
I
I−Q0

) ⎛
⎜⎝

0
0

−Q
1
2
0 (I−Q0)

1
2 D

⎞
⎟⎠

0 0

⎞
⎠

and PQ(PQ)∗ =
( (

0
I
I−Q0

)

0

)
. Similarly,

PQ =
⎛
⎝ 0 0

B∗�A B∗�B

⎞
⎠ =

⎛
⎝ 0 0⎛

⎜⎝
0
0

D∗Q
1
2
0 (I−Q0)

1
2

⎞
⎟⎠

(
0
I
D∗(I−Q0)D

) ⎞
⎠

and PQ(PQ)∗ =
(

0 (
0
I
D∗(I−Q0)D

) )
. By Lemma 2.2, item (ii),R(PQ) (orR(PQ)) is closed if and only

ifR(I−Q0) is closed. Since 1 is not the point spectrum of the positive contraction operator Q0 andD is

a unitary operator by Lemma 2.5,R(I−Q0) is closed if and only if I−Q0 is invertible. Now, we deduce

that P − Q is MP-invertible if and only if PQ is MP-invertible, if and only if PQ is MP-invertible, if and

only if I−Q0 is invertible (see also [38, Proposition 7]). Moreover, (PQ(PQ)∗)+ =
( (

0
I
(I−Q0)

−1

)

0

)
,

(PQ)+ = (PQ)∗(PQ(PQ)∗)+ =

⎛
⎜⎜⎜⎝

(
0
I
I

)
0⎛

⎜⎝
0
0

−D∗Q
1
2
0 (I−Q0)

− 1
2

⎞
⎟⎠ 0

⎞
⎟⎟⎟⎠

and

P − P(PQ)+ =
⎛
⎝ I 0

0 0

⎞
⎠ −

⎛
⎝ I 0

0 0

⎞
⎠

⎛
⎜⎜⎜⎝

(
0
I
I

)
0⎛

⎜⎝
0
0

−D∗Q
1
2
0 (I−Q0)

− 1
2

⎞
⎟⎠ 0

⎞
⎟⎟⎟⎠

=
( (

I
0
0

)
0

)
= PR(P)∩R(Q).

Observing that, for arbitrary MP-invertible operator T , it has T+ = T∗(TT∗)+. So⎛
⎝ I − A∗�A −A∗�B

0 0

⎞
⎠

+
=

⎛
⎝ I − A∗�A 0

−B∗�A 0

⎞
⎠

⎡
⎣

⎛
⎝ I − A∗�A −A∗�B

0 0

⎞
⎠

⎛
⎝ I − A∗�A 0

−B∗�A 0

⎞
⎠

⎤
⎦

+

=
⎛
⎝ I − A∗�A 0

−B∗�A 0

⎞
⎠

⎛
⎝ (I − A∗�A)+ 0

0 0

⎞
⎠

=
⎛
⎝ (I − A∗�A)(I − A∗�A)+ 0

−B∗�A(I − A∗�A)+ 0

⎞
⎠ .
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Hence, from R(P) = R(M) and R(Q) = R(M∗) we have

PR(M)∩R(M∗) = PR(P)∩R(Q) = P − P(PQ)+

=
⎛
⎝ I 0

0 0

⎞
⎠ −

⎛
⎝ I 0

0 0

⎞
⎠

⎡
⎣

⎛
⎝ I 0

0 0

⎞
⎠

⎛
⎝ I − A∗�A −A∗�B

−B∗�A I − B∗�B

⎞
⎠

⎤
⎦

+

=
⎛
⎝ I 0

0 0

⎞
⎠ −

⎛
⎝ I 0

0 0

⎞
⎠

⎛
⎝ I − A∗�A −A∗�B

0 0

⎞
⎠

+

=
⎛
⎝ I 0

0 0

⎞
⎠ −

⎛
⎝ I 0

0 0

⎞
⎠

⎛
⎝ (I − A∗�A)(I − A∗�A)+ 0

−B∗�A(I − A∗�A)+ 0

⎞
⎠

=
⎛
⎝ I − (I − A∗�A)(I − A∗�A)+ 0

0 0

⎞
⎠ .

Hence,

M is DR ⇐⇒ R(M) ∩ R(M∗) = {0}
⇐⇒ R(P) ∩ R(Q) = {0}
⇐⇒ I − A∗�A is invertible

⇐⇒ R(B) = R(M) [by (10)].

(13)

(ii) Note that� = �∗ = (AA∗+BB∗)−1 is invertible andM is SR if and only ifR(M)+R(M∗) = H.

Observe that⎛
⎝ 0 0

B∗�A B∗�B

⎞
⎠

+
=

⎛
⎝ 0 A∗�B

0 B∗�B

⎞
⎠

⎡
⎣

⎛
⎝ 0 0

B∗�A B∗�B

⎞
⎠

⎛
⎝ 0 A∗�B

0 B∗�B

⎞
⎠

⎤
⎦

+

=
⎛
⎝ 0 A∗�B

0 B∗�B

⎞
⎠

⎛
⎝ 0 0

0 (B∗�B)+

⎞
⎠

=
⎛
⎝ 0 (A∗�B)(B∗�B)+

0 (B∗�B)(B∗�B)+

⎞
⎠ .

From

PR(M)+R(M∗) = PR(P)+R(Q) = P + P(PQ)+

=
⎛
⎝ I 0

0 0

⎞
⎠ +

⎛
⎝ 0 0

0 I

⎞
⎠

⎡
⎣

⎛
⎝ 0 0

0 I

⎞
⎠

⎛
⎝ A∗�A A∗�B

B∗�A B∗�B

⎞
⎠

⎤
⎦

+

=
⎛
⎝ I 0

0 0

⎞
⎠ +

⎛
⎝ 0 0

0 I

⎞
⎠

⎛
⎝ 0 0

B∗�A B∗�B

⎞
⎠

+

=
⎛
⎝ I 0

0 0

⎞
⎠ +

⎛
⎝ 0 0

0 I

⎞
⎠

⎛
⎝ 0 (A∗�B)(B∗�B)+

0 (B∗�B)(B∗�B)+

⎞
⎠

=
⎛
⎝ I 0

0 (B∗�B)(B∗�B)+

⎞
⎠
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we know that

R(M) + R(M∗) = H if and only if B∗�B = (�
1
2 B)∗(�

1
2 B) is invertible, (14)

which is equivalent to that

R(B∗) = R((�
1
2 B)∗) = R[(� 1

2 B)∗(�
1
2 B)] = N (M∗) = R(M)⊥.

(iii) See Theorem 3.2. �

As for the weak-EP, we have the following equivalent conditions.

Theorem 3.6. Let M ∈ B(H) be represented as in (3) such that R(M) is closed. If we set the orthogonal

projectors P = MM+, Q = M+M and the closed subspaces M = R(P), N = R(Q), then the following

statements are equivalent:

(i)M is weak-EP.

(ii) A∗�B = 0, where � = (AA∗ + BB∗)−1.

(iii)H = ⊕4
i=1Hi, where Hi is defined by Lemma 2.5.

Proof. By (5), it is clear that (i) ⇐⇒ (ii). Let P,Q be represented as in (2). Note that Q0 is a positive

contraction onH5 such that neither 0 nor 1 belongs to the point spectrumofQ0,D is a unitary operator

fromH6 ontoH5. By (6), A∗�B = 0 ⇐⇒ H5 ⊕ H6 = {0}. Hence (ii) ⇐⇒ (iii). �

Theorem 3.6 implies that, if M is weak-EP with

H2 = M ∩ N⊥ = R(M) ∩ N (M) = {0}
and

H3 = M⊥ ∩ N = N (M∗) ∩ R(M∗) = {0},
then M is EP. Moreover, by Theorem 3.5, it is easy to get the following orthogonal direct sum decom-

position of Hilbert space H.

Corollary 3.7. Let the assumptions of Theorem 3.5 hold and let P = MM+.

(1) M is DR ⇐⇒ R(MP) ⊕⊥ N (M∗) = H.

(2) M is SR ⇐⇒ R(M) ⊕⊥ R(PM∗) = H.

(3) M is co-EP ⇐⇒ R(MP) ⊕⊥ R(PM∗) = H.

Corollary 3.8. Let the assumptions of Theorem 3.5 hold.

(i) M is co-EP if and only if M is DR and SR.

(ii) M is co-EP and GP if and only if M has the 2 × 2 block operator matrix form

M =
⎛
⎝ A B

0 0

⎞
⎠ , where A, B are invertible

according to the space decompositionH = R(M) ⊕⊥ N (M∗).

Furthermore, if M ∈ B(H) is DR or SR, R(M + M∗) has the following range relation.

Theorem 3.9. Let M ∈ B(H) be represented as in (3) such thatR(M) andR(MM+ − M+M) are closed.
Let P = MM+.

(i) If M is DR, then

R(M + M∗) = R(M) ⊕⊥ R(PM∗)
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and

(M + M∗)+ =
⎛
⎝ 0 (B∗)+

B+ −B+(A + A∗)(B+)∗

⎞
⎠ .

Furthermore,

M(M + M∗)+M = M, M(M + M∗)+M∗ = 0,

M(M + M∗)+ is an idempotent and S−1(M + M∗)+M∗ is an orthogonal projector with

R(
M(M + M∗)+

) = R(
S−1(M + M∗)+M∗) = R(M),

where S =
(

I 0
−B+A I

)
.

(ii) If M is simultaneously DR and SR, then

R(M + M∗) = R(M) + R(M∗),
M ± M∗ is invertible and (M ± M∗)−1 has the representation as in Theorem 3.3 (iii).

Proof. (i) By Theorem 3.5, M is DR if and only if B is surjective, if and only if B+ exists such that

BB+ = IR(M). Let S =
(

I 0
−B+A I

)
. Then

S∗M = M, MS(MS)+ = PR(M).

Since

S∗(M + M∗)S =
⎛
⎝ I −A∗(B+)∗

0 I

⎞
⎠

⎛
⎝ A + A∗ B

B∗ 0

⎞
⎠

⎛
⎝ I 0

−B+A I

⎞
⎠ =

⎛
⎝ 0 B

B∗ 0

⎞
⎠ .

From [
S∗(M + M∗)S

]+ = S−1(M + M∗)+(S∗)−1

and ⎛
⎝ 0 B

B∗ 0

⎞
⎠

+
=

⎛
⎝ 0 (B∗)+

B+ 0

⎞
⎠ ,

we get

(M + M∗)+ = S

⎛
⎝ 0 (B∗)+

B+ 0

⎞
⎠ S∗ =

⎛
⎝ 0 (B∗)+

B+ −B+(A + A∗)(B+)∗

⎞
⎠

and

(M + M∗)(M + M∗)+ =
⎛
⎝ I 0

0 B∗(B∗)+

⎞
⎠ .

Hence

R(M + M∗) = R(M) ⊕⊥ R(B∗) = R(M) ⊕⊥ R(PM∗).
Moreover

M(M + M∗)+ =
⎛
⎝ I −A∗(B+)∗

0 0

⎞
⎠
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is an idempotent on R(M),

S−1(M + M∗)+M∗ =
⎛
⎝ I 0

0 0

⎞
⎠

is an orthogonal projector on R(M),

M(M + M∗)+M = MS

⎛
⎝ 0 (B∗)+

B+ 0

⎞
⎠ S∗M = M

and

M(M + M∗)+M∗ = MS

⎛
⎝ 0 (B∗)+

B+ 0

⎞
⎠ S∗M∗ = 0.

(ii) Note thatM is simultaneously DR and SR⇐⇒M is co-EP⇐⇒ B is invertible. The results follow

immediately. �

4. An orthogonal projector approach for range relations

LetM ∈ B(H) be such thatR(M) is closed. Let orthogonal projectors P = MM+ and Q = M+M. If

we set closed subspaces

M = R(P) = R(M), N = R(Q) = R(M∗)
in Lemma 2.5, then the orthogonal projectors P and Q have the representations as in (2) and

P − Q = 0 ⊕ I ⊕ −I ⊕ 0 ⊕
⎛
⎝ I−Q0 −Q

1
2
0 (I−Q0)

1
2 D

−D∗Q
1
2
0 (I−Q0)

1
2 −D∗(I−Q0)D

⎞
⎠ ,

P + Q = 2I ⊕ I ⊕ I ⊕ 0 ⊕
⎛
⎝ I+Q0 Q

1
2
0 (I−Q0)

1
2 D

D∗Q
1
2
0 (I−Q0)

1
2 D∗(I−Q0)D

⎞
⎠ ,

(P − Q)2 = 0 ⊕ I ⊕ I ⊕ 0 ⊕
(
I−Q0 0

0 D∗(I−Q0)D

)
,

PQ = I ⊕ 0 ⊕ 0 ⊕ 0 ⊕
(

Q0 Q
1
2
0 (I−Q0)

1
2 D

0 0

)
,

QP = I ⊕ 0 ⊕ 0 ⊕ 0 ⊕
(

Q0 0

D∗Q
1
2
0 (I−Q0)

1
2 0

)
,

PQ(PQ)∗ = I ⊕ 0 ⊕ 0 ⊕ 0 ⊕
(
Q0 0
0 0

)
,

PQ = 0 ⊕ 0 ⊕ I ⊕ 0 ⊕
(

0 0

D∗Q
1
2
0 (I−Q0)

1
2 D∗(I−Q0)D

)
,

PQ = 0 ⊕ I ⊕ 0 ⊕ 0 ⊕
(

I−Q0 −Q
1
2
0 (I−Q0)

1
2 D

0 0

)

(15)

with respect to the space orthogonal direct sum decomposition H = ⊕6
i=1Hi, where R(Q0) and

R(I − Q0) are dense in H5, since Q0 is a positive operator and 0, 1 are not the point spectrums of Q0.

As for the MP-inverse of the related projectors, we have

PQ is MP-invertible ⇐⇒ R(PQ) is closed

⇐⇒ R(PQP) is closed [by Lemma (2.2)]
⇐⇒ R(Q0) is closed [by (2)]
⇐⇒ Q0 is invertible [by Lemma (2.5)].

(16)
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Similarly,

P − Q is MP-invertible ⇐⇒ I − Q0 is invertible. (17)

Hence, if R(PQ) is closed, by the sixth equation in (15), (PQ(PQ)∗)+ = I ⊕ 0 ⊕ 0 ⊕ 0 ⊕
(
Q

−1
0 0

0 0

)
.

So, by the fourth equation in (15),

(PQ)+ = (PQ)∗
[
(PQ)(PQ)∗

]+
=

[
I ⊕ 0 ⊕ 0 ⊕ 0 ⊕

(
Q0 0

D∗Q
1
2
0 (I−Q0)

1
2 0

)] [
I ⊕ 0 ⊕ 0 ⊕ 0 ⊕

(
Q

−1
0 0

0 0

)]

= I ⊕ 0 ⊕ 0 ⊕ 0 ⊕
(

I 0

D∗Q− 1
2

0 (I−Q0)
1
2 0

)
.

Similarly, ifR(PQ) or R(P − Q) is closed, we have

(QP)+ = (QP)∗
[
(QP)(QP)∗

]+ = I ⊕ 0 ⊕ 0 ⊕ 0 ⊕
(

I Q
− 1

2
0 (I−Q0)

1
2 D

0 0

)
,

(PQ)+ = (PQ)∗
[
(PQ)(PQ)∗

]+ = 0 ⊕ 0 ⊕ I ⊕ 0 ⊕
(

0 Q
1
2
0 (I−Q0)

− 1
2 D

0 I

)
,

(P − Q)+ = (P − Q)∗[(P − Q)(P − Q)∗]+

= 0 ⊕ I ⊕ −I ⊕ 0 ⊕
⎛
⎝ I −Q

1
2
0 (I−Q0)

− 1
2 D

−D∗Q
1
2
0 (I−Q0)

− 1
2 −I

⎞
⎠ .

(18)

As for the range relations, we observe that

R(P) = R(M) = H1 ⊕ H2 ⊕ H5,

R(Q) = R(M∗) = H1 ⊕ H3 ⊕ R(Q |H5⊕H6
),

R(P − Q) = R((P − Q)+) = H � (H1 ⊕ H4) if P − Q is MP-invertible,

R((PQ)+) = R(QP) = R(Q) � H3 if PQ is MP-invertible,

R((QP)+) = R(PQ) = R(P) � H2 if PQ is MP-invertible.

(19)

In general, if we set E =
(

Q0 0

D∗Q
1
2
0 (I−Q0)

1
2 0

)
, then E∗E =

(
Q0 0
0 0

)
and

EE∗ =
⎛
⎜⎝ Q2

0 Q
3
2

0 (I − Q0)
1
2 D

D∗Q
3
2

0 (I − Q0)
1
2 D∗Q0(I − Q0)D

⎞
⎟⎠

=
⎛
⎜⎝ Q0 Q

1
2

0 (I − Q0)
1
2 D

D∗Q
1
2

0 (I − Q0)
1
2 D∗(I − Q0)D

⎞
⎟⎠

⎛
⎝ Q0 0

0 D∗Q0D

⎞
⎠ .

We obtain

R(PQ) = H1 ⊕ R(E∗) = H1 ⊕ R(Q0) = H1 ⊕ H5 , (Q0 is injective and positive)

and

R(QP) = H1 ⊕ R(E) = H1 ⊕ R

⎛
⎜⎝

⎛
⎜⎝ Q0 Q

1
2

0 (I − Q0)
1
2 D

D∗Q
1
2

0 (I − Q0)
1
2 D∗(I − Q0)D

⎞
⎟⎠

⎞
⎟⎠

= H1 ⊕ R(Q |H5⊕H6
).



C. Deng et al. / Linear Algebra and its Applications 437 (2012) 2366–2385 2381

Hence

R(PQ) ∩ R(QP) = R(P) ∩ R(Q). (20)

Moreover, we have the following results.

Theorem 4.1. Let M ∈ B(H) be such thatR(M) is closed. If we set the orthogonal projectors P = MM+,

Q = M+M and the closed subspacesM = R(P), N = R(Q), then

(i) P = M(M∗M)+M∗, Q = M∗(MM∗)+M.

(ii) M0 = R(M) ∩ [R(M) ∩ N (M)
]⊥ = H1 ⊕ H5 and

N0 = N (M) ⊕ [R(M) + N (M)
]⊥ = ⊕4

i=2Hi ⊕ R(T0).

Furthermore

M0 ∩ N0 = {0}, M0 + N0 = H,

where Hi, i = 1, 2, · · · , 5 are defined as in Lemma 2.5 and

T0 =
⎛
⎜⎝ I − Q0 −Q

1
2

0 (I − Q0)
1
2 D

−D∗Q
1
2
0 (I − Q0)

1
2 D∗Q0D

⎞
⎟⎠ .

(iii) If R(PQ) is closed, then PM0,N0
= (QP)+.

Proof. Let T = M(M∗M)+M∗. It is clear that T = T∗ = T2, i.e., T is an orthogonal projector. By

Lemma 2.2,

R(T) = MR(
(M∗M)+M∗) = MR(M∗MM∗) = MR(M∗M)

= R(MM∗M) = R(MM∗) = R(M).

These give the assertion that P = M(M∗M)+M∗. Analogously, we have Q = M∗(MM∗)+M.

(ii) By Lemma 2.5, we have

PN (M) = Q = 0 ⊕ I ⊕ 0 ⊕ I ⊕
⎛
⎝ I−Q0 −Q

1
2
0 (I−Q0)

1
2 D

−D∗Q
1
2
0 (I−Q0)

1
2 D∗Q0D

⎞
⎠

and

PR(M) + PN (M) = I ⊕ 2I ⊕ 0 ⊕ I ⊕
⎛
⎝ 2I−Q0 −Q

1
2
0 (I−Q0)

1
2 D

−D∗Q
1
2
0 (I−Q0)

1
2 D∗Q0D

⎞
⎠ .

Hence, R(M) ∩ N (M) = H2 and

M0 = R(M) ∩ [R(M) ∩ N (M)
]⊥ = H1 ⊕ H5.

Since PR(M) + PN (M) ≥ 0, its diagonal element

⎛
⎝ 2I−Q0 −Q

1
2
0 (I−Q0)

1
2 D

−D∗Q
1
2
0 (I−Q0)

1
2 D∗Q0D

⎞
⎠ is positive. If there

exists a vector x = (x1, x2) such that⎛
⎜⎝ 2I − Q0 −Q

1
2

0 (I − Q0)
1
2 D

−D∗Q
1
2

0 (I − Q0)
1
2 D∗Q0D

⎞
⎟⎠

⎛
⎝ x1

x2

⎞
⎠ = 0,
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that is,⎧⎪⎨
⎪⎩

(2I−Q0)x1−Q
1
2
0 (I−Q0)

1
2 Dx2=0 ,

−D∗Q
1
2
0 (I−Q0)

1
2 x1+D∗Q0Dx2=0 .

(21)

By Lemma 2.5, Q0 is a positive contraction, Q0 and I − Q0 are injective and D is unitary. By second

equation in (21),wededuce that (I−Q0)
1
2 x1−Q

1
2

0 Dx2 = 0and,hence, (I−Q0)x1−Q
1
2

0 (I−Q0)
1
2 Dx2 = 0.

Byfirst equation in (21),weobtain x1 = 0and x2 = 0. So

⎛
⎝ 2I−Q0 −Q

1
2
0 (I−Q0)

1
2 D

−D∗Q
1
2
0 (I−Q0)

1
2 D∗Q0D

⎞
⎠ is an injective

positive operator.

R(PR(M) + PN (M)) = H � H3.

Hence

N0 = N (M) ⊕ [R(M) + N (M)
]⊥ = ⊕4

i=2Hi ⊕ R(T0),

where

T0 =
⎛
⎝ I−Q0 −Q

1
2
0 (I−Q0)

1
2 D

−D∗Q
1
2
0 (I−Q0)

1
2 D∗Q0D

⎞
⎠ .

To showM0 ∩ N0 = {0} and M0 + N0 = H, it is sufficient to establish that

H5 ∩ R(T0) = {0} and H5 + R(T0) = H5 ⊕ H6.

Since

⎛
⎝ 2I−Q0 −Q

1
2
0 (I−Q0)

1
2 D

−D∗Q
1
2
0 (I−Q0)

1
2 D∗Q0D

⎞
⎠ is injective positive operator,

H5 + R(T0) = R
⎛
⎝

⎛
⎝ 2I−Q0 −Q

1
2
0 (I−Q0)

1
2 D

−D∗Q
1
2
0 (I−Q0)

1
2 D∗Q0D

⎞
⎠

⎞
⎠ = H5 ⊕ H6

by Lemma 2.2. For every (z, 0) ∈ H5 ∩ R(T0), there exists (x1, x2) ∈ H5 ⊕ H6 such that⎛
⎝ I−Q0 −Q

1
2
0 (I−Q0)

1
2 D

−D∗Q
1
2
0 (I−Q0)

1
2 D∗Q0D

⎞
⎠

⎛
⎝ x1

x2

⎞
⎠ =

⎛
⎝ z

0

⎞
⎠ ,

that is,⎧⎪⎨
⎪⎩

(I−Q0)x1−Q
1
2
0 (I−Q0)

1
2 Dx2=z ,

−D∗Q
1
2
0 (I−Q0)

1
2 x1+D∗Q0Dx2=0 .

(22)

Since Q0 and I − Q0 are injective, we obtain z = 0 andH5 ∩ R(T0) = {0}.
(iii) By (16), if R(PQ) is closed, then Q0 is invertible. Lemma 2.4 implies that⎛

⎝ 2I−Q0 −Q
1
2
0 (I−Q0)

1
2 D

−D∗Q
1
2
0 (I−Q0)

1
2 D∗Q0D

⎞
⎠

is invertible. Hence M0 + N0 = H (i.e., M0 and N0 are complementary spaces). By first equation in

(18) we know that (QP)+ is an idempotent with

R((QP)+) = M0 and N ((QP)+) = R(I − (QP)+) = N0.

Hence (iii) holds. �
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Next a characterization of the range inclusions will be presented.

Theorem 4.2. Let M ∈ B(H) be such thatR(M) is closed. Then, the following statements hold.

(i)R(M∗) ⊂ R(M) ⇐⇒ M = MMM+.

(ii) N (M) ⊂ N (M∗) ⇐⇒ M = M+MM.

Proof. Note thatR(M) = R(MM+) = N (I−MM+) andN (M) = N (M+M) = R(I−M+M). Hence

R(M∗) ⊂ R(M) ⇐⇒ (I − MM+)M∗ = 0 ⇐⇒ M(I − MM+) = 0

and

N (M) ⊂ N (M∗) ⇐⇒ M∗(I − M+M) = 0 ⇐⇒ (I − M+M)M = 0. �

In [6, Theorem 2], Baksalary and Trenkler proved that, if M ∈ C
n×n, then P + Q is nonsingular if

and only ifM is SR; P − Q is nonsingular if and only ifM is DR and SR. Applying range projectors P,Q
and the result in Lemma 2.4, we get the following range relations (see also [5, Theorem 1] for finite

matrix case).

Theorem 4.3. Let M ∈ B(H) be such that R(M) is closed. Let also P = MM+ and Q = M+M be such

thatR(PQ) andR(P − Q) are closed.

(i) M is DR ⇐⇒ R(P) ∩ R(Q) = {0} ⇐⇒ R(PQ) ∩ R(QP) = {0}
⇐⇒ R(P − Q) = R(P + Q) = R(P) + R(Q) (by Lemma 2.2)

⇐⇒ R(PQ − QP) = R(PQ + QP) = R(PQ) + R(QP)

⇐⇒ R(P − Q) = R(P + Q − PQ)

⇐⇒ R(PQ) ⊕⊥ R(PQ) = R(P + Q)

⇐⇒ R(I − PQ) = H.

(ii) M is SR ⇐⇒ R(P) + R(Q) = H ⇐⇒ N (P) ∩ N (Q) = {0}
⇐⇒ R(P − Q) = R(PQ + QP)

⇐⇒ R(P + P Q) = R(P + QPQ)

⇐⇒ R(P + PQ) = H

⇐⇒ R(Q + PQ) = H.

(iii) M co-EP ⇐⇒ any one of the conditions in (i) and

any one of the conditions in (ii) hold simultaneously.

Proof. From (16) and (17) we know R(PQ) is closed ⇐⇒ Q0 is invertible, R(P − Q) is closed ⇐⇒
I − Q0 is invertible.

(i) By (13) and (20) we get

M is DR ⇐⇒ R(P) ∩ R(Q) = {0} ⇐⇒ R(PQ) ∩ R(QP) = {0}.
Analogously, it is trivial to show that the remaining items are all equivalent to R(P) ∩ R(Q) = {0}.

(ii) From (6) and (14), we get

M is SR ⇐⇒ R(P) + R(Q) = H ⇐⇒ N (P) ∩ N (Q) = {0}.



2384 C. Deng et al. / Linear Algebra and its Applications 437 (2012) 2366–2385

Similarly, we can show that the remaining items are all equivalent to that N (P) ∩ N (Q) = {0}.
(iii) See Corollary 3.8.(i). �
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