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We propose a perturbation method for determining the (largest)
group of invariance of a toric ideal defined in [S. Aoki, A. Takemura,
The largest group of invariance for Markov bases and toric ideals,
J. Symbolic Comput. 43 (5) (2008) 342–358]. In the perturbation
method, we investigate how a generic element in the row space
of the configuration defining a toric ideal is mapped by a permu-
tation of the indeterminates. Compared to the proof by Aoki and
Takemura which was based on stabilizers of a subset of indetermi-
nates, the perturbation method gives a much simpler proof of the
group of invariance. In particular, we determine the group of in-
variance for a general hierarchical model of contingency tables in
statistics, under the assumption that the numbers of the levels of
the factors are generic. We prove that it is a wreath product in-
dexed by a poset related to the intersection poset of the maximal
interaction effects of the model.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Since the introduction of the notion of Markov basis by [5], toric ideals associated with various sta-
tistical models have been intensively investigated by both statisticians and algebraists. In particular,
statistical models for contingency tables have been rich sources for new developments (e.g. [1,6,13]).
The most important statistical model for contingency tables is the hierarchical model (e.g. [11]), which
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describes interactions of factors in terms an abstract simplicial complex. The configuration and the
toric ideal associated with a hierarchical model is highly symmetric. Therefore it is of considerable
interest to determine the (largest) group of invariance of a general hierarchical model. The group
of invariance is the set of permutations of the cells of contingency tables (or the indeterminates of
a polynomial ring) which leaves the model (or, equivalently, the kernel of the configuration, or the row
space of the configuration) invariant. Once the group of invariance is determined, a Markov basis (or
equivalently a system of binomial generators of the toric ideal) can be very concisely described [2,3,7]
by a list of representative elements from the orbits of the group. Without the consideration of sym-
metry, Markov bases for statistical problems tend to be very large (e.g. [8]).

Given a particular statistical model it is often easy to guess a candidate group, under which the
model is clearly invariant. However as shown in [2] it is often difficult to prove that it is the largest
group of invariance, i.e., every permutation outside the group does not leave the model invariant. In
this paper we propose a perturbation method to determine the group of invariance. In this method,
we look at a generic element of the model and check if a permutation maps the element to another
element in the model. The candidate group is shown to be the largest group of invariance, if every
permutation which maps a sufficiently generic element of the model into the model is necessarily an
element of the candidate group. In order to show the effectiveness of this approach, we determine the
group of invariance for a general hierarchical model of contingency tables, under the assumption that
the numbers of the levels of the factors are generic. We prove that the group of invariance is a wreath
product indexed by a poset related to the intersection poset of the maximal interaction effects of the
hierarchical model.

Here we give a simple illustrative example. Consider a hierarchical model for four-factor contin-
gency tables with numbers of levels I1, I2, I3 and I4 and the set of facets {{1,2}, {2,3}, {3,4}} (see
Section 2 for details of notation and terminology). Our main theorems (Theorems 1 and 2) state that
under a weak regularity condition the group of invariance of this model is generated by the permuta-
tions of i2, the permutations of i3, the permutations of i1 depending on i2 and the permutations of i4
depending on i3. This group is strictly larger than the direct-product group S I1 × S I2 × S I3 × S I4 of
permutations of levels for each factor. Other examples are given in Section 6. In particular, we present
an example such that the number of orbits in the minimal Markov basis is smaller under the action
of the group of invariance than under the action of the direct-product group (see Example 6).

In our proof we need to establish some basic facts on hierarchical models, which are not found
in the existing statistical literature. These facts are of independent interest and we present them in
Section 4.

The organization of the paper is as follows. In Section 2 we give preliminaries and present a per-
turbation lemma. In Section 3 we state our main theorem, which expresses the group of invariance
of a hierarchical model as an intersection of wreath products of symmetric groups. In Section 4 we
establish some basic facts on hierarchical models and in Section 5 we give a proof of the main theo-
rem. In Section 6 we rewrite the group of invariance as a wreath product indexed by a poset related
to the intersection poset of the maximal interaction effects of the hierarchical model. We conclude
the paper by some discussions in Section 7.

2. Preliminaries and a perturbation lemma

In this section we summarize preliminary facts on hierarchical models for contingency tables, de-
fine the group of invariance and present a perturbation lemma, which is essential for our proofs. We
mainly follow the notation and terminology of [11].

2.1. Preliminaries on hierarchical models for contingency tables

A hierarchical model for m-factor contingency tables with numbers of levels I1, . . . , Im is speci-
fied by an abstract simplicial complex. Let � be an abstract simplicial complex [10, Section 2.1] of
subsets of a finite set {1, . . . ,m} = [m] of “factors”. We denote the set of maximal simplices of � by
facet(�) = {D1, . . . , D K }. Maximal simplices are called maximal interaction effects of the model. For
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each factor j ∈ [m], the set of “levels” of j is denoted by I j = {1, . . . , I j} = [I j], where I j � 2. The di-
rect product of the set of levels I = I1 × · · · × Im is the set of “cells” and its element i = (i1, . . . , im)

is a cell. A contingency table x = (x(i))i∈I is a vector of nonnegative integers indexed by the cells. The
number x(i) is the frequency of the cell i. In this paper, the symbol A ⊂ B means that A is a subset
of B . If A is a proper subset of B , then we write A � B .

For a subset D ⊂ [m] of factors, let I D = ∏
j∈D I j . A subvector of indices iD = (i j) j∈D ∈ I D is

called “a marginal cell”. When a particular cell i = (i1, . . . , im) is given, iD is regarded as a subvector
of i, i.e., the projection of i onto the coordinates in D . For a contingency table x, its D-marginal table
x+

D = (x+(iD))iD∈I D is defined by

x+(iD) =
∑

j∈I, jD=iD

x( j).

Similar notation is used even when x(i) is not necessarily a nonnegative integer.
Fix I and a hierarchical model � with facet(�) = {D1, . . . , D K }. Write ν = ∑K

k=1|I Dk | and p = |I|.
For each i = (i1, . . . , im) ∈ I consider the following vector (cf. [13])

e(1)(iD1) ⊕ e(2)(iD2) ⊕ · · · ⊕ e(K )(iD K ) ∈ Zν

where e(k)(iDk ) is a unit coordinate vector of dimension |I Dk | with 1 at the position iDk and 0 every-
where else. The configuration A� for � is the set of p vectors

A� = {
e(1)(iD1) ⊕ · · · ⊕ e(K )(iD K )

}
i∈I .

In this paper we regard A� as a ν × p integral matrix representing a linear map from Qp to Qν . The
matrix A� can also be expressed by Kronecker products of identity matrices and vectors consisting
of 1’s [16, Section 2.1]. We also assume that the domain Qp is equipped with the standard inner
product and we identify Qp with its dual space by the standard inner product.

Let {ui}i∈I be the set of indeterminates indexed by the cells and let {t(1)
iD1

}iD1 ∈I D1
∪ · · · ∪

{t(K )
iD K

}iD K ∈I D K
denote the set of indeterminates indexed by the rows of A� . The toric ideal I A� is

the kernel of the polynomial homomorphism π� defined by π�(ui) = t(1)
iD1

× · · · × t(K )
iD K

. The structure

of the toric ideal is much more difficult than the kernel of matrix A� . However we will define the
invariance property of I A� in terms of the invariance property of the kernel of A� .

As we discuss in Section 2.2 we are interested in the kernel of A� and the linear space spanned
by the rows of A� . In the following we denote the kernel of A� and the linear space spanned by the
rows of A� by ker A� and r(A�), respectively. Note that ker A� and r(A�) are orthogonal comple-
ments to each other: r(A�) = (ker A�)⊥ .

In statistical theory, r(A�) corresponds to a log-linear model of cell probabilities, where the canon-
ical parameter vector of the exponential family is specified to lie in the linear space r(A�). We use
the single term “model” for �, r(A�) and ker A� because they correspond to each other.

The explicit form of ker A� and r(A�) are well known in the literature on contingency tables
(e.g. [11]). The set ker A� is written as

ker A� = {
y

∣∣ y+(iD) = 0, ∀iD ∈ I D , ∀D ∈ facet(�)
}
. (1)

For D ⊂ [m], let θD : I D → Q denote a function defined on the set of marginal cells I D . Then extend
the domain of θD to I by θD(i) = θD(iD). We call θD a function (or a table) depending only on the
marginal cell iD . Let LD = {θD} ⊂ Qp denote the linear space of these tables. Then

r(A�) =
∑

D∈facet(�)

LD , (2)
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where the summation on the right-hand side denotes the subspace spanned by {LD}D∈facet(�) . Note
that if E ∈ �, then LE ⊂ LD for some D ∈ facet(�). Therefore the right-hand is spanned by LE , E ∈ �.

2.2. The group of invariance of a toric ideal

Now we give a definition of the group of invariance of a toric ideal.
Let S I denote the symmetric group on I , i.e. an element g ∈ S I is a permutation of the cells of I .

Then g ∈ S I acts (from the left) on the |I|-dimensional rational vector space Q|I| = {(y(i))i∈I } by
the permutation of components: (gy)(i) = y(g−1(i)). Similarly g acts on the set of indeterminates
{ui}i∈I . If we regard g as a linear map from Q|I| to itself, then it is represented by a permutation
matrix. We denote the permutation matrix also by g . Note that g is orthogonal. For a given subspace
L ⊂ Q|I| , let G L = {g ∈ S |I| | gL = L} denote the set-wise stabilizer of L.

Let A be a ν × p rational matrix as in the previous subsection. The symmetric group S p acts on
the set of columns of A and on Qp . In [2] we defined the group of invariance for A as the set-wise
stabilizer Gker A ⊂ S p of ker A. From the viewpoint of toric ideal, the group of invariance is the set of
permutations of the indeterminates, which leaves the toric ideal invariant. Let r(A) ⊂ Qp denote the
linear space spanned by the rows of A. By Proposition 1 of [2], we have Gker A = Gr(A) .

Our objective is to understand Gker A�
= Gr(A�) of a hierarchical model �.

2.3. A perturbation lemma

Here we present the following lemma.

Lemma 1 (Perturbation lemma). Let n, b be positive integers. There exist n positive integers (Yl)
n
l=1 , such that

{−b,−b + 1, . . . ,b − 1,b}n 
 (cl)
n
l=1 �→

n∑
l=1

clYl (3)

is injective. Furthermore we can choose n vectors Y ( j) = (Y ( j)
l )n

l=1 , j = 1, . . . ,n, such that (3) is injective for
each j and they constitute a basis of the vector space Qn.

Proof. Let Y ( j)
l = (2b + j)l−1 (l, j ∈ [n]). By the uniqueness of the base 2b + j expression of posi-

tive integers, the map (cl)
n
l=1 �→ ∑n

l=1 clY
( j)
l is injective. Furthermore Y ( j)

l , j = 1, . . . ,n, are linearly
independent in view of the van der Monde determinant. �

In view of the above lemma, we define a generic contingency table belonging to r(A�) for a given
set of cells I and a hierarchical model � with facet(�) = {D1, . . . , D K }.

Definition 1. For n = ν = ∑K
k=1 |I Dk | and b = p = |I| choose (Yl)

n
l=1 such that (3) is injective.

Decompose (Yl)
n
l=1 into subvectors of sizes |I Dk |, k = 1, . . . , K , as (Yl)

n
l=1 = ((θD1 (iD1 ))iD1 ∈I D1

, . . . ,

(θD K (iD K ))iD K ∈I D K
) and define

x(i) = θD1(iD1) + · · · + θD K (iD K ), i ∈ I.

We call this x a generic element of r(A�).

Note that an element g of the group of invariance Gr(A�) has to map a generic element x of r(A�)

into r(A�). This fact helps us to determine Gr(A�) .
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3. Group of invariance of hierarchical models

In this section we first consider a candidate group for the group of invariance Gker A�
and then

present our main theorem, which states that the candidate group is indeed the group of invariance,
provided that the number of levels I j , j ∈ [m], are generic.

For D ⊂ [m] consider a simplicial complex �D , which consists of all subsets of D , and let
ker A�D = L⊥

D = {y | y+(iD) = 0, ∀iD ∈ I D}. Then ker A� = ⋂
D∈facet(�) ker A�D by (1). Let G D =

Gker A
�D denote the group of invariance for �D . Then it is easily seen that

⋂
D∈facet(�)

G D ⊂ Gker A�
. (4)

Therefore we can take
⋂

D∈facet(�) G D as a candidate group for the group of invariance Gker A�
. As we

will present an example of sudoku in Section 6, in general the inclusion in (4) is strict. However if
the number of levels I j , j ∈ [m], are generic, then the inclusion in (4) is in fact an equality.

Before stating our main theorem, we prove that G D = Gker A
�D is a wreath product of symmetric

groups. Let S I D denote the symmetric group acting on the set of D-marginal cells and S I DC denote

the symmetric group acting on the set of DC -marginal cells, where DC is the complement of D . Let
(S I DC )I D denote the set of all functions from I D to S I DC . Then the wreath product S I DC wr S I D is

a set W = S I D × (S I DC )I D . The operation of W as a subgroup of S I is defined by its action to I ,

where g = (h, h̃) ∈ W acts on i ∈ I by (gi)D = hiD and (gi)DC = h̃(iD)iDC . Then we have the following
proposition.

Proposition 1. The group of invariance G D for the hierarchical model �D is given by the wreath product
S I DC wr S I D .

Proof. For notational simplicity, we prove the proposition for the case of m = 2 and D = {1} and
write i as (i, j). We denote S I D and S I DC by S I1 and S I2 , respectively. The proof for a general case is
totally the same by the consideration of a “pseudofactor” (see Section 4 for details on pseudofactors).

First we show that S I2 wr S I1 ⊂ G D . Let x ∈ r(A�D ) = LD . Then x(i, j) = θ(i) for some θ . Let
g ∈ S I2 wr S I1 . Then g(i, j) = (h(i), h̃i( j)), where h ∈ S I1 and h̃i ∈ S I2 for each i ∈ [I1]. Then

(gx)(i, j) = x
(

g−1(i, j)
) = θ

(
g−1(i, j)1

) = θ
(
h−1(i)

)
,

where the subscript “1” in g−1(i, j)1 denotes the first component. Therefore gx ∈ LD .
We now show the converse G D ⊂ S I2 wr S I1 . In order to show this we assume that x ∈ LD is

generic, i.e. θ(i)’s are distinct. Suppose that (gx)(i, j) = θ(g−1(i, j)1) ∈ LD . Then g−1(i, j)1 does not
depend on j. Therefore we can write g−1(i, j) = (h(i), h̄(i, j)). Since g is a bijection, h is a bijection
and j �→ h̄(i, j) is a bijection for each i. Therefore g−1 ∈ S I2 wr S I1 . �

Now we state the main theorem of this paper.

Theorem 1. Consider a hierarchical model �. Assume that |I D |, D ∈ facet(�), are distinct and I j > 2 except
for at most one j ∈ [m]. Then the group of invariance Gker A�

is given by

Gker A�
=

⋂
D∈facet(�)

(S I DC wr S I D ). (5)

A proof of this theorem is given in Section 5 after we establish several important facts on hier-
archical models in Section 4. As seen from the statement of Theorem 1, it seems that the case of
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two-level factors I j = 2 needs a special consideration, although the requirements on the levels in
Theorem 1 may be too restrictive. We discuss these points again in Section 7. We will give some
examples of Theorem 1 in Section 6 after rewriting the right-hand side of (5).

4. Some basic facts on hierarchical models

In this section we establish basic facts on hierarchical models. In particular we are interested in the
behavior of a hierarchical model, when a maximal simplex is deleted from facet(�). This is because
for our proof of Theorem 1 we employ the induction on the number K = |facet(�)| of maximal
interaction effects in �.

Let E ⊂ [m]. We first define “incremental subspaces” of LE by

NE = LE ∩
(∑

j∈E

LE\{ j}
)⊥

(6)

if E = ∅, and N∅ = L∅ . Recall that LE is the linear space of tables depending only on the marginal
cell iE and that

∑
j∈E LE\{ j} is the subspace spanned by {LE\{ j}} j∈E . The following lemma is easily

proved and well known in statistical analysis of variance (ANOVA).

Lemma 2. Let E and F be subsets of [m]. Then

(1) NE = LE ∩ (
∑

j∈E L[m]\{ j})⊥ .
(2) If E = F , then NE⊥N F .
(3) LE = ∑

F⊂E N F .
(4) For any simplicial complex �, r(A�) = ∑

F∈� N F and ker A� = ∑
F /∈� N F .

(5) The orthogonal projection πNE onto NE is given by

(πNE x)(i) = (πNE x)(iE) =
∑
F⊂E

(−1)|E\F |

|I F C | x+(iF )

for all x ∈ QI . Recall that |E \ F | is the cardinality of E \ F .

Let D ∈ facet(�) be a maximal simplex. As in the beginning of Section 3 let �D denote the simpli-
cial complex consisting of all subsets of D . Note that r(A�D ) = LD . Now we define �\D by “deleting
the maximal interaction effects D from facet(�)”, i.e. by

facet(�\D) = (
facet(�)

) \ D.

We have the following proposition.

Proposition 2. Let D ∈ facet(�). Then

r(A�) ∩ ker A�\D = r(A�D ) ∩ ker A�\D =
∑

E∈�D\�\D

NE . (7)

Proof. By Lemma 2, we have r(A�) = ∑
E∈� NE and ker A�\D = ∑

E /∈�\D
NE . Therefore the equalities

follow from the relation � \ �\D = �D \ �\D . �
We next define a partial difference operator. For j ∈ [m] and x = (x(i))i∈I define

(∂ j x)(i) = x(i) − x(i1, . . . , i j−1,1, i j+1, . . . , im), i = (i1, . . . , im).
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For E ⊂ [m] define ∂E = ∏
j∈E ∂ j . Note that for two subsets D, E ⊂ [m], E ⊂ D , we have

∂EθD = 0, ∀θD ∈ LD . (8)

It is obvious that for any D, E ⊂ [m] and θD ∈ LD , we have ∂EθD ∈ LD .
Concerning the partial difference operator ∂E we have the following proposition.

Proposition 3. For all E ⊂ [m], ker ∂E = ∑
F ⊃E N F .

Proof. We first show that the subspace ker∂ j is equal to L[m]\{ j} . Let x ∈ ker ∂ j . Then x(i) =
x(i1, . . . , i j−1,1, i j+1, . . . , im) and therefore x ∈ L[m]\{ j} . Conversely, if x ∈ L[m]\{ j} , then ∂ j x = 0. There-
fore we see that ker∂ j = L[m]\{ j} . Since the operators {∂ j} j∈[m] are mutually commutable projectors
(and therefore simultaneously diagonalizable), we have ker∂E = ∑

j∈E ker∂ j . Therefore, by using
Lemma 2,

ker ∂E =
∑
j∈E

ker ∂ j =
∑
j∈E

L[m]\{ j} =
∑
j∈E

∑
F⊂[m]\{ j}

N F =
∑
F ⊃E

N F .

The last equality comes from the fact that F ⊃ E if and only if F ⊂ [m] \ { j} for some j ∈ E . �
Combining Lemma 2 and Proposition 3, we have the following proposition. We will use the propo-

sition with �′ = �\D in the proof of the main theorem.

Proposition 4. Let � and �′ be two simplicial complexes such that � ⊃ �′ . Then x ∈ r(A�′ ) if and only if
x ∈ r(A�) and ∂E x = 0 for all E ∈ � \ �′ .

Proof. The statement is equivalent to r(A�′ ) = r(A�) ∩ (
⋂

E∈�\�′ ker∂E ). The left-hand side is∑
F∈�′ N F . The right-hand side is

(∑
F∈�

N F

)
∩

( ⋂
E∈�\�′

∑
F ⊃E

N F

)
=

∑
F∈�′′

N F ,

where �′′ = {F ∈ � | F ⊃ E, ∀E ∈ � \ �′}. It is sufficient to prove that �′ = �′′ . Let F ∈ �′ . Clearly
F ∈ �. Now assume that there exists some E ∈ � \ �′ such that F ⊃ E . Then, since F ∈ �′ and
F ⊃ E , we have E ∈ �′ . This contradicts to E ∈ � \ �′ . Therefore F ⊃ E for any E ∈ � \ �′ . Conversely,
suppose that F ∈ � and F ⊃ E for any E ∈ � \ �′ . Then, since F ∈ � and F /∈ � \ �′ , we have
F ∈ � \ (� \ �′) = �′ . �

In the proof of Proposition 1, we treated the combination of factors in D as a single factor and
the combination of factors in DC as another single factor. This identification is well known in design
of experiments as a “pseudofactor” (e.g. [12]). As the last topic of this section we fully discuss the
notion of a pseudofactor and a natural partial order induced on the set of pseudofactors from the
hierarchical model. The resulting poset plays an essential role in the next section.

For each i ∈ [m] let st�(i) = {D ∈ � | {i} ∪ D ∈ �} denote the closed star of {i}, or equivalently the
cone over the link of vertex i (see e.g. [10, Definition 2.14]). Let

fst�(i) = facet
(
st�(i)

) = {
D ∈ facet(�)

∣∣ i ∈ D
}

(9)

denote the facets of st�(i). If fst�(i) = fst�( j) we say that i, j belong to the same pseudofactor and

denote this as i
�∼ j. The relation

�∼ is an equivalence relation and [m] is partitioned into disjoint
equivalence classes. We call each equivalence class a pseudofactor. In the framework of this paper, we
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can replace a pseudofactor by a single factor, although we do not do this in this paper. Let P denote

the set of pseudofactors, i.e. P = [m]/�∼. For ρ ∈ P let

fst�(ρ) = fst�(i), i ∈ ρ.

Now we introduce a partial order onto P by

ρ � ρ ′ ⇔ fst�(ρ) ⊃ fst�(ρ ′) ⇔ st�(ρ) ⊃ st�(ρ ′).

With this partial order P becomes a partially ordered set (poset). We call this poset the “pseudofactor
poset” induced by the simplicial complex �.

The pseudofactor poset induced by � is related to the intersection poset. The intersection poset Q
of facet(�) is the set of intersections of facet(�), that is, Q = {⋂D∈S D | S ⊂ facet(�)}. The order of Q
is the reverse inclusion order:

⋂
D∈S D �

⋂
D∈S ′ D if S ⊂ S ′ . We assume [m] ∈ Q just for convenience.

We show that there is an injective homomorphism from P into Q. In fact, the following lemma holds.

Lemma 3. Let V (ρ) = ⋃
ρ ′�ρ ρ ′ . Then V (ρ) = ⋂

D∈fst�(ρ) D. Furthermore V is an injective homomorphism
from P into Q.

Proof. Let i ∈ V (ρ). Then there exists some ρ ′ � ρ such that i ∈ ρ ′ . This means fst�(i) = fst�(ρ ′) ⊃
fst�(ρ). Therefore i ∈ ⋂

D∈fst�(ρ) D . The converse is similarly proved. Next we prove that V is ho-
momorphic and injective. If ρ ′ � ρ then fst�(ρ ′) ⊃ fst�(ρ) and therefore V (ρ ′) = ⋂

D∈fst�(ρ ′) D �⋂
D∈fst�(ρ) D = V (ρ) from the definition of the order of Q. If ρ ′ = ρ , then V (ρ ′) = ⋃

ρ ′′�ρ ′ ρ ′′ =⋃
ρ ′′�ρ ρ ′′ = V (ρ). �
We remark that V is not surjective in general. For example, let m = 3 and facet(�) =

{{1,2}, {2,3}, {1,3}}. Then P = {{1}, {2}, {3}} with a trivial order (i.e. no two distinct elements are
comparable) and Q = {∅, {1}, {2}, {3}, {1,2}, {2,3}, {1,3}, {1,2,3}}. The homomorphism is V ({i}) = {i}
for i ∈ {1,2,3}. Thus V is not surjective. In other words, the poset Q has the same amount of in-
formation as facet(�) because facet(�) = facet(Q \ {[m]}), but the poset P loses the information as
the example shows. For description of the group of invariance, we only need the pseudofactor poset
rather than the intersection poset.

5. A proof of the main theorem

Now we employ induction on K = |facet(�)|. The theorem is true for K = 1 by Proposition 1.
Therefore assume that the theorem holds for K − 1. Throughout the proof we choose D ∈ facet(�)

such that |I D | = minF∈facet(�)|I F |. We consider deleting D from facet(�).
Let x = ∑

F∈facet(�) θF be a generic element of r(A�) (Definition 1). List the values of θF as αiF =
θF (iF ) = θF (i), iF ∈ I F . Then x(i) can be written as

x(i) =
∑

F∈facet(�)

∑
j F ∈I F

χ j F
(i)α j F

, χ j F
(i) =

{
1 if iF = j F ,

0 otherwise.
(10)

In view of (4) it suffices to show that any g ∈ Gr(A�) belongs to the right-hand side of (5). Fix an arbi-
trary g ∈ Gker A�

= Gr(A�) and let y = gx. Then y ∈ r(A�) and y can be written as y = ∑
F∈facet(�) ηF .

Note that at this point we do not have any relation between θF ’s and ηF ’s. Fix an arbitrary E ∈ �\�\D

and take the partial difference with respect to E . Then

∂E y(i) = ∂EηD(i) (11)
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by (8). The right-hand side ∂EηD(i) depends only on iD . The left-hand side (∂E y)(i) is a linear com-
bination of 2|E| y( j)’s with the coefficient 1 for 2|E|−1 terms and −1 for other 2|E|−1 terms. Now
y( j) = x(g−1( j)) = (x ◦ g−1)( j). We substitute x(g−1( j)) by the right-hand side of (10) and take the
linear combination. Then (∂E y)(i) is written as

(∂E y)(i) =
∑

F∈facet(�)

∑
j F ∈I F

Q j F
(i)α j F

, (12)

where

Q j F
(i) = (

∂E
(
χ j F

◦ g−1))(i) ∈ {−2|E|−1, . . . ,2|E|−1}.
Since we have taken generic α j F

’s, by the perturbation lemma, Q j F
(i) is uniquely determined by

(∂E y)(i) for each i and for each F ∈ facet(�) and j F . However recall by (11) that (∂E y)(i) only
depends on iD . This implies that Q j F

(i) also depends only on iD for each j F . More precisely, if we
take the iD marginal of (12), then we have

(∂E y)+(iD) = |I DC |(∂E y)(i) =
∑

F∈facet(�)

∑
j F ∈I F

Q +
j F

(iD)α j F
.

Therefore by uniqueness we see that Q j F
(i) = Q +

j F
(iD)/|I DC | depends only on iD .

Now we claim that Q j F
(i) = 0 for all j F , F = D , and for all i ∈ I . For readability, we state this as

a lemma and give a proof. Recall that E ∈ � \ �\D is arbitrarily fixed and the following lemma holds
for any such E .

Lemma 4. Q j F
(i) = 0 for all j F ∈ I F , F ∈ (facet(�)) \ {D}, and for all i ∈ I .

Proof. Suppose that there exist some i0 and some j F , such that Q j F
(i0) = 0. Then, because Q j F

(i0)

only depends on i0
D , for this j F we have

∣∣{i
∣∣ Q j F

(i) = 0
}∣∣ �

∣∣{i
∣∣ iD = i0

D

}∣∣ = |I DC | = |I|
|I D | .

Write

I|i0
D

= {
i
∣∣ iD = i0

D

} = {(
iDC , i0

D

)}
iDC ∈I DC

.

The DC -component iDC of the elements of I|i0
D

are all distinct.

For i ∈ I|i0
D

, consider Q j F
(iDC , i0

D) = (∂E (χ j F
◦ g−1))(iDC , i0

D), which is a sum of 2|E| terms of the

form ±χ j F
(g−1(i′)). Since the operator ∂E only touches indices i j, j ∈ E ⊂ D , we note that these

terms χ j F
(g−1(i′)) have the common index iDC , i.e., i′DC = iDC . Therefore we can write

Q j F

(
iDC , i0

D

) =
∑

jD∈I D

β jD
χ j F

(
g−1(iDC , jD)

)
, (13)

where β jD
∈ {−1,0,1}. It is important to note that the sets of cells {g−1(iDC , jD)} jD∈I D are mutually

disjoint for different values of iDC , because g−1 is a bijection on I .
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Now if Q j F
(iDC , i0

D) = 0, there exists at least one non-zero term on the right-hand side of (13).
Therefore for each iDC there exists jD such that χ j F

(g−1(iDC , jD)) = 1. By the disjointness noted
above, it follows that

∣∣{i′
∣∣ χ j F

(
g−1(i′)

) = 1
}∣∣ � |I DC |.

On the other hand, by the definition of χ j F
, we have

∣∣{i′
∣∣ χ j F

(
g−1(i′)

) = 1
}∣∣ = ∣∣{i′

∣∣ χ j F
(i′) = 1

}∣∣ = |I F C |.

Combining the above results we have

|I|
|I F | = |I F C | � |I DC | = |I|

|I D | or |I F | � |I D |.

However we have assumed that |I D | is the (unique) minimum among |I F |, F ∈ facet(�). Therefore
F = D . �

From the above lemma, we have

(∂E y)(i) =
∑

jD∈I D

Q jD
(i)α jD

. (14)

We have shown (14) for generic x. However, since (14) is an algebraic relation and all generic ta-
bles span r(A�) by the perturbation lemma, (14) holds for all x ∈ r(A�). Now in (10) set α jD

= 0,
∀ jD ∈ I D . Namely let x = ∑

F∈facet(�), F =D θF be any element of r(A�\D ). Then ∂E y = ∂E (x ◦ g−1) = 0
for all E ∈ � \ �\D . Therefore y ∈ r(A�\D ) by Proposition 4. This means that g ∈ Gr(A�) has to map
every x ∈ r(A�\D ) into r(A�\D ). In other words, g ∈ Gr(A�\D ) . By induction assumption we have shown

g ∈
⋂

F∈facet(�), F =D

(S I F C wr S I F ).

Now it remains to show that g ∈ S I DC wr S I D . By assumption g maps r(A�) into itself. We have
shown that g maps r(A�\D ) into itself. Since g is orthogonal as a linear map, it follows that g maps
the subspace M = r(A�) ∩ r(A�\D )⊥ into itself. By Proposition 2, we obtain

M = r(A�) ∩ r(A�\D )⊥ = r(A�D ) ∩ ker A�\D =
∑

E∈�D\�\D

NE .

Recall that NE is the incremental subspace defined by (6). Note that ND ⊂ M ⊂ r(A�D ). We claim that
there exists a table φD in M such that φD(iD), iD ∈ I D , are all distinct. We state this as a lemma and
give a proof.

Lemma 5. There exists a table φD in M such that φD(iD), iD ∈ I D , are all distinct.

Proof. Consider a generic element θD of LD . Let πND denote the orthogonal projection to ND and put
φD = πND θD . By Lemma 2, the following expression for φD(iD) holds

φD(iD) =
∑

(−1)|D\E| 1

|I EC |θ
+
D (iE).
E⊂D
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Recall that θ+
D (iE ) = ∑

j∈I, jE =iE
θD( jD). Multiplying each side by |I|, we have

|I|φD(iD) =
∑
E⊂D

(−1)|D\E||I E |θ+
D (iE)

=
∑

jD∈I D

C(iD , jD)θD( jD),

where

C(iD , jD) =
∑

E⊂eq(iD , jD )

(−1)|D\E||I E ||I DC |

= |I DC |(−1)|D\eq(iD , jD )| ∏
j∈eq(iD , jD )

(I j − 1)

and eq(iD , jD) = { j ∈ D | i j = j j}. Note that C(iD , jD) ∈ {−|I|, . . . , |I|}. For given iD and i′D , if
C(iD , jD) = C(i′D , jD) for some jD , then φD(iD) = φD(i′D) because θD is generic. Therefore it is suffi-
cient to prove that if iD = i′D , then there exists some jD ∈ I D such that C(iD , jD) = C(i′D , jD). Since
I j is greater than 2 except for at most one j ∈ [m], we can show that C(iD , jD) = |I DC |∏ j∈D(I j − 1)

if and only if iD = jD . Thus C(iD , iD) = C(i′D , iD) whenever iD = i′D . This proves the lemma. �
We have proved that there exists φD ∈ ND ⊂ M such that φD(iD), iD ∈ I D , are all distinct. Since

gφD ∈ M ⊂ r(A�D ), the same proof as in Proposition 1 shows that g ∈ S I DC wr S I D .
This completes the proof of Theorem 1.

6. The wreath product indexed by the pseudofactor poset

Although (5) gives a form of the group of invariance, it is not yet sufficiently explicit to write down
the group of invariance for a given hierarchical model. We can employ the notion of a wreath product
of a partially ordered set of actions to describe the group of invariance more explicitly. The notion of
a wreath product of a partially ordered set of actions has been defined by many authors [4,9,15,17].
We follow a succinct definition in Section 7 of [17].

The poset we use is the pseudofactor poset (P ,�) defined in Section 4. Recall that P is a parti-
tion of [m] and each class ρ ∈ P has fst�(ρ) = fst�(i) = {D ∈ facet(�) | i ∈ D}, for i ∈ ρ . The order
relation ρ � ρ ′ on P is defined by fst�(ρ) ⊂ fst�(ρ ′). Recall that V (ρ) = ⋃

ρ ′�ρ ρ ′ . We also define
the ancestor set of ρ by

A(ρ) =
⋃

ρ ′>ρ

ρ ′ = V (ρ) \ ρ.

If A(ρ) = ∅, then we let I A(ρ) be a 1-element set, say {1}.

Definition 2. (See [17].) The wreath product of the symmetric groups (S Iρ )ρ∈P indexed by the

poset P is defined by W = ∏
ρ∈P (S Iρ )I A(ρ) , where (S Iρ )I A(ρ) is the set of all functions from I A(ρ)

to S Iρ . The action of w = (wρ)ρ∈P ∈ W on I is defined by

(w i)ρ = wρ(i A(ρ))iρ.

In the above definition, we use the parentheses for evaluating functions (such as wρ(i A(ρ))) and
do not use them for action (such as w i).
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For example, if facet(�) = {D} and ∅ � D � [m], then P = {D, DC } with the order relation D > DC .
In this case, the wreath product of (S Iρ )ρ∈P is the usual wreath product S I DC wr S I D because
I A(D) = {1} and I A(DC ) = I D .

The following lemma by [4] is useful.

Lemma 6 (Theorem B of [4]). The wreath product is characterized as follows.

∏
ρ∈P

(S Iρ )I A(ρ) = {
g ∈ S I

∣∣ (gi)V (ρ) depends only on iV (ρ) for any ρ ∈ P
}
.

The proof of the following lemma is easy and omitted.

Lemma 7. Let A and B be two subsets of [m]. Let g ∈ S I . Assume that (gi)A depends only on i A and that
(gi)B depends only on iB . Then (gi)A∩B depends only on i A∩B , and (gi)A∪B depends only on i A∪B .

Now we establish the following theorem.

Theorem 2. The group of invariance coincides with the wreath product of (S Iρ )ρ∈P , that is,

⋂
D∈facet(�)

(S I DC wr S I D ) =
∏
ρ∈P

(S Iρ )I A(ρ) . (15)

Proof. By Lemma 6, the left-hand side in (15) is equal to

{
g ∈ S I

∣∣ (gi)D depends only on iD for any D ∈ facet(�)
}
.

On the other hand, also by Lemma 6, the right-hand side in (15) is equal to

{
g ∈ S I

∣∣ (gi)V (ρ) depends only on iV (ρ) for any ρ ∈ P
}
.

Now the equality (15) is clear if one uses Lemma 7 with two relations

D =
⋃

ρ∈P,ρ⊂D

V (ρ) and V (ρ) =
⋂

D∈fst�(ρ)

D.

The former one is from the construction of P . The latter one is Lemma 3. �
Corollary 1. The group of invariance is equal to the direct product of the symmetric groups (S Iρ )ρ∈P if and
only if the poset P has the trivial order, i.e. no two distinct elements of P are comparable.

Let us present some examples. Here we abbreviate (S Iρ )I A(ρ) to S∗
ρ|A(ρ)

, and S Iρ to S∗
ρ , respec-

tively.

Example 1. Let facet(�) = {{1}, . . . , {m}}. Then P = {{1}, . . . , {m}} with the trivial order. The wreath
product is the direct product W = ∏m

j=1 S∗
{ j} .

Example 2. Let m = 3 and facet(�) = {{1}, {2,3}}. In this case, {2,3} is a pseudofactor but not a single
factor. Then the pseudofactor poset is {{1}, {2,3}} with the trivial order. The wreath product is W =
S∗{1} × S∗{2,3} .
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Example 3. Let m = 3 and facet(�) = {{1,2}, {2,3}}. Then the pseudofactor poset is {{1}, {2}, {3}}
with the order relations {1} < {2} and {3} < {2} (no other relations). The wreath product is W =
S∗{1}|{2} × S∗{2} × S∗{3}|{2} .

Example 4. Let m = 3 and facet(�) = {{1}, {2}}. Note that the factor {3} does not appear explicitly.
Then the pseudofactor poset is {{1}, {2}, {3}} with the order relations {3} < {1} and {3} < {2}. The
wreath product is W = S∗{1} × S∗{2} × S∗{3}|{1,2} .

Example 5. Let m � 3 and facet(�) = {{1,2}, {2,3}, . . . , {m − 1,m}, {m,1}}. Then P = {{1}, . . . , {m}}
with the trivial order. The wreath product is W = ∏m

j=1 S∗
{ j} .

Example 6. We give an example in that the number of orbits in the minimal Markov basis is smaller
under the action of the group of invariance than under the action of the direct-product group. Let
m = 5 and facet(�) = {{1,3}, {2,4}, {3,4,5}}. This model is decomposable (see [11] for the definition)
and the minimal vertex separators of the corresponding chordal graph are {3} and {5}. The pseudofac-
tor poset is P = {{1}, {2}, {3}, {4}, {5}} with the order relations {1} < {3}, {2} < {4}, {5} < {3}, {5} < {4}
(no other relations) and the wreath product is given as W = S∗{1}|{3} × S∗{2}|{4} × S∗{3} × S∗{4} × S∗{5}|{3,4} .
Consider the following two moves

M1 = (11111)(12211) − (12111)(11211),

M2 = (11112)(12211) − (12112)(11211),

where the notation follows one in [2]. The moves M1 and M2 are indispensable because they connect
the following two-element fibers, respectively.

F1 = {
(11111)(12211), (12111)(11211)

}
,

F2 = {
(11112)(12211), (12112)(11211)

}
.

The direct-product group
∏5

j=1 S I j cannot map M1 to M2 because the number of the distinct levels of
the 5th factor in M1 is different from that in M2. On the other hand, the group of invariance maps M1
to M2 with a permutation of the 5th factor when the level of the 3rd factor is 1.

Note that the S∗{5}|{3,4} involves the set {3,4}, which is not a maximal clique nor a minimal vertex
separator of the chordal graph. This shows that the group of invariance cannot be described by usual
notions of decomposition of a chordal graph.

Example 7. Let m = 6 and facet(�) = {{1,4,5}, {2,5,6}, {3,4,6}}. Then the pseudofactor poset is P =
{{1}, {2}, {3}, {4}, {5}, {6}} with the order relations {1} < {5}, {1} < {4}, {2} < {5}, {2} < {6}, {3} < {4}
and {3} < {6} (no other relations). The wreath product is W = S∗{1}|{4,5} × S∗{2}|{5,6} × S∗{3}|{4,6} × S∗{4} ×
S∗{5} × S∗{6} .

The last example is a counter-example to the conjecture in the discussion of [2, Section 5]. In our
terminology, the conjecture is stated as “If all pseudofactors are single, i.e. P = {{1}, . . . , {m}}, and the
intersection of facet(�) is empty, then the group of invariance is the direct product of the symmetric
groups on each factor”. The conjecture is justified if we impose an additional condition that P has
the trivial order (see Corollary 1).

We show an example in that the inclusion (4) is strict.

Example 8 (Sudoku). The solution of sudoku is a 9 × 9 table whose each row, each column and each
3 × 3 block contains the digits from 1 to 9 exactly once. Following the terminology of [14], we call a
“row” of 3 blocks a band and a “column” of 3 blocks a stack. The solution is considered as a 3 × 3 ×
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3 × 3 × 9 contingency table x(i, j,k, l, c) where we define x(i, j,k, l, c) = 1 if the number c ∈ [9] is put
on the j-th row of the i-th band and the l-th column of the k-th stack and x(i, j,k, l, c) = 0 otherwise.
Then the restriction is given by four equations

x(i, j,+,+, c) = 1, x(+,+,k, l, c) = 1, x(i,+,k,+, c) = 1, x(i, j,k, l,+) = 1,

where “+” denotes taking marginal (sum) over the index. The maximal simplices of this model is
given by

facet(�) = {{1,2,5}, {3,4,5}, {1,3,5}, {1,2,3,4}}.
The pseudofactor poset is P = {{1}, {2}, {3}, {4}, {5}} with the order {1} > {2} and {3} > {4} (no other
relations). The wreath product is given by

W = S∗{1} × S∗{2}|{1} × S∗{3} × S∗{4}|{3} × S∗{5},

which consists of permutation of bands, permutation of rows in each band, permutation of stacks,
permutation of columns in each stack and permutation of numbers. However, the group of invariance
Gker A�

has an additional permutation f defined by f (i, j,k, l, c) = (k, l, i, j, c). The permutation f
does not belong to the wreath product W . Note that the model does not satisfy the assumption
of Theorem 1 because |I{1,2,5}| = |I{3,4,5}| = |I{1,3,5}| = |I{1,2,3,4}| = 81. The group generated by W
and f is used to count the number of essentially different solutions of sudoku in [14].

7. Discussions

We derived an explicit formula of the group of invariance provided that the number of levels I j ,
j ∈ [m], are generic. In our future work we intend to generalize this result by weakening the re-
striction on the number of levels. We conjecture that under mild regularity conditions the group
of invariance is generated by the wreath product of this paper and the permutation of factors with
a common number of levels. However, it seems to be difficult to solve this problem. For example, as
described in Example 3 of [2], the group of invariance for the 2 × 2 × 2 contingency tables with fixed
two-dimensional marginals is different from the new conjectured candidate group. In the example, as
was pointed out by a referee to [2], the group of invariance is not faithful. Here an action G to L is
called faithful if the kernel {g ∈ G | gx = x, ∀x ∈ L} of the action consists only of the unit element.
On the other hand, we can prove that the group of invariance is faithful under the assumption of
Theorem 1. Indeed, in a similar way to the proof of Lemma 5, we can show that there exists a ta-
ble φ ∈ N[m] ⊂ ker A� such that {φ(i)}i∈I are all distinct. Therefore if gφ = φ, then g has to be the
identity map.

Random sampling from the group of invariance is important for performing the Markov Chain
Monte Carlo (MCMC) method on contingency tables. See [3] for details. In Theorem 2 we rewrote the
group of invariance from an intersection form to a wreath-product form. The wreath product is useful
for random sampling. Let us briefly describe it. The wreath product is given by W = ∏

ρ∈P (S Iρ )I A(ρ) .
We show an algorithm to obtain a uniformly random sample w = (wρ)ρ∈P from W . Let us number P
as P = {ρ1, . . . , ρl} such that i < j whenever ρi < ρ j . Then, from i = l down to 1, we independently
generate wρi (i A(ρi)) from S Iρi

for each i A(ρi) ∈ I A(ρi) . The resulting element w = (wρ)ρ∈P is a uni-
formly random sample from W . Remark that the intersection form in Theorem 1 does not give such
a procedure.
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