
i Theoretical 

ELSEVIE; Theoretical Computer Science 187 (1997) 23 l-248 

Computer Science 

Automatic generation of finite-element code 
by simultaneous optimization of expressions 

Joie Korelc * 

Faculty of Civil Engineering and Geodesy, University of Ljubljana, Jamova 2, 
SI-1000 Ljubljana, Slovenia 

Institut of Mechanics, TH Darmstdat, Germany 

Abstract 

The paper presents a MATHEMATICA package SMS (Symbolic Mechanics System) for the 
automatic derivation of formulas needed in nonlinear finite element analysis. Symbolic generation 
of the characteristic arrays of nonlinear finite elements (e.g. nodal force vectors, stiffness matrices, 
sensitivity vectors) leads to exponential behavior, both in time and space. A new approach, 
implemented in SMS, avoids this problem by combining several techniques: symbolic capabilities 
of Mathematics, automatic differentiation technique, simultaneous optimization of expressions and 
a stochastic evaluation of the formulas instead of a conventional pattern matching technique. SMS 
translates the derived symbolic formulas into an efficient compiled language (FORTRAN or C). 
The generated code is then incorporated into an existing finite element analysis environment. 
SMS was already used to developed several new, geometrically and materially nonlinear finite 
elements with up to 72 degrees of freedom. The design and implementation of SMS are presented. 
Efficiency of the new approach is compared with the efficiency of the manually written code on 
an example. 
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1. Introduction 

Nowadays more and more complex mechanical models are applied for the simulation 

of engineering structures. The mathematical models for these problems are described 

by a system of partial differential equations. Most of the existing numerical methods for 

solving partial differential equations can be classified into two classes: Finite Difference 

Method (FDM) and Finite Element Method (FEM). Unfortunately, the applicability of 

the present finite elements is often limited and the search for finite elements which 

can provide a general tool for arbitrary problems in mechanics of solids has a long 
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history. In order to develop a new finite element model quite a lot of time is spent 

in deriving characteristic element quantities such as gradients, Jacobian, Hessian and 

coding of the program in a efficient compiled language. These quantities are required 

within the numerical solution procedure. 

Using the general finite element environment for analyzing a variety of problems and 

for incorporating new elements, such as FEAP [21] or ABAQUS [20], is now already 

an everyday practice. The general finite element environments can handle, regardless 

of the type of elements, most of the required operations, such as: 

(i) preprocessing of the input data; 

(ii) manipulating and organizing of the data related to nodes and elements, material 

characteristics, displacements and stresses, etc.; 

(iii) construction of the global matrices by invoking different elements subroutines; 

(iv) solving the system of equations; 

(v) post-processing and analysis of results. 

The idea is to use symbolic algebraic systems for the derivation of characteris- 

tic element quantities and automatic code generator for the generation of numerical 

code. Symbolically generated code is then incorporated into the existing finite element 

environment and used within the numerical procedures. 

The symbolic-numeric approach to FEM and FDM was extensively studied in the last 

few years. Based on the studies various systems for automatic code generation were de- 

veloped. In many ways, the present stage of generation of finite difference code is more 

elaborated and more general than the generation of the FEM code. Various transforma- 

tions, differentiations and matrix operations, and a large number of degrees of freedom, 

involved in the derivation of characteristic FEM quantities often lead to exponential 

growth in space and time. Therefore, additional structural knowledge about the problem 

is needed, which is not the case for FDM. Within automatic generation of Finite Differ- 

ence code, the SINAPSE system by Kant [8] and Kant et al. [9] should be mentioned. 

The article deals only with the automatic generation of FEM code. Several specialized 

systems have been developed, such as FINGER by Wang [24], PIER by Sharma [ 181, 

SFEAS by Leef and Yun [ 131, SGEM by Nagabhushanam et al. [16], etc. These 

specialized systems can be used to derive the vectors and matrices required in FEM. 

In these systems the general symbolic and algebraic computation (SAC) systems, such 

as MATHEMATICA [22], are typically combined with an automatic code generator. 

The most elaborate work has been done by Wang and coworkers. The symbolic system 

FINGER employs various expression optimization techniques (use of the symmetric 

properties of the formulas, automatic introduction of intermediate variables), leading to 

a highly efficient and short FEM code. The later extension (PFINGER) generates also 

parallel FEM code [23]. 

The major limitation of the symbolic systems, when applied to FEM code generation, 

as pointed out before and by many authors [24,2], etc., is an uncontrollable growth of 

expressions. Investigations and experiments show that an efficient control of expression 

growth can be obtained by a cooperation of SAC and the following techniques: Auto- 

matic differentiation (AD) tools [5], Problem Solving Environments [3], and Theorem 
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proving systems. However, the general problem of cooperative problem solving has at 

the present stage not been solved yet. 

The idea presented in this paper is not to try to combine different systems, but to 

combine different techniques inside one system in order to avoid the above-mentioned 

problems. Thus, the main objective will be to combine techniques in such a way that 

leads to an optimal environment for the design and implementation of arbitrary finite 

elements. Among the presented systems the most versatile are indeed the SAC sys- 

tems. They normally contain, beside the algebraic manipulation, graphics and numeric 

capabilities, also powerful programing languages. It is therefore quite easy to simu- 

late other techniques inside the SAC system. A new approach is called Simultaneous 

Stochastic Simplification of numerical code. This approach combines a general com- 

puter algebra system MATHEMATICA with an automatic differentiation technique and 

an automatic theorem proving by examples. To alleviate the problem of the growth of 

expressions and redundant calculations, simultaneous simplification of symbolic expres- 

sions is used. Stochastic evaluation of the formulas is used for determining the equi- 

valence of algebraic expressions, instead of the conventional pattern matching technique 

(see also [ 141). According to the authors knowledge the combination of the SAC sys- 

tem, automatic differentiation technique and simultaneous stochastic simplification for 

the automatic FEM code generation has not been used before. 

SMS was designed to approach the especially hard problems, where the general 

strategy to efficient FEM formulation has not yet been established. SMS was already 

used to developed several new, geometrically and materially nonlinear finite elements 

with up to 72 degrees of freedom. 

2. SMS - symbolic mechanics system 

The SMS system is written in the symbolic language of MATHEMATICA. It consists 

of about 200 functions and 10 000 lines of MATHEMATICA’s source code. Typical 

SMS function takes the expression provided by the user, either interactively or in file, 

and returns an optimized version of the expression. Optimized version of the expression 

can result in a newly created intermediate symbol (vi), or in an original expression in 

parts replaced by previously created intermediate symbols. In the first case SMS stores 

the new expression in an internal data base. The data base contains a global vector of 

all expressions, information about dependencies of the symbols, labels and names of 

the symbols, partial derivatives, etc. The data base is a global object which maintains 

informations during the MATHEMATICA session. 

In this section the techniques implemented in SMS to alleviate the problem of ex- 

ponential growth of expressions are discussed. 

2.1. Simultaneous optimization and expression labelling 

The classical way for optimizing expressions in computer algebra systems is search- 

ing for common sub-expressions at the end of the derivation, before the generation 
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of the numerical code (see e.g. [24]). In the numerical code common sub-expressions 

appear as new intermediate variables. A new approach named “Simultaneous optimiza- 

tion of expressions” is proposed. It denotes that formulas are optimized, simplified and 

replaced by new intermediate variables simultaneously with the derivation of the prob- 

lem. The optimized version is then used in further operations. If the optimization is 

performed simultaneously, the explicit form of the expression is obviously lost, since 

some parts are replaced by intermediate variables. The problems which arise will be 

assessed at the end of the chapter. 

Let us consider a simple example to illustrate the procedure. Quantity u is inter- 

polated by a linear combination (1) of the unknown parameters ui, 24,243 and shape 

functions (2). 

U=~NjUi, (1) 
i=l 

N,=;, N2=I - ;, (2) 

Suppose that our solution procedure needs the gradient of a function f = u2 with 

respect to the unknown parameters. An input for MATHEMATICA for this problem 

and the automatically generated FORTRAN code are as follows. 

(* input for MATHEMATICA*) 

SMSSet [“v”] 

ui=Array [u [#I &, 31 

Ni=(x/L,l-x/L,x/L (I-x/L))//SMSReduce 

udiscretized=Ni.ui//SMSReduce 

f=udiscretized’2//SMSReduce 

gradient=SMSD [f , #I &/Oui 

SMSExport [gradient, “gradf”, “g”] 

SMSWrite [“test” ,Common->C”u” [31 , “x”, “L”I1 

C . . . . Fortran code 

SUBROUTINE gradf(g) 

REAL*8 v(6) ,g(3) ,u(3) ,x,L 

COMMON/SMS/v,u,x,L 

v(3)=x/L 

v(4)=l.d0 - v(3) 

v(5)=v(3)*v(4) 

v(6)=2.dO*(u(l)*v(3) + u(2)*v(4) + u(3)*v(5)) 

g(l)=v(3)*v(6) 

g(2)=v(4)*v(6) 

g(3)=v(5)*v(6) 

END 
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Three characteristic steps can be recognized: 

(i) At the beginning of the session the SMSSet function initialized the internal global 

data base. 

(ii) During the session the SMSReduce function is applied at the end of the input 

expressions. SMSReduce performs simultaneous optimization. The SMSD function 

performs automatic differentiation which will be explained later. 

(iii) At the end of the session the SMSWrite function writes the contents of the global 

vector of formulas to the file in a prescribed language format (e.g. FORTRAN 

or C). 

The way how the intermediate variables are labeled is crucial for the interaction be- 

tween the SMS and MATHEMATICA. New intermediate variables are labeled consec- 

utively (ui, v2,u3,. . . , u,) in the same order as they are created, and these labels remain 

fixed during the MATHEMATICA session. This enables free manipulation with the for- 

mulas returned by the SMS system. With MATHEMATICA user can perform various 

algebraic transformations on a optimized formulas independently on SMS. Although 

intermediate variables are named consecutively, they are not always stored in a data 

base in the same order. Indeed, when two formulas contain common sub-expression, 

SMS immediately replaces sub-expression with a new intermediate variable which is 

stored in the data base in front of the considered formulas. The internal representation 

of the formulas in the data base can be continuously changed and optimized. 

All labels can be changed at the end of the MATHEMATICA sessions, before the 

generation of the numerical code. Thus, at the end of the session all the formulas 

stored in the data base are reconsidered by performing those correctness-preserving 

transformations which are restricted during the session (see also subsection on automatic 

differentiation). 

2.2. Improved optimization procedures with stochastic evaluation of expressions 

In real mechanical problems it is almost impossible to recognize the identity of two 

expressions (e.g., the symmetry of the tangent stiffness matrix in nonlinear mechanical 

problems) automatically only by the pattern matching mechanisms. Normally, our goal 

is to recognize the symmetry automatically without introducing additional knowledge 

into the derivation such as tensor algebra, matrix transformations, etc. Commands in 

Mathematics such as Symplif y , Together, Expand, etc. are useless in the case of 

large expressions. Additionally, these commands are efficient only when the whole ex- 

pression is considered. When optimization is performed simultaneously with the deriva- 

tion of the formulas, the explicit form of the expression is obviously lost, since some 

parts are replaced with intermediate variables. The only possible way at this stage of 

computer technology seems to be an algorithm which finds equivalence of expressions 

numerically. This relatively old idea (see, e.g., [14] or [4]) is rarely used, although it is 

essential for dealing with especially hard problems. However, numerical identity is not a 

mathematically rigorous proof for the identity of two expressions. Thus the correctness 

of the simplification can be determined only with a certain degree of probability. With 
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regard to our experience this can be neglected in mechanical analysis when dealing 

with more or less ‘smooth’ functions. In other cases, expressions have to be evaluated 

with a characteristic set of examples. Searching for common sub-expressions means 

that only those expressions which are syntactically equal are recognized as common 

sub-expressions. Due to the stochastic evaluation algorithm, also some higher relations 

can be searched. 

Higher relations between expressions automatically recognized by the SMS system 

are : 

(a) integer values 

el:=fi + el:=N 

(b) opposite values 

el := fi 

1 c 
+ 

el := fi 

e2 := - fi e2 := - el 

(c) inverse values 

el := fi 

;i 1 i 

el := fi 

=+ 1 
e2 := - e2 := - 

el 

(d) intersections of common factors for multiplication and addition. 

vi :=boc 
el :=aiobocodj 

ez:=Ziobocod; 
+ el :=aiodjovl 

e2 :=r7, 0 dj o VI 

where ei are symbols, ai,Zi, dj, dj, b, c are arbitrary expressions or sub-expressions and 

vi are new intermediate variables. 

Subexpressions in the above cases do not need to be syntactically identical, which 

means that higher relations are recognized also in cases where term rewriting and 

pattern matching algorithms in MATHEMATICA fail. 

2.3. Performing non-local operations 

For ‘non-local’ operations, such as integration, the SMS system provides a set of 

functions which perform optimization in a ‘smart’ way. ‘Smart’ optimization means 

that only those parts of the expression that are not important for the implementation 

of ‘non-local’ operation are replaced by new intermediate variables. 

Let us consider an expression f which depends on variables x, y and z: 

f =x2+2xy+y2+2xz+2yz+z2. (3) 

Since integration of f with respect to x is to be performed, we perform ‘smart’ opti- 

mization of f by preserving the integration variable x, which leads to the optimized 
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expression fX 

fx = vg + v7x +x2 (4) 

and the following vector of intermediate variables vi 

v4 := 2y, v3 := y2 +z2 +zv4, us := 22 $ vq. (5) 

After the integration, the resulting expression J; (6) is used to obtain another formula 

fY (7). fV is identical to fi; however, with an explicit variable y. New format is 

obtained by ‘smart’ restoring the 

.fi= /fx dx=vsx+ ;v7x2 

f.v = 09 + v1oy + xy2. 

expression fi with respect to variable y. 

+ +x3, (6) 

(7) 

At the end of the MATHEMATICA session the global vector of formulas contains the 

following intermediate variables 

214 := 2y, 0.5 :=z2, 213 := v6 + y2 + 2142, 

219 := 22, c’s := v4 + v9, 08 :=X2, 

X3 
u7:=2)6X+ - f&32, 

3 
vi0 := 0s + 09X. 

Input for MATHEMATICA for this example is as follows: 

(8) 

SMSSet [VI 
f=(x+a+b)-2//Expand; 

fx=SMSSmartReduceCf,x,Collect[#,xltl; 

fi=Integrate[fx,xl; 

fy=SMSSmartRestore[fi,a,Collect [#,al&l; 

2.4. Automatic differentiation technique 

Differentiation is an arithmetic operation which plays the crucial role in the develop- 

ment of new finite elements. The procedure implemented in the SMS system represents 

a version of automatic differentiation technique [5]. The automatic differentiation gen- 

erates a programing code for the derivative from a code for the basic function. The 

vector of the new intermediate variables, generated during the simultaneous simpli- 

fication of the expressions, is a kind of ‘pseudo’ code, which makes the automatic 

differentiation with SMS possible. SMS uses MATHEMATICA’s symbolic differentia- 

tion functions for the differentiation of explicit parts of the expression. The version of 

reverse or forward mode of ‘automatic differentiation’ technique is then employed on 

the global level for the collection and expression of derivatives of the variables which 

are implicitly contained in the intermediate variables. 

Higher order derivatives are difficult to implement by the standard automatic differen- 

tiation tools. Most of the automatic differentiation tools offer only the first derivatives. 
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Table 1 

Correct simplification of large expression 

Unsimplified 

x := L(a) 

,v := L(o) +x2 

Simplification A 

x := L(a) 

y:=x+x’ 

Simplification B 

01 := L.(a) 

x := 0, 

$=2x y := II, +x2 

dyz& 
dx 

When derivatives are derived by SMS, the results and all the intermediate formulas 

are stored on a global vector of formulas where they act as any other formula entered 

by the user. Thus, there is no limitation in SMS concerning the number of derivatives 

which are to be derived. 

Differentiation is an example where the problems involved in simultaneous simpli- 

fication are obvious. Table 1 considers the simple example of the two expressions x, y 

and the differentiation of y with respect to x. L(a) is an arbitrary large expression and 

ui is an intermediate variable. From the computational point of view, simplification A 

is the most efficient and it also gives correct results for both values x and y. However, 

when used in a further operations, such as differentiation, it obviously leads to the 

wrong results. On the other hand, simplification B has one more assignment and gives 

correct results also for the differentiation. To achieve maximal efficiency both types of 

simplification are used in the SMS system. During the derivation of the formulas the 

type B simplification is performed. 

At the end of the derivation, before the FORTRAN code is generated, the formulas 

that are stored in a global vector are reconsidered to achieve the maximum computa- 

tional efficiency. At this stage the type A simplification is used. Itermediate variables 

with 0 or constant value that eventually appear during the automatic differentiation are 

also eliminated and their values are inserted into the original formulas. 

2.5. Human interaction issues 

An important question arises: how to understand the automatically generated 

formulas? The automatically generated code should not act like a “black box”. For 

example, after the using automatic differentiation tools we have no insight in the actual 

structure of the derivatives. 

While formulas are derived automatically with SMS, SMS tries to find the ac- 

tual meaning of the intermediate variables and assigns appropriate names. By asking 

MATHEMATICA in an interactive dialog about certain symbols, we can retain this 

information and explore the structure of the generated formulas. With the command 

SMSRestore the intermediate variables can be replaced by their definitions and the 

structure of the formulas can be explored at several levels. In the following MATHE- 
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MATICA session the structure of the array F is explored at three levels. 

In[301:= F 

Out[30]= ((F ,F 1, (F ,F )I 

II 12 21 22 

In[311:= SMSRestoreL F[[1,111,11 

Out[311= 1 + u 

,X 

In[321:=SMSRestoreC FCCl,lll ,21 

Out[32]= 1 + N ui + N ui + N ui + N ui 

1,x 1 2,x 2 3,x 3 4,x 4 

Sometimes SMS finds more than one meaning for the same intermediate variable. 

By default it presents the last one. With the command SMSFace, we can explore 

different meanings of the generated formulas. In the next example, SMS finds three 

different meanings for an element of the stiffness matrix: (a) Kii is an element of the 

matrix, (b) Kii is the first derivative of the weak form of the element ~Xi/dui and 

(c) K, , is the second derivative of the strain energy function a217/du1 au,. 

In[401:= K[[l,l]] 

Out[401= K 

II 

1n[4ll:=SMSFace[Alll; 

In[421:= K[[l,l]] 

Out[421= K t R I pi 
11 1,ui ,ui ,ui 

1 11 

3. Application to the finite element method 

3.1. Characteristic arrays of jinite elements 

We limit ourselves to the class of problems characterized by the functional 

II(u) = 
s 

II*(u) dL?, (9) 
R 

where u are the unknown functions and Q the domain of the problem. It is assumed 

also that this functional can be expressed explicitly as a function of the geometric, 

material and physical (displacements, load, . . .) characteristics of the problem. Many 

problems in mechanics of solids can be expressed in this way and they are typically 

solved by a finite element method. For more details see e.g. [25]. 

In this class of problems a high abstract formulation of the problem and its imple- 

mentation with the SMS system is straightforward. Within the finite element method 
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the domain of the problem is divided into sub-domains (finite elements). First, trial 

functions for unknown functions u are assumed on a domain of a single element (10). 

G is a matrix of the interpolation functions and a is a vector of the unknown parameters 

defined on the domain of a single element. 

u=Ga. (10) 

The solution will be achieved by invoking the stationarity of the functional (6Il= 0), 

where unknown parameters have to be calculated. Assuming Newton’s iterative method 

we need two characteristic arrays: a gradient and Hessian of the functional with respect 

to the unknown parameters. The number of all unknown parameters of the problem 

depends on the problem and it can be very large. On the contrary, the number of 

unknown parameters of the singe element remains constant and is usually less than 100. 

Thus, our goal is to generate symbolically only the characteristic arrays of a single 

element. Global gradient and Hessian are then assembled numerically. The resulting 

system of linear equations is also solved numerically. 

For the gradient of the functional (11) with respect to the unknown parameters of 

the element, first the derivatives of the functional are needed (Y is often referred to 

as nodal force vector): 

an an 
!b&= j-& . 1 1 (11) 

Second derivatives of the functional with respect to the unknown parameters lead to 

the Hessian matrix (K is referred to as tangent stiffness matrix of the element). 

Additionally, some futher derivatives of the functional (sensitivity vectors) are required 

for special purposes, such as inverse analysis, optimization procedures, etc. 

~2% a2n 
ap { ) aai ap ’ 

(13) 

The evaluation of the above quantities includes also the integration over the element 

domain. Only simple linear finite elements can be integrated in closed form, which is 

the reason why the numerical integration will be employed. Procedures for numerical 

integration are general and they can be performed by a prearranged interface subroutine. 

There is no need for the automatic generation of integration procedures. In the case 

of numerical integration only numerical code for the evaluation of the characteristic 

quantities is needed at the integration point. These will be marked with the asterisk 

(‘p*,K*,...). 

From the above it can be seen that for symbolic generation of the characteristic 

arrays the appropriate input for SMS has to be written with the definitions for 

(i) discretization of the unknown functions; 

(ii) derivation of the functional; 
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(iii) derivation of the gradient; 

(iv) derivation of the Hessian. 

3.2. Interface between the automatically generated code and the FEM environment 

The result of SMS is a global vector of formulas where all characteristic arrays and 

intermediate formulas are stored together. By separating the global vector of formulas 

into several functions which are called on sequentially, formulas are evaluated only 

when and where they are really needed. For a typical mechanical problem the following 

subroutines are generated 

(i) Const - evaluates constant values independent on the element data 

(ii) Data - evaluates the values depended on the element data 

(iii) Point - evaluates the values depended on the integration point coordinates 

(iv) Force - evaluates values depended on the first equation counter (i, !Pi ) 
(v) Tangent - evaluates values depended on the second equation counter (j,Kij). 

A typical interface subroutine between automatically generated code and FEE is as 

follows: 

called once for all elements 

Const 

called for every element 

Data 

for g = 1,2,. . .,n_gausspoints 

Point 

for i= 1,2 , . . .,n_parameters 

Force(i) 

for j = 1,2,. . n-parameters 

Tangent (i,j) 

A subprogram, which is nested deeper, assumes that all the quantities that can be 

evaluated before are already evaluated and stored in the vector of values. The vector 

of values is common for all subroutines. Analogous structures can be written also for 

the post-processing of the results, sensitivity analysis, etc. The total size of the program 

code for calculating all the characteristic element quantities lies between 5 and 30 kbytes 

which is in the range of the average manually written program code. 

3.3. Generation of characteristic formulas 

If Nd.o.f unknown parameters are used for the discretization of the unknown fields, 

then an explicit form of the gradient and the Hessian will have at least Nd.o.f + (Nd,o,f)2 

terms. Thus, explicit code for all terms can be generated only for one-dimensional 

and low order two-dimensional elements. For three-dimensional elements and higher 

order two-dimensional elements the representative formulas for an arbitrary term of 

the gradient or Hessian have to be derived. Herein we shall take advantages of the 
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automatic differentiation technique. Another possibility would be to explore the sym- 

metric patterns (see [24]). 

The subset of unknown parameters, denoted by ai, is defined by 

a; c a, ;,,=a, Ui n Uj = 0, i#j. (14) 

Let iii be an arbitrary element of the ith subset. At the evaluation time of the program, 

the actual index of an arbitrary element iIi becomes known. Thus, iE;j represents an 

element of subset i with index j. In a similar manner Gi represents ith subset of the 

set of interpolation functions G. Let quantity k be expressed as a linear combination of 

ai and G;. For example k can be one of the unknown functions u. The tensor calculus 

then leads the following relation 

dk - 
k= a; .Gi + aii, = Gij. (15) 

Thus, the formula (15) is a representative formula for the evaluation of derivatives of k 
with respect to the arbitrary element of subset ai. The same principle can also be used 

for more complicated formulas. Suppose that the gradient of the function f(k) with 

respect to a has to be evaluated. Then the number of subsets (denoted by L) is equal 

to the number of representative formulas needed for the evaluation of the gradient. 

For the finite elements that apear in mechanics of solids, the number of subsets 

depends on the variational formulation, and is different for 2D and 3D elements. For the 

sake of simplicity we consider a general three-dimensional isoparametric finite element 

with IZ nodes and n shape functions A$ (for more details see, e.g., [25]). Displacement 

of the ith node is prescribed by the displacement vector {ui, vi, wi}. Thus the following 

set of 3n unknown nodal parameters can be obtained 

I(={U1,U,,W,,...,U,,u,,W,}T (16) 

and the displacement field u = {u, v, w} is discretized as follows: 

U=kN,Ui, U=eN;Vi, W=kN,Y. 
i=l i=l i=l 

(17) 

3.4. Description level 3 

Let us first take a look at how derivation is done manually for a typical mechanical 

problem. When elements are derived manually, typically representative code for an ar- 

bitrary node can be created. The result is the well known Bi matrix which relates strains 

with displacements and has the dimension number of strain components x number of 
nodal degrees of freedom. The representative gradient ( 18) is a sub-vector of the whole 

gradient and has dimension 3. The Hessian (19) is a 3 x 3 sub-matrix of the tangent 



J. Korelci Theoretical Computer Science I87 (1997) 231-248 243 

matrix of the element 

{ yi}3xl = s [&1:x3 {6)6x1 dQ i=1,2,...,n (18) 
n 

iKijl3x3 = s [&Ii,3 [c16~6 [416x3 +. . dQ2, i,j = I,%. . ,n. 

a 
(19) 

Thus, the number of subsets of the manually made code is L = 3. It is interesting to 

note that this is also an optimal choice for the automatic code generation. 

Unknown nodal parameters can be organized by the spatial dimensions into 3 sets 

with 12 elements as follows: 

al ={%...,%)T, az={%...,&JT, a3={w ,,..., W,}T. (20) 

Only one set of interpolation functions G (22) is needed for the interpolation of the 

displacements 

u=Ga,, v=Guz, w=Gus, (21) 

G={N ,,..., N,}. (22) 

A high abstract description, introduced in the previous section, can now be directly 

implemented, leading to the representative 3 x 1 sub-vector of gradient (23) and the 

representative 3 x 3 sub-matrix of Hessian (24). 

i=1,2 ,..., n, (23) 

T ayir ay: ay: , 
&i,j dZzj hi, 1 i,j= 1,2 ,..., n. (24) 

3.5. Some other description levels 

Organizing the unknown nodal parameters by spatial dimensions, such as in Eq. (20), 

is not the only possible way. Generally, arbitrary subsets can taken from the set of 

all unknown parameters. However, only a few of those possibilities are of practical 

interest. 

One subset: One characteristic formula for arbitrary element of gradient and Hessian. 

In this case all unknown parameters are treated equally and no partitioning is needed. 

a={ui,ui,W,. . . , hz, h wJT. C-25) 

Since there is only one set of parameters, Z represents an arbitrary parameter and 

parameter iii with the index i, determined at the evaluation time. The formulation leads 
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to one formula for arbitrary elements of the gradient (26) and the Hessian (27). 

an* 
YT==, i=1,2 ,..., 3n; 

i,j= 1,2 ,..., 3n. (27) 

3n subsets: Full explicit form of the gradient and the Hessian. 

For elements with a small number of unknown parameters the easiest way is to 

generate explicit code for all elements of gradient and Hessian. Again no partitioning 

is needed and the unknown parameters can be treated as ordinary variables leading to 

3.6. General SMS routine 

W*l 3nx3n 

az7* 
. aa3, 

- alv: au; 
aat .‘. da3n 

dy/3*n s 
_ aal ... aa,, 

(29) 

In the previous section the general notation for the description of finite elements 

has been introduced. The actual implementation depends on the type of element and 

variational formulation. In this section the schematic SMS procedure for deriving the 

gradient and the Hessian of an arbitrary functional for an arbitrary number of subsets 

L is described. The arbitrary element can be derived in the following 6 steps: 

Step 1: Definition of the sets of degrees of freedom ai and the sets of generalized 

interpolation functions Gi with the command SMSNewGroup. 

ai = SMSNewCroup[{ail,an, . .}], i = 1,2,. . . ,L; 

G;, = SMSNewGroup[{gil,giz,. _ .}], i = 1,2,. . ,L. 

Step 2: Trial function expansion of unknown functions Ui as linear combination of 

unknown parameters and interpolation functions (ui = SMSDot[Gj, ai]). 

Step 3: Definition of a functional. 

Step 4: For every set of unknown parameters create two indexes. The first one (iiik, ) 

represents an arbitrary element of the ith set which will be replaced at the evaluation 

time by index ki. The second one (iii/,) will be replaced at the evaluation time by 
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index li. 

iEik, = SMSNewIndex[ai, ki], i = 1,2,. . . ,L; 

iiilf = SMSNewIndex[ai, li], i = 1,2,. . . ,L. 

Step 5: Derive L characteristic formulas for the gradient and L2 characteristic for- 

mulas for the Hessian. The derivation is performed by automatic differentiation with 

respect to an arbitrary element of the set. 

Y* = {SMSD[functional*,&], . . .}, i = 1,2,. . . ,L; 

K* = {SMSD[Y*,ai,,],. . .}// Transpose, i = 1,2,. . .L. 

Step 6: Automatic generation of FE subroutines. 

Let us once again consider the example presented in Section 2.1. The code presented 

there is generated without the use of subsets. This time all parameters are grouped 

together in one set. A code for the evaluation of the gradient, automatically separated 

by the SMS system into the subroutines, is presented. 

SUBROUTINE constant 

REAL*8 v(4),u(3),x,l 

COMMON/SMS/v,x,u,l 

v(l) =x/l 

v(2) = i-v(l) 

v(3) =v(l>*v(2) 

v(4) =v(l)*u(l)+v(2)*u(2)+v(3)*u(3) 

END 

SUBROUTINE gradfi(i,gi) 

REAL*8 v(4),u(3),x,l,gi 

COMMON/SMS/v,x,u,l 

gi=2*v(4)*v(i) 

END 

4. Finite element example 

In this section, the automatically generated code is compared with the carefully manu- 

ally written code. However, a manually written code is never totally objective and 

consequently comparisons are also not objective. The code used here follows the con- 

ventional finite element procedure as described by Zienkiewicz and Taylor [25], where 

the code written for the finite element environment FEAP [21] for similar elements 

can be found. 

The use of the SMS system will be introduced in the case of a three dimensional, 

eight nodes, isoparametric element. Large logarithmic strains and the Neo-Hook’s hy- 

perelastic material law [ 171 are considered, which makes the developed element geo- 

metrically and material nonlinear. Classical, displacement based variational formulation 
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Table 2 

Comparison of the efficiency and code size 

Method Normalized time Code size (kB) Number of mun. oper. 

Hand coded 1 22 

1 subset I .94 15 98 421 

3 subsets 0.57 11 33 610 

24 subsets 0.53 60 30 622 

is used. The element has 24 degrees of freedom. Details of the element formulation 

and full input for the SMS system and MATHEMATICA can be found in [lo]. Herein, 

only the code size and the efficiency are compared. 

The code was automatically generated for a number of subsets 1,3, and 24 in a way 

as described in the previous section. In Table 2, the numerical efficiency of the solutions 

and the amount of the resulting program code in bytes are compared. Efficiency is 

assessed by a direct measurement of the execution time needed to evaluate the nodal 

force vector and the stiffness matrix. Since all elements are incorporated into FEAF’ 

and compiled with the same compiler, the results represent quite an objective measure 

of efficiency. As can be expected, more explicit formulas mean also more efficient 

code. Considerably improved efficiency from the number of subsets 1 to 3 is the 

consequence of partially separable functions. Displacement fields u, v and w are indeed 

discretized independently. From 3 to 24 only minor improvement can be observed. It is 

a consequence of more explicit formulas, without loops, while the number of numerical 

operations remains almost the same. 

As opposed to efficiency, more subsets do not necessarily lead to larger code. The 

amount of the generated code is influenced by two processes: more subsets increase 

the amount of the code but at the same time more explicit formulas can be additionally 

simplified, which decreases the code size. As a result of both processes, the number 

of subsets 3 has the shortest code. 

If both criteria, code size and efficiency, are taken into account, then the code gen- 

erated by partitioning the unknown parameters into three subsets has the best overall 

performance. It is interesting to notice that the manually written code has similar struc- 

ture. 

5. Recent applications of the SMS system 

The new package has already been successfully used for the development of the 

new 2D and 3D elements based on a modified enhanced strain method [lo]. Among 

other problems, the well known hour-glassing problem of enhanced strain elements in 

the presence of large deformations was successfully solved with the help of the new 

system [ 111. It was also applied to develop a ‘spline’ finite strip element for nonlinear 

analysis of the prismatic shell structures with the non uniform cross section [ 121. In all 
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those cases the symbolic approach significantly improves the element formulation, not 

only from the point of view of efficiency and reliability of the automatically generated 

program code, but also from the point of view of efficiency and reliability of the finite 

element formulation itself. 

However, the high abstract description of the problem does not automatically mean 

more compact and efficient numerical code. Conventional FE technology is based on 

matrix algebra. It can be represented as a complicated sequence of vector and matrix 

operations as addition, multiplication, inversion, etc. Mathematical tools such as matrix 

algebra and tensor algebra are instruments which normally help the user to handle 

the problem of uncontrollable expression growth. With their help we can also detect 

important relations between the formulas which can dramatically reduce the entire 

derivation and improve efficiency of the final numerical code. These tools are basically 

not needed when the continuum problem is described on a high abstract level with the 

SAC systems. On the other hand, matching common sub-expressions and some higher 

relations, as described, can hardly be compared with the powerful mathematical tools. 

Thus, at the critical points of the derivation some structural knowledge of the problem 

might still be needed. 
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