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0. INTRODUCTION

0.1. One of the main results of this paper concerns the existence
of certain classical mechanical systems, generalizing the (finite, nonperiodic)
Toda lattice (see, e.g., [8, 10, 19, 24, 25]) which one can explicitly integrate
for all values of time. These systems are related to Dynkin diagrams. One
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knows these diagrams classify semi-simple Lie groups. The integration of
the system associated to a Dynkin diagram is expressible in terms of the finite-
dimensional representations of the corresponding group. In fact, more than
that is true. The integration of the system and the theory of the finite-dimen-
sional representation theory of semi-simple Lie groups are in a sense equivalent.
Indeed, the integration of the system completely determines and is determined
by the weight structure of the fundamental representations of the corresponding
group.

In more detail, recall the Hamilton—Jacobi theory as it would apply to a
system of particles moving on a line with respect to some potential. We envision
then n particles, say with masses m, , i = 1,..., n, and R?" with linear canonical
coordinate functions p, , ¢, , t,7 = 1,..., n (i.e., phase space), so that any x € R??
is a (classical) state of the system and p,(x), ¢,(x) are, respectively, the momentum
and position of the 7th particle in the state x. Assume the potential U is smooth
(i.e., U e C=(R?")), and of course, depends only on the ¢’s (i.e., (¢/ép;)U = 0,
=1, 2,...,n). The Hamiltonian H € C*(R?") of the system is then given by

2
P4 . ©.1.1)

H = 2m;

Ms

=1

I

Now if xe R?" and x(t) € R®" is the state of the system at time ¢ such that
#(0) = x then x(t) is determined by Hamilton’s equations. That is,

Sy = Dy < D 01

The fundamental problem of the Hamilton—Jacobi theory is to integrate (0.1.2),
that is, to determine the function # — x(z). It is clear from the second equation
in (0.1.2) that it is enough to determine the position functions t — g;(x(t)),
7 =1,...,n. For a general potential function U of course one cannot do this.
It is one of the main results of this paper to show that for certain very special U
having to do with Dynkin diagrams one can explicitly integrate (0.1.2) using
representation theory.

Let 2 C C*(R*") be the n-dimensional vector space spanned by ¢;, j =
I,..,n Letl {nandlet ;€ 2,7 = 1,.., [, be [ linear independent functions.
Thus we may write

by =Y a,q;, i=1,.,1 (0.1.3)

J=1

where (a;;) is a constant / X n matrix. The potentials we shall consider are
those of the form

U = re" + - + re”, (0.1.4)
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where the r; are some positive constants. For example, if [ =n— 1, m; =
r;=1and y; = ¢, — g;11, 7 = 1,..., [, then the system is the Toda lattice.
The interaction between the particles is that of exponential forces between
nearest neighbors. (Throughout this paper ‘““Toda lattice” will mean ‘“finite
nonperiodic Toda lattice”.)

What is crucial for us in our result here is the geometry of the §’s, that is,
the lengths of the vectors ;€ 2 and the angles between them. We hasten
to add that there is in fact a natural geometry in 2, defined by the Hamiltonian H.
Indeed let [, 5] € C=(R?") be the Poisson bracket for any pair of functions
@, € C=(R2). It is easy to see that if ¢, b € 2 then [¢, [, H]] is a scalar times
the identity function 1. A positive definite symmetric bilinear form By is then
defined in 2 by the relation

By(e, )1 = [ [, H]]. (0.1.5)

One has in fact
By(q:, ¢;) = 8;/m; - (0.1.6)

We will say that the s define a Dynkin diagram if there exists a real split
semi-simple Lie algebra ¢ of rank ! with an invariant bilinear form Q, and
with a split Cartan subalgebra # with simple roots o ,..., o; such that

Byl ¢5) = Qo o) (0.1.7)

for 4,j = 1,..., L. In such a case, as one knows, the possible angles between
the ¢’s are 90, 120, 135, or 150°. The Toda lattice satisfies this condition.
Here 4 is the Lie algebra of Sl(n, R). The angle between ¢; , —¢; and
g; — Qiyq is 120°. We will give some further examples. (See Section 7.4 here
and [3; 7, Section 30] for others. See also [3] for suggested physical inter-
pretations.)

n p2
(1) H — 2 __21_ 4ot e g1l L g,
izl
Example (1) is like the Toda lattice except that the last particle also interacts

with a fixed mass. The diagram here is that of B, ; i.e., ¢ is isomorphic to
the Lie algebra of SO(n, n + 1).

Q) H= i Pziz R YR S a2
i=1

This is a four-body problem where the first three particles are as in (1) but
where, also, the center of mass of these three particles interacts exponentially
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with a fourth particle. The Dynkin diagram here is that of the exceptional
Lie algebra F, .

Of course many different systems may correspond to the same diagram.
For example, the following two four-body problems both correspond to D, .

4

(3) Z PT'Z + eal + % + B + e(qral—qrqs) /2.
i=1

(4) i _p22—2 + 801—(12 + e(lz-qa + 603—114 + eﬂ3+(l4.
i1

Example (4) is like the usual Toda lattice with four particles except that the

center of mass of the third and fourth particles interacts exponentially with

a fixed mass. In Section 7.8 we will apply the result Theorem 7.5 to work out

g;(x(¢)) for the three-body problem whose potential is e%% 4 %% - €%,

The Lie algebra in question is that of the symplectic group Sp(6, R).

Before describing the main result we would like to remark that although
the condition on the ¥’s is quite rigid there is in fact some flexibility. Namely,
by adjusting the masses m; one has, given a potential of form (0.1.4), an n-
parameter degree of freedom (see (0.1.6)), which one may use to possibly
satisfy the condition.

Assume now that the ’s define a Dynkin diagram and that g, Q, 4, and the
o’s are as above. We will occasionally then refer to the mechanical system
whose potential is (0.1.4) as a generalized Toda lattice. Let =;, i = 1,..., ],
be the l-fundamental finite-dimensional irreducible representation of ¢ (or
gc¢ » its complexification). Paraphrasing Theorem 7.5 one has the following
solution to Hamilton’s equation for the generalized Toda lattice.

THeOREM A. If m(7) is the number of distinct weights of w; there exist constants
¢, and dy, k = 1,..., m(i), which depend upon the initial state x € R®" of the
system, whose potential is (0.1.4), and on the weights of =; (see Theorem 7.5 for
the exact dependence) such that if

DLt) = ;6™ 4 e e e O (0.1.8)

then D,(t) > 0 and except for a linear term (which vanishes if | = n and all
7. = 1) one has

(x(t)) = log D,(2 0.1.9
g,(x(t)) ZZIQ(“ ) o8 ®) (0.1.9)
for j = 1,...,n. The a;; are given by (0.1.3).

Remark 0.1. A solution to the generalized Toda lattice has appeared in
[28]. This solution (see Corollary 1 in [28]) is stated in terms of the diagonal
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component A(exp ty) of the exponential of a'symmetric Jacobi element y.
The reduction of the problem to A(exp ty) is also an early side step in the proof
of Theorem 7.5. It is implicit in Theorem 6.8.2 here. The reduction of the
problem to h(exp ty) has been known and widely discussed by the author
for a number of years. The main problem lies not with the reduction to k(exp ty)
—this is relatively easy—but with the determination of h(exp ty). This is
where representation theory enters. Also entering here is an analysis of the
variety Z (a coadjoint orbit) of normalized Jacobi elements. See Sections 2-6.1
Fixing ¢ the ordering of the weight may be made so that ¢, d; corresponds
to the highest weight of 7; and ¢, , dn(;) correspond to the lowest weight.

One then has
dy > dy > dyy (0.1.10)

for all 1 > k > m(i). Write d;; = d; and ¢;; =¢;. Now if b,, i =1,..., ],
are / numbers and

then (1) put v;* = s; in case b; = dp();, (2) put v;7 = s; in case b; = d;,
(3) put u;+ = —s; in case b; = log cy(y); , and (4) put #,~ = —s; in case b; =
log ¢;; . (One knows that ¢,,(;); and ¢,; are positive.)

We can now express the scattering of the system as ¢ — +0co in terms of
the highest and lowest weights of the fundamental representations. Ignoring
a trivial linear term as in Theorem A, the following paraphrases Theorem 7.6.

THEOREM B. For any j = l,...,n the curve (t, g;(x(2))) in the t, q; plane
is asymplotic to the line v, t + u;~ as t — —o0 and to the line v;/"t + u;+ as
t — +o0. That is, v;t are the limiting velocities of the ith particle as t — L+ o0
and u;* are the limiting phases.

Moser’s result (see 4.3 in [19]) on the scattering of the Toda lattice may
be readily recovered from Theorem B. See Section 7.7.

We also remark that we can reverse our considerations here. That is, if
solution (0.1.9) of Hamilton’s equations is given one solves for P, (t) and,
over all initial conditions, one obtains weights of the fundamental representation
; . In particular one obtains the highest weight, which of course determines = .

0.2. The mechanical system in Theorem A is completely integrable
in a classical sense. This means the Poisson commutativity of a suitable family
of functions. In Section 1 we establish the Poisson commutativity in a much
more general setting than that used to establish Theorem A. In particular

1 Added in proof. A solution of the Toda lattice using representation theory has
appeared in [29]. However, the solution in [29] is expressed in terms of integrals. See
(18) in [29]. In effect, the results in Section 5 of our paper determine these integrals.
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one has an “isospectral flow” for all suitably translated coadjoint orbits of a
parabolic subalgebra.

The technique for dealing with the usual Toda lattice involves the set of
Jacobi matrices. In particular it involves a decomposition of this set into
isospectral classes. See, e.g., {19, 25]. In Section 2, first of all, the notion of
Jacobi matrix is generalized and one introduces, using the simple negative
and positive root vectors, the notion of Jacobi element in a real split or complex
semi-simple Lie algebra. One is readily reduced to the study of the 2/-dimen-
sional variety Z of normalized Jacobi elements. Section 2 is devoted to an
analysis of Z, especially in the complex case. Moser used the theory of con-
tinued fractions and a method going back to Stieljes to obtain a rationality
result for the case of diagonalizable Jacobi matrices. Among other structure
theorems this result is generalized in Section 2. The isomorphisms 8, and
Biw establish, in explicit terms, the rationality of the isospectral leaves Z(y).
Since we can take the field to be C in Section 2 the elements in Z(y) can even
be (principal) nilpotent. The results are, we believe, new even in the matrix
case, and lead, for example, to a simple iterative procedure for diagonalizing
a diagonalizable Jacobi matrix once one knows its eigenvalues. The results
in Section 2 make notable use of the results in Section 1 of [17].

The situation in the real case is considerably more subtle. Using an interplay
between the polar and Bruhat—Gelfand decompositions we obtain in Section 3
a completeness result for Z(y) (not true over C) which later guarantees the
integration of certain Hamiltonian vector fields for all values of ¢. Using an
isomorphism By,: Gy® —> Z(y) one obtains (later to be seen) the action angle
coordinates in terms of the characters of a split Cartan subgroup. In fact B,
leads to a parametrization Z >~ H X /£, where H ~ R’ is the split Cartan
subgroup and #, is an open Weyl chamber. The isolation of Gy (which is not
the identity component) among all the connected components of the centralizer
G* of w appears to be rather remarkable. It brings into focus a special auto-
morphism, denoted by 7 in Section 3.5, of g. This automorphism also plays
a special role in the Whittaker theory (see, e.g., the element &, in [9, p. 106]),
to which this paper will be related elsewhere.

In Section 4 it is shown that By,: Gy* ~—> Z(y) is an isomorphism of com-
plete, flat, affinely connected manifolds. This sets a correspondence between
the cosets of one-parameter subgroups in Gy? and the trajectories of the
(Hamiltonian) vector fields £; in Z(y). It reduces our integration problem to
the determination of A(g exp(—t)w)?, as will be seen in Section 6.

In Section 5 we determine A(g exp(—t)w)* using the representation theory
of 4. A particular role is played by the explicit formulas for () and #_g(w).
It is also seen in Section 5 that the scattering theory is determined by the special
element d(w) € H. The relationship between the isospectral leaves Z(y) and
the elements d(w) is rather mysterious (to us) and (we believe) remarkable.

Section 6 is devoted to the underlying symplectic theory and coadjoint
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orbits. It is shown that Z itself is just one coadjoint orbit (suitably translated)
of the Borel subgroup B. The basic formula ¢ (exp #£ - y) = log k(g exp(—#)w)~
is established here. See (6.8.4).

Section 7 starts off with the Hamilton—Jacobi theory. It can be initially
read without reference to the other sections. However, the results of the
preceding sections are later brought together yielding Theorem 7.5, which
gives the formula for ¢,(x(2)). What is surprising here is the special role of the
fundamental representations among all the others. The Cartan matrix initially
enters the formula for g,(x(¢)) but since we are using the fundamental representa-
tions it is canceled out, leaving the coefficients a;; in (0.1.9) the same as the
coefficients a;; in (0.1.3).

0.3. There is by now an extensive literature on both the periodic
and nonperiodic Toda lattice. There is an even larger literature on completely
integrable Hamiltonian systems. As examples we cite references [1, 3, 8, 10,
19, 20, 24, 25, 27, 28, 29]. This, of course, is only a small part of a complete list.
There are also connections with semi-simple Lie groups. See, e.g., [3, 20].
We would like to remark that there is a considerable distance between estab-
lishing the Poisson commutativity of certain functions—and actually integrating
and finding the solution. In fact, there is a generalization of the periodic Toda
lattice in that one replaces the Dynkin diagram by the extended Dynkin
diagram. Independently this has been observed in [3]. We have been able
to establish complete integrability in the sense above for this case as well,
but, as yet, we have not been able to solve for ¢,(x(z)), which presumably,
as in [25], requires Abelian integrals.

We have been principally influenced by Refs. [19, 25]. In fact the starting
point for us was our recognition that the symplectic form written by van
Moerbeke [25, formula (42), p. 76] on the space of symmetric Jacobi matrices
(and also cited by Moser in a lecture) was in fact the symplectic structure
of a coadjoint orbit of the Borel subgroup B.

Translation by the element f (see (1.5.4)) plays an important role here for
establishing complete integrability. On the other hand our proof of what is
referred to as the Kostant-Symes splitting theorem in [27] (another complete
integrability statement) involved other methods. We wish to thank S. Sternberg
for pointing out that the proof of Theorem 1.4 here may be readily adapted
so that the splitting theorem in [27] is a special case (f = 0).

The coadjoint orbit Z of B is not only the setting for classical mechanics
as considered in this paper but it also, recalling geometric quantization, as
applied in [2], defines a unitary representation 7, of B. Elsewhere it will be
seen that the generalized Toda lattice is completely integrable and solvable
not only in the classical sense, as established here, but also in the quantum
sense. That is, one can write down the simultaneous spectral resolution of a
commuting family of operators which includes the Schrédinger operator
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associated to the Hamiltonian (0.1.1), where U is given by (0.1.4) and the ¢’s
define a Dynkin diagram. This uses 7, and the Whittaker theory as developed
in [17].

1. PoissoN COMMUTATIVITY OF TRANSLATED INVARIANTS

1.1, Assume A4 is a commutative (associative) algebra over a field F,
where F has characteristic zero. In fact in our applications here F will be either
the field of real, R, or complex, C, numbers. We will say that 4 has a Poisson
structure if there is a bilinear map 4 X 4 — A4, (a, b) — [a, b] with respect
to which (1) .4 is a Lie algebra and is such that (2)

[a, bc] = [a, b]c + b[a, c] (1.1.1)

for any a, b, ce 4.

If V is a finite-dimensional vector space over F then S(V) = ®p, Si(V)
will denote the symmetric algebra over I with its usual grading. In particular,
V = S(V)and F = Sy(V). We may regard S(V) as the algebra of polynomial
functions on the dual space I’ to V. If v e V" and v’ € V" the pairing of v and o’
is denoted by {v’, v) so that one has v(v') = {2/, v).

Now assume that « is a finite-dimensional Lie algebra over F. For any g € &'
let &(g) be the derivation of degree —1 of S(e) such that &(g)x = (g, x> for
any x € 2. Now if u € S(e) then as a polynomial function on «' the differential
du defines a polynomial map &' — @, g > (du)(g). Explicitly one has

(d)e) = 3. (@Aeue) =, (1.12)

where x; €2, i = 1,...,, n, is a basis of @ and g; € 2’ is the dual basis.

ProrositioN 1.1. Ifu,ve S(2) and g € 2’ then

[ 21(g) = <& [(au)(g); (d0)(8)]> (1.1.3)

defines a Poisson structure on S(a) which extends the given Lie algebra structure
on a.

Proof. If uea then clearly (du)(g) = u so that (1.1.3) agrees with the
bracket structure on <. From the differentiation properties of the exterior
derivative it is clear that (1.1.1) is satisfied. One only has to see that the Jacobi
identity is satisfied for any x, v, w € S(a). If adu(w) = [u, w] this amounts to
showing that

adlu, v] = [adu, adv]. (1.1.4)
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However, both sides of (1.1.4) are derivations of the associative structure
of S(2) by (1.1.1) and hence one has equality (1.1.4) when applied to w = w,w,
if it already holds for =, and w, . The proposition then follows easily since =
generates S(e) and (1.1.4) holds for %, v € 2 when applied to w € . Q.E.D.

Henceforth S(z), for any finite-dimensional Lie algebra z will always have
the Poisson structure given by Proposition 1.1.

Remark 1.2. Since @ generates S(«) note that the Poisson structure on
S(«) is the unique one which reduces on « to the given Lie algebra structure on «.

1.2. Now assume that g is a finite-dimensional Lie algebra over F
and Q(x,y)eF is a nonsingular invariant symmetric bilinear form on 4.
Invariance means that Q([x, 2], ¥) = O(x, [2, y]) for x,y,z€ 4. If xe 4 and
&z € ¢ is defined so that (g, , y> = Q(x, y) then x — g, defines an isomorphism
g—>¢'. We regard S(g) as the algebra of polynomial functions on 4 itself where
if u € S(g), x € g then u(x) = u(g,). In particular if u € 4 then

u(x) = O(u, x). (1.2.1)

For any x € g let i(x) be the derivation of degree —lon S(g) so that i(x)y =
O(x, y) when y € 4. Let u€ S(g). To avoid confusion with du we will let du
be the differential of # when regarded as a function on g. Thus du is the
polynomial map ¢ — 4 given by

Gu)(x) = Y (((=)u)(x) ¥s (1.2.2)

for x € g, where x; , y; are two bases of ¢ such that Q(x,, y;) = 8;; .
By Proposition 1.1 one immediately has

Lemma 1.2.1.  The Poisson structure in S(g) is given by
[, ¥](x) = O(x, [(3u)(x), (30)(*)]) (1.2.3)

for any u,ve S(g), x € 4.

Now assume that F'is either R or C and 4 is a semi-simple Lie algebra over F.
Let Q be a fixed invariant symmetric bilinear form on ¢ which on each simple
component is a positive multiple of the Killing form. Also let g=F+ 4
be a Cartan decomposition of g. Thus £is the Lie algebra of a maximal compact
subgroup of the adjoint group of 4 and 4 is the orthogonal complement to £
with respect to Re Q. Now let 8 be the corresponding Cartan involution. Thus
6 = 1on£and § = —1 on 4. For any x € g let ¥* = —0x. Since Q is negative
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definite on £ and positive definite on £ one defines an inner product O, on ¢
(i.e., ¢ is a Hilbert space over F with respect to Q) by putting

Oxlx, 3) = O(%, y%)- (1.24)

One notes that-(Ax)* = Ax* for AeF and x € g, where the bar denotes con-
jugation. The relation Q.(, ¥) = Q4(y, x) follows immediately from the
readily verified relation Q(x*, y*) = Q(x, y). Also, the positive definiteness of
O, is immediate from the fact that Re Q(x, y) = 0 for xe £ and y € 4.

Now if « C 4 is any subspace let «* = {x* | x € #}. Clearly «* is a subspace
of the same dimension as . There are two other subspaces, 2+, and «°, which
are also associated with . They both have the same dimension as g/az. The
subspace «" is defined as the orthogonal complement to = with respect to
Q. and 2° is the orthogonal subspace to # with respect to . Thus & — &%,
&, and «° define three involutory operations on the set of all subspaces of 4.
The following lemmia clarifies the relations between them. It asserts that together
with the identity operation they define an action of the Klein 4-group on the
set of all subspaces.

LEMMA 1.2.2. The three operations @ — a*, at, and a° commute with one
another and the composite of any two distinct operations is the third.

The proof is straightforward and is left to the reader. A particular case
of Lemma 1.2.2 is the relation

(a*)* = . (1.2.5)

Now if 2C g is a subspace we regard S(«) as a subalgebra of S(g). The
fact that Q, is an inner product implies that # and #* are non-singularly paired

by O.
LemMma 1.2.3. Let u€ S(a). Then for any x € g, y € a° one has
u(x + y) = u(x). (1.2.6)

Further, the restriction map u— u | a* defines an isomorphism of S(a) onto
the algebra of all polynomial functions on a*.

Proof. Clearly o(y) =0 for all ve. Since u is generated by elements
in @ one has (1.2.6). On the other hand since # and &* are non-singularly
paired by O the map ¢ — v | «* defines an isomorphism of S(«) onto the algebra
of all polynomial functions on &*. Q.E.D.

Now let P,: 4 — @ be the orthogonal projection of ¢ on « with respect
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to the inner product Q, . If u € S(¢) we recall (see (1.2.2)) that du is a polynomial
map g — 2. We now define 3,4 to be the map g — & given by

(8.1)(x) = P((8u)(x)). (1.2.7)
Obviously if # = #; + @, is an orthogonal direct sum with respect to Q,, then

du =8, u+8,u (1.2.8)
In particular one has

Su =du+35, ,u (1.2.9)
Explicitly one notes

Lemma 1.2.4, Let x;, i = 1,..., d, be any basis of a and let y;€ a* be the
basis of a* such that Q(x;,y;) = 8;;. Then S,u is the polynomial map g — =
given by

(Bau)(x) = 21 (s u)(x) *; (1.2.10)

Jor any x€ 4.

Proof. Let x;, i =d 4 1,...,n = dim g, be any basis of 2" and let y,,
i = d + 1,..., n, be the basis of (#*)* such that Q(x; , y;) = 6fori,j =>d -+ 1.
Put w, = 37 4.1 ({(¥;)u)(x) ; and let =, be given by the right side of (1.2.10).
Now since #* = (a')° and (2')* = 2° by Lemma 1.2.2 it follows that
Ox; ;) = 8y for 4, = l,..,n. Thus w = w; + w, = (Su)(x) by (1.2.9).
But then w; = (8,u4)(x). This proves the lemma. Q.E.D.

LemMa 1.2.5. Let a C g be any subspace and let u € S(a). Then
Su=6,u (1.2.11)

so that du is a polynomial map ¢ — «.

Proof. By (1.2.9) we have only to show that §,.# = 0. But now applying
(1.2.10) where 2+ replaces « one notes that i(y;)u = 0 since y; € (a1)* = 2°,
using Lemma 1.2.2. Thus 8,.u = 0. . Q.E.D.

Now if « is a Lie subalgebra of g then S(«) inherits a Poisson structure
from the Lie algebra structure of . This has been defined using the dual
space 2’ to 2. See Proposition 1.1. We now note that 2" may be replaced by
ﬂ* _C_‘y.
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PROPOSITION 1.2. Let a be a Lie subalgebra of 3. Then S(a) is a Lie subalgebra
of S(g) with respect to the Poisson structure on S(g). Furthermore the Lie algebra
structure thus induced on S(a) is the same as the Poisson structure on S(a) which
S(«) would normally inherit from the Lie algebra structure in . Thus if u, v € S(2)
then [u, v] is unambiguous and is in S(a). Moreover it is given by

[u, v)(*) = O(=, [(84)(*), (30)(*)]) (1.2.12)

for xe g but is in fact determined by the restriction [u, v] | «*. In particular,
[u, ©] = O if and only if the right side of (1.2.12) vanishes for all x € a*.

Proof. The first statement follows from (1.1.1). The second and hence
the third follows from Remark 1.2. Relation (1.2.12) is just (1.2.3). Since
[#, v] € S(<) it is determined using Lemma 1.2.3, by the restriction {%, v] | «*.

QE.D.

1.3. Now let G = Aut g be the adjoint group of g. The action of
ae G on xe g is denoted simply by ax € g. The algebra S(g) then becomes
a G-module where if a € G, ue S(g), and x € g one has au(ax) = u(x). From
the invariance of Q it follows that a(i(x)u) = #(ax) au. It then follows easily
from (1.2.2) that

a((8u)(x)) = (8(au))(az) (1.3.1)

for any u€ S(g), a€ G, and xe 4.

Now let I = rank ¢ and let S(g)¢ be the algebra of G-invariants in S(g).
By Chevalley’s theorem one knows there exist homogeneous elements I; € S(g)°,
7 =1,2,..,1 referred to as the fundamental invariants, which are algebraically
independent and which generate S(#)°. That is, by abuse of notation,

S(g)6 = FIL oy I}]. (1.3.2)

Now for any x € g let g° denote the centralizer of x in ¢ and let cent g®
be the center of g%, Also let G® be the centralizer (or rather stabilizer) of x in G.

ProposiTION 1.3. For any x€ 4 and I€ S(g)° one has (3I)(x) € cent g*.
In particular one has

[x, (3I)(x)] = O. (1.3.3)
Proof. For any a € G one has al = I. Thus a((8I)(x)) = (8I)(ax) by (1.3.1).

But then if a € G* one has a((8I)(x)) = (8I)(x). That is, if g is the set of
fixed elements for the action of G¥ in g one has (8I)(x) € g'5™. But 4% C g4,
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where y‘é’” is the centralizer of 4 in g. However, since x € ¢* one has y‘f’ =
cent g®. This proves the proposition. Q.E.D.

1.4. Now let @ be a Lie subalgebra of g. We shall regard = as fixed.

This will enable us to suppress « in notation which in fact depends upon «.

Now let fe g and u € S(g). The map x — u(f + x) is clearly a polynomial

function on 4. In particular its restriction to z* is a polynomial function. By
Lemma 1.2.3 therefore there exists a unique element #* € S(#) such that

w(x) = u(f + x) (1.4.1)
for all x € a*. The correspondence # — u’ therefore defines a homomorphism
S(g) = S(a). (1.4.2)

We are particularly interested in the case where u€ S(¢)® and especially
when » satisfies the following condition.

We say that 2 is a Lie summand in case 2° is also a Lie subalgebra of 4.
The terminology stems from the fact that # is a Lie summand if and only
if #* is a Lie subalgebra of g. This is clear since, by Lemma 1.2.2, 2t = (2°)*
and one has [x, y]* = [y*, 2*].

ExampLE, Any parabolic subalgebra of g is a Lie summand. This is clear
since if & is parabolic then 4° is just the nilradical of .

It will be seen later that the following theorem leads to the complete
integrability of the Toda lattice and to extensive generalizations of it.

THEOREM 1.4. Let 4 be a semi-simple Lie algebra over R or C. Let Q be a
bilinear form on g which on each simple component is a fixed positive multiple
of the Killing form and let Q. be the inner product in 4 defined by Q and a Cartan

decomposition of g. See (1.2.4).
Let 2 C g be a Lie summand. That is, o and its orthocomplement o with respect

to Q. are Lie subalgebras of 4. Let f € 4 be any element such that
O(f, [, 2] + [a*, 2']) = 0. (1.4.3)

Then, using the notation of (1.4.1) the elements 17, J* in S(a) Poisson commute
for any pair of invariants I, J € S(g)°.

Proof. Using Proposition 1.2 it is enough to show that

O, [(BT)(=), (3T )(=))) =0 (1.4.4)
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for any x € o*. But now we assert that

@I')(x) = (BI)f + %) (1.4.5)

for x € 2*. Indeed for any y, 2€ ¢ and uc S(g) one has (i(y)u)(z) = (d/dt)
#(z + ty) ;o . It follows therefore that if x,y€a* one has (i(y)I')(x) =
E(VI)f + x). Thus recalling (1.2.10) one has (8,I7)(x) = (8,I)(f + x) for
x € a*. But §,I’ = 81’ by (1.2.11). This proves (1.4.5).

But now [(8.I)(f + =), 8. JKf + x)] € [2, «]. However, f is Q-orthogonal
to [«, #]. That is,

QU (G + %), G INSf + #)]) = 0. (1.4.6)

But then adding this relation to the left side of (1.4.4) and recalling (1.4.5)
it is enough to show that

O(f + #, [GINf + #), GINSf + #)]) = 0. (1.4.7)
But now by (1.3.3) when f + x replaces x one has
[f + % (I)(f + %)] = 0. . (1.438)

Thus by the invarjance of Q one does in fact have

O(f + %, [GI)(f + %), (NS + #)]) = O. (1.4.9)

But (8I)f+ %) = @ INf + %) -+ (8, I)(f + x) by (1.2.9). Substituting in
(1.4.9) it then suffices to prove

O + %, [(8,-D(f + %), CJXf + ) = 0. (1.4.10)

But ( 1.4;8) is valid if J replaces I. Thus by the invariance of Q one does have
(1.4.10) if 8] replaces 8,J. Thus it suffices to show

O(f + % [C)(f + %), B, NS +2))) = 0.

But by (1.4.3) one also has (1.4.6) when & replaces . Thus it suffices only
to show that

O, [G,D)(f + 2), G /NS + %)) = 0. (1.4.11)

But since o' is a Lie algebra the commutator in (1.4.11) is an element in &*.
However, x€a* and a* = (2-)° by Lemma 1.2.2. This proves (1.4.11).
Q.E.D.

607/34/3-2
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1.5, We consider an example now which illustrates Theorem 1.4
and which plays a major role in the remainder of the paper. No special assump-
tions need be made if F = C. However, if F = R then for this example we
assume that ¢ is split. We may then find, as one knows, using, say, Weyl’s
normal form (see, e.g., Section 5 in [13]), a Cartan subalgebra 4 C ¢ (which
is split if F = R and root vectors e, € 4, ¢ € 4, where 4 = A(g, %) is the corre-
sponding set of roots such that

e =e, (1.5.1)
and

Ne,, e-5) = 1. (1.5.2)

Let 4, C 4 be a fixed chosen system of positive roots and let {a, ,..., o} =
ITC 4, be the set of simple positive roots.

Remark 1.5.1. One notes that the root vectors € a,> ¢ = l,..., ], may initially
be chosen arbitrarily. Then e, are determined by (1.5.2). This then, using
(1.5.1), determines the Cartan decomposition g = £ -+ 4.

Now

=4+ ) Fe, and £=+4+4 Y Fe, (1.5.3)
9E ” e€d,
are “opposing” Borel subalgebras and #» = [£, £] and » = [¢, £] are the corre-
sponding nilradicals.

TueoreM 1.5. Let @« = £ and let

2

f=3 e, (1.5.4)

i=1
Then o and f satisfy the conditions of Theorem 1.4. That is, £ is a Lie summand
and f satisfies (1.4.3). In particular the elements I and J' in S(£) Poisson commute

for any I, Je S(g)°.

Proof. 1f p € 4 then as one knows Q(x, ¢,) = Qe , ;) = 0 for any x € #,
and ¢ € 4, where ¢ £ —¢. Since

n=Y Fe, and %= ) Fe, (1.5.5)

@EQ " PEA n
one then has (£)° = % Hence £ is a Lie summand. But [«, 2] = [£,£] =
7 = (£)°. Since fe £ this implies O(f, [, «]) = 0. But by Lemma 1.2.2 one
also has &t = (a°)* = (%)* = ». Thus [&, @!] is spanned by all ¢,, where
@€ 4, is not simple. Thus O(f, [¢+, *]) = 0. Hence f satisfies (1.4.3). The
remaining statement follows from Theorem 1.4. Q.E.D.
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Remark 1.52. If NC G is the subgroup corresponding to » then in
Section 1.3 of [17] we defined an action of N on S(£) so that if S(£)V is the
algebra of invariants then when & = £

S(EY = {I' | I S(4)S). (1.5.6)

Theorem 1.5 then says that the elements of the algebra S(£)¥ Poisson commute
with one another. This algebra is very explicit in the case where 4 is the Lie
algebra of Sl(n, F). In that case choices can be made so that f 4 £ = f 4 &*
is the set of all traceless matrices y of the form

4y Q2 T 4
1 :
y = : . . (1.5.7)
) an——ln
0 1 a,

By abuse of notation regard a;; as a linear functional on £ and thereby identify
it with an element in Z. The nontrivial coefficients u, € S(£), k = 1,..., ] =
n — 1, of the characteristic polynomial of y, as polynomials in the a;, are
of the form u;, = I,/, where the I, are the fundamental invariants. The algebra
S(£)V is just the algebra generated by the u, . Theorem 1.5 asserts that they
Poisson commute with one another. It is this example which applies directly
to the Toda lattice.

1.6. Let 2 and f be as in Theorem 1.5 so that # is a Lie summand
in ¢ and f € g satisfies (1.4.3). Now consider the translation f + * of 2* by f.
For convenience put f 4 o* = (a*);

15t @* — (a™);, x—f+ x. (1.6.1)

We will understand that («*), has the structure of an affine variety and that
74 is an isomorphism of affine varieties.

LemMa 1.6.1. For any 1€ S(¢)¢ and y € (a*); one has [y, (8, I)(y)] € 2*.

Proof. Put w = (8,.I1)(y) so that w + (8,1)(y) = (8I)(y) by (1.2.9). But
(8I)(y) commutes with y by (1.3.3). Thus

[y, G.D)()] = [w, y]. (1.6.2)

But now write y = f + x, where x € «*. We assert that

[w, f] € a*. (1.6.3)
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Indeed since #* = («*)° it suffices to show that [w, f] is Q-orthogonal to &*.
But Q(e*, [w, f]) = O([«", w],f) = 0 by (1.4.3) since wea'. This proves
(1.6.3). Thus to prove the lemma it suffices by (1.6.2) to show. that [w, x] € 2*.
But to prove this it certainly suffices to show that

[a*, a*] C a*. (1.6.4)

But since a* = (&*)° it suffices to show that [«*, (2*)°] is Q-orthogonal to &*.
However, Q(a', [a+, (¢4)°]) C Q([#*, #1], (e)°) = O since &' is a Lie algebra.
This proves (1.6.4). Q.E.D.

Now g, whether or not F = R or C, has the structure of a vector space
over R. Thus if y € g the tangent space to 4 at y is naturally identified with g.
In this identification if y € (#*); then the tangent space to («*), at y is clearly o *.
Let 1€ S(g)°. The map given by y — [y, (8.I) ()] is clearly a polynomial
map on g and hence by Lemma 1.6.1 there exists a smooth vector field 5, on
(a*); such that

)y = [ CD)(Y)] (1.6.5)

for any y € (a*), .

Now let 7;%: (a*); — 2* be the isomorphism which is inverse to 7, . See
(1.6.1). Thus 7;! “carries” vector fields on (2*), to vector fields on z*. In
particular, using the same notation for this map of vector fields, 7; — 77,
the vector field 777y, can be applied to an element u € S(g) since by restriction
defines a function on a#*. We express this action in terms of Poisson brackets.

Lemma 1.6.2. For any I € S(5)° u€ S(a), x € a™* one has

(7 mryu)(x) = [T, ul(2). (1.6.6)
Proof. Let y = f+ x = r,x. We express the left side of (1.6.6) in terms

of the pairing of vectors and covectors. Let ¢ be the left side of (1.6.6). Recalling
the definition (see (1.2.2)) of 8 one has

¢ = Q[y 3D(¥)], (3u)(x))
= 03, [(GaI) ), (Bu)(x)])-

But (8. I)(f + x) = (8I*)(x) by (1.4.5). Thus

¢ = O, [(BI")(x), (3u)()))-
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But y = f+ x. Hence ¢ = [I, u)(x) + O(f, [(817)(x), (Su)(x)]), recalling the
formula (1.2.3). It suffices therefore to show that

O(f, [(3T")(x), (3u)(x)] = O. (1.6.7)

But since I/, u € S(2) the commutator in (1.6.7) is in [@, «] by Lemma 1.2.5.
Thus (1.6.7) follows from (1.4.3). QED.

Theorems 1.6.1 and 1.6.2 below are corollaries of Theorem 1.5. They are
familiar consequences in a symplectic context. However, the latter does not
quite apply here.

THEOREM 1.6.1. Let g be a semi-simple Lie algebra over R or C. Let 2 C ¢
and f€ g satisfy the conditions of Theorem 1.5 and put (a*); = f + a*. For
any invariant I € S(g)° let n, be the vector field on (a*); defined by (1.6.5). Then

=0 (1.6.8)

on (a*)y for any 1, ] € S(4)°.

Proof. Apply Lemma 1.6.2, where u = J*. But then by Theorem 1.5
one has ((r;'p)u)(x) =0 for any xeaz*. However, if y =f+ x then
(7 nDu)(x) = (e ° 77Y))(¥). But clearly u o 77* = J | (2*);. This proves the
theorem, Q.E.D.

Now let P,.: g — o* be the Q,-orthogonal projection of ¢ onto «*. For
any y € (a¥*); let

a*(y) = {Poulx, ¥] | x € 2}. (1.6.9)

Remark 1.6.1. If AC G is the subgroup corresponding to « then one may
define an action of 4 on (2*); by translating to (2*),, using 7, , the coadjoint
action of A4 on &*. The subspace 2*(y) of «* then turns out to be nothing
more than the tangent space at y to the 4 orbit containing y. By Lemma 1.6.1
one has P,.[y, (8, I)(y)] = [y, (8.1)(¥)]. Since (8,I)(y) € « it follows that

(m1)y € 2*(p) for any Ie S(g)°. (1.6.10)

THEOREM 1.6.2. Let g be a semi-simple Lie algebra over C or R. Let 2 C 5
and f€ 4 satisfy the conditions of Theorem 1.5 and put (a*); = f + a*. For
any invariant I € S(g)° let n; be the vector field on (a*), defined by (1.6.5). Then

[7,7] =0 (1.6.11)
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for any I, J € S(g)°. Furthermore if y € (a*), then

(n)y = 0 = Q(a*(3), BIN¥)) =0, (1.6.12)

where a*(3) is defined by (1.6.9) and 81 is defined by (1.2.2).

Proof. We may iterate the formula (1.6.6). Let I, J € S(4)¢ and u € S(a).
That is, if x € 2*, then

(7 ) () = 17, [T, ul(®). (1.6.13)

But then ((v7'[n;, 9, )%)(x) = [[I7, JYu](x). However, [I, J/] = 0 by Theo-

rem 1.5. But since the set of functions # | #*, # € S(2) contains a coordinate

system (e.g., let # € @) it follows that 77'[n;, n;] = 0 and hence one has (1.6.11).
Now if xe# and y € (a*); then

O () = Qlx, [, CIN)])

= O([x, 5], (BI)(¥))- (1.6.14)

But now since (2*)t = 2° we may replace [, y] in (1.6.14) by P,.[x, y].
But then having done that we may replace (8,1)(y) by (8I)(y) since (2*)° = a*.
This uses (1.2.9). Thus

O (1)) = QAPar[*, y], BIN))- (1.6.15)

But since (1), € 2* by Lemma 1.6.1 and & and 2* are non-singularly paired
by Q it follows that (5,), 5 0 if and only if there exists x € & such that (1.6.15)
is not zero. This implies (1.6.12). Q.E.D.

Remark 1.6.2. Recalling Remark 1.6.1 one may interpret (1.6.12) as follows:
Let O denote the A-orbit of y with respect to the f-translated coadjoint action
of A on (&*); described in Remark 1.6.1. Then (v;), # 0 if and only if the
differential d(I| O), 5 0, where of course I'| O is the restriction of I to O.
In fact if F = R then O has the structure of a symplectic manifold and 7, | O
(see Section 6.4 for the case where O = Z) is just the Hamiltonian vector
field corresponding to the function I | O. '

2. THE VARIETY Z OF NORMALIZED JACOBI ELEMENTS

2.1. Henceforth we restrict our attention to the case of the example
in Section 1.5. We recall that there is no restriction on g if F = C but ¢ is
split if F = R. Furthermore 4 (which is splitif F = R), 4, 4, , I = {o,..., o4},
e, , for p € 4, satisfying (1.5.1) and (1.5.2) are as in Section 1.5.
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Now let HC G be the subgroup corresponding to 4. Let 4 = Hom(#, F)
and where Z is the set of integers let

A(H) ={veh |{v,x)e2nil for xc 4, whereexpx = 1}. (2.1.1)

Remark 2.1. One knows that #'(H) is the lattice }:::1 Zo; if F = C and
HHYy=#ifF =R

Let F* = exp F so that F* is the multiplicative group of nonzero complex
numbers if F = C and F* is the multiplicative group of positive numbers
if F = R. Then any ve 4 (H) defines a homomorphism H — F* h— P,
where 7 = exp{v, x) for x€ 4 such that & == expx. One of course has
AC#(H)and if he H, pe 4 then

he, = h%e,, . (2.1.2)

Now let x, € # be that unique element such that {o;, x,> =1 fori = 1,..., L.
The eigenvalues of ad x, are in Z. One puts Z; = {x € g | [x,, x] = jx} for
jeZ. We shall refer to the ; as the diagonals of 4. Of course , = # and
one has the direct sum decomposition

=04, (21.3)

where the sum is over Z.

DeriniTION 2.1. If O # x€ . and x; € 4; denotes the component of x
in &, relative to (2.1.3) then the minimal j such that x; 7 0 will be called the
minimal diagonal degree of x. The element x; is called the minimal diagonal
component of x. Similarly we will speak of the maximal diagonal degree and
component of x.

One of course has, for 7, jeZ,

[y, d) C . (2.1.4)

Now let 4, £, », and % be the Borel subalgebras and their commutators defined
as in Section 1.5 so that

Z 5 (2.1.5)
and
n=Yd;, n=0Y 4. (2.1.6)
i>1 il

Henceforth unless otherwise stated as in the example of Section 1.5 the
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subalgebra « of Sections 1.2-1.5 will be just £. Thus all notation and results
referring to @ now apply solely to 4. Furthermore the element f is fixed and
is given by (1.5.4). Thus in particular, & € S(£) for any u € S(g). Furthermore
a* = ¢ by (1.5.1) and (a*); = f + £ which of course we now write as 4.
For the case of Sl(n, F) we note that choices can be made so that the typical
element y €4, is of form (1.5.7).

Now if x€ 4 then for the centralizer 4° of » one knows that dim g® >/
and the set R = {x € g | dim 4* = [} is an open dense subset of g. The elements
of R are called regular.

Lemma 2.1.1. One has
4 CR. (2.1.7)

Proof. Tt clearly suffices, by complexification, to assume that F = C.
But then Lemma 2.1.1 is Lemma 10 in [14, p. 370]. QED.

If y € 4, then it is not in general easy to describe the centralizer 4¥ of y.
However, one has

LemMA 2.1.2. For any y € 4, one has

#NnE=0. (2.1.8)

Proof. It clearly suffices to assume that F = C. But then Lemma 2.1.2

is (1.2.4) in [17, p. 109]. QE.D.
Now

4=0@n (2.1.9)

is a Q,-orthogonal direct sum since (£)* = ((£)°)* = (#)* = . Thus the
decomposition (1.2.9) becomes du = 8;u + 8,u for any u e S(g).
We recall that I, j = 1,..., ], are the generators of S(g)°.

ProrosSITION 2.1. Let y €4, be arbitrary and put
Gs(S(A M) = {GsI)(¥) | L € S(g)°}-

Then the elements (841,)(¥), j = 1,..., I, are lincarly independent and are a basis
of (84(S(9))X»). Furthermore [, y] C £ and one has

QSN [ 3]) = 0. (2.1.10)
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In fact [, y] has codimension l in £ and is the Q-orthocomplement of (83(S(#)*))(¥)
in?.

Proof. Assume that there is a nontrivial relation Y ¢;(830,)(y) = 0. This
implies that if w =3 ¢,(81;)(y) then w e~ by (2.1.9). But we 4¥ by (1.3.3).
However, ¥ N2 =0 by (2.1.8). Thus w = 0. But ye R by (2.1.7). This
contradicts Theorem 9 in [14, p. 382], which asserts that (81,)(y), ¢ = 1,..., ],
are linearly independent for any y € R. Thus the (8z1;)(y) are linearly inde-
pendent. From the differentiation properties of the map I — (5;I)(y) it is
clear that they span (83(S(£)¢))(»). This proves the first statement of the
proposition.

Now the minimal. diagonal degree (see Definition 2.1) of y is —1. Thus
[, y] C £ by (2.1.4), (2.1.5), and (2.1.6). Thus if I € S(g) one has Q((8,I)(y),
[#2, ¥]) = O since £° = ». However, Q((3I)(y), [»,y]) = 0 by the invariance
of O and the fact that [(8I)(y),y] = 0. See (1.3.3). Thus, subtracting,
O((8sI)( ), [+, ¥]) = 0. This proves (2.1.10). But now (2.1.8) implies that
dim[s, y] = dim ». However, dim# = !4 dim ». Also, ¢ and £ are non-
singularly paired by Q and we have shown that dim(3x(S(¢))°)(y) = . This
proves the last statement of the proposition. Q.E.D.

2.2. Now it is clear that the diagonal «, is the /-dimensional subspace
given by

dy=7Y Fe,,. 2.2.1)

1
4y =Y ae, |alla; £ 0ifF = C;alla, > 0if F = R}. (22.2)

i=1

Remark 2.2.1. If F = C note that Z, is the set of all principal nilpotent
elements in #; by Theorem 5.3 in [12].
Now put

Z, =4+ dy (2.2.3)

so that Z, is a 2/-dimensional submanifold of 4. Our primary concern is with
the 2/-dimensional submanifold Z of £, obtained by translating Z, by f. That is,

Z=f+Z,C¢t. (2.2.4)

Let BC G be the subgroup corresponding to £.
Remark 2.2.2. Note that B in the notation of Remark 1.6.2 plays the role
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of A. We shall not be concerned with this at present but it is easy to prove
(see Section 6.4) that Z, in the sense of Remark 1.6.2, is an orbit of B in 4, .

For the case of Sl(n, F) note that choices can be made so that Z is the set
of all traceless Jacobi matrices of the form

b, a, 0
1 b, a, :
y=4§: 1., - I (2.2.5)
. © e,
0 1 b,

where a;,b,eFand a; #0if F=C, q; >0if F =R.
The notion of Jacobi matrix generalizes to g. Let

[4
Jacg ={x+ Y (e +ae)|xchaa#0
i=1

ifF=C;a_;,a;,>0ifF = Rg.
(2.2.6)

Clearly one has
Z C Jac g. (2.2.7)
Of course the definition of Jac ¢ depends upon the choice of positive and
negative simple root vectors. Also, it appears at first in considering Z that

we would be restricting ourselves in any investigation of Jac g. This, however,
is not the case. We are in fact just factorizing out the trivial action of H on

Jac g. That is, one has
ProposiTiON 2.2. The map
HXZ—Jacg, (a,x)—ax (2.2.8)

ts bijective.

Proof. It is clear that Jac g is stable under the action of H. On the other
hand since G is the adjoint group the map

He> (FY, b (B, K% 2.2.9)

is bijective. It follows that % leaves no-element of Jac g fixed in case £ # 1.
It also follows (replacing «; by —a;) that every H-orbit in Jac g contains a
unique element in Z. This proves the proposition. Q.E.D.

We refer to Z as the manifold of normalized Jacobi elements.
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Now if y € Z the tangent space to Z at y is clearly given by
T(Z)=+F4+4d. (2.2.10)

On the other hand for any y €4 = «* we have defined a subspace 2*(y)
now written as £(y), by (1.6.9).

Lemma 2.2.1. For any y € Z one also has
y) =4+ 4. (2.2.11)

Proof. The projection P,. of Section 1.6 is just P4 and the kernel of Py,
is » since £+ = (£°)* = #* = x. By definition, £(y) = Py4[Z, y]. But since
the maximal diagonal degree of y is 1 (see Definition 2.1) one has £(y) C £ + 4
by (2.1.4) and (2.1.5). On the other hand since [e_, ,¢,] = 0 if i + j and the
elements [e_, , e, ] are a basis of £ it follows that Ps[d_, , y] = 4, = 4. But
also since [, , #;] = 0 one clearly has Py, ,y] = &, . Thus £ + o, C é(y).
This proves the lemma. Q.E.D.

Remark 2.2.3. Recalling Remarks 1.6.1 and 2.2.2 note that Lemma 2.2.1
is anticipated by the fact that Z is an orbit of B in £
Now for any y € Z note that
[, [, 2]] C #. (2.2.12)

This is clear since the maximal diagonal degree of ¥ is 1 and the maximal
diagonal degree of any nonzero element in [7, %] is —2. Now for y € Z let

Ky = {x €| Q(x’ [y’ ["_z’ Z]]) = 0}- (2213)

Lemma 2.2.2. Foranyy € Z one has dim s,y = . Furthermore dim(% + ;) N
[#, y] = I and one has

[76) » ¥] = (A + 1) O [, 3. (2.2.14)

Proof. One first has that
#NnE=0. (2.2.15)
Indeed if e 6071 is the maximal diagonal component of y then y €e + 4. On

the other hand no normalization was made with regard to the simple root
vector so that we can interchange the roles of positive and negative roots where
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¢ replaces £ and ¢ replaces f. But then (2.2.15) follows from (2.1.8). But now
one knows

[, 2] = Z ; (2.2.16)
ig—2

so that [#, #] has codimension [ in %. However, ad y has no kernel in [, ] C ¢
by (2.2.15) and hence [y, [#, #]] also has codimensional [ in 7, recalling (2.2.12).
This proves dim »(,y = /. But then by (2.1.8) one also has

dimfngy , y] = 1. (22.17)

Again by (2.1.8) any element in [#, ¥] is uniquely of the form [x, y] for
x € #. On the other hand # - &, by (2.2.16) is clearly the Q-orthocomplement
of [#, z] in £. Thus [x, y] is in the right side of (2.2.14) if and only if Q([x, ¥],
[#, #]) = 0. Therefore by the invariance of Q the element [x, y] is in the right
side of (2.2.14) if and only if x € s, , using the definition (2.2.13) of 4, .
This proves (2.2.14) and the lemma follows from (2.2.17). QE.D.

Now recall (see (1.6.5)) that v, for any invariant I € S(¢)¢ is the vector field
on 4, such that

)y = [, (1)) (2.2.18)
By (2.2.10), (2.2.11), and (1.6.10), 7, is tangent to the submanifold Z. Let
E=ml|Z (2.2.19)

and let = be the space of vector fields on Z defined by
z = {§ | I € S(g)}. (2.2.20)

Also for any y € Z, let

wy = {(€1)y | I € S(g)} (2221)
THEOREM 2.2. Let g be any complex or real split semi-simple Lie algebra.
Let | = rank g and let Z be the 2l-dimensional manifold of normalized Jacobi
elements in g. See (2.2.4). For any invariant I € S(g)¢ let £ be the vector field

on Z defined by putting

¢y = [, @sD)(¥)] (2.2.22)

for any y € Z. The element (831 y) is given by (1.2.10),
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Now let + be the space spanned by ¢, for all I € S(g)°. Then x is a commutative
Lie algebra of vector fields. Furthermore for any y € Z the subspace z,C T(Z)
defined by (2.2.21) is l-dimensional and the elements (§,),, § = 1,...,1, are a
basis of =, , where the I;€ S(g)® are the fundamental invariants. Moreover if
nyyy © » is defined by (2.2.13) then the elements (8,1,X¥), j = 1,..., I, are a basis
of n,) and

£, = [y 1 3. (2.2.23)

Proof. 1t follows immediately from Theorem 1.6.2 that » is a commutative
Lie algebra of vector fields. Now let y € Z. By Proposition 2.1, (§31)(¥) is in
the span of (8;,)(y), j = 1,..., ], for any I € S(g)¢. Thus the elements (3r)y
span x, . But also by Proposition 2.1 the elements (837;)(y) are linearly inde-
pendent. Furthermore g¥ N £ = 0 by (2.2.15). Thus the elements [y, (§31;)(y)] =
(£,)y are also linearly independent and hence are a basis of +, . But [y, (8I)(y)] =
0 by (1.3.3). Thus for any I € S(g)¢

(& = (3 GD(¥)]
= [@C.I)y), 3]

But (¢)),€ T(Z) = /4 + o, . Thus by (2.2.24), (£), € (4 + &,) N [#, y]. Thus
[(.I)(¥), ¥] € [ , ¥] by (2.2.14). But since g¥ N » = 0 by (2.1.8) this implies
(8, IXy) € ny) . However, by (2.2.24) the elements (5,1;)(y) must be linearly
independent. But then they are a basis of »(,) by Lemma 2.2.2. Furthermore
(2.2.24) then immediately implies (2.2.23). Q.E.D.

(2.2.24)

2.3. Now the fundamental invariants I; define a differentiable map
S g —>F, (23.1)
where F(x) = (I (),..., I}(x)).

For each v in the image, #(Z), of Z under # one defines a nonempty closed
subset Z(y) of Z by putting

Z(y) = Sy N Z. (2.3.2)

One of course then has the disjoint union

Z=\ Z). (23.3)
vef(Z)

Remark 2.3. For the case of Sl(n,F) note that the equivalence relation
in Z defined by regarding (2.3.3) as a union of equivalence classes is the relation
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x ~y when x and y are normahzed Jacobi matrices with the same charac-
teristic polynomial.

Consider the functions I; | Z on Z defined by restricting the fundamental
invariants to Z. The following guarantees that the Z(y) are submanifolds,
although at this point it is not clear whether or not they are connected.

ProrosrTion 2.3.1. For any y€ Z the differentials (d(I;| Z)),, i = 1,..., 1,
are linearly independent.

Proof. Now as in (2.2.10) the tangent space to Z at y is identified with
# + ;. With respect to this identification if w e 4 + #; then by (1.1.2) and
definition (1.2.2) one has

<w, (d(I | Z)),> = Qw, (3I)())- (2.34)

Thus (d(I| Z)), = 0 if and only if (8I)(y) is Q-orthogonal to # + ;. But
# + o, = 4(y) by (2.2.11). Thus (d(I | Z)), = 0 if and only if (¢£,), =0 by
(1.6.12). However, the vectors (£, ), are linearly independent by Theorem 2.2.
Thus the differentials (d(; | Z)),, are then also linearly independent. Q.E.D.

Let N, NC G be the subgroups respectively corresponding to 7z and s.
We return briefly to £; = f + 4.

ProposiTiON 2.3.2. Let y,,y,€6;. Then there exists ne N such that
ny, = ¥, if and only if F(y,) = F(y,). Furthermore in such a case n is unique.

Proof. If such an element n € N exists then by invariance one has #(y,) =
H(¥,). Conversely assume H(y,) = H(¥,). We must show there exists a unique
n € N such that ny, = v, . Assume first that F = C.

Let x,€ /4 be as in Section 2.1. It is clear from (2.1.4) that [f, ] C £ and
[f, #] is stable under ad x,. Let 4 C £ be any ad ¥, stable subspace such that

E=[f,n]+ 9

is a direct sum. Now by Theorem 1.2 in [17] there exist elements #,e N,
x;€f+4 s such that nx; = y,, : = 1,2. Clearly S#(x;) = #(y;). However,
since J(y,) == #(y;) one then has #(x;) = F(x;). But then x, = x, by
Theorem 7 in [14, p. 381]. (See also Remark 19" in [14, p. 375]. This proves
there exists # € N such that ny, = y,. The uniqueness of n follows from
Theorem 1.2 in [17].

Now assume F == R. Let g¢ = g + ig and let G¢ be the adjoint group
of gc. Let g = » + in and let N¢ C G¢ be the subgroup corresponding
to #¢ . By the result above there exists a unique n € N¢ such that ny; = y,.
Now regarding N C N¢ we have only to show that n e N. Write n = exp 2,
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where 2°€ ¢, and write 2 = u + iv, where u, v €« It is enough to show
that # = 0. Assume not and let j and v; be respectively the minimal diagonal
degree of v and the minimal diagonal component of v. Then j > 1 since v € »
and hence

[, fle 4,4, C 4. (2.3.5)

But now
= AR (f 4 2) = 50, (2.36)

where we have written y, = f + %, so that x; € 4.

Now the minimal diagonal degree of any nonzero element in [v,£] is at
least j and any further bracketing with # or v would only increase the degree.
Thus upon writing g¢ =3 o} + 1Y &} as a real direct sum it follows that
the component of the left side of (2.3.6) in ie/;_, is just i[z; , f]. But [v;, f] # 0
by (2.1.8). This contradicts the fact that y, € 4. Thus v = 0. QE.D.

2.4. Here and in Sections 2.5 and 2.6 we assume that F = C. Now

the Weyl group W = W{(g, %) operates on #4 and on its dual 4. For each s € W

let s(o) € G be the unique element in the normalizer of 4, corresponding to o,
such that

5(0) &, = €50, » i=1,.,1L (2.4.1)

The Bruhat-Gelfand decomposition of G asserts that

G = |) Ns(c) HN (24.2)
aeW
is a disjoint union. Now let « € W be the unique element such that k4, = —4, .

Then s(x) Ns(x)"* = N. Multiplying the components of (2.4.2) on the left
by s(x) one also has the disjoint union

G = \J Ns() HN. (2.4.3)

TEW

Now if 7 is the identity then Ns(7) HN is just NHN Now put
G4 = NHN. (2.4.4)
One knows that G is a Zariski open subset of G and the map
NxHXN-G,, (2.4.5)

where (7, b, n) — #hn is an isomorphism of algebraic varieties. Thus for any
de G, there exist unique elements #i;€ N, h; € H, and n, € N such that

d = wghan, . (2.4.6)
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We will retain this notation throughout. One notes in particular that by inverting
(2.4.5) the map

Gy—>N, di>n, (2.4.7)

is a morphism of algebraic varieties.

Now for any y € G we recall that GV is the centralizer of y in G. Thus G¥
is a Zariski closed algebraic subgroup of G. In case y is regular, ie., ye R,
this group is of a particularly simple form.

ProrosiTiON 2.4. If ye R then GY is an Abelian connected algebraic group
of complex dimension . That is, as algebraic groups one has the isomorphism

GY ~ (C*)? x Cs (2.4.8)

for some p, q where p + q = L.

Proof. The first statement is contained in Proposition 14 in [14, p. 362].
The second statement follows then from the well-known. classification of
connected Abelian compiex algebraic groups. Q.E.D.

Now let y € Z. Then y € R so that Proposition 2.4 applies to y. Let
G, =G"nNnG, (2.4.9)

so that G} is a Zariski open subset of GY. Since 1 € G}, it follows that G% is
not empty and hence is dense in G¥. Furthermore since GY is connected and
nonsingular it follows that G} is a connected, nonsingular algebraic variety
of dimension /. We recall that a variety of dim / is called rational if its function
field is isomorphic to C(X,,..., X;), where the X, are indeterminates. Since
GV is an algebraic group it is rational. (This is of course obvious from (2.4.8).)
Since G is Zariski dense in G¥ it has the same function field so that it too is
rational.

Now for any d € G% one has the decomposition (2.4.6). That is, d = nsh#,
and by restriction, (2.4.7) the map

G.—>N, d—mn (2.4.10)

is a morphism of algebraic varieties.

Now if v is the image #(Z) of the map £ it is clear that the “isospectral”
set Z(y) 1s a closed subvariety of the variety Z of normalized Jacobi elements.
However, it is not clear just what variety it is and in fact whether or not it is
connected. These questions are settled by

THEOREM 2.4. Let ¢ be a complex semi-simple Lie algebra and let Z be the
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set of normalized Jacobi elements defined by (2.2.4). Let ye Z, y = S(y), and
Z(y) C Z be defined by (2.3.2) (so that Z(y) is the set of all elements in Z which
are conjugate to y).

Now let G be the adjoint group of g. Let GY be the centralizer of y in G and let
Gy be the Zariski open subset of GY defined by (2.4.9). Then for any d € G}, one
has nyy € Z(y). (See (2.4.6).) Furthermore if B,(d) == n,y then

Bu: G — Z(y) (2.4.11)

is an isomorphism of algebraic varteties. In particular Z(y) is an irreducible, non-
singular, rational algebraic variety of dimension 1 where | = rank ¢ (so that
Z(y) is a connected complex manifold of dimension 1.

Proof. Now since ye ZC 4, and £, is stable under the action of N it is
clear that 8,(d) €4, . Let w = §,(d) and let  and w; be respectively the maximal
diagonal degree and component of w. See Definition 2.1. To prove that we Z
it suffices then to show that j = 1 and w;€ &, . Now cleatly n, = h~\(#1)-1d,
where we have written # = 7;, A = h;. Thus w = AW (#) 1 dy = b Y(A) Yy
since dy = y. That is,

Bul(d) = '@ y. (2.4.12)

But if y, is the maximal diagonal component of y then y, ea!'l . However,
clearly the maximal diagonal component is unchanged by the action of any
element in N. Thus y, is also the maximal diagonal component of (77)~1y. But now
obviously 41y, is the maximal diagonal component of A~(#7)~'y = w. That is,
there exists x € # so that

Bd) =f+x+ ha'y, . (2.4.13)

Since o, is stable under H this proves that 8,(d) € Z. However, then certainly
B(d) = ngy € Z(y) by the invariance of #. This defines the map (2.4.11).
Assume now that B,(d;) = B,(d;), where d, ,dye G} . That is, m;y = nyy,
where n; = n; , i = 1,2. But then by the uniqueness in Proposition 2.3.2
one has n; = n,. But then k'y; = h3'y, by (2.4.13), where &; = hy, . Since
H operates in a simple transitive way on 4, it follows that h, = h, . Finally
if #; = 7, _one has (7,) Yy = (#,)"ty by (2.4.12). But then by Proposition 2.3.2
with the roles of £ and é’ N and N, f and y, reversed, one has i, = #, by
uniqueness since y €y, + 4. This proves d; = d, so that B, is injective.

Now let w € Z(y). Since w, y € £; this implies there exists # € N by Proposi-
tion 2.3.2 such that

ny = w. (2.4.14)

Now let y; and 2, befrespectively the maximal diagonal components of ¥ and w.

607/34/3-3
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Then y, , w, € Z, and hence by the transitivity of H on 7, there exists k€ H
such that hw, = y, . Thus hw, y € y, + £ and F(hw) = JF(y) = y by invariance
of # under conjugation. But then by Proposition 2.3.2 with the roles reversed
as above (in the proof of injectivity) there exists # € N such that

fthw = y. (2.4.15)

Substituting for @ using (2.4.14) one has #kny = y. Thus 7hn = de G¥ and
n =mn,. Thus w = B,(d) by (2.4.14). This proves the surjectivity of B, and
hence B, is bijective. On the other hand B, is clearly a morphism of algebraic
varieties since (2.4.10), as noted, is such a morphism. Thus Z(y) is an irreducible
variety. But, by Proposition 2.3.1, Z(y) is certainly nonsingular, using, e.g.,
Zariski’s criterion. Thus Z(y) is a nonsingular irreducible variety. In particular
it is normal. But then since B, is bijective it is an isomorphism of algebraic
varieties by the Zariski main theorem. Q.E.D.

Remark 2.4.1. We thank D. Mumford and D. Kazhdan for pointing out
that our isomorphism (2.4.11) implies the rationality of Z(y). For the special
case of Sl(n) and where y has distinct eigenvalues this result is due to J. Moser.
The rationality in that case was established by Moser, using continued fractions.

Remark 2.4.2. Since Z(y) is a nonsingular variety it also has the structure
of a smooth manifold. Moreover as such it is a submanifold of Z. Furthermore
since B, is an isomorphism of algebraic varieties one knows then that 8, is
also a diffeomorphism of smooth manifolds. See, e.g., Chapter VII, Section 1,
in [22].

2.5, As in Section 2.4 we assume that F = C. Now one can easily
determine the image #(Z) of Z under the map #. See (2.3.1). Let ee d, and
put g = f + e. Let

I - C (2.5.1)

be the map defined by putting £ (x) = F(g + x) for x € £. Recall that W is
the Weyl group W(g, #£). For any finite set S let | S| denote its cardinality.

PrOPOSITION 2.5.1. Let y € C' be arbitrary. Then $,\y) is finite and in fact
1 <17 < | WL (2.5.2)

In particular the map %, is surfective.

Proof. Let J;€ S(%) be defined by putting J; = I;| 4. (We are of course
identifying S(#£) with its dual using Q| £.) If deg; = m; 4+ 1 then of course
J: is also homogeneous of degree m; + 1. On the other hand by Chevalley
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the J; are algebraically independent and the algebra S(#)” of Weyl group
invariants is exactly the polynomial algebra, C[J, ,..., Ji], generated by the ], .
Furthermore it is also due to Chevalley that S(#) is a free S(£)% with | W |
generators. (See, e.g., Theorem 4.15.28 in [26, p. 386]).) That is, there exists
a graded subspace D C S(#) of dimension | | such that S(#) = S(#£)* @ D.
But then since D is graded it is easy to see that

S(#) = A, ® D, (2.5.3)

where if J¢9e S(#4) is defined by J9(x) = J(g+ x) for xe€ /4 then 4 =
C[J#,---» Ji¥]- One needs only the obvious fact that J; — J¢ is a polynomial
of degree at most m; .

Thus S(#£) is a free 4, module with | W| generators. In particular S(%)
is integral over 4,. On the other hand A, is just the pullback of the affine
algebra on C' with respect to the map .%,. Thus .% is a finite map. See, e.g.,
[22, p. 48]. But then %, is surjective (see, e.g., Theorem 4 in [22, p. 48]) so
that 1 < | £, (y)| for any y € C%. On the other hand if (4) denotes the quotient
field of an integral domain A4 then (2.5.3) easily implies (S(#£)) = (4,) & D
so that | W | is the degree of the map .7, . See, e.g., [22, p. 116]. But then one
knows | £, (y)] < W for any ye Cl See, e.g., Theorem 6 in [22, p. 116].

QE.D.

The set of unramified points is of course nonempty and Zariski open. That is,
PROPOSITION 2.5.2. Let the notation be as in Proposition 2.5.1. Then the set
C, ={yeC'| £ =W (2.5.4)

1s a nonempty open subset of C'.

Proof. Since | Wi is the degree of the map %, as noted in the proof of
Proposition 2.5.1 the result is just Theorem 7 in [22, p. 117]. Q.E.D.

Summarizing one has

THEOREM 2.5. Let 4 be a complex semi-simple Lie algebra. Let | = rank g
and let Z be the 2l-dimensional variety of normalized Jacobi elements in 4 defined
by (2.2.4). For any ye€ C? let Z(y) C Z be the subvariety defined by (2.3.2) in
terms of the fundamental invariants I; , j = 1,..., l. Then Z(y) is an I-dimensional
nonsingular, irreducible closed rational subvariety of Z and hence

zZ=\ 2y (2.5.5)

veCl

is a foliation of Z by such subvarieties.
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Proof. Recall the notation and statement of Proposition 2.5.1. Since the
map .#, is surjective it of course follows that .# is surjective. That is,

H(Z) = C. (2.5.6)

The result then follows from Theorem 2.4 and (2.3.3). Q.E.D.
Henceforth we will speak of the sets Z(y) as the isospectral leaves of Z.

Remark 2.5. Although the elements of Z are regular one notes that by
(2.5.6) the elements of Z are not in general semi-simple. In fact since two
regular elements x,y € g are G-conjugate if and only if F(x) = F(y) (see
(3.8.4) in [14]) it follows from (2.5.6) that every regular element is G-conjugate
to a normalized Jacobi element. In particular taking y = 0 in C’ the isospectral
leaf Z(0) is the set of all nilpotent elements in Z. Since ZC R any element
in Z(0) is in fact a principal nilpotent element.

Here again as in Sections 2.4 and 2.5 we assume F = C.

2.6. Now if y € C! then the isospectral leaf Z(y)of Z has been described
by Theorem 2.4 in terms of a Zariski open subset of the centralizer G¥ of an
element ye Z. However, the centralizer GY is itself fairly complicated. We
wish now to describe Z(y) in terms of the centralizer G* of an element w which
is more readily accessible. .

Now let w,e# and put w = f+ w,. Thus we £, and hence we R by
(2.1.7). Thus G* by Proposition 2.4 is a connected Abelian subgroup of complex
dimension /. Now since G, = NHN is Zariski open in G the same is true
for its translate s(x) G, . Thus if we put

G = 5(k) Gy, (2.6.1)

then G, is a Zariski open subset of G and for any g € G(4) there exist unique
elements #(g) € N, h(g) € H, and n(g) € N such that

g = s(x) #(g) h(g) n(g)- (26.2)

This notation as with (2.4.6) will be retained throughout. By inverting (2.4.5)
it is clear that the map

Gw —~> N, g-—n(g) (2.6.3)
is 2 morphism of algebraic varieties
G =GN G (2.6.4)

so that G}, is Zariski open in G¥.



TODA LATTICE AND REPRESENTATION THEORY 229

Remark 2.6.1. Unlike the case of G}, for y € Z it is not immediately obvious
(at least to us) whether G}, is empty or not. It is in fact nonempty as stated
in Theorem 2.6 below.

Now for any g € G{, one has the decomposition (2.6.2). That is, s(x) g =
71(g) h(g) n(g). Furthermore by restricting (2.6.3) the map

Gto— N, g—nlg) 2.6.5)

is a morphism of algebraic varieties,

Lemma 2.6.1. Let y = F#(w) and let g € G5, . Then n(g)w € Z(y).

Proof. Let y = n(g)w. Since ¢, is stable under the action of N it is clear
that ye£,. Let j and y; be respectively the maximal diagonal degree and
component of y. We have to show that j = 1 and y, € , . But the maximal
diagonal component of 72(g) h(g)y is clearly just A(g) y; . However, ii(g) h(g)y =
i(g) h(g) n(g)w = s(x) gw. But gw = w and s(x)~'w = «w, + ¢, where, by
(2.4.1) and (1.54), e = 3;_, e, . Thus h(g)y; = e. Hence j = 1 and y, =
h(g)te. That is, 1

1
=3 hg)e,. (2.6.6)
i=1
Note also that one has
n(g) h(g)y = x7'w, + e. (2.6.7)

But now (2.6.6) proves y, € a?l and hence y € Z. Also, since y and w are G-con-
jugate one has #(y) = JS(w) = y so that y € Z(y). Q.E.D.

Now let the notation be as in Lemma 2.6.1. Put y = n(g)w so that y € Z(y).
Since n(g) carries w to ¥ one clearly has

n(g) G¥n(g)™ = G*. (2.6.8)

But now for any @ € G¥ one has g~la € G* and hence
P G — G¥ (2.6.9)

is an isomorphism of varieties (not of groups), where

po(a) = n(g) g tan(g)™. (2.6.10)
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LEmMMA 2.6.2. Recalling that G}, = G¥ n NHN and G¢,, = G* N s(x) NHN

one has
$o(Glw) = G% - (2.6.11)

Proof. Let acG¥ and put ¢ = g~'a so that s(x)~'a = s(x)~1 gc = #thnc,
where we have put # = #(g), h = h(g), and n = n(g). But nc = nen~'n =
Y(a)n. Thus if we put d = ¢, (a) then d & G¥ by (2.6.9) and

s(x)~la = fhdn. (2.6.12)

But now by the decomposition (2.4.3) there exists a unique o € W such that
d € Ns(o) HN. Since s(c) normalizes H this implies s(x)1a € Ns(¢) HN. Thus
d = ,(a) € G} if and only if s(x)2a € NHN or if and only if a € Gf,, . This
proves the lemma, Q.E.D.

Remark 2.6.2. Let the notation be as in the proof above. If a€ G{}, so
that de NHN, note that (2.6.12) implies n(a) = n;n using the notation of
(2.4.6). That is, for any g, a € G{},, one has

n(a) = ngn(g) (2.6.13)

where d = i (a).
The element w = f 4 w, in our considerations here can be chosen so that
F(w) = y where y is any given element in C’, That is, one has

ProrosiTioN 2.6. Given any y € C! there exists a w, € #, unique up to con-
jugacy by W such that #(w,) = y. Furthermore if w = f +- w, then one also has

F(w) = F(w,) (2.6.14)
so that S(w) = v.

Proof. The first statement is a well-known result of Chevalley. It follows,
for example, from the surjectivity part of the proof of Proposition 10 in [14,
p. 355] together with Lemma 9.2 in [12]. The second statement is part of
Lemma 11 in [14, p. 371]. Q.ED.

THEOREM 2.6. Let g be a complex semi-simple Lie algebra and let Z be the
set of normalized Jacobi elements in g. This set is defined by (2.2.4). Let y € C' and
let Z(y) C Z be the isospectral leaf in Z defined by y. See (2.3.2). Let w, be any
element in the Cartan subalgebra /4 such that F(w,) = y. Such an element w,
exists. Let w = f + w, , where we recall f is defined by (1.5.4). Let G, be the
Zariski open subset of the centralizer of w defined by (2.6.4). Then G{,, ts not
empty so that it is a complex, connected I-dimensional, nonsingular rational variety.
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Furthermore Z(y) is also such a variety. Moreover if ac G{, and n(a)e N s
defined by (2.6.2) then n(a)w € Z(y) and if B(,(a) = n(a)w then

B Gy — Z(y) (2.6.15)
is an isomorphism of algebraic varieties.

Proof. By Theorem 2.5, Z(y) is not empty and by Proposition 2.6 there
exists an element w, € £ such that #(w,) = y.

Now let y € Z(y). Then y, weé; and S#(y) = F(w) = y by (2.6.14). But
then by Proposition 2.3.2 there exists # € N such that

nw = y. (2.6.16)

But now if y; € 0,71 is the maximal diagonal component of y there exists he H
such that

e = hy,, (2.6.17)

where

e=) e,-

(2.6.18)

T

3
-

%

Thus hyee + Z. On the other hand s(x) o = «w, + e since it is clear
from (2.4.1) that

s(x)e = f. (2.6.19)

Hence hy and s(x)lw are elements in e 4 £ and F(hy) = SF(s(x) ) = y.
Thus, as argued in the proof of Theorem 2.4, Proposition 2.3.2 applies with
the roles of £ and £, N and N, and now f and e reversed. That is, there exists
#ie N such that thy = s(x)~lw or s(x) "hy = w. But since nw = y this implies
that g € G¥, where g = s(«) #hn. Hence g € G}, so that G, is not empty.
Moreover note that n =n(g). But now by Lemma 2.6.1 the map 8, exists
and is a morphism of algebraic varieties since (2.6.5) is such a morphism.
Furthermore by (2.6.16) one has

Bu(g) = n(g)y = w. (2.6.20)

Now recall (see (2.4.11)) the map B,: G}, — Z(y), where if d € G}, then B,(d) =
nyy, and the map G¢,, — G% , defined by restricting ¢, to G, . See (2.6.11),
where we recall yi,(a) = n(g) glan(g)~L. We assert the diagram

Bw
G¥y —2> Z(y)

'”“l / (2.6.21)

G
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is commutative. Indeed if ae G}, and d = y,(a) then B (¢,(a)) = B,(d) =
nzy. However, y = n(g)w by (2.6.16). But n;n(g) = n(a) by (2.6.13). Thus
B,(¢,(a)) = n(a)w = B(,)(a). This proves that diagram (2.6.21) is commutative.
But B, is an isomorphism by Theorem 2.4. Also since 3, is an isomorphism
the vertical map in (2.6.11) is an isomorphism by (2.6.11). Thus B, is an
isomorphism of algebraic varieties. By Proposition 2.4, G}, and hence Z(y)
is isomorphic to a nonempty Zariski open subset of (C*)? X C? for some
b, q where p + g = I and hence has the properties described in the statement

of the theorem. Q.E.D.

3. THE PARAMETRIZATION Z ~ H X %, IN THE REAL Casg

3.1. Throughout Section 3 we assume that F = R. We will see that
the situation is more complicated but perhaps more interesting. In order to
make use of the results of Sections 2.4-2.6 we put g¢ = ¢ + iz and let G¢
be the complex adjoint group. Of course we may assume that G C G¢ . Also
let #¢, %¢, and 7¢ be the complexifications of #, 4, and # and let N, He,
and N¢ be the corresponding subgroups of G¢ .

Now let KC G be the subgroup corresponding to # where we recall g =
£+ 4 is the given Cartan decomposition of g. See Section 1.2. Thus K is a
maximal compact subgroup. Put P = exp 4 so that as one knows, any ge G
can be uniquely written

& =kp, (3.1.1)

where k€ K, pe P. One refers to (3.1.1) as the polar decomposition of g.
One also knows that the map

f=—>P, x>expx (3.1.2)
is a diffeomorphism. This clearly implies the familiar fact that the map
PP, pop? (3.1.3)

is also a diffeomorphism. For any p € P its unique square root in P will be
denoted by p1/2,

Now the real form g of g¢ defines a conjugation operation on g¢ and G¢ .
That is, if 2 € g¢ and we write 2 = x - iy for x, y € g then 2° € g¢ is defined
by putting

3% = x — iy, (3.1.4)
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Since Gg is the adjoint group the operation induces an automorphism g — g°
of G¢, where of course for any x € g¢

(exp x)° = exp x°. (3.1.5)

Now the Cartan involution # (see Section 1.2) extends by linearity to an
automorphism of g¢ and, since G¢ is the adjoint group, it also defines an auto-
morphism of G¢ which we continue to denote by 8. Now recall that the x-opera-
tion on g was defined by putting x* = 6(—x). We now extend the operation
to g¢ as a conjugate linear map by putting x* = (—x*) for any x € g¢ . Thus if

gu=A+ip (3.1.6)

then g, is a compact form of 4¢ and
x¥* = —x ifandonlyif xeg,. 3.1.7)

One also defines a *-operation on G by putting g* = 6((g°)!) for any g € G¢ .
Clearly if a, b€ G¢, x, y € g¢ one has

(ab)* = b*a* and [, y]* = [¥*, x*] (3.1.8)
and also
(exp x)* = exp x*. (3.1.9)

Now let G, C G¢ be the (maximal compact) subgroup of G¢ corresponding
to g, (see (3.1.6)). Also let P, = exp ig, so that as one knows P, is a closed
submanifold of G¢ and the map

G, X P,—~Ge, (w,q)+>rug (3.1.10)

is a diffeomorphism. In fact the decomposition of G¢ defined by (3.1.10) is
just a polar decomposition. One has KC G, , PC P, and restricting (3.1.10)
one has a diffeomorphism

Kx PG, (3.1.11)
which of course defines our given polar decomposition of G.
Now it is clear that G is stable under the x-operation and in fact if g€ G

is given by (3.1.1) then by (3.1.8) one sees that

g* =pkt. (3.1.12)
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This also uses (3.1.7) and (3.1.9), which imply @ = a* if a€ P, and a* = ¢!
ifaeG,.
Now note that
%#C f (3.1.13)

Indeed for any p 4 let
hy, = [e,, e o] € 4. (3.1.14)

But then since ¢_,, = ¢ (see (1.5.1)) one has &} = h, by (3.1.8) so that 2, € 4.

On the other hand the root normals &, span # so that one has (3.1.13). Since

dim # = [ the Cartan subalgebra £ is of course a Cartan subspace of 4 and by
exponentiating (3.1.13) one has

HCP (3.1.15)

Now let T be the subgroup of G¢ corresponding to i%4. Then by (3.1.6)

and (3.1.13) one has TC G, (in fact T is clearly a maximal torus in G,) and
clearly the restriction of (3.1.10) to T X H defines a diffeomorphism

Tx H—Hg. (3.1.16)
One notes then that if a € Hg and we write @ = th, where t& T and A € H then
a* = ht 1. (3.1.17)

Now let M be the set of all elements of order 2 or 1 in Hg . Obviously
MCT (3.1.18)

by (3.1.16) and since T is a torus of rank / it is clear that M is a finite Abelian
group and in fact its cardinality | A | is given by

| M| =2 (3.1.19)

Lemma 3.1.1. Let ac Hy. Then a = a* if and only if a € MH.

Proof. This is immediate from (3.1.16) and (3.1.17) since Hg is com-
mutative. Q.ED.

Let M = MnG.
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LemMa 3.1.2. Let ge G and assume g = g*. Then g K if and only if
g% = 1. Furthermore one has

M=KnT. (3.1.20)

Proof. If g = kp is the polar decomposition of g then by (3.1.12)
kp = pkL. (3.1.21)
Thus if ge K one has g = k = k= so that g2 = 1. On the other hand by
(3.1.21) one has g% = p?> € P. Thus if g% = 1 then p* = 1 which implies p = 1.
See (3.1.3). Hence ge K. This proves the first statement, Now MC KN T
by the first statement and Lemma 3.1.1. On the other hand if g€ K C G then

g¢ = g recalling (3.1.4) and (3.1.5). But if ge T' = exp i/ then also g° = g~1.
Thus K N T C M. However, K N T'C G also, so that one has (3.1.20). Q.E.D.

For any x € ¢ let G, be the identity component of the centralizer G* of x in G.
PrROPOSITION 3.1. Assume x € 4 is regular. Then
g=g* forany geG= (3.1.22)
On the other hand one has
GNP =Ggz (3.1.23)
Furthermore as Lie groups one has the isomorphism
G~ R, (3.1.24)

Proof. From the conjugation theory of Cartan subspaces of £ one knows
that x is K-conjugate to an element in /4. But since the x-operation commutes
with the conjugacy action of K and P is stable under this action it then suffices
to assume, as we shall, that x € 4. But now clearly G* C G¢*, where G¢® is
the centralizer of ¥ in G¢ . On the other hand G¢* = Hg since G¢® is connected
by Proposition 2.4 and g¢® = /¢ by regularity. Thus

G* = H:NG. (3.1.25)
But now comparing the diffeomorphisms (3.1.11) and (3.1.16) one has G® =
(K N T)H by (3.1.25). But KN T = M by (3.1.20) so that G* = MH. But

then in fact restricting (3.1.16) one has a diffeomorphism

M x H— G=. (3.1.26)
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But then by the uniqueness of the polar decomposition this implies
G*NP=H. (3.1.27)

However, one also clearly has G,» = H by (3.1.26). This proves (3.1.23).
Furthermore one also has (3.1.22) by Lemma 3.1.1 and (3.1.26).

Now the restriction of the bijection (3.1.2) to # is clearly an isomorphism
# — H of Abelian Lie groups. This proves (3.1.24). Q.E.D.

3.2. Now put
G, = NHN. 3.2.1)
PROPOSITION 3.2. Assume x € 4 is regular. Then
NG, =Gp5 (3.2.2)

where we recall that G,” is the identity component of G°.

Proof. Assume that g is in the left side of (3.2.2). Write g = #thn for 7€ N,
he H and ne N. Then g* = n*hi*. But now by (1.5.1) and (3.1.9) one has

N*=N and (N)*=N. (3.2.3)

Thus n*e N and (#)* € N. However, g = g* by (3.1.22). But then by the
isomorphism (2.4.5) applied to N¢, Hc, and N¢ one has n* = 7. Hence
g = n*hn. Thus if we put #/?n = a € G one has g = a*a. However, for any
be G one has

b*be P. (3.2.4)

Indeed if b = kp is the polar decomposition of b then b*b = p?e P, proving
(3.2.4). Thus g € P and hence g € G® N P. But then g € G,* by (3.1.23).
Now the Twasawa decomposition asserts that the map

K x Hx N—G, (k, a, n) — kan (3.2.5)

is a diffeomorphism. Thus if g€ G we can uniquely write g = kan, where
ke K, ac H, and ne N, and we refer to this as the Iwasawa decomposition
of g.

Now recalling that G, = NHN we assert that

PCG,. (3.2.6)
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Indeed let pe P and let p!/2 = kan be the Iwasawa decomposition of the
square root p1/2 of p. Then ( p1/2)* = n*ak~1. Since ( p!/2)* = p!/2 this implies

p = (PN (p'?) = n*a’n. (3.2.7)

But n* € N and a? == h € H. This proves (3.2.6).

Now to prove the proposition we have only to show that the right side of
(3.2.2) is contained in the left side. Let g € G,®. Then g € P by (3.1.23). Thus
g € G, by (3.2.6). Hence g is contained in the left side of (3.2.2). Q.E.D.

Now recalling (2.3.1) let y e #(Z). We wish to obtain results about the
closed subset Z(y) in the present case (i.e., where F = R) which are analogous
to those given in Theorem 2.6. If y € Z then even though y is not necessarily
in 4 it is H-conjugate to an element in 4 so, as we now observe, the statement
of Proposition 3.2 holds for .

LEmMA 3.2. Let ye Z. Then there exists a unique ¢ € H such that

cy € f. (3.2.8)

Also, one has

G' NG, =G (3.29)

Proof. Let xe/4 and let a;e R* (i.e., ¢; > 0), i = 1,..., ], be such that
y=f-+x+3;ae, . Now for any c € H one has

ey =x+) (%, + cage,). (3.2.10)

But now recalling the isomorphism (2.2.8) it follows that there is a unique
ce H such that ¢ = ¢%g,, namely, that element ¢ such that ¢x = a7/
However, x* = x by (3.1.13) and e = e_, by (1.5.1). Thus only for this
value of ¢ does one have (¢y)* = cy or equivalently cy € 4. This proves the
first statement of the lemma.

Now fix ¢ € H so that one has (3.2.8). But ye R by (2.1.7). Thus ¢y is a
regular element of 4 and hence by (3.2.2) one has G N G, = G;". On the
other hand one certainly has ¢-1G% = G and a similar relation for the identity
components. Since N, H, and N are stable under conjugation by ¢ it follows
that G, is stable under conjugation by ¢. This proves (3.2.9). Q.E.D.

Now we may apply the results of Sections 2.4-2.6 to the complexification
G¢ of G. Thus recalling (2.4.5) the map N X H¢ X N¢ — NcH¢N¢ defined
by multiplication is an algebraic isomorphism of nonsingular affine varieties.
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In particular then it is a diffeomorphism. Thus, by dimension, G, is an open
connected subset of G and, by restriction the map

NXHXN-G,, (hn)—ithn (3.2.11)

is a diffeomorphism. Thus using the notation of (2.4.6) for the complexification
G¢ one has the decomposition

d = Ty, (3.2.12)

for any de G, , where now #;€ N, h;e H, and nze N. Furthermore upon
restriction of (2.4.7) the map

G,— N, d—mny (3.2.13)

is smooth.

THEOREM 3.2. Let g be a real split semi-simple Lie algebra. Let | = rank g
and let G be the adjoint group of ¢. Let Z C g be the 21 dimensional manifold of
normalized Jacobi elements in g. The manifold Z is defined by (2.2.3) and (2.2.4).
Now let I: g — R be the map (see (2.3.1)) defined by the fundamental G-invariant
polynomials on g and for any ye S(Z) let Z(y) = I Ny)CZ. Then the
isospectral set Z(y) is a closed connected submanifold of dimension | in Z. In fact
one has a diffeomorphism

Z(y) ~ R (3.2.14)

Furthermove for any y € Z(y) the identity component G¥ of the centralizer of y
in G is also isomorphic (as Lie groups) to R'. Moreover using the notation of (3.2.1)
one has G,Y C G, and if for any de G ¥ the element ny € N is defined by (3.2.12)
then nyy € Z(y) and the map

By G — Zly),  dr>may (3.2.15)

is a diffeomorphism.

Proof. Let ()¢ be the complexification of the diagonal &, so that (&;)¢
is stable under the Hg and let (lil)c be defined by (2.2.2), where F = C. Put
Zy =f—+ tc+ (a{.,l)c so that we can apply Theorem 2.4, where Z¢ replaces Z.
But then regarding S(c)°C as the complexification of S(¢)¢ one has y € Z¢(y).

Furthermore if we let (8¢), now denote the B, of Theorem 2.4 then by Theo-
rem 2.4 one has an isomorphism

(Bey: (Ge) s — Zely)- (3.2.16)
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But now by (3.2.9) one has G,¥ C (G¢Y) and clearly for d € G, the definition
of h; and n; whether given by (3.2.12) or (2.4.6) is the same. But now Z(y) C
Ze(y) and if de G,Y we assert that (8¢),(d)€ Z(y). Indeed (Bc)(d) = ngzy
so that (8¢),(d) € . But then recalling (2.4.13) one must have x € 4. Furthermore
again using the notation of (2.4.13) if we write y, = >_ a;e, one has 4; > 0
since ¥ € Z. But then '

hi'y, =Y (hg%a) e, . (3.2.17)

Since kg* > 0 this implies by (2.4.13) that (8¢),(d) € Z(y) and hence one
has a map (3.2.15) and the map (3.2.15) is just the restriction of (2.4.11) to G *.
We next assert that (3.2.15) is surjective. Let w € Z(y). Recalling the argument
of the surjectivity of 8, in the proof of Theorem 2.4 we first observe that the
element n € N¢ of (2.4.14) is in fact in N. This is clear from Proposition 2.3.2
since y and w are in 4; and not just f -+ #¢. Similarly the unique element
h € Hg such that hw, = y, is in fact in H since w; , ¥, € 4, . Finally the element
#ie N¢ is in N again by Proposition 2.3.2 and (2.4.15). Thus d = #thn is in G
and we recall (B¢),(d) = w. But clearly de GY N G . Thus de G,¥ by (3.2.9)
and hence (3.2.15) is surjective.

Now Z(y), by Proposition 2.3.1, is a (not necessarily connected) submanifold
of dimension I in Z. But in fact (2.4.11) is an isomorphism of nonsingular
varieties and hence as noted in Remark 2.4.2 is a diffeomorphism of manifolds.
Since (3.2.15) is surjective and is the restriction of (2.4.11) to G,? it follows
that (3.2.15) is a diffeomorphism. Now, using the notation of Lemma 3.2,
G is isomorphic to G¢¥. But G7" is isomorphic to R’ as Lie groups by (3.1.24).
Thus G,¥ and hence Z(y) are isomorphic to R’ as manifolds. This proves the
theorem. Q.E.D.

Remark 3.2. One aspect of Theorem 3.2 which we think ought to be
emphasized is the connectivity of Z(y). If Z was defined by (2.2.3) and (2.2.4)
except that, say, 4; << O instead of @, > 0, then it would not be necessarily
true that Z(y) is connected. An example of this disconnectivity is easily con-
structed for the case where ¢ is the Lie algebra of S/(2, R).

3.3. Now let 4, be the open Weyl chamber in £ defined by putting
h, ={xeh|{p, x> > 0forallped,l}. (3.3.1)
Also let 4, be the closure of 4, in # so that £, is a closed Weyl chamber. As

one knows and easily sees, 4 C 4” for any x € 4, and equality holds if and only
if xe 4, . That is,

4, =%, AR (3:3.2)

Now recalling the map (2.3.1) one has
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ProrosiTioN 3.3.1. S(#.,) is a connected open subset of R and the map
ho—>S(4), x—>I(x) (3.3.3)

is a diffeomorphism.

Proof. The bilinear form Q is positive definite on 4 and hence we can
find a basis x; of g such that x; for ¢ </ is an orthonormal basis of 4 and
O(x;, x)) =0 for i <1 < j. But now if x € £, then ¢* = /. But then for any
Ie S(4)° one has (8I)(x) € 4 by (1.3.1). But then using the basis x; of 4 and
its dual basis the summands in (1.2.2) must vanish for 7 >> I That is, one has
(8I)(x) = Z;=1 (#(x;)I)(x) x; . On the other hand as already noted in the proof
of Proposition 2.1, since x € R, the elements (8I,)(x), k = 1,..., ], are linearly
independent (see Theorem 9 in [14, p. 382]). Thus the I X I matrix M;;, =
(i(x;) I:)(x) is nonsingular. But this matrix is just the Jacobian of the map
(3.3.3) at x with respect to the coordinate system on %4, defined by the x;,
1 <j <<l Thus #(4,) is open and (3.3.3) is a local diffeomorphism. It is
connected since #, is clearly connected. It suffices then only to show that
(3.3.3) is injective. However, if x, y € £, and J#(x) = #(y) then by Chevalley’s
theorem x and y are W-conjugate. But, as one knows, £, is a fundamental domain
for the action of W on 4. Thus x = y. Q.E.D.

An element x € 4 is called semi-simple if ad x is diagonalizable over C.
It is called real semi-simple if ad x is diagonalizable over R. The following
is well known.

Lemma 3.3.1. Let x€ g. Then x is real semi-simple if and only if x is G-
confugate to an element in #.

Proof. See, e.g., Proposition 2.4 in [16] and Theorem 2(2) in [23, p. 383].
QE.D.

Now let R, denote the set of all regular real semi-simple elements in g.
It is clear that R__is stable under the action of G.

Lemma 3.3.2. Let x € g. The following conditions are all equivalent.
(1) xeR,.
(2) xis G-conjugate to an element in 4, .
B) Sx)e S,
. Proof. Using the fact that #, is a fundamental domain for the action of

the Weyl group W on 4 the equivalence of (1) and (2) follows from Lemma 3.3.1
and (3.3.2). Obviously (2) implies (3). It suffices to show that (3) implies (1).
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Assume Sf(x) e #(#4,). Let ze#4, be such that f(x) = #(2). Then since

2 € R one has x € Gez by Theorem 3 in [14, p. 365] (see in particular (3.8.7)
in [14]), where the bar denotes closure. However, since z is semi-simple G¢z
is closed by Lemma 5 in [14, p. 353]. Thus x € G¢z. But then ad » is semi-
simple with real eigenvalues. But then x is real semi-simple. Furthermore
xeRsince e R. Thus xe R, . Q.E.D.

ProposiTioN 3.3.2. Omne has

ZCR,. (3.3.4)

Furthermore

H(Z)C H(4,). (3.3.5)

Proof. The second statement follows from (3.3.4) and Lemma 3.3.2. Thus
it suffices to prove (3.3.4). Let y € Z then y € R by (2.1.7). But now y is conjugate
to an element in 4 by Lemma 3.2. However, the elements of 4 are real semi-
simple. In fact any element in 4 is K-conjugate to an element in # by the con-
jugacy theorem of Cartan subspaces. Thus y is real semi-simple by Lemma 3.1.
Hence ye R, . Q.E.D.

Remark 3.3. In the complex case we found (see (2.5.6)) that #(Z) = C.
From the nonconjugacy of Cartan subalgebras in ¢4 in the present case it is
clear from Proposition 3.3 that we cannot now expect an analogous result.

3.4. Recall that (see (3.1.1)) z— 2° is the conjugate linear auto-
morphism of g¢ given by putting z° = x — iy, where we have written ¥ =

x 4 iy for x,y€ g. We recall also that this automorphism induces an auto-
morphism

G¢ — G¢, a—a° (34.1)
of G¢ . One of course has
a’2® = (az)° 34.2)
for ae G¢, 2 € g¢ . One also has

(exp )¢ == exp(z®). (3.4.3)
Now let

G ={aeGc|a® = a}. (3.4.4)
One easily has

607/34/3-4
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ProPOSITION 3.4. G is the set of all elements g€ G¢ which stabilize g. In
particular one has

GCG. (3.4.5)

Proof. Clearly an element in G¢ is determined (since it is C-linear) by
its restriction to . The first statement and hence the second of the proposition
then follows from (3.4.2) since, in the notation of (3.4.2), 2° = z if and only
if ze 4. QE.D.

Recall (see (3.1.18)) that M is the set of all a € H¢ such that @ = 1.

Lemma 3.4.1. One has
G N He = MH. (3.4.6)

Proof. Now recalling (3.1.16) and the notation of (3.1.16) any element
a € Hg can be uniquely written a = sh when se€ T and k€ H. But then one
clearly has a® = s71h. Thus a = «° if and only if s = s, that is, if and only
if s e M. Q.ED.

For any x € ¢ let G* denote the centralizer of x in G.
Lemma 3.4.2. For any x € 4, one has
G» — WIH. (3.4.7)

Proof. One has G* = G N G¢®. But since x is a regular element of ¢
and x € £, then

Gcw = Hq: (3.4.8)

by Proposition 2.4. The result then follows from (3.4.6). Q.E.D.

Remark 3.4. We note then by (3.1.16) and (3.4.7) that G* has 2! connected
components for any x€ 4, . Recalling Lemma 3.3.2 the same statement is
then true for any x€ R, . Furthermore since H = G,* = G,* for xe 4,
one has

Gr=Gp7 forany xeR, . (3.4.9)

Lemma 3.4.3. One has

G N NcHN, = NMHN (3.4.10)
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and any element g in this set can be uniquely written
g = imhn, (3.4.11)

where e N, me M, he H, and ne N.

Proof. Clearly the right side of (3.4.10) is contained in the left side. Let g
be in the left side so that we can uniquely write g = 7an, where 7€ N,
a€ Hg, and ne Ng. But g° = (7)° a’n®. However, N¢, Hg, and N¢ are
clearly stable under (3.4.1) by (3.4.3). Thus #¢ = 7, a® = a, and n° = n by
uniqueness. But the map exp: »¢ — N¢ is a bijection. Thus z € N by (3.4.3).
Similarly #e N. One also has a € MH by (3.4.6). Thus g is in the right side
of (3.4.10). The uniqueness of (3.4.11) follows from the injectivity of (2.4.5)
and (3.1.16). QE.D.

Now for any ¢ € W let s(¢) € G¢ be the unique eclement in the normalizer
of # in G¢ such that

(0) €a, = €ony» i = Lo, L. (3.4.12)

LemMA 3.4.4. One has s(o) € G for any ce W.

Proof. By Proposition 3.4 it suffices to show that s(o) stabilizes 4. Since ¢
is generated by €y, € o> 1 =11 it suffices to show that s(o)e_, € g for
all 7. Thus if we let A, € C be defined by s(a) e_,, = Aie_,, 1t suffices to show
A; € R. But now Qfe, , e_,) is a nonvanishing real number for any ¢ € 4. But
if we extend Q to g¢ by C-linearity one has O(s(0) €., , €oa,) == AiQ(€0s, » €_0x.)
so that it suffices to show Q(s(o) ¢_, , &,,.) € R. But by the invariance of Q one
has O(s(0) o, , €oa) = Qe » (0 €)= Oles, » &) € R. QED.

Now it is clear from Proposition 3.4 that G is the identity component of G.
On the other hand G, = NHN is an open connected subset of G. But s(«) € G
by Lemma 3.4.4. Thus if we put

Gy = s(x) G, (3.4.13)

then Gy is an open connected subset of G. Furthermore using the notation
of (2.6.2) for the complexification G¢ of G one has the decomposition

s(x)g = n(g) h(g) n(g) (3.4.14)

for any ge Gy, , where now #(g) € N, h(g) € H, and n(g) € N. Furthermore
by restriction the map

Gy — N, g—n(g) (3.4.15)

is smooth.
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3.5. The following lemma is no doubt known, Because of the overriding
importance for us of the element 7, (2) in Lemma 3.5.2 we prove Lemma 3.5.1
for completeness.

Lemma 3.5.1. For any i€ N and xe€ /4, one has ixe€ x + » so that one
has a map

Nx 4. —h +an (%) ix (3.5.1)
Furthermore the map (3.5.1) is a diffeomorphism.

Proof. Letxe %, and 1€ N. Since x and 7x have the same maximal diagonal
component (see Definition 2.1) one has 7ix € x + %. This proves the first
statement of the proposition and establishes the map (3.5.1). But now by (3.4.8)
one has G* N N = (1) so that (3.5.1) is injective. Now let ye £, + % so that
y =2+ v, where z€4,_ and ven But f(y) = F(2) by Proposition 17
in [14, p. 369]). Thus #(y)e .#(%#,) and hence by Proposition 3.3.1 and
Lemma 3.3.2 there exists g € G such that gz = y. But now applying the decom-
position (2.4.3) to G¢ there exist ce W, ne N¢, he He, e N¢ such that
g = 7is(o) hn. Put w = (i) ty so that if w, is the component of w in #, (=4)
relative to (2.1.3) then w, = 2. However, w = s(¢) hnz since gz = y. But
the component of knz in o, relative to (2.1.3) is also z and hence the component
of w = s(o) hnz in & relative to (2.1.3) is o2. Thus oz = 2. However, z is
regular and hence as one knows this implies o is the identity. Thus s(¢) = 1
so that g = 7ihn. But then e N, h € MH, and n € N by (3.4.10). On the other
hand the equation becomes w = hnz. But the maximal diagonal degree of w,
and hence of 72, is zero. Thus nz = 2. This implies # = 1 since G* N N = (1)
by (3.4.8). But then y = gz = #ihz = 7iz. Thus y is in the image of the map
(3.5.1) so that the map is bijective.

Obviously the map (3.4.16) is smooth. If x € £, then the tangent space to
N X 4, at (1, x) may be identified with (%, #) and the tangent space to £, + »
at x may be identified with £ -+ %. The differential of the map at (1, x) carries
(%, #) to 4 -+ [#, x]. But [#, x] = % since x is regular. Thus (3.5.1) is a local
diffeomorphism at (1, x). Translation by N then implies that there is a local
diffeomorphism at all points. Since the map (3.5.1) is bijective it then follows
that it is a diffeomorphism. Q.E.D.

LemMma 3.5.2. Let w, € 4, and (using the notation of (1.5.4)) put w = f + w, .
Then there exists a unique element nw) e N such that

i) w, = w. (3.52)
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Furthermore the map

4, — N,  w,> i {w) (3.5.3)
1s smooth.

Proof. The first statement follows from Lemma 3.5.1. Consider the map
b= b+ an, w,ow=f+w (3.5.4)

Obviously (3.5.4) is smooth. On the other hand (3.5.3) is just the composite
of (3.5.4) with the inverse to (3.5.1) and then with the projection onto N. This
proves (3.5.3) is smooth. QE.D.

Remark 3.5.1. The map (3.5.3) will play an important role in Section 5.
We give an explicit formula for 7Z,(w)™! in Section 5.8.

Now by (2.2.9) (for the case where F = C) there exists a unique element
me H¢ such that

me, —e,

s =Ll (3.5.5)

o

Clearly me M. Now let M = {m;}, j = 0,...,2" — 1, be some ordering of
the set M, where m, = m and m; = 1, the identity element of G. Also put

Hy=mH, j=0,.,2—1. (3.5.6)

LemMa 3.5.3. Let w,€ 4, and as usual put w = f + w, . Then if A (w)e N
is defined by (3.5.2) one has i (w) Hy(#i,(w))=2 C G¥. In fact if we put

G;* = ny(w) Hyngw))™ (3:5.7)

then the G for j = 0, 1,...,2" — 1 are the cosets of the identity component of
G® so that

G =) G¥ (3.5.8)
=0
is a disjoint union.

Proof. Since w, € %4, one has G¥ = MH by (3.4.7). Thus the H; are the
cosets of the identity component of G. But since #,(w) w, = w it follows
immediately that the G¥, defined by (3.5.7), are the cosets of the identity
component of G*. Q.E.D.

Remark 3.5.2. One notes that G;* in the notation of (3.5.8) is in fact the
identity component of G*.

Our interest is not in G,% but in Gy¥. The following result is somewhat
surprising (at least to us).
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PropositionN 3.5. If w,e /4, and w = f + w, then in the notation of (3.4.13)
and (3.5.8) one has

G¥ "\ Gy = G,P. (3.5.9)

Proof. If w,e4, and w = f - w, we may apply the results of Section 2.6
to G¢®. That is, if (G¢¥?)(xy = Gc¥ N (Ge)(x) , where (Ge)y = s(x) NcHNg ,
then, by Theorem 2.6, (G¢¥)(4) is a nonempty Zariski open subset of G¢¥.

Now for 0 {7 {20 — 1 let

(£,); = {w, € %, | G N Gy is not empty}. (3.5.10)
If w, € (#£,); we assert that
G n G(*) = G’_w. (3511)

In order to prove (3.5.11) we first show that the right side is contained in the
left side. Let a € G;*. We must show a € Gy, since of course a € G* by (3.5.8).
Now by assumption there exists g € G;¥ N Gy . But G4y C(Gg)(x - On the
other hand if we let Z¢(y), where y = S(w,), be defined as in the proof of
Theorem 3.2 and let (B¢)(,) be the map B, of Theorem 2.6 then by Theorem 2.6
one has an algebraic isomorphism

Bw: (Ge) — Ze(y), (3.5.12)

where (Bc)wy(c) = n(c)w for any ¢ € (G¢)(y) and n(c) € N¢ is defined by (2.6.2).
But now since g € G4 one has n(g) € N and hence if y = (Be)w)(g) = n{g)w
then y € 4. Furthermore the maximal diagonal component y, of y is given by
(2.6.6). But A(g) € H so that h(g)~* > 0. Thus

Hw) =yef(Z) and y=(Bwl(@)eZly) (3513

Now since g and a are in the same connected component of G¥ one has
glae G,» and hence if d = n(g)(ga) n(g)! then de G = G,¥ (recalling
(3.3.4) and (3.4.9)). But G,*C G, by (3.2.9). Thus d e (G¢¥)y . But then by
(2.6.11) there exists a’ € (G¢¥)(4) such that ,(a’) = n(g) gla'n(g)! = d. But
then from the injectivity of (2.6.9) one has @ = 4’ so that a € (G¢¥)(4) - Thus
in particular a € s(xk) NcHe¢Ng . But then, by Lemma 3.4.4, s(x)laeG N
N¢HcN¢. Thus s(x)lae NMHN by (3.4.10) so that we can write, using
(2.6.2),

h(a) = m'h ” (3.5.14)
for me M, he H.
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But if 2 = (B¢)wy(a) then by the commutative diagram (2.6.21) one has
2z = (Bc)(d) = B,(d). But then ze Z(y) by (3.2.15) since de G,¥. Thus if 2,
is the maximal diagonal component of z then 2z, =3 7., , where r; > 0.
But by (2.6.6) one has r; = h(a)~>. However, if m’ in (3.5.14) is not the identity
in M there clearly exists 1 <j </ such that m'e, = —é, . This contradicts
the positivity of »; . Hence m’ = 1 so that a es(;;) NHN = G, . Thus we
have proved the right side of (3.5.11) is contained in the left side. We have
also shown that if w, € (#,); then

Bo)w(G*) S Z(y)  for vy = H(w). (3.5.15)

Now assume that b is in the left side of (3.5.11). Thus b € G,* for some k.
Let g be as above. We have to show that & = j. But now b € G* N G5y C (G¢) ()
and (Bc)w(b) = n(b)w € Ze(y), where y = SF(w). But n(b)e N so that if
% = (Bc)w)(b) then z€ g. On the other hand if 2, is the maximal diagonal
component of 2 then 2, =3 h(b)*‘ e, by (2.6.6). But (b) € H so that A(b)~= > 0.
Thus z € Z(y) and hence

(Be)a(b) € Z(y). (3.5.16)

Now let a e (G¢¥)x) be any element such that (8¢)q,)(a)€ Z(y). Put v =
(Bc)w)(a). Then by the commutative diagram (2.6.21) one has v = (B¢),(d)
for d = y,(a) using the notation of (3.5.13), where of course d e (G¢?), and
y = n(g)w. But by Theorem 3.2 (see (3.2.15)) there exists d’ € G,¥ such that
2 = B,(d’). But since (B¢), is an isomorphism one has d' = d or d = J,(a) =
n(g) g7lan(g)" € G,*. Thus g'a € G,*. Hence a € G;*. Thus we have proved

B)w(Z() C G incase wye(4,);. (3.5.17)

Thus b € G;¥ by (3.5.16) so that § = k. This proves the assertion.
Now for any w,e /£, and 0 <{j <28 — 1 let

mi(w) = A {w) m7{w)™. (3.5.18)
Since m; € H; one has
mi(w) € G;» (3.5.19)
by (3.5.7). Now let o; be the map

o 4, — G, w, — my(w). (3.5.20)
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It follows from the smoothness of (3.5.3) that o, is smooth. We assert
(4,); = 07 (Gw)- (3.5.21)

Indeed if w, € (4,); then G C G,y by (3.5.11). Thus o;(w,) € G(4) . Con-
versely if o/w,) € Gy then G* N Gy is not empty. Hence w, €(%,); by
definition. This proves (3.5.21). We next assert that

_L_) H(4,);) = H(2)- (3.5.22)

We first observe that the left side of (3.5.22) is contained in the right side
of (3.5.13). Now let vy #(Z). Then y = F#(w,) for some we 4, by (3.3.5).
Now let y € Z(y). By Theorem 2.6 there exists g € (G¢*)() such that (8¢) o (2) =
n(g)w =y, where, of course, n(g) € N¢ . But w, y €4; so that by Proposition
2.3.2 one has n(g) € N. But now using the notation of (2.6.6) one has A(g)~* > 0

since ylejl. Thus A(g) € H. Furthermore recalling (2.6.7) and its notation
one must have A(g)y, xlw,+ ece+ £ and by (2.6.7) these elements are
conjugate under #(g). But then #(g) € N by Proposition 2.3.2 with a reversal
of positive and negative roots and a reversal of e and f. Thus s(x)™lg =
#(g) h(g) n(g) € G. Consequently g€ G N Gy . But then g G* N Gy for
some j by (3.5.8). But then w,€(4,); by definition and hence y = #(w,) e
F((#.);). This proves equality (3.5.22).

We next assert that (#£,); for any j is closed in £, . Indeed let w, e (£,); N 4. .
We first show that

(Ge®)) N G;* s not empty. (3.5.23)

Indeed (G¢¥)(x is not an empty Zariski open subset of G¢* by Theorem 2.6.
On the other hand g¢¥ is the complexification of g* so that for any g e G;¥
the tangent space to G;* at g is a real form of the tangent space to G¢¥ at g.
Thus any regular function on G¢¥ which vanishes on G;* must vanish on G¢*.
Thus G;» is Zariski dense in G¢*. This proves (3.5.23).

Let ge(Gg®)x N G, But then s(x)ge G N N.HcNg and hence by
Lemma 3.4.3 one has #(g) € N, n(g) € N and we can write k(g) = m'h, where
m’' € M and he H. Now if m’ = 1 then g € G(4) and hence G;* N Gy, is not
empty. But then w, € (£,); . Thus in order to prove that (£,); is closed in 4,
it suffices to prove that m’ = 1. Assume m’ 54 1. Then there exists | << &2 <[
such that m'e, = —e, . But then if y = n(g)w and we use the notation of
(2.6.6) one has y; = 3. 7.e, , where r;, < 0. Now let w™ € (4,),, m = 1, 2,...,
be a sequence such that #!™ converges to w,. Put @™ = f+ w{™. But by
(3.5.7) there exists g, H; so that g = fi (w)g A {w)t. Put g™ =
7 (w'™) g,ii,(w™)~1 so0 that g™ converges to g. On the other hand g™ e G¥'™
by (3.5.7). But since w{™ e (4,); it follows that g™ & G»™ N G,y C (GCL™)w
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by (3.5.11). Furthermore if y™ = (B¢)um)(g™) = n(g™) w™ then y'™ e Z
by Theorem 2.6. But clearly y‘™ converges to y since g™ and @™ respectively
converge to g and w. Thus if ™ = ¥, 7{"™e,_ is the maximal diagonal com-
ponent of y™ then r{™ converges to 7, < 0. But r{™ > 0 since y™ ¢ Z.
This is a contradiction and hence (£,); is closed in £, .

But now by (3.5.7), and recalling Lemma 3.5.2, (£,); is open in £, since
G« is open in G. But clearly £, is connected. Hence for any 1 <{j << 2! — 1
either (#£,); is empty or (#£.); = 4, . Furthermore clearly by (3.5.11) the sets
(#£,);, over all j, are mutually disjoint. But by (3.5.22), since Z is not empty,
it follows that there exists a unique 0 < 2 < 2! — 1 such that

(4 ) =4, and  (#£,);isemptyifj + & (3.5.24)
It follows then from (3.5.11) that
G°N Gy =G forany w,e4,. (3.5.25)
One also notes that (3.5.22) and (3.5.24) imply that

Sh,) = H(2). (3.5.26)

It remains only to prove that 2 = 0.
Now if k, is given by (3.1.14) then for any x e 4 one has Q(x, h,) =
g, %) Qle, , e_,) by the invariance of Q. However, Qle, ,e_,) = 1 by (1.5.2).

Thus if we consider the isomorphism
fig — ke (3.5.27)
defined by Q then
h,—> o (3.5.28)

with respect to (3.5.27). Now one knows that the root normals %, are a basis
of #. Let x,€ # be as in Section 2.1 so that {«;, x,> = 1. Let s; € R be such
that x, = 3 s;h, . We assert that

s > 0. (3.5.29)

Indeed one identifies 4¢ with 4¢ by (3.5.27) and if we write x, = Y #;,a; then
as one knows (see, e.g., Lemma 8.3 in [6, p. 166]), £; > 0 since Q(x, , ;) > 0.
However, one has s; = #; by (3.5.28). But this implies (3.5.29). (See also the
argument in Lemma 15 in [18, p. 790.])

Now put

€= Sit, - (3.5.30)
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Since, as one knows, [er, 4] =0 if 7 5§ it follows that [¢,,f] = %, so
that if @ is the R-span of x, , e, , and f then « is a Lie subalgebra whose com-
plexification «¢ is a principal TDS of g¢ in the notation of [12]. See Section 5
in [12]. Furthermore we note that e, e 0,71 by (3.5.30) and hence there exists
a € H such that

ae = e, , (3.5.31)

where e is given by (2.6.18).

Now let 4 and A¢ be the subgroups of G corresponding to & and a .
Since all the eigenvalues of ad x, are integers it follows that A¢ is isomorphic
to the adjoint group of 2 . In particular all of our previous results and notation
with respect to g, g¢, G, and G¢ may be applied to @, a¢, 4, and A¢. To
indicate that such an application is being made we will use L(4) for any
previously defined notation L (e.g., L = B, N, etc.).

Now recall that m e M is defined by the relations me, = —e, for all j.
But then clearly m = exp imx, . Thus me A¢ . Now %, € é and hence using
our previous notation, where w, € £, , we now fix w, so that w, = x,. Note
then that w, and w = f + w, are both in a, . If we now put #(4) = Rf and
recall that if # {w)e N is the unique element given by (3.5.2) (so that
fi(w) w, = w) one clearly has

1 # fifw) e N(4). (3.5.32)
But now since obviously mf = —f it follows that A (w)m = m(fi(w))~t. Thus
if we put

g = n(w) mig(w)~" (3.5.33)

one has g = (7i{(w))?m and hence g € N(4) M(4) where #(4) = Rx, so that
{1, my = NM(A). (3.5.34)

Now ge G’(A) and hence there exist ¢, ¢’,c"€R such that ge, = c"¢, +
c'x, -+ ¢f. We assert that

¢>0. (3.5.35)

In fact for any # e N(A) it is clear that we may find d(#), d’ € R such that
fie, = e, + d'x, + d(@1)f. We first prove that

d@) <0 and d@#E) <0 ifandonlyif 71 (3.5.36)

Indeed write # = exp rf, where r € R. However, [f, [f, e,]] = [%,,f] = —f.
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Thus d(@) = —r?/2, which proves (3.5.36). But now g = ((w))*m, where
A (w)? # 1 by (3.5.32). However, me, = —e, . Thus (3.5.36) implies (3.5.35).

Now let #(A4) = Re,. Furthermore from the bracket relations of f, x,,
and ¢, it is clear that we can introduce a compact form of @¢ and hence a
*-operation, written x — x(*) (to avoid confusion with x-operation in g¢),
so that e{* = f. But then we can fix ¢(4) = ¢, and f(4) = f. Put s = s(x)(4)
so that sx, = —x,, se, = f. If a€ H is defined by (3.5.31) we assert that

sa = s(x). (3.5.37)

Indeed if # = s(«)~ sa then clearly hx, = x, since one of course has k¥, = —x, .
But then he G& = Hg (recalling (3.4.8)). However, ke = e so that A% = |
for i. Thus & = 1, proving (3.5.37).

But now the Gelfand-Bruhat decomposition of A¢ becomes the disjoint
union

Ag = Ne(4) sBo(A) U Be(A). (3.5.38)

However, B¢(A) normalizes Ce so that by (3.5.38) one must have
g€ Ng(A) sBe(A). Thus there exist #',ne Neg(A) and A" e He(A) so that
g = n'sk’n. Thus if 5, = s7'’s one has #; € N¢ and s7'g = mh'n. But now
slg e G(A) so that by (3.4.11) one has #, € N(4) ne N(A4) and ¥’ = m'h, ,
where &y, € H(A) and m’ is either m or 1 by (3.5.34). Put b = s~'g and write
be, =re, + r'x, + r"f, where r,r',r"€R. Since s =e¢, it then follows
from (3.5.35) that 7 > 0. However, b = % A'n. Hence be, = fh'e, = (B')* fiye, ,
where o = o,(4). But then r = (h')* since meee + £(A). Thus (A) >0
so that m’ = 1. But then s'¢ = mMn. However, s1 = as(«x)™! by (3.5.37).
Thus if we put # = a-'ma and h = a~1h, then 7€ N and % € H since of course
N(A)C N and H(A)C H and one has s(x)"'g = fhn. But then ge G, by
definition (see (3.2.1)). However, recalling (3.5.6) one has m = mye H, .
But then g € Gy* by (3.5.7) and (3.5.33). Thus G¥ N G, is not empty. Hence
by definition x, = w,€(4,), so that (#4.), is not empty. Thus £ = 0 by
(3.5.24). The result then follows, as noted, by (3.5.25). Q.E.D.

3.6, The following is our main result in Section 3. Among other
things it provides the structure for the integration of Hamilton’s equation
in Section 7.

THEOREM 3.6. Let 4 be a split real semi-simple Lie algebra. Let G be the
normalizer of g in the complexified adjoint group of g. Let | = rank 4 and let
I: g — R be the map defined by the | fundamental polynomial invariants on g.
(See (2.3.1).)

Now let 4, be the open Weyl chamber of a split Cartan subalgebra / defined
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as in (3.3.1). Let Il = {0y ,..., oy} be the corresponding set of simple positive roots
and let e, ,e_, be corresponding root vectors, normalized as in Section 1.5. Let
« be that element of the Weyl group W(g, %) such that «IT = —II. Let s(x) e G
be that unique element in the mormalizer of #4 such that s(x) €y, = €y, - Let »
and 7 be the nilpotent subalgebras generated respectively by the e and the e_
and let N, H, and N be the subgroup of G corresponding respectwely to N, H
and N. Also let f =3 e_, and let Z, as in Theorem 3.2, be the 2l-dimensional
manifold of all normalized Jacobi elements. That is, all elements y € g of the form
y = f—f—x—l—ZaN , Where x € 4 and a; > 0.

Now let w,e %, and put w = f + w,. Then for any g in the centralizer G*
of w in G there exist uniquely nonzero real numbers r,(g), i = 1,..., I, such that
gey, — 1i(g) €, € 4 + n. Put

Gy ={geGv|allr(g) <O} (3.6.1)

This set may also be given by (3.5.7). Then for any g € Gy¥ there exist uniquely
#i(g) e N, h(g) € H, and n(g) € N such that g = s(i) #(g) h(g) n(g). Furthermore
if y = S(w,) € R and Z(y) = I y) N\ Z then n(g)w € Z(y) defining a map

B Go¥ — Z(y)- (3.6.2)

Moreover Gy and Z(y) are manifolds and (3.6.2) is a diffeomorphism. In fact
both manifolds are diffeomorphic to R Finally

Z =) Z) (3.6.3)

is a disjoint union where, writing y = SF(w,), the union is over the open Weyl
chamber /4, as an index set.

Proof. Now by (3.5.6) and (3.5.7) one has G¥ = fi(w) MHa w)™. If
g€ Gv then by (3.5.8) there exist 0 <j < 2' — 1 and ke H such that g =
fiy(w) mshii(w)~1. Let d;; = {0, 1}, ¢ = 1,..., ], be such that mse, = (—1)%e, .
But since e, — €, € # + = = { it follows that for

rdg) = (—1)% b (3.6.4)

one has ge, — 7(g) e, € 4 + #. This proves the first statement. Furthermore
by (3.6.4) it follows that r{g) <O if and only if d; = 1 for i = 1,..., . But
then by definition of m = m, this is the case if and only if j = 0. Thus Gy*
can be given by (3.6.1). Next the existence and uniqueness of the decomposition
g = s(x) 7i(g) h(g) n(g) for g € Gy¥ are given by (3.5.9) and (3.4.14). But then
Gy C(G¢¥)(y) , recalling (2.6.4), and hence (see (2.6.15)) the map (Be)wy
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is defined on Gy*. By (3.5.15), recalling (3.5.24), one has (B¢)w)(Go®) € Z(y)
so that (3.6.2) is defined where

Bt = (B | Go*- (3.6.5)

But then recalling that (3.5.12) is bijective it follows from (3.5.17), for j = 0,
that (3.6.2) is also bijective. However, Z(y) is clearly an I-dimensional sub-
manifold of Z¢(y) by Theorem 3.2 and furthermore one has a diffeomorphism
Z(y) = R' by Theorem 3.2. Also, G,* is clearly a submanifold of (G¢¥)(4
and Gy* ~ R’ by (3.5.7). Thus (3.6.2) is a diffeomorphism by (3.6.5) since
(Bc)w) is an algebraic isomorphism, recalling (2.6.15), and hence a diffeo-
morphism. The relation (3.6.3) now follows from (2.3.3), (3.5.26), and
Proposition 3.3.1. Q.E.D.

As in the complex case, we will refer to the submanifolds Z(y) of Z (now
in the real case) for y € #(4,), as the isospectral leaves of Z.

Remark 3.6. Let w,eh,, w=f+w,, y = SF(w,), and ge Gy¥. Since
Go¥ C (G¢¥)x) the diffeomorphism ,: (Gc¥)y) — (GY)y , Where y = n(g)w €
Z(y) is defined on Gy, If a € (G¢®)(x) we recall that ¢ (a) = n(g) g7an(g).
It follows then from Remark 3.5.2 that ¢,(G*) = G,¥. Furthermore since,
recalling Theorem 3.2 and its proof,

By = (Bc)y | G* (3.6.6)

the commutative diagram (2.6.21) of algebraic isomorphisms, upon restriction,
becomes a commutative diagram

Gy 29 s Z(y)

Bﬂ
be l / (3.6.7)

Gy

where all three maps are diffeomorphisms. If g,ae G and $,(a) =
n(g) glan(g)™ = d € G,¥ then by (2.6.13) one has

n(a) = nmn(g), (3.6.8)

where now #(a), n(g), and n,; are in V.

One consequence of (3.6.3), or rather its proof, is the answer to the following
question (which perhaps is of independent interest): What is a necessary and
sufficient condition that an element x € g “can be put” in Jacobi form? The
answer is: The element x should be a regular real semi-simple element. That is,
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ProposiTiON 3.6. Let x € g. A necessary and sufficient condition that x be
G-conjugate to an element in Z is that x € R, . (See Section 3.3.)

Proof. One has ZC R, by (3.3.4). Thus the condition is necessary. But
if x € R then x is G-conjugate to an element , € £, by Lemma 3.3.2. However,
recalling (3.5.26) one has

H(Z) = S(4,).

Thus there exists ye Z such that #(y) = #(w,). Hence y is G-conjugate
to an element in 4, by Lemma 3.3.2. This element must be @, by Proposition
3.3.1. Thus x and y are G-conjugate. Q.ED.

3.7. Finally, in this section we show that the space Z of normalized
Jacobi elements may be smoothly parametrized by the product H X 4, of
the split Cartan subgroup H and open Weyl chamber £, .

TueoreM 3.7. Let /., N, H, N, G, and f be as in Theorem 3.6. Let (g, , w,) €
H X 4, andlet w = f + w, . Let i(w) € N be as in (3.5.2) so that #i(w) w, = w.
Let m € G be as in Section 3.5 so that m fixes H and me, = —e, , {=1,.,1 Put

g = ny(w) mg,mw)™ (3.7.1)

so that g € Gg* by (3.5.7). Let n(g) € N be as in Theorem 3.6 so that n(g)we Z
by Theorem 3.6. Now let

Hx# —~Z (3.1.2)

be the map defined by (g, , w,) > n(g)w. Then (3.7.2) is a diffeomorphism.
Proof. 1t is obvious using Lemma 3.5.2 and (3.7.1) that the map

H X £+ - Gow’ (go ’ wo) =g (373)

is smooth. See (3.5.3). But then the smoothness of (3.4.15) implies that the
map H x 4. — N, (g, ,w,) — n(g) is smooth. It follows immediately then
that (3.7.2) is smooth. But now if #(w,) = y then, by Theorem 3.6, the restric-
tion of (3.7.2) to H X {w,} maps H X {w,} bijectively onto Z(y). But then
(3.7.2) is a bijection since (3.6.3) is, by Theorem 3.6, a disjoint union. To
prove Theorem 3.7 it therefore suffices to show that (3.7.2) is a local diffeo-
morphism. Let T, U, and V be the tangent space to H x 4, H X {w,}, and
{go} X 4, , respectively, at (g, , w,) so that ' = U @ V. If o denotes the map
(3.7.2) it suffices then, by dimension, to show that its differential o, is injective
on 7. But now clearly the restriction ¢ | H X {w,} = B(,) ¢ 7, where 7 is the
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restriction of (3.7.3) to H X {w,} and By, is given by (3.6.2). However, B,
is a diffeomorphism by Theorem 3.6 and =, given by group multiplication
(see (3.7.1)), is obviously a diffeomorphism. Thus ¢ induces a diffeomorphism
H X {w,} — Z(y). However, Z(y) is an I-dimensional submanifold of Z by
Theorem 3.2. Thus o, | U is injective. Now clearly we may identify V" with
the tangent space to /4, at w, . Let 0 == v € V. Then by Proposition 3.3.1 there
exists an invariant I € S(#)¢ such that (v, dI) +# 0. But since (3.6.2) is defined
by the action of the adjoint group one has {(o,w,dl> = (v,dI> # 0. This
implies 6,2 ¢ o,(U) since clearly o,(U) is the tangent space to Z(y) at o(g, , w,)
and I|Z(y) is a constant function. Thus not only is ¢, | V injective but
o (V)N o (U) = 0. This implies that o, is injective on T. QE.D.

Given an element y e Z we will later refer to g, H and w,€ 4, as its
(H x £4,) parameters in case (g, , @,) corresponds to ¥ by (3.7.2).

Remark 3.7. If ye Z and (g, , w,) are its H X /4, parameters note that

!
y=f+z+) kg e, (3.7.4)
i=1
where 2 € /£ and g is given by (3.7.1). This is clear from (3.6.5) and the application
of (2.6.6) to g¢ .

4. THE IsosPECTRAL LEAF Z(y) As A COMPLETE, FLAT,
AFFINELY CONNECTED MANIFOLD

4.1. In Section 4, F is either R or C. As in Section 2.1 let 4 be a semi-
simple Lie algebra over F which is split if F = R and where / = rank 4 let
Z be the 2I-dimensional manifold of normalized Jacobi elements defined as
in Section 2.2. For any invariant I € S(4)¢ we recall that £; is the vector field
on Z defined so that (&), = [, (8z1)(y)] for any y € Z. Sce (2.2.19). Also,
#, is the subspace of the tangent space to Z at y whose elements are all vectors
of the form (), , I € S(g)®. See (2.2.21). Furthermore we note that by Theo-
rem 2.2 the map y — «, defines a smooth distribution (in the sense of E. Cartan)
on Z of dimension /, which we denote by Z. Of course any smooth involutory
distribution on a manifold defines a foliation of the manifold by the family
of maximal integral submanifolds. We refer to this foliation as the corresponding
foliation. On the other hand for the case of Z one already has the disjoint union

Z= U Zy) 4.1.1)
vef(Z)

where the isospectral leaves Z(y) by Theorems 2.5 and 3.6 are connected
submanifolds of dimension L
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PROPOSITION 4.1. The distribution & on Z is involutory and (4.1.1) is the
corresponding foliation.

Proof. As in Section 2.2 let

# = {{ |1 e S(9)%. (412

By Theorem 2.6, « is a Lie algebra (in fact, a commutative Lie algebra). This
proves that & is involutory.

Since Z(y) is a closed connected submanifold of dimension [ for any y € #(Z)
it then suffices only to prove

#y = T(Z(y)) (4.1.3)

for any y € Z(y). Here of course the right side of (4.1.3) is the tangent space
to Z(y) at y. However, since dim Z = 2/ this is an immediate consequence
of (1.6.8), Proposition 2.3.1, and Theorem 2.2. Q.E.D.

4.2, Now let / be any smooth manifold. If A has an affine connection
we can speak of covariant constant vector fields ¢ (either global or local) on 4.
If the affine connection is flat (i.e., the curvature and torsion vanish) then in a
sufficiently small neighborhood V of any point the space « of such vector fields
spans the tangent space at all points of I and is a commutative Lie algebra. On
the other hand one easily sees that if # is any commutative Lie algebra of vector
fields on A which spans the tangent space at each point of A then there exists
a unique flat affine connection such that the elements of & are covariant constant,

Remark 4.2. One notes in particular that if 4 is an open subset of a Lie
group A whose Lie algebra is Abelian then there is a unique flat affine connection
on /A such that any restriction / of a left invariant vector field on 4 is covariant
constant.

Now if 1€ S(g)° and y € #(Z) then the vector field ¢, is tangent to the leaf
Z(y) by Proposition 4.1. Thus £, | Z(y) is a vector field on Z(y).

PropOSITION 4.2. Let y€ #(Z) be arbitrary. Then there exists a unique flat
affine connection in the isospectral leaf Z(y) such that £, | Z(y) is covariant constant
for any invariant I € S(g)°.

Proof. Let x(y) = {& restricted to Z(y) | I € S(g)°}. By (4.1.3) it is clear
that x(y) spans the tangent space at all points of Z(y). Thus it suffices to observe
that #(y) is a commutative Lie algebra. But if » is defined by (2.2.20) then #
is a commutative Lie algebra by Theorem 2.2. Thus #(y) is also a commutative
Lie algebra since it is a homomorphic image of . Q.E.D.

Henceforth any isospectral leaf Z(y) will also be regarded as having the
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structure of an affinely connected manifold where the affine connection is
given by Proposition 4.2.

4.3, Now let x€y and Ie S(4)% Recalling the definition of G if
F =R (see (3.44)), put G = G if F = C. Now (8I)(x) € #* by (1.3.3) and
hence I defines a (left invariant) vector field L;® on the centralizer G* of x in G
such that if g € G® and ¢ is a smooth function on G one has

(L)g) = 2= He exp tBINE) o - (431)

PrROPOSITION 4.3. Assume x€ R (i.e., x is regular) and A is any open set
in G®. Then there exists a unique flat affine connection on A such that L | A is
covariant constant for any I € S(4)°.

Proof. Recall that I;€ S(¢)% j = 1,..., ], are the fundamental invariants.
Since x € R then, as already noted in the proof of Proposition 2.1, the elements
(8L;)(x) are linearly independent. But since (8I)(x) € cent 4® by (1.3.3) for any
I€ S(g)¢ and dim g* = I one recovers not only the well-known fact that 4*
is Abelian but also the fact that any element in 4® is uniquely of the form
(8I)(x) for some I € S(g)¢. Thus any left (or equivalently right) invariant vector
field on G* is of the form L, for some I€ S(¢)°. The result then follows
immediately as noted in Remark 4.2. Q.E.D.

We now show that the isomorphisms of Theorems 2.4, 2.6, 3.2, and 3.6
are also isomorphisms of flat affinely connected manifolds.

THEOREM 4.3. Let g be a semi-simple Lie algebra over F = R or C which
is split if F = R. Let | = rank g and let 5: g — ' be the map defined as (2.3.1)
by the fundamental invariant polynomials on g. Let 4 be as in Section 2.1 so that /4
is a Cartan subalgebra of g. (If F = R then /4 is split and /4, is an open Weyl
chamber in # defined as in (3.3.1).)

Now let w,€ 4, where w,e /4, if F =R, and put w = f+ w,, where f is
defined by (1.5.4). Let y = F(w,) and let Z(y) be the corresponding isospectral
leaf of normalized Jacobi elements defined as in Section 2.3. Let Z(y) have the
structure of a flat affinely connected manifold as in Proposition 4.2. Put G,* = G,,
i F=Cand G* =Gy if F = R using the notation of (3.5.7) so that (since
we R and G,° is open in G*) G, has, as given by Remark 4.2, the structure
of a flat affinely comnected manifold. Let By,y: G,*° — Z(y) be the map defined
as in (2.6.15) and (3.6.2) so that if ae G,* and n(a) is defined by (2.6.2) and
(3.4.14) then B)(a) = n(a)w. Let g € G,” and let y = B(,)(g). Put G¥ = G} if
F=Cand GY =G,Y if F = R using the notation of (2.4.9) and (3.1.23) so
that (since y € R and G ¥ is open in G¥) GV also has, as given by Remark 4.2,
the structure of a flat affinely connected manifold. Now for any a € G,* let i (a) =

607/34/3-5
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n(g) g tan(g) . Then Y, (G,*)C G,Y. Finally let B,: G,» — Z(y) be the map
given by (2.4.11) and (3.2.15) so that if de G,¥ and n, is defined by (2.4.6) and
(3.2.12) then B,(d) = n,y. Then one has a commutative diagram

G =2 Z(y)

%l / (4.3.2)

Gll

Furthermore not only are the three maps in (4.3.2) diffeomorphisms but they are
isomorphisms of flat affinely connected manifolds. In fact for any invariant I € S(g)®
one has for the corresponding mappings of vector fields, i (L® | G¥) = Ly | G ¥
and

Buly” | Go*) = By(Ly¥ | G¥) = & | Z(y), (4.3.3)

where the vector fields Li*, L ¥, and &, are defined by (4.3.1) and (2.2.19).

Proof. The fact that w and y are in R, as noted previously, is a consequence
of (2.1.7) since w, y € £, . Now assume first that F = C. Then GY, and G,
are open respectively in G* and GV since in fact they are Zariski open. One
has ,GY,, C GY, by (2.6.11). The fact that the diagram (4.3.2) is commutative
and all three maps are diffeomorphisms (in fact they are algebraic isomorphisms)
was established in the proof of Theorem 2.6. See (2.6.21).

Now let Ie S(g)°. Then by (1.3.1) one has n(g)(dI)}(w) = (8I)(n(g)w) =
(8I)(y). Thus since n(g) G¥n(g)* = G?, conjugation by n(g) carries L,” to L.
On the other hand L, is fixed by the left translation of G* by g-!. Thus
Y (L* | G»y =L | GY. Hence of course by the commutativity of (4.3.2)
one has Buy(L, | G,*) = B,(L,Y | GY). It suffices only to show (for the case
where F = C) that the vector field is £, | Z(y). But now since g is an arbitrary
element in G, it thus suffices to show

lg(w)((Llw)y) = (61)1, . (4‘3'4)

Now let g(t) = exp t(8])(w) for t € R. Put a(#) = gg(t) so that (L*), is the
tangent vector to a(t) at £ = 0. Let d(t) = ,(a(t)) = n(g) g(t) n(g)™*. Thus

d(t) = exp H(3I)(») (43.5)

since n(g)w = y. But if v is the left side of (4.3.4) then from the commu-
tativity of (4.3.2) it follows that » is the tangent vector to By(a(t)) = B(d(?)
at ¢ = 0. Now recalling (2.4.6) put 7 )ha(;) = ba(y so that

d(t) = bypyna (4.3.6)
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where we note that b,y € B. One notes also that b, = ny) = 1. Now let
x € # be the tangent vector to ng() at ¢ = 0. Then since B,(d(t)) = ny4py it
follows that

v = [x,¥]. (4.3.7)

On the other hand if z € £ is the tangent vector to by at ¢t = 0 then by (4.3.5)
and (4.3.6) one has

GINy) = =+ x. (4.3.8)

But then recalling (1.2.9) one must have x = (8,I)(y) so that v = [(8,I)(¥), y]-
But then v = [y, (6z)(¥)] by (1.3.3) so that v = (£,), by the definition of &, .
This proves (4.3.4) and hence the theorem is proved for F = C.

Now assume F = R. Then G,* and G,? are, by definition, the connected
components Gy® and G,¥ (recall that Gy* is not the identity component),
respectively, of G* and GY. In particular they are, respectively, open subsets
of G* and G*.

Now the fact that the diagram (4.3.2) is commutative and that the three
maps in question are diffeomorphisms has been established in the proof of
Theorem 3.6. See Remark 3.6 and (3.6.7). In fact these statements were proved
by first applying Theorem 2.6 (and its proof) to g¢ and then by restricting
our considerations of

(Ge"w»> (Gex, and  Zg(y) (4.3.9)

to the respective real submanifolds
Gy, Gr, and  Z(y). (4.3.10)

But now again from what we have proved above in the complex case one has
(4.3.3), where the vector fields in question are, in the obvious order, defined
on the manifolds in (4.3.9). However, they are clearly tangent, in the same
order, to the real submanifolds appearing in (4.3.10). Hence one has (4.3.3)
for the case /' = R. Q.E.D.

Remark 4.3. We point out here that at least in one way there is a significant
difference between the real and the complex cases of Theorem 4.3. Namely,
it is only in the real case that the manifolds in question, i.e., in (4.3.10), are
complete with respect to their flat affine connections. This completeness will
be more meaningful when we deal with the integration of Hamilton’s equations
in Section 7.
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5. REPRESENTATIONS AND THE FuUNCTION @,(g,,w, ;)

5.1. Henceforth, that is, for the remainder of the paper, we assume
F = R so that g is a real split semi-simple Lie algebra and all of our previous
results and notations for the case F = R apply.

Let w,€4, and as usual put w = f + w,. Let ae Gy so that k(a)e H
(see (3.4.14)). Now recalling (2.1.1) one has £’ = 4(H) so that h(a)* is defined
for any A€ 4. Our main results (see Theorem 7.5) depend upon a certain
formula for A(a)*. Obtaining this formula will be the main objective of Section 5.
The formula will arise from the finite-dimensional representation theory
of g~—which we now consider.

Now the restriction Q | 4¢ induces a nonsingular bilinear form—also denoted
by Q—on the dual space 4¢ . We may of course regard 4’ as a real form of /¢
and note that Q is positive definite on 4. Now let A be the lattice in 4’ defined by

o] 200,0) o
A= E)\eé Dy €Li =L 1), (5.1.1)

Now if v;e 4, j = 1,..., ], are defined by the relation 20(v; , &;)/O(e; , o)) = 8;;
then of course one has the direct sum

4
A=Y . (5.1.2)
i-1
Now let G¢® be a fixed simply connected Lie group having g¢ as its Lie
algebra. The adjoint representation defines a homomorphism Ad: G¢* — G¢
and in fact it defines an exact sequence

(1) — cent G¢* — G¢* A% Ge — (1). (5.1.3)

If xe gc then to avoid confusion we will write exp®« for its exponential
image in G¢® and retain the previous notation exp x for its exponential image
in the adjoint group G¢ . Also let H¢?, N¢?, and N¢? be the subgroups of G¢*
corresponding respectively to 4¢, #c, and zc .

Now if Ac(H¢*) C 4¢ is defined by (2.1.1), where 4 replaces #', 4¢ replaces #,
and exp® replaces exp, one knows that

A = Ae(HY) (5.1.4)

so that A’ is defined for any ve A, he H¢®. The elements of 4 are often then
referred to as the integral linear forms (on Hc?®). The cone D C A of dominant
integral linear forms is defined by

D={ed|0Ma)>0,i=1,.10 (5.1.5)
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If Z, is the set of nonnegative integers one clearly has

11
D=Y Zu. (5.1.6)

i=1

Now a complex vector space ¥ ¢ will be called a G¢* module if it is understood
that there is a representation 7: G¢* — Aut Ve of G¢® on Ve . In such a case
we will write gve V¢ for w(g)v, where ge G¢®, ve V. Assume Ve is a G¢?
module. A vector v € V¢ is called a weight vector for u e A if hv = h“z for all
he He®. For any pe A let V(u) C V¢ be the subspace of all weight vectors
for . The element pe A is called a weight of V¢ (or 7} if V(r) # 0. Now
if p is a weight of I then 0 +# v e V(u) is called a highest (resp. lowest) weight
vector if nv = v (resp. #iv = v) for all n € N¢* (resp. 71 € N¢*). If V¢(u) contains
a highest (resp. lowest) weight vector then u is called a highest (resp. lowest)
weight.

We now recall certain fundamental results of the Cartan-Weyl theory of
representations. For each Ae D there exists an irreducible finite-dimensional
(holomorphic) representation

m: Ge* — Aut Vb (5.1.7)

such that A is a highest weight. Furthermore (1) as such V¢! is unique up to
equivalence, (2) A is the only highest weight of V¢, and (3) dim V*(d) = 1.

Now for any A € D let (5.1.7) be given and fixed. One knows then that if = is
any finite-dimensional irreducible holomorphic representation of G¢* then =
is equivalent to ), for a unique A € D.

Now let U = U(g) be the universal enveloping algebra of g over R and let
Uc, its complexification, be the universal enveloping algebra of g¢ over C.
If the adjoint representation is extended the group G¢® operates as a group
of automorphisms of Ug and one has the direct sum

Ue = 3 Udp), (5.1.8)

ueA

where as above the Ug(u) are the weight spaces for this action. On the other
hand given A € D the representation , induces a representation of #¢ and hence
of Ug on V¢, which we also denote by ,, so that V¢* becomes a U¢ module
and one has

Uc(w) V() C Vel + v) (5.1.9)

for any p,ve A.
Now let G* be the subgroup of G¢* corresponding to 4 and let N¢, H* and
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N be the subgroups of G* corresponding to «, %, and % Note that since A*
is real (in fact positive) for any € H® (or H) and p € 4 one has the direct sum

U=Y U (5.1.10)

over A, where U(p) = U N Ug(p).

Now let G,* be the maximal compact subgroup of G¢* corresponding to
the compact form g, . See (3.1.6). One knows then (the ‘“‘unitarian trick”)
that there exists a Hermitian (positive definite) inner product on V'¢* which
is invariant under the action of G,°. We will denote the inner product of v,
v’ € V¢* by {v, v'}. It is chosen so that it is linear in v and conjugate linear in v'.

Now since G¢* is simply connected the x-operation on g¢ (see Section 3.1)
induces a unique *-operation a+> a* on G¢® such that one has (3.1.8) for
a,be G¢® and (3.1.9) for x € g¢, where exp*® replaces exp. It is clear that the
x-operations on G¢*® and G¢ commute with Ad. It is also clear that the x-opera-
tion on g¢ extends uniquely to Ug as a conjugate linear map such that (uu,)* =
ufu} for u, , uy€ Ug . One easily has

{uv, v'} = {v, w*v'} (5.1.11)

for any v,7' € V¢* and # in Ug or G¢'.
Now fix once and for all a highest weight vector o* € V¢X(A) such that
{v*, "} = 1 and let V? be the R-subspace of V¢* defined by

Vi — Ut (5.1.12)
Also for any pe A4 let VAu) = V' V().

ProposiTION 5.1. The R-subspace V* of V* is a real form of V. That is,
Veh = VA + iV is a real direct sum. Furthermore if QY is the restriction of the
inner product {v,v'} to V* then Q) is real valued (so that V?* is a real Hilbert
space). Furthermore V* is stable under the action of G* and

VA=Y V), (5.1.13)
summed over the weights of m, , is an orthogonal direct sum with respect to Q) .

Proof. Now V¢t = Uge? since of course V¢? is Ug irreducible. Thus
Vet = V24 (VA To show V?is a real form it suffices to show V2 ilVV* = 0.
For this it clearly is enough to show that Q7 is real valued. Let T* be the sub-
group (maximal torus) of G,® corresponding to i4. Now if p;ed, i = 1,2,
are distinct then the characters they define on 7 are distinct and hence one has

Vel Vo)t = 0 (5.1.14)
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since T operates as a group of unitary operators on V¢. Now let v, € I3
i=1,2. Write v; = v for u;e U. Put ¥ = ufu, . Then ue U since U
is clearly stable under the x-operation. But now {v;, v,} = {uv*, w0} =
{fuv*, v} = {uv?, ©"}. To show Q) is real valued it suffices then to show
that {ue?, 2/} € R. Let %, be the component of # in U(0) (0 here denotes the
zero weight) relative to (5.1.10). By (5.1.9) and (5.1.14) one then has {uv?, v*} =
{uyv?, "}. However, if U(#) is the enveloping algebra of /£ over R then one
knows

U(0) = U%) @ (Ur) 0 U(0)) (5.1.15)

is a direct sum, where Us is the left ideal in U generated by ». In fact the
validity of (5.1.15) follows from the validity of (5.1.15) for the complexification
of the subspace involved. For the case over C see, e.g., Lemma 7.4.2 in [4,
p. 230]. (In that case one depends on (5.1.15) to define the Harish-Chandra
homomorphism.) But since 9 is a highest weight vector one has

avt =0  forall x€xnc (5.1.16)

and hence if #; is the component of %, in U(#) relative to (5.1.15) one has
{uyv?, v} = {u;v*, v*}. However, if ye /4 then yov* = (A, y>v*. But (A, > eR
since A € #'. Thus w;9* = ro* for some 7 € R so that {¥,2%, 2’} € R. This proves
that Q7 is real valued and V7 is a real form of V. But now U(u — ) 92 C V(u)
by (5.1.9) and hence one has the sum (5.1.13) by (5.1.10). The sum is orthogonal
by (5.1.14). The subspace V' is stable under G* since it is clearly stable under 4.

Q.E.D.

Remark 5.1. Note that VA(u), for any pe A is a real form of the weight
space V¢*(n). This follows obviously from (5.1.13) and (5.1.14).
We will refer to V* with respect to the action of G* by =, | G* as a G*-module.

5.2. Now let G5 = N°H*N® so that G°,, using the Bruhat decom-
position of G¢?, is an open connected subset of G* and the map

Ad: G — G, , (5.2.1)

recalling (3.2.1) is a diffeomorphism.
Regarding Ad, as in (5.1.3), as a map from G¢® to G¢

LemMma 5.2.1. One has
(Ad™! G,) N G* = (cent G*) G%,.

Furthermore if ¢, ¢’ € cent G® are distinct then ¢G, and ¢'G3, are disjoint so that
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the connected components of (cent G°) G are uniquely of the form cG; for
c € cent G*.

Proof. The first statement is an immediate consequence of (5.1.3) and the
surjectivity of (5.2.1). Now if a, 4’ € G¥ and ac = a'c’, where ¢, ¢’ € cent G¥,
then Ada = Adac = Ada'c’ = Ad a'. But then a = o’ from the injectivity
of (5.2.1) so that ¢ = ¢’. This proves the lemma. QE.D.

Now let w,€ 4, and as usual let w = f + w,. We recall that #(w)e N
satisfies 71/(w) w, = w. See (3.5.2). Now let me G be as in (3.5.5) so that
me, = —e, , 1 = 1,..., . Hence of course me_, = —e_, so that mf = —f.
But clearly mw, = w, . Thus if we put

fi_f(w) = m i (w)m (5.2.2)
then 7i_d{w)e N and #n_(w) w, = —f + w, .

IDENTIFICATION 5.2. Henceforth to simplify notation we will identify
G%, with G, by the diffeomorphism (5.2.1). This means that N* and N, H*
and H and also N¢ and N are identified. The only possible confusion that
can arise is with regard to multiplication of these elements. However, it should
be clear from the context whether the multiplication is in G¢® or Gg .

Remark 5.2. One notes that both G} and G, are stable under the respective
x-operations in G¢* and G¢ and that since Ad commutes with these operations
no ambiguity with the *-operation is introduced by identifying G§ with G, .

Let s(x) € G be as in (3.4.12).

LemMma 5.2.2. One has m=s(x) € G. Furthermore there exists a unique element
s{x) € G* such that (1) Ads,(x) = m™s,(x) and such that (2) for any he H
and w, € %, one has the relation

) _y(w) h( () 2 € G (52.3)
in G*.

Proof. Let w,€ 4, and let he H. Then by (3.5.7) if g€ G is defined by

g = n(w) mhi(w)! one has ge Gy¥. Thus s(«)~'g € G, by Proposition 3.5

(recalling 3.4.13). But s(x)"'g == s(«)~! fi(w) mhit{w) ™ = s(x)~2 mii_,(w) hit,(w).
Thus in G one has

s(x)"L mit_(w) hii(w) e G . (5.2.4)

However, since G4, C G and of course #_g(w)hn{w)-l€ G one necessarily
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has s(x)"'me G. This proves the first statement. Now fix s,(x) € G* so that
Ad s5y(x) = m1s(«). Thus for any ¢ € Cent G* one has

Ad((cs,(x)) 71_ () bt () ) € G , (5.2.5)

where the multiplication in (5.2.5) is in G®. But then by Lemma 5.2.1
there exists a unique ¢, € Cent G° such that if s,(k) = ¢;5,(x) then
So(w) ! i_(w) ki (w) e G, = G, .

Now consider the map

4, x H— G, (5.2.6)

where (wg, &) > s,(k) 1 7i_f(w") K'g(w’)! and w’' = f + w. Now by (5.2.4),
where @’ replaces w and %’ replaces &, and by Lemma 5.2.1 it follows that
the image of (5.2.6) is in (Cent G°) G;, . However, by the connectivity of
/4, X H the image of (5.2.6) must lie in one component of (Cent G*) G, .
Since (w, , k) maps into G, the entire image of (5.2.6) is in G, = G, . Except
for the uniqueness of s,(x) this proves the lemma. The ambiguity of s,(x)
satisfying (1) of the lemma is up to an element in Cent G*. This uniqueness
then follows immediately from Lemma 5.2.1. Q.E.D.

Henceforth s,(x) will denote the element of G* given by Lemma 5.2.2. Let
K* be the (maximal compact) subgroup of G* corresponding to £C g.

LemMA 5.2.3. One has s,(x) € K*.

Proof. Now for { = 1,..., ] one has s(x) €, = €, . However, since «* = 1
in W one then has s{x)2e, = 7, 165, for some 7, ‘e R. Thus since Oe., » e_a ) =1
one has 7, = Ole,, (k) ) = O(s() ey, , 5() &) = Qs() e » 1)
by the invariance of Q But —«e; is also a 81mple positive root and hence
(<) e_o, = €, . Thus s(k)le., =e_, so that r, = Qe . ,eq) = I.
This pr;)ves ' h ' S

s{x)® = 1. (5.2.7)
However, m operates as —1 on é,, and €_,, S0 that clearly s(x) and m commute

and m? = 1. Hence s5(x)? =1, ‘Where sl(x) = ms(x). On the other hand
for any g € G¢ and x € g¢ one easily has by (3.1.8) and (3.1.9),

(g*)Lx* = (gx)*. (5.2.8)
Thus (s(x))* e, = e_., by (5.2.8) and (1.5.1). However, s(x)le_, = =y,

Similarly s(x)~ ( —-s(K)) and (s(x}1)* (=s(x)*) agree on ¢, and % so that s(x) =
s(x)*. Relation (5.2.8) also implies that m = m* so that $1(x) = s(x)*. But
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$,(x) € G by Lemma 5.2.2 so that s,(x) € K by Lemma 3.1.2. However, as one
knows, K* is the inverse image of K in G* under Ad. Thus s,(x) € K* since
Ad s4(x) = s,(x) by Lemma 5.2.2. Q.E.D.

Let Ae D. Now recall we have fixed a highest weight vector %€ V(A).
On the other hand one knows the set of weights of =, is stable under the Weyl
group and in fact since s,(x) € G* corresponds to « one must have, for any p e 4

soli) V() = V(). (5:29)
Furthermore «A is the lowest weight of #A and hence if we fix v** by putting

o = 5,(k) 0 (5.2.10)
then o is a lowest weight vector. In fact one has

ProrositioN 5.2. Let Ae D; then VX(«A) is one dimensional over R and
vt &€ V) id), where

{0, v} = 1. (5.2.11)

Proof. One has dim VX(«A) = 1 by (5.2.9) and Remark 5.1. But also one
must have s,(x) % € V3(xd) since, by Proposition 5.1, V* is stable under G*.
But now one has (5.3.3) by Lemma 5.2.3 since, clearly, K*C G,* so that Q) is
certainly invariant under K. Q.E.D.

5.3, Now let w,e /4, and conforming to our standard notation we
put @ = f + w,. Our main concern here is with the determination of h(a)!
for a € Gy (see Section 3.5) and A € #’. We first note

LemMA 5.3. For any a € Gy* put p,(a) = mi{w) afi{w). Then p,(a) e H
and

pw: G — H, a > p,(a) (5.3.1)

is a diffeomorphism.

Proof. This is obvious from (3.5.7), which asserts that #(w) mH#n(w)™! =
Gy, Q.E.D.

We will generally conform to the notation of using the subscript o to denote
the image in H of an element in G under p,, . Thus p,(a) = a,€ H for any
ae Gy”.

Our determination of h(a)* begins with
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ProposrTioN 5.3. Let w,e/, and let Ae D. Put w = f+4 w,. Then for
any a € Gy one has (recalling (3.4.14) and (3.5.9))

h(a)* = {aifw)™t o, A_{w)* v}, (5.3.2)

where fi,(w) and #_[(w) are defined by (3.5.2) and (5.2.2) and a, = p,(a) € H,
where p,, 1s defined by Lemma 5.3. Also the right side of (5.3.2) is a Q) inner
product (see Proposition 5.1) of vectors in the GS-module V™.

Proof. Let ae Gy. Then by (3.4.14) and (3.5.9) one has, in G,
s(x)la = #(a) h(a) n{a). (5.3.3)

On the other hand if a, = p,(a) € H then clearly a = #i(w) ma i (w)™" =
mii_,(w) a,f,(w)™!, recalling (5.2.2). Hence

s(c)~la = (s(«)2m) 7i_{w) a,fi ()™ (5.3.4)
in G. But then by (5.3.3) one has
7i(a) h(a) n(a) = (s(x)tm) 7_[(w) a,fi{w)™L. (5.3.5)

On the other hand, in G¥® one has, recalling Lemma 522,
s(k)y 1 71_y(w) ai(w) € Gy = G, . Thus by Lemma 5.2.2 one has

7(a) h(a) n(a) = 5,(x) 1 7_f(1) a i) ! (5.3.6)

in G

Now consider the G5-module V2. Let g € G be the element given by (5.3.6).
Now n(a) v* = o* since 2* is a highest weight vector of V2. But (#(a))*e N
by (1.5.1) and (3.1.9) so that one also has (#(@))* ©* = #*. Thus from the left
side of (5.3.6) one has {gv*, ¢/} = {h(a) ¥*, ¥'} = {h(a)* v*, v} = h(a)’. But
now s,(x) € K* by Lemma 5.2.3. But of course K* C G* so that s,(«)! = s5,(x)*
and hence (s5,(k)2)* v* = s,(x) v* = v**. Thus from the right side of (5.3.6)
one has {g2?, v’} = {7I_(w) a,fi(w) L v, v} = {a,fi{w)1 o, #1_[w)* v<*}. This
proves the lemma since {ge*, 2*} = A(a)". Q.E.D.

Remark 5.3. Since dim VX (xA) == | there are exactly two vectors v € V(k))
such that {o, v} = 1. Thus if one were to choose a normalized lowest weight
vector there would be an ambiguity up to sign. But now by (5.2.11), ** is a
choice of one of these two vectors. We now observe that since A(a)* > 0 Proposi-
tion 5.3 implies that 4 is that choice such that {a,7(w)™ v*, i_fw)* v*} > 0
for all a, € H (see (5.3.1)) and all w, e 4, .
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54. Now let w,e4,, and, as usual, put w =f+ w,. Let g, H
and put g = pgl(g,) € Gy*. See (5.3.1). Let #i(g)e N, h(g) € H, and (g)e N
be defined by (3.4.14) recalling (3.5.9). Now since H is a vector group we can
consider the square root A(g)\/2 of h(g) in H. Let P* = exp®p. Using K? and
P¢ we can, as one knows, take the polar decomposition of any element in G*.
Thus there exist unique elements k(g, , w,) € K*® and p(g, , w,) € P? such that,
in G%,

h(g)'/* n(g) aw) = k(8o » w) P(80 > %o), (5-4.1)

where #,(z) as usual is given by (3.5.2).
Now recalling the set Jac g of Jacobi elements in g (see (2.2.6)) let

Jac 4 = Jac g O\ f (54.2)

so that Jac 4 is the set of all symmetric Jacobi elements. Using the notation
(2.2.6) so that y € Jac 4 if and only if y is of the form

: .
y=x+Y ae .+ ag,, (5.4.3)
ic1 i-1

where a_; > 0 and a; > 0 and x € #, one notes by (1.5.1) that y € Jac 4 if
and only if a_; = a;,7 = 1,..., L It is clear then that Jac £ is a closed connected

two-dimensional submanifold of Jac g.
Now for any y € F(#,) (see (2.3.1)) let

(Jac £)y) = F7Hy) N Jac

so that the sets (Jac £)(y), y € #(%,), are the “isospectral” equivalence classes
of Jac . The following is a corollary of Theorem 3.6 and hence could have
been proved earlier. It is proved now instead for notational convenience.

THEOREM 5.4. For any w, in the open Weyl chamber £, (see (3.3.1)) let
w = f+ w,, where f is given by (1.5.4). Let Gy* be defined by (3.5.7) and for
any g, in the split Cartan subgroup H let p'(g,) = g € Go¥, where p,, is defined
as in (5.3.1). Then if p(g, , w,) is defined by (5.4.1) one has

(g, w,) € H. (5.4.4)

On the other hand if k(g,, w,) € K® is defined by (5.4.1) one has (regarding 4
as a G*-module using Ad)

k(g, , wo) Wy € (Jacﬁ)('y)r (545)
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where y = F(w,). Moreover the map

H X 4, — Jac 4, (8., wo) > kg, , w,) w, (5.4.6)

is a diffeomorphism. Furthermore if w,€ /4, and y = S#(w,) then (Jac £)(y) is a
closed connected submanifold of dimension I in Jac f and

H— (Jacﬁ)('y)’ 8o —> k(g0 , w,) W, (54.7)

is a diffeomorphism so that as manifolds (Jac £)(y) =~ R'. Finally

Jac s = U (Jac g)(F(w,) (5.4.8)

woeh

is a disjoint union and in fact (5.4.8) is the decomposition of Jac f as the union
of leaves of a foliation.

Proof. Let ZC Jac 4 be as in (2.2. 4) (where of course F = R). Let ye Z
so that we may write y = f 4 x + Z,_l 7.6, . Let a,€ H be defined by the
condition (a,) = r71/% i = 1,..., I. See (2.2. 9) Obviously the map

Z-—>H, yrra, (5.4.9)

is smooth. But clearly a,y € Jac # and any element in Jac 4 is of this form.
On the other hand it is easy to see that the bijection (2.2.8) is a diffeomorphism
and hence by considering the graph of (5.4.9) the map

Z—>Jach, y-—>a,y (5.4.10)
is a diffeomorphism. Obviously then (5.4.10) induces a diffeomorphism

Z(y) = (Jac £)(v) (5.4.11)

for any y € #(#4,). But then, by Theorem 3.2, (Jac £)(y) is a connected, closed
submanifold of dimension / of Jac 4. The final statement of Theorem 5.4
and the fact that

(Jac f)(y) == R (5.4.12)

follow from (3.6.3), (3.2.14), and Proposition 4.1.

Now let g,€ H and w, € 4, . Recall Theorem 3.7. Let w = f + w, so that
7 (w) w, = w and let g € H be given by (3.7.1). Let y = n(g)w so that y € Z(y)
where y = 4(w,). But now a, = k(g)'/? by (3.7.4). Thus if 2 = h(g)}%y then
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z € Jac £ by (5.4.9). But now z = h(g)'/%y = h(g)*/*> n(g)w = h(g)** n(g) iw) w,.
Thus

z = kpw, (5.4.13)

by (5.4.1), where we have written k = k(g,, w,) and p = p(g,, w,). Thus
if v = k~1z then pw, = v. But v € 4 since 2 € £ and k € K*. Thus if one applies
the x-operation it follows from (5.2.8), which is clearly valid if G¢® is substituted
for G¢ , that also p—'w, = v. Thus p?>w, = w, , which clearly implies pw, = w,
(since Ad p is diagonalizable with positive eigenvalues). Thus Ad p € G¥> N P.
But G N P = H by (3.1.27). However, Ad H = H by Identification 5.2 and
as one knows the map P? — P induced by Ad is bijective. Thus p € H, proving
(5.4.4). But also the relation pw, = w, implies kw, = 2z by (5.4.13). This
proves (5.4.5).

Now the map (5.4.7) is the composite of (5.3.1), (3.6.2), and (5.4.11). Since
these three maps are diffeomorphisms it follows that (5.4.7) is a diffeomorphism.
Furthermore the map (5.4.6) is a composite of (3.7.2) and the inverse to
(5.4.10). Since these two maps are diffeomorphisms it follows also that (5.4.6)
is a diffeomorphism. Q.ED.

Remark 5.4. A familiar question when dealing with symmetric Jacobi
matrices is the problem of diagonalization, even if one knows the spectrum
of the matrix. In a more general setting, if x € Jac £ and A€ D find the eigen-
vectors of m(x) in terms of an orthonormal basis o/, i = 1,..., dim V4, of
weight vectors in VA Now let (g,, w,) € H X 4, correspond to x under the
bijection (5.4.6). Analogous to knowing the spectrum of a Jacobi matrix is
the knowledge of the element =, . Since the v;* are eigenvectors of m,(w,) it is now
clear from (5.4.5) that {m(k(g, , w,)) v/} is indeed an orthonormal basis of
eigenvectors of m(x). The problem then reduces to determining k(g,, w,).
By (5.4.1) it is then a question of determining A(g), n(g), and 7 (w). The element
h(g) is given by (3.7.4). We will give a formula for 7,(w)~! in Section 5.8. (The
formula for #;(w) is obtained from (5.8.7) by eliminating (—1)‘ and changing
5 to s.) Since n(g) is unipotent one solves inductively for #{g) by the relation
n(g)w = y. See Section 7.8, where an example is worked out.

5.5. Let Ae D. One notes that if v is a weight vector of A then, by
(5.1.9) and (5.1.14),

{nv, v} = {iw, v} = {v, v} (5.5.1)
for any ne N or #e N.

ProrosITION 5.5.1. Let g,€ H and w,€ 4, . Write p = p(g, , w,), where the
latter is given by (5.4.1). We recall p e H by (5.4.4). Then g;'p? is independent
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of g, , depending only on w, (or equivalently w = f + w,) so that we can define
d(w) e H by

87p(8o » wo)* = d(w). (5.5.2)

Furthermore if A€ D then

{(d@), (Aw)) o'} = {H_y(w)v, v} (5-5.3)

for any v e V2, where fi(w) and n_(w) are defined by (3.5.2) and (5.2.2). Moreover
one has

d(w)* = {fi_g(w) v*, v} (5.5.4)
and

d(w) = {fi(w) o, 4}, (5.5.5)

Proof. Putd = g,'p% Let Ae D and ve V? and put C = {dv, it,(w)1 v*}.
Then C = { pg; ", p(it(w))~L v*} since g, and p commute and p = p*. But
p = k- WWma(w) in G* by (5.4.1), where we have written k& = k(g,, w,),
h = h(g), and n = n(g). Then substituting for p and canceling out 2! (since
(k"1)* = k) one has C = {i2nn(w) g, v, H'/2nv"}. But no* = v*. Hence by
transposing A2 one has

C = {hni(w) g;'v, v"} (5.5.6)

= {ahniiw) g3 v, v"},

where # = 7(g), since #*v* = ¢* (recalling that #*e N). But #hn =
so(k) L i_g(w) gAi(w) ™t by (5.3.6) in G®. Thus C = {s,(«) 7i_g(w)v, ¥*} =
{n_g(w)w, v*}. That is,

{dv, i (w)t o'} = {fi_j(w)v, v} (55.7)

But now if we choose. v = v* then dv* = d*0* But {o*, ii{w)12*} =1 by
(5.5.1). Thus

dh = {7fi_g(w) v}, v} (5.5.8)

Obviously the right side of (5.5.8) depends only on @, and not on g, . Further-
more this is true for all Ae D. But 4 is determined by 4%, i = 1,..., ], where
v;€ D is as in (5.1.2), since the v; are a basis of 4’. Thus d depends only on w
proving the first statement. Also, d == d(w). But then (5.5.3) is just (5.5.7) and
(5.5.4) is just (5.5.8). If we put v == 2" in (5.5.7) then since {_,(w) v**, v} = 1
by (5.5.1) and d(w) v** = d(wy* v* one has d(w)*v, 7 {w)1o'} = 1. But
then (5.5.8) follows by inverting and reversing the order of the vectors. Q.E.D.
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If u,ve A we will say that v > p if v — p is in the Z_ -cone generated by
the simple roots a, ,..., o; . If in addition » 5 p we write » > u. One notes that

v > p implies {v, w,) > {u, w,y for any w, e 4, . (5.5.9)

Now for any Ae D let g{A) = dim F*. Let A€ D. By the orthogonal direct
sum (5.1.13) there exists a (}-orthonormal basis v, i = 1,..., ¢(X), of V*
such that the v;* are weight vectors. We assume that such a basis is chosen
once and for all where v;* = ¢* and v}, = v**. See (5.2.10). Let ;€ 4,
i == 1,..., g(A), be the weight corresponding to ;. Thus A, = A and Ay = xA.
Furthermore since as one knows

V2 = U(n)v* = Un) v (5.5.10)
it follows from (5.1.9) that
A> X > kA (5.5.11)

for all 1 <1 < g(X).
Now let w,e 4, and let @ = f+ w,. Also let fi(w) and #_,(w) be as in

Proposition 5.5. Now put
b(A, w) = {fi(w)™ o, v HA_[(w) 0, v4}. (5.5.12)

LeMMA 5.5.1. One has bj(A, w) = 0 for 1 <1 < q(A). Furthermore one has
strict positivity at the extremes. That s,

by(h, w) = {7 (w) o, o} > 0 (5.5.13)

bew(h, %) = {i(w) 1 o, v} > 0. (5.5.14)

Proof. Let d(w)e H be defined by (5.5.2). Then {d(w) v?, fi{w)1v"} =
d(w){fi(w)~! v*, v}. But this equals {#Z_,(w) v, v} by (5.5.3) and hence

d(w) b\, w) = {7i_[w) v, v} (5.5.15)

But then (5.5.15) is nonnegative. Since d(w)* > 0 this proves b;(A, w) > 0.
The equality in (5.5.13) and (5.5.14) is immediate from (5.5.1) and (5.5.12).
The positivity then follows from the identities

by(A, ) = d(w)?, (5.5.16)
(A, w) = d(w)™ (5.5.17)

See (5.5.4) and (5.5.5). Q.ED.
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LemMa 5.5.2. Let a,e H, w,c4, and let e D. Put a = p,Ya,) € Gy*
and w = f -+ w, . Then

a(n)

Ma)' = ¥ b} ) al. (5.5.18)

Proof. By (5.3.2) one has h(a)* = {a,fi(w)t v, i_ (w)* v*}. Hence if
¢; = {afi{w) o, v} and ¢; = {v, B_(w)* v*} = {#_[w) v, ¥4} one has

a(d)

ha)' =Y ccf. (5.5.19)

But ¢; = {fi{w)™? 7%, a,v} = a{ni(w) " v*, v} since a, = a¥, recalling that
a,€ HC P. Thus c,c; = b,(A, w) a}. But then (5.5.19) implies (5.5.18). Q.E.D.

PrOPOSITION 5.5.2. Let w,€#, and let w=f+ w,. Let Gy” be as in
Theorem 3.6. Let g € G,* and put g, = p,(g) € H, where p,, is defined by (5.3.1).
Then for all t € R one has g exp tw € G, and

pu(g exp tw) == g, exp tw, . (5.5.20)

Now let Ae D and let bi(A, w)eR be defined by (5.5.12), i = 1,..., g(A) =
dim V. Then

a(d)
kg exp tw) = Y b}, w) ghie' N, (5.5.21)
izl

where h(a) is defined by (3.4.14). See (3.5.9).

Proof. Now, recalling (3.5.7) and (3.5.8), G,* is the identity component of
G*. Thus G,»G,” C G,». But of course exp tw € G,*. Thus g exp tw € G,”. Fur-
thermore p,(g exp tw) = m-i(w) g exp twii(w) = (m7(w)? ghiw)) A (w)!
exp twity(w) = py(g) A (w) exp twii(w). But @ (w)? exp twit,(w) = exp tw,
since 71 (w) w, = w. Hence p,(g exp tw) = p,(g) exp tw, = g, exp tw, , proving
(5.5.20). Thus if a, = g, exp tw, then a = gexp tw using the notation of
Lemma 5.5.2 and (5.5.20). But then a}¢ = glie!¢%%e>. Proposition 5.5.2 then
follows from (5.5.18). Q.E.D.

The following result will later play the key role in determining the “phase”
for scattering in the generalized Toda lattice.

We recall that « is the element in the Weyl group W which maps the set
of positive roots into the set of negative roots. Now we may regard W as
operating on H as well as 4. If d € H we will write d— for x(d~1). One notes that
(d*)* = d—*2 for any A e /.

607/34/3-6
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THEOREM 5.5. Let w, be arbitrary in the open Weyl chamber %, and let g,
be arbitrary in the split Cartan subgroup H. Put w = f 4 w, , where f is defined
by (1.5.4). Let Gy* be defined by (3.5.5-3.5.7) and let g = p;(g,), where p,,
is defined by (5.3.1). Now for any t € R one has g exp tw € Gy* and p,(g exp tw) =
goexp tw, € H. Let h(g exp tw) € H be defined by (3.4.14). See (3.5.9), (3.4.13),
and (3.2.1). Then the curve t— h(g exp tw)(g, exp tw,)~! n H converges as
t — o0 and the curve t — h(exp tw)(g, exp w,)™~ in H converges as t — — 0.
Furthermore the limits are independent of g,. In fact if d(w)e H is defined by
(5.5.2) then, in H,

%LIQ h(g exp tw)(g, exp tw,) ™ = d(w) (5.5.22)

,ng:o hg exp tw)(g, exp tw,) " = (d(w))™. (5.5.23)

Proof. Let c(t) = h(g exp tw)(g, exp tw,)1 and let &) = h(g exp tw)
(g, exp tw,) . Now for any A € D one has by (5.5.21)

)
ot) = by, w) + Y. bR, w) gl A
i=2
and
a(A)-1
H) = b )+ Y, B, w) i N,
i=1

But now (A; — A, w,> < 0and {A; — «A, w,) >0 by (5.5.11). Thus lim,_, ¢(¢)* =
b\, w) and lim,,_, &) = by(A, w). But then lim, ., ¢(t)* = d(w)* and
lm,, o &(t)* = (d(w))~* by (5.5.16) and (5.5.17).

On the other hand, recalling (5.1.2), the map

H— (R*, h— (B",..., B (5.5.24)
is a diffoomorphism since the elements v; are a basis of 4’. Thus since we can
put A =v;, ¢ = l,..,/, this proves lim, . ¢(t) = d(w) and lim, ., &(t) =

d(w)™. Q.ED.

Related to the two maps H — H, g, h(g) &, and g, — h(g) ¢;*

mentioned in Theorem 5.5 one has

PROPOSITION 5.5.3. Let A€ D and let the notation be as in Theorem 5.5. Then

(h(g) £, = {2, n(g) v} (5.5.25)
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Furthermore there exists a scalar b e R such that s(x)? v, = bv, and one has

(h(g) &)™ = bla(g) o*, o). (5.5.26)

Proof. By (5.3.6) one has sthn = s,(x)™ 7i_sg,n;", where we have written
#, k, and = for 7(g), h(g) and n(g). Also, we have written #_, and 77;* for 7_/{(w)
and #;(w). But then since #* € N and h = &* one has

WM n*y = {0, ahno )

(5.5.27)

= {7))\, so(K) n_s8oM; Tl }

But clearly ii_,g,7; 'v** = g*v**. Thus since (s,(k)"1)* = s5,(x) by Lemma 5.2.3
one has BMo?, not} = g*ord, o4} or {04, no?} = h—g7**, proving (5.5.25). But
now on the other hand Miv’, v} = {fhnv?, v} = {s,(x)L _sg,71; 'V, v}
But one has b € R such that s,(x) v* = s5,(x)? v* = bo? since of course «* = I.
But #*, and (7;')* are in N and hence they fix ¢*. Also gf =g,. Thus
mfv?, <3} = bg 2. This proves (5.5.26), since b = 41 by Lemma 5.2.3. Q.E.D.

For any pe A let
o(p) = gy %5, (5.5.28)

where x, € # is defined as in Section 2.].

Remark 5.5. Since X — «A is spanned by roots (using, e.g., (5.1.9)) one has
o(A — xA) € Z. We shall not use the following, but one can show that the scalar
b in Proposition 5.5.3 is given by b = (—1)°0—+d),

5.6. In this section we wish to show the connection between the
development here and the results and calculations of Moser in [19]. Let x € Jac £
so that x is a “symmetric” Jacobi element. By Theorem 5.4 there exist unique
w, €4, and g,€ H such that x = k(g,, w,) w,. Let g and w be defined as
usual so that w = f + w, and p;;'(g,) € Gy*. Now for any Ae D let, for | <i <
g(A) = dim V',

rNg, , w,) = ko, v}, (5.6.1)

where & = k(g,, w,). We use the letter r here because of the connection,
as will soon be seen, between r,A(g,, w,) and the coordinates ; in [19]. Now
as noted in Remark 5.4 the eigenvectors for m(x) are just kv :. The corre-
sponding eigenvalues are clearly {; = <{};, w,>. See Section 5.5. Thus if
is indeterminate one has (as an entry in the resolvent)

a(n) A)Z
{41 — %) o, o ‘_[, , (5.6.2)
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where 1 is the identity operator on V? and r? = rg,, w,). Equation (5.6.2)
follows immediately from the relation

(U — m@) = mEU — mw)) mk. (5.6.3)
The r,* may be given by
ProrosiTION 5.6. One has
(r(80 » w0))* = h(g) g5 bi(, w), (5.6.4)

where we recall b;(\, w) = {f(w)™! v*, v HA_{(w) oY, v}, See (5.5.12).

Proof. If we put h = h(g), n = n(g), #; = fi{w), and p = p(g,, w,) then
recalling (5.4.1) one has k = h'?nii; p~. But r? = {kv, v*}. Thus since
(R/2)* = K12 and n* € N so that n*9** = ¢** one has

_ hm\/z —Ai

{7 (w) v, o (5.6.5)

rz

Now let m € He be as in (3.5.5) and let m, € H¢® be such that Ad m, = m.
But then m, s (w)(m,) = #_J{w) in G¢® using (5.2.2), recalling also that
m? = 1. But then if ¢/, ¢" € C* are defined by m;'v} = c'v and mfvd = "v=
one has {fi_g(w) v, v*¥}e = {fiw) v}, v}, where ¢ = ¢'c”. But | ¢| =1 since
m, and m* clearly have finite order. But then one must have

({7_f(w) v}, v = {Aw) v, v} (5.6.6)

since ¢2 times the left side of (5.6.6) is the right side of (5.6.6), both sides are
nonnegative, and | ¢ | = 1. (That is, if (5.6.6) is nonzero, one has ¢* = 1.)

But now if d = d(w), recalling (5.5.2) one has dv = d*v,* and hence
dh{o, (fw)) ! '} = {fi_fw) v, v**}. But then upon substituting for just one
of the factors in the left side of (5.6.6) one has

A\, w) = {iiw) v\, v (5.6.7)

But then by squaring (5.6.5) and substituting (5.6.7) one has

(r? = Bp~Pdhb (2, w). (5.6.8)
But p~2d = g;*. This proves (5.6.4). Q.E.D.
Now clearly one has
a(x)
Y =1 (5.6.9)
is1

by (5.2.11) and Lemma 5.2.3.
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In [19] Moser considers the case where for us G* = Sl(n, R) and =, is the
standard representation. That is, VV* = R”. In that case if we write r; = r
then r2 has the same meaning as in [19]. He then changes the definition of
r;% so that they become ‘“homogeneous.” That is, in our notation define s (g, , @,)
by putting

580 s wo) = ()™M r g, , w,) (5.6.10)
so that by Proposition 5.6 one has, if s/ = s(g, , w,),
(s7)" = £5"bi(A, w). (5.6.11)
But then by (5.6.9) Eq. (5.6.2) becomes (see 3.9 in [19])

(0 — 9 o o) — (Z Z(si )Ci ) < (ls})z , (5.6.12)

Now the problem of solving the generalized Toda lattice, as we shall see
in Section 7, rests with determining A(g exp tw)” for suitable v e 4. For the
standard Toda lattice one needs only the case v = «;, 7 == 1, 2,..., l. However,
if x(t) = k(g, exp tw,) w, then the functions (g exp tw)>/2 appear as matrix
entries of x(¢). See (3.7.4) and (5.4.10). Furthermore as Moser notes, going
back to Stieltjes, the left side of (5.6.12) with x(t) replacing x is computed
using a continued fraction expansion in the matrix entries. One notes that
! = e, , using the notation of [19]. On the other hand (5.6.12) clearly becomes
an equation for all £ € R if we substitute (s)? e~*<%-»o> for (5)%. These being
simple exponential functions the method of [19] is then to use (5.6.12) to
inductively solve for (g exp tw)>.

Now it is clear that a more direct and systematic approach to determine
h(g exp tw)*, for Ae D arises from (5.5.21). However, (5.5.21) is a formula
for h(g exp tw)* only insofar as one can determine 7 {w)! and #_J{w) (and
their images under m,) explicitly. Furthermore the scattering phase change
also will depend upon such a determination. We will solve this problem in
Section 5.8 using the machinery of representation theory.

5.7. Let R[G?] be the group algebra of G* when the latter is regarded
as an abstract group. Let D(G*) = R[G*] ®g U. In this section only we will
write g * u for au, where a € G%, u € U, to denote the adjoint action of g on «.
This is done to avoid confusion with the multiplication in D(G?), which will
now be defined. One makes D(G?) into an algebra by retaining the given algebra
structures in R[G?®] and U and putting ana™! = a - u for a € G*%, ue U. One
knows that we may identify D(G*) with the algebra (under convolution) of
all distributions (in the sense of Schwartz) of finite support on G*. Thus if
a € G* then aU = Ua is the set of all distributions on G* with support at a.
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Now if V is a finite-dimensional real vector space then we will say that
V is a smooth D(G*®) module if it is a D(G*) module with respect to a repre-
sentation 71 D(G?®) — End V such that = | G* is a representation of Lie groups
and | ¢ is the differential of = | G*. Now a linear functional ¢ on D(G®)
will be called a representative functional if it is in the span of linear functionals
of the form 4, ,, where V is a smooth D(G*) module, ve V, o' € V' (the
dual to V), and ¢, (@) = <{av, ¢') for all a € D(G*). Let D(G®)' be the space
of all representative functionals on D(G®). Then as one knows, D(G*®) and
D(G?®)' are non-singularly paired. (This is clear since (1) C G* C G¢® and G¢?
has a faithful finite-dimensional representation and (2) D(G*)’ has the structure
of an algebra—using the coalgebra structure on D{(G*®). Given distinct elements
g2:€G® i = 1,.., k, one easily then constructs ¢ € D(G®)’, which vanishes to
any given preassigned order at g, ,..., g, and is such that (u) # 0, where u
is a given distribution with support at g, .)

We now topologize D(G?) (the weak * topology) so that D(G?) is its con-
tinuous dual. One notes then, for example, that the series 3, (x7/j!) converges
to exp® x for any x € 4. Let D(G?) be the completion of D(G®) with respect
to this topology. If a € D(G*®) then left and right multiplication by @ in D(G®)
is clearly continuous and hence such an operator extends to D(G?). This defines
on D(G?*) the structure of a two-sided D(G*®)-module.

Now let & be the set of all finite sequences

§ = iy ooy i), (5.7.1)

where k > 0 is arbitrary and 7; is an integer such that | < ¢; <[ for j < A
We will write | s | for the length %k of the element s € &.

Now let U(z) and U(z) be respectively the enveloping algebras of % and .
For convenience write ¢; = &, and e_; = ey, for ¢ = 1,..., . Furthermore
if se & and s is given by (5.7.1) put

e = e_;, eyl (5.7.2)
and
€y == €8, " €y - (5.7.3)
If | s| = O then one puts ¢, = e_; = 1. In any case
ef =e_, (5.7.4)

and since the ¢; (resp. e_;) generate « (resp. #) it is clear that the e, (resp. e_,)
for se & span U(») (resp. U(%)). It should be noted, however, that the e_,
(for example) are not linearly independent.

Now let x,€ /4 be as in Section 2.1 so that [e_;, x,] = e_; . One thus has

[e—s ’ xo] = l $ ‘ €_s (575)
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for any se &. Now let U(x), = {ue U(#) | [4, x,] = ku} so that one has the
direct sum

Uz) = i UG (5.7.6)

and U(#), is spanned by alle_;, s € &, where | s | = k.
Now let D(N) be the subalgebra of D(G*®) generated by N and 7 and let
D(N) be the closure of D(N) in D(G*).

ProrosiTioN 5.7.1. For every k € Z_ choose an arbitrary element u, € (U(2)),, .
Then the infinite sum Fyez_t; converges in D(N). Furthermore any u e D(N)
can be uniquely written as an infinite sum

u= 3 u, (5.7.7)

=
where u, € U(z), .

Proof. Let U (%) = Y1 U(#); so that U, (%) is the augmentation ideal.
Furthermore it is clear that the elements e_,, ¢ = 1,..., /, are a basis of U(z),
so that if fe Z, and U,(%)’ is the jth power of the augmentation ideal one has

U7y = ’i UG - (5.7.8)

Now let D(N)' be the set of all restrictions 3 | D(N), where ¢ € D(G®).
But if = is any faithful finite-dimensional holomorphic representation of G¢*
then =(N) is a group of unipotent operators and = | N¢ is faithful. It follows
easily then that if ¢ € D(N)' then the restriction | U() vanishes on a power
of U,(#) and that every such linear functional on U(%) is uniquely of this
form. Thus by (5.7.6) and (5.7.8) if U(%);, is the dual space to U(%), we may
regard U(x), C D(N)', where U(z);, is identified with the set of all elements
in D(NY which vanish on D(%); for j # k. One then has the direct sum

D(Ny = } U@). (5.7.9)
kEZ+

Now let y, € U(#), for all ke Z, . Then for any € D(N) one has ¢(y,) = 0
for k sufficiently large. This proves that the sum Y v, converges. On the other
hand if #€ N then we may write # = exp®x for x € 7% Thus # =3 (x%/j!).
This (and in fact also (5.7.9)) implies that U(z) is dense in D(N). Now let
u € D(N)and let u(j) € U(z),j = 1, 2,..., be a sequence such that u( ) converges
to u. By (5.7.6) we may write u(j) = 3 u(), , where u(j), € U(%), . But now
#( ), , as j — oo, must, by (5.7.9), have a limit #, € U(#), and also # = Y u,, .
This is clear since (u( §)) == (u(J);) converges for any ¢ € U(z);, . This proves
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the existence in Proposition 5.7. The uniqueness follows easily since u, is
characterized by the relation (%) = (1) (which is of course defined) for any
ye UG- Q.E.D.

ProposiTiON 5.7.2. For any s€ ¥ choose a scalar b, e R. Then the infinite
sumy. bye_, relative to any simple ordering in F converges to an element in D(N)
and this element is independent of the ordering. Furthermore any element in D(N)
may be written as such a sum.

Proof. Given any ¢ € D(NY it suffices in order to prove the first statement
only to note that ¢{e_;,) = 0 for all s&.% such that |s| is sufficiently large.
But this is clear from (5.7.9) since e_,e U(a)), . See (5.7.5). The second
statement follows from Proposition 5.7.1 since U(#), is spanned by all e_,
such that | s| = 4. Q.E.D.

5.8. Now let se &. Assume s is given by (5.7.1) so that in particular
| s| = k. Nowif 2 > 1let g(s) € A be the linear form on the Cartan subalgebra £
given by

| s

ols) = ; o, (5.8.1)

One puts @(s) equal to the constant function 1 on £ if |s| = 0.
On the other hand for any 0 <{j < | s| let 5; € & be the sequence obtained
from s by “cutting oft”” the last j terms. That is,

85 = (i1 1 g yuus E1513)- (5.8.2)
One notes of course that s, = s and
Isil =1si—1J. (5.8.3)

We now observe that s defines a polynomial of degree |s| on £ by putting
for any w, € #

|8l
P(sv wo) = H <‘P(sa')’ W) (584)

Remark 5.8.1. It is useful to think of p(s, w,) as some sort of generalized
“factorial” expression. Indeed putting w, = x, (see Section 2.1) note that

P(s: xo) = |$ |!

ProposiTiON 5.8.1. If w, € 4, then p(s, w,) > O for any se &.
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Proof. 'This is immediate from (5.8.1) and (5.8.2) since <oy, w,> >0,
1= 1,..., I, for w, € 4_ by definition of 4. Q.E.D.

Now for any s € & let §€ % be the sequence obtained from s by reversing
the order. Thus if s is given by (5.7.1) then

§ = (i, Gy e B1)- (5.8.5)

Now recalling Lemma 3.5.2 we can determine the element #(w)e N and
observe the dependence on w, € %, .

Prorosition 5.8.2. Let w,e 4, and let w = f + w, , where f = Z,_l e_y .
Let ii{w) e N be the element defined by (3.5.2) so that fifw) - w, = w. Now let
& be the set of all finite sequences s = (iy ,..., 1) of integers where 1 <i; <L
For any se & let p(s, w,) be defined by (5.8.4) so that p(s, w,) > O (recalling
Proposition 5.8.1). Let e_ e U(n) be defined by (5.7.2). Then recalling (5.2.2)
(and also Proposition 5.7.2) one has

norl) = sezy( I)Isl P(S, o) (G86)
Furthermore recalling (5.8.5) one has
)t =Y (—1)sl ——— (5.8.7)

X4 ? (s wo)

Proof. Now letse 8. Then if {#,..., #} is the set of all t € Ssuch that £, — s
(using the notation of (5.8.2)) one clearly has

fe_, = Zl: e i (5.8.8)

i=1

On the other hand one also has

13
e_f =Y e . (5.8.9)
i1

Now let v D(N) be the element (see Proposition 5.7.2) defined by the
right side of (5.8.6). Then by (5.8.8) one notes that

—fo = Zy( 1)lsl (31: o) (5.8.10)
Isi>1

On the other hand since [e_;, w,] = <a;, w,) e_; one certainly has

[e—-s ’ wa] = <9’(s)’ Wy €. (5811)



282 BERTRAM KOSTANT

However, note that

<pls), wy) 1
P w) | Py, w,) (5.8.12)

But then by (5.8.10) one has in D(G?),

e R

jsi>1

The term for |s| =0 does not occur in (5.8.13) since [I, w,] = 0. Thus
by (5.8.10) one has (in D(G?))

[v, w,] = —fo. (5.8.14)

But in D(G®) one has the relation (see the statement following (5.2.2))
ii_fw) wfi_{w))™ — w, = —f. Substituting then for —f in (5.8.14) one has
{9, w,] = 7i_f(w) wy(F_f(w)) o — wo. Thus vw, = _[w) w,(7_(w)) v and
hence if we put u = i_(w) v then uw, = wu. That is, ue D(N) and u
commutes with w, . Now let u; € U(%); be defined by (5.7.7) for any ke Z, .
Since [w,, #] = 0 and since U(z), is stable under ad w, it follows from the
uniqueness of (5.7.7) that [w,, u,] = O for all k. However, since ad w, is
diagonalizable with a strictly negative spectrum in % it follows that the same
is true in U(%)y for any k& > 0. Thus u;, = 0 for all £ > 0. On the other hand
the leading term of v is 1, using (5.7.7), since p(s, w,) = 1 if |s| = 0. By
considering the exponential series the same is then true for (7_{w))~. Thus
u, = 1. Indeed if s, s’ € & then e_,e_ = e_,- for some s" € & where | 5" | =
|'s| <4 |s'] so that using the expansions given by (5.7.7) one easily see that %,
must be the product of the constant terms of 7 (w)™ and v. Thus ¥ = 1 so
that #i_g(w) = v. This proves (5.8.6).
Now let y be the right side of (5.8.7). Then by (5.8.9) one has

==Y (—lys = (sl, o (5.8.15)

€S
[8]>1

On the other hand [w, , ] is also given by the right side of (5.8.15) using (5.8.11)
and (5.8.12). Thus

[, , ] = 5f. (5.8.16)

But n(w) w,(fi(w))* — w, = f. Hence if we substitute for f in (5.8.16) we
obtain y#;(w) = 1 in a manner similar to the proof of (5.8.6). That is, y =
(Aiw))y ™ Q.E.D.
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Now let D(N) be the subalgebra of D(G*) generated by N and » and let
D(N) be the closure of D(N) in D(G?). It is obvious that Proposition 5.7.2
is valid if IV replaces N and e, replaces e_, for all s€ #.

But now (7_g(w))* € N by (1.5.1) and (3.1.9).

PrOPOSITION 5.8.3. Let the notation be as in Proposition 5.8.2. See also
(5.7.3). Then
_ €,
(_fw)* = ), (—1)

2, 6, 0 ‘wO) . (5.8.17)

Proof. Let ac G® and x;€ U, j = 1, 2,... . Assume that x; converges to a
in D(G*). We then assert that x} converges to a*. Indeed recalling the definition
of representative functional in Section 5.7 and the particular representative
functional ¢,, - one notes that 4, ,(x}) converges to ¢, ,(a*) in case V == 4
by (5.1.11). But then the result follows easily for all J using the complete
reducibility of smooth D(G*) modules. Thus x¥ converges to a*. But then
(5.8.17) follows from (5.8.6) and (5.7.4). QED.

Remark 5.8.2. One major advantage of formulas (5.8.6), (5.8.7), and (5.8.17)
is that for any given smooth D(G?®) module we need consider only a finite
number of summands.

5.9, Now let Ae D and let
S ={se L | p(s) =2 — A} (5.9.1)

Now A — «A is the difference between the highest and lowest weights of I
and hence we can write A — kA = ZLI m;, where myeZ, . If o(A — «A)
is defined as in (5.5.28) note that o(A — «kA) = " m; and hence the cardinality
of #* is given by

o — !
T omytomy)

| 7| (5.9.2)
One notes also that &#* is stable under the map & — &, s — 5.

Now for any s € & clearly e_, carries ¢* into a multiple of z**, Thus there
exists ¢, ; € R such that

e_ 0" = ¢, v (5.9.3)

ProrosiTioN 5.9.1. Let Ae D and w,c /4. Then if p(s, w,) is defined by
(5.8.4) for any s € & one has

—K cs, = Le
T s )
s€ y Yo

_ ) (5.9.4)
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where we recall that d(w) e H is defined by (5.5.2). Furthermore

(___1)0(/\—»0\) Z fs./\ — {ﬁf(w)—l ,0/\’ o
e 25, ) (59.5)

= d(w)™.
In particular the numbers given by the sums in (5.9.4) and (5.9.5) are positive.

Proof. If se & then by (5.1.14) and (5.2.11) clearly {e_go?, v} =0 if
s ¢ S and {e_ o, v} = ¢, , if s€ &. But then (5.9.4) and (5.9.5) follow from
(5.8.6), (5.8.7), (5.5.4), and (5.5.5). Note that we have interchanged s and §
in (5.8.7). Q.E.D.

Since the numbers ¢, , , s € #* play such an important role in our solution
of the generalized Toda lattice we will give another expression for them purely
in terms of U. For any s, t € & the element ee_, clearly commutes with 4.
That is, in the notation of (5.1.10) one has e,e_, € U(0). Now by (5.1.15) there
exists a unique element %, , € U(4) such that ¢,e_, — u; . is in the left ideal Us.
On the other hand we can regard U(#) as the algebra of real-valued polynomial
functions on 4’ so that in particular if # € U(#4) then uv? = u(}) 2%

ProposITION 5.9.2. Let AeD. Then the o(A — kd) X o(A — «xA) matrix
{u; (A}, indexed by t, s € S has rank 1 and hence there exists a unique, up to
sign, vector {c, ,} in ROA—D such that

CoxCia = Uz o(A) (5.9.6)
for all s, t. The sign is, however, determined by the relation

(—1)°@-» Zy €02 >0, (5.9.7)
8€

Proof. Now clearly {e_2*, e_o*} = {e,e_0*, '} = {u, 0, v’} = u, (}) since
U annihilates «*. But ¢, ,¢;, = {e_*, e_w}. Thus one has (5.9.6) and hence
{u; (A)} has rank 1 or 0. Now by Remark 5.8.1 choosing w, = x, one has
(s, %) = | s {! Thus, by (5.9.4), the left side of (5.9.7) is just o(A — «A)! d(x)?,
where x = f + «x, . This proves (5.9.7) and also that the rank of {; (A)} cannot
be zero. Q.E.D.

5.10. Now given Ae D let 42C /A be the set of weights of V2. Now
for any v € 4% let

FHv) = {se L] p(sst-) = A — v} (5.10.1)
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where we use the notation of (5.8.1) and (5.8.2). That is, if s .#* is given
by (5.7.1) then s€ () in case T3 " oy = A — .

Now for any s€ & and integer j, where 0 < j < |s|, let p(s, w,) be the
polynomial of degree | s | in =, defined by putting

(s, wo) = p((s151-), w) 2((5))): o), (5.10.2)
using the notation of (5.8.2) and (5.8.5). Explicitly if s = (¢ ..., }5/) then

pis, w5) = (kleo < ,,éﬂ - w>)(ii <§m %, w>) (5.10.3)

It is clear of course that p,(s, w,) > 0.

Remark 5.10. Recall Remark 5.8.1, where it was suggested that p(s, w,)
should be regarded as a sort of factorial “function.” In the same sense one
should perhaps think of p(s, w,) in terms of binomial coefficients. Indeed if
w = x,, recalling Section 2.1, one easily has

pi(s %) = jii s | —j)!

For the two extreme cases one clearly has

Dol w,) = p(s, w,) (5.10.4)

and
Pisi(s: wo) = P(§, w,). (5.10.5)

Now forany g, e H, w,€4,_,AecD,and te R let

D o> Wo s t) = —1 o0—x2) ___Cf'l‘__ ov —t(v,wo>,
A(g ) ( ) vél" SE;(M PO(/\-—V)(S’ wo) )g ¢
(5.10.6)

where ¢, , is defined by (5.9.3), 4% is the set of weights of F'* and o(u) is defined
by (5.5.28).

THEOREM 5.10. Let ¢ be a real split semi-simple Lie algebra. Let 4 C ¢ be a
split Cartan subalgebra and let 4, C /4 be an open Weyl chamber. Let G be the
adjoint group and let H C G be the subgroup corresponding to h. Let g, € H, w, € 4,
and let X be the highest weight of an irreducible representation of g and for any
teR let D\(g,, w, ; t) be defined by (5.10.6) where c, , is defined by (5.9.3) and
pi(s, w,) is defined by (5.10.3), recalling that o ,..., oy are the simple positive
roots. Now let w =Y ;_je_, + w, for any fixed choice of negative simple root
vectors e_, . Let G, be the connected component of the centralizer of w in G
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defined by (3.5.5)+3.5.7) so that gexptwe Gy*, where g = p,X(g,) and p,
ts defined by (5.3.1). Now let h(g exp tw) € H be defined by (2.6.2) using (2.4.5),
(2.6.1), and (3.5.9). Then one has

h(g exp(—t)w)* = Dy(g,, w, ; 1). (5.10.7)

Proof.  For the statement about the arbitrariness of the e_, see Remark 1.5.1.
Now for any ve 4* let P,: V*— V*u) be the orthogonal pro_]ectlon relative
to Q4 . Now if b(A, w,) is defined by (5.5.12) then clearly

{Paif(w)™ o, Pii_jw)* v} = Y by, w,) (5.10.8)
A=y
and hence by (5.5.21) if b(A, w,) is the left side of (5.10.8) then
k(g exp tw)' = 5 b, w,) g€ ", (5.10.9)

vedA

Now for any p € 4" let % = {se & | ¢p(s) = u}. Then by (5.8.7) and (5.8.17)
for any v € 4% one has upon interchanging s’ and §'

Pafwyior = Y (=)W "—* v (5.10.10)
s eF ) o)
and
Pajwy oo = Y (=1 G (5.10.11)
i s'ey’u—id\) P(S”’ wo) '
Now composition of sequences clearly induces a bijection
SO Pl 5 FA(p), (s, ) > 5, (5.10.12)

where we note thate_, = e_.7e_, . One then has {e_ v, e,-v'} = {e_*, v} =
8 s 8 8 s 8

¢s,2 - Furthermore p(5', w,) = p((So6—n))> wo) and p(s”, w,) = p((()otr—n)> wo)
so that

PG5 wo) p(s”, W) = Pota-n(S5 Wo)- (5.10.13)

But also | s"| 4 | 8" | = o(A — xA) so that
B\, w) = (—1)°- S R— 5.10.14
( ) ( ) se‘;)\(v) pﬂ(/\—v)(sa wo) ( )

But then (5.10.7) follows from (5.10.9) and (5.10.14). Q.E.D.

5.11. Formula (5.10.7) expresses h(g exp(—t)w)* as a finite sum of
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exponentials with explicit but clearly complicated coefficients. On the other
hand the asymptotic values of A(g exp(—¢)w)*, or rather log k(g exp(—t)w)*,
as t — 400 may be given by simple linear formulas. We may also replace
AeDbyanypes.

THEOREM 5.11. Let the notation be as in Theorem 5.10 and let « be the Weyl

group element which takes positive roots to negative roots. See Section 2.4. Let
pe# and let d(w) e H be defined by (5.5.2). (See also (5.5.4) and (5.5.5).) Then
if Ri(g,, w, ; t) are the real-valued remainder functions defined by

log (g exp(—t)w)* = {—kp, wopt + log(g,d(w)™"y* + R,(g,, wo ; )
= {—py Wopt + Iog(god(w))“ + R—(go , Wy 3 1)

one has im, R (g,,w,;t) = lim,,_, R (g,,w,;1t) =0.

Proof. By definition, one has with exponentiation
y P

h(g exp(—-t)w)“ . Rylgoe,it)
et(—Ku,‘wo)(go d(w)—l)xu = et (511'1)
and
h(g CXP(“t)w)“ — eR_(y,,,fwo;t)_ (5112)

et (g d(w))”

However, the denominators in (5.11.1) and (5.11.2), respectively, are
(g, exp(—t) w,d(w)~1y* and (g, exp(—t) w,d(w))*. But then the left sides of
(5.11.1) and (5.11.2), respectively, approach 1 as t— +o0 and ¢t — —o
by (5.5.23) and (5.5.22). This proves the theorem. Q.E.D.

6. THE SYMPLECTIC STRUCTURE OF (Z, wz) AND THE INTEGRATION
oF ¢, 1€ S(g)¢

6.1. We recall some aspects of the theory of symplectic manifolds.
See Chapter 4 in [15] for more details. Let (X, wy), or more simply X, if wy
is understood, be a symplectic manifold of dimension 2n. That is, X is a smooth
(i.e., C*) manifold of dimension 27 and wy is a closed nonsingular smooth
differential 2-form on X. Thus if C=(X) is the space of all smooth functions
on X and Der C*(X) is the Lie algebra of all smooth vector fields on X then
wy(£, m) € C(X) for any ¢, n € Der C=(X) and wy(£, 1) is alternating in £ and 7.

Now for any ¢ € C°(X) one defines a (Hamiltonian) vector field &, on X
by the relation

wx(€e» 1) = 1 (6.1.1)
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for all n € Der C=(X). Furthermore C*(X) inherits a Poisson structure (see
Section 1.1) where for any g, $ € C*°(X) one defines [p, ¢] = £,3b. Moreover
if Ham X = {£, | ¢ € C*(X)} then Ham X is a Lie subalgebra of Der C*(X)
and (assuming X is connected)

0 — R 2, Co(X) =%, Ham X — 0 (6.1.2)

is an exact sequence of Lie algebras defining C*(X) as a central extension
of Ham X. We have identified R here with the constant functions on X.
As one knows, one may express wy in terms of the Poisson structure.

PRrOPOSITION 6.1. Assume that @, ,..., @,y is a global coordinate system on X.
Let ¥;;€ Co(X) be defined by ¥, = [@:, ;] Then the 2n X 2n matrix {¥;}
1s invertible at all points and if {P'¥} is the inverse matrix of functions one has

n
wy =Y Wi do, A d; . (6.1.3)
6yd

Proof. That {¥;;} = {fq,;pj} is invertible is obvious from the tangent space-
cotangent space isomorphism induced by wy. Now for any ¢, ¢ € C(X)
one easily has

wy(€y > &) = [, ¥] (6.14)

from (6.1.1). In particular wy(§, , &) = [y, ,]. On the other hand it is
immediate that if w is the right side of (6.1.3) one also has w(¢, , &) =
[®q > ®p]- This proves w = wy. Q.E.D.

6.2. Now symplectic manifolds arise in a number of ways. One of
these is from the coadjoint orbits of Lie groups. We recall some of the details.
See Chapter 5 in [15] for a more complete account. Let 4 be a connected Lie
group and let « be its Lie algebra so that = is an 4-module with respect to
the adjoint representation. Also &', the dual to &, is an A-module with respect
to the coadjoint representation. The latter is defined by contragradience so
thatif ae 4, x€ 2, and ge gy’

(g %) = <ag, ax). (6.2.1)

Now let O C &' be an orbit of 4 in <'. That is, O is a homogeneous space
for 4 of the form O = Ak for some k€ &'. Now for any y € 2 let ¥ € C*(O)
be the function defined by ¢¥(g) = (g, y> for any ge O. Also for any x€ &
let £, € Der C=(0) be the vector field on O corresponding to the action of the
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one-parameter group exp(—2)x on O. The vector field &, is characterized by
the relation

Lap? = gl@¥] (6.2.2)

for any x, y € =.

ProposITION 6.2.1. There exists a unique symplectic structure w, on O
(defining a symplectic manifold (O, w)) such that

[¢% ¢'] = V] (6.2.3)

for any x, y € @. Furthermore if ¢, is the Hamiltonian vector field corresponding
to ¢® then

£o=&,. (6.2.4)

Proof. The existence of a symplectic structure wy, on O where (6.2.3)
is satisfied is established by Theorem 5.3.1 in [15]. The uniqueness follows
from Proposition 6.1 since locally the set of functions {¢®}, ¥ € #, contains
a coordinate system. The relation (6.2.4) follows from the equality of the left
sides of (6.2.2) and (6.2.3) for all y € «. Q.E.D.

Henceforth (O, w,), for any coadjoint orbit O, will be the symplectic manifold
given by Proposition 6.2.1.

Now let the notation be as in Section 1 so the symmetric algebra S(«) (here
F = R) has a Poisson structure. Also, g; , »; are respectively a basis and a dual
basis of &’ and «. Furthermore S(«) is regarded as the algebra of polynomial
functions on «'. Now for any u € S(«) let ¢* be the restriction # | O.

ProrostTioN 6.2.2. For any uc€ S(a), coadjoint orbit OC 2’ and ge O,
one has

(€gu)e = X ((G(2u)(e)N&z) - (6.2.5)
Furthermore for u, v € S(a) one has

[p%, #°] = go- (6.26)
with respect to the Poisson structure on S(a) defined by Proposition 6.2.1.

Proof. It is immediate from (1.1.2) that

(dg"); =Y. ((B(g:)u)(&)Ndg™), - (6.2.7)

607/34/3-7
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But now (6.2.5) follows from (6.2.4) and (6.2.7). But (6.2.5) and (6.2.7) (for

v instead of %) implies
[p*, 971 = ). (@(g:)u)(@(g;)0)e™, ¢™]- (6.2.8)

But [¢%, ¢%] = ¢[*==] by (6.2.3) and ¢[*:%(g) = {g, [x;, *;]>. But now
substituting (1.1.2) in (1.1.3) and then comparing (1.1.3) with (6.2.8) one has
ple?l(g) = [, v](g) = [¢* 9°](2). This proves (6.2.6). Q.E.D.

6.3. Now let the notation be as in Section 1.2 where F = R so that
g is a real semi-simple Lie algebra with a fixed Cartan decomposition, and Q
is an invariant bilinear form which on any simple component is a positive
multiple of the Killing form. Furthermore « is an arbitrary subalgebra of 4.
Using O, the inner product Q,, and the Cartan decomposition we have
associated to « three subspaces «°, " and &* of g. We recall that «° is the
Q-orthogonal subspace to @, o is Q,-orthocomplement to « and «* is non-
singularly paired to # by Q. Now let f € g be arbitrary and let (e*); = f + a*
using the notation of Section 1.6. Even though (2*); is only an affine subspace
and not necessarily a linear subspace we note that

g = (a*); D a° (6.3.1)

is still a direct sum. (That is, any element in ¢ has a unique sum decomposition
relative to the summands in (6.3.1).) This is clear since 2° = (2*)* by (1.2.5)
and of course f + ¢ = g. Let

P = g~ (a*), (6.3.2)

be the projection on (&*); according to the decomposition (6.3.1). Now it is
immediate from (6.3.1) that if g € &’ there exists a unique element y, € (&*),
such that

Ao, %) = {g %> (6.3.3)
for all x € & and the map
Tia > (a¥);, g% (6:3.4)
is bijective and is in fact, clearly, a diffeomorphism.
Now let 4 C G be the subgroup corresponding to . For any ae 4 and

y€(a*); let a * y € (a*); be defined by

a-y = Pay. (6.3.5)
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ProrosiTioN 6.3. Equation (6.3.5) defines an action of A on (a*); . Further-
more regarding o' as an A-manifold (i.e., a manifold on which A operates) with
*‘respect to the coadjoint representation the map (6.3.4) is an isomorphism of
A-manifolds.

Proof. Let ac A, g€ &', and x € «. Then substituting a~lx for x one has
from the invariance of Q that Qay,, x) = {ag, x> = O(¥,,, x). But now
ay, — a -y, € a° so that Q(a - y, , x) = Q(¥4, , %). But then @ -y, = y,, from
the injectivity of (6.3.4). This proves both statements of the proposition.

QED.

Proposition 6.3 enables one to carry over the coadjoint—symplectic theory
of 4 from &’ to (a*);. Thus any orbit ¥ of 4 in (&*); is a symplectic where
the symplectic structure wy is defined by

wy = D(wp-1y), (6.3.6)

where of course the action of the diffeomorphism I' on differential forms is
defined in the usual differential-geometric way.

6.4. We apply Proposition 6.3 to the case of the example of Sections 1.5
and 2-5, where g is a real split semi-simple Lie algebra. The notation is as in,
say, Section 1.5, so that &« =4, 4 = B, &™* = £ and f is given by (1.5.4).
Then (e*); = 4; = f + £. However, we are interested in only one orbit of B
iné,.

Let &, i = 1,..., ], be the basis of £ defined by putting

by = [y, e_y). (6.4.1)

Now recalling the definition of the 2/-dimensional submanifold ZC ¥4, (see
(2.2.3) and (2.2.4)) one has a global coordinate system p; ,y; € C(Z), i,] =
1,..., I, such that y € Z if and only if ¥ is of the form

y=f+ Zl pi(y) ks + 2 7i(9) €, s (6.4.2)

where p,(y) € R and y;(y) € R* are arbitrary. Of course since the y; are positive
valued they are of course invertible. We recall also that for any invariant
Ie S(g)° we defined a vector field £; on Z by (2.2.18) and (2.2.19) so that
for any y e Z one has (&), = [¥, (851)(y)] where 831 is defined by (1.2.7).
See (1.2.10).

ProPOSITION 6.4. Z is an orbit of B in &,. Furthermore the corresponding
symplectic structure on Z is grven by

1
wz — Z sz A '}’Z_l dyl . (6-4-3)

=1
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Moreover if £;1; is the Hamiltonian vector field corresponding to I | Z C C*(2)
for any I € S(4)¢ then one has

£z = &1 (6.4.4)

Proof. Let bed. We may write b = hexp x, where x€ % and he H. Let
¢ eR be defined by x + 3 cie_, €[#, #]. Now let = =f+ e, where ¢ =
21_1 €, Thenye ZC4;. Furthermore if z = f+ 21_1 ch; + 3 ae,, , where
h;is glven by (6.4.1) and a; = h*, then % € Z. But one notes that

by —zem (6.4.5)

On the other hand 7 = (£)° so that b -y = x using the notation of (6.3.5).
However, it is clear that 2 is an arbitrary element of Z and hence Z = B - y.
This proves that Z is a B orbit in 4, .

Now let I:4' — £, be the map (6.3.4) where of course £ = 4. Thus if
O = I'"Y(Z) then O is a coadjoint orbit of Bin#’. For any u € S(£) let ¢* € C=(0)
be defined as in Section 6.1 and let y* € C=(Z) be defined by putting y* = u | Z.
It is clear from (6.3.3) that y* o I' = ¢* and hence, using (6.2.3), with regard
to the Poisson structure in S(£) and C*(Z) one has

[ 4] = o (6.46)

for u, v € S(4).
Now let 2;€ 4, j = 1,..., [, be the basis of £ such that

Oz, b;) = 8;5. (6.4.7)
But from (1.5.2) it follows that
O, by) = <oy, %) (6.4.8)
for any x € 4. Thus one must have
[e—s,» 25] = dye_,, (6.4.9)
On the other hand it follows from (6.4.7) and (6.4.2) that
¥ = p; . (6.4.10)
Furthermore using (1.5.2) one notes that

P = ;. (6.4.11)
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Thus by (6.4.6) and (6.4.9) one has, in C=(Z),
[yi> pi] = Sy - (6.4.12)

On the other hand since clearly ¢* = 0 for any 2 € [#, #] and since # is com-
mutative it follows from (6.4.10) and (6.4.11) that for all 7, §

[yi»vil = [pis ps] = 0. (6.4.13)

On the other hand the y; together with the p; define a coordinate system in Z.
We may then apply Proposition 6.1 to compute w, in terms of dy; and dp; ,
using of course (6.4.12) and (6.4.13). In fact the computation is immediate
and yields (6.4.3).

Now for any x € £ let {, be the vector field in Z which corresponds to &,
by the isomorphism I'. See (6.3.4). Thus by (6.2.2) one has

L7 = Yloal (6.4.14)

for x, z € £. Now let x; be a basis of £ and y; be a basis of £ such that Q(x, , ;) =
8;; . Now for any @ € C=(Z) let £, here be the Hamiltonian vector field on Z
corresponding to ¢. Now for any u € S(g) and 2 € ¢ let i(2)u € S(g) be defined
as in Section 1.2. For any y € Z we now assert that

(burzdy = 2. (y)w)(3)Ee)y - (6.4.15)

Indeed for any u € S(g) it is clear from (6.3.1) that there exists a unique element
@we S(£) such that | 4, = u| ¢, . Furthermore since #, is stable under trans-
lation by elements in £ one has upon differentiation, i(z)u = i(2)& for z € 4.
But then both sides of (6.4.15) do not change if @ is substituted for u. However,
for # one has (6.4.15) by (6.2.5). One recalls (6.3.3) and (6.3.6). This proves
(6.4.15).

But now we may identify the tangent space to Z at y with 4 + #, C £ as

in (2.2.10). But by (6.2.2) (L4 () = O(¥, [x, 2]) = O([», ], 2). Thus if
Py: g — £ is the O -orthogonal projection (i.e., Ker Py = % = £°) then clearly

L)y = Poly, x] et + ;. (6.4.16)
Now recalling the definition of 8;u in Section 1.2 one then has
(§uiz)y = Poly, (S;u)(y)] (6.4.17)

by (1.2.10). However, if u = I € S(4) then (£;), = [y, (3zI)(¥)] € £ by (2.2.22).
Thus

& =&z - Q.E.D.
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6.5, Now using the isomorphism (3.5.27) which maps 4 to #' the
bilinear form Q | #, as one knows, induces a positive definite bilinear form
Q|# onf'. Fori,j=1,.,1let

by = O(a; , ). (6.5.1)

Remark 6.5. Clearly b;; depends upon the choice of Q. However, if C
is the ! X I matrix defined by C;; = b;/b;; then C is of course the Cartan
matrix and is independent of Q.

Now among the fundamental invariants I; € S(g)° j = 1,...,I, we may
clearly fix I, so that

Ii(x) = $0(x, %) (6.5.2)
for any x € 4.

ProPOSITION 6.5. Let p;, y; € C°(Z) be defined by (6.4.2). Since y(Z)C R*
we may define ¢; € C*(Z) by putting ¢; = logy;. Then p,,p;, 1,7 = 1,..., [,
define a coordinate system on Z. In fact the map

Z —~ R¥ (6.5.3)
given by v > (p3(3)se-s pi(3)s @1(P)se-or i ¥)) 15 a diffeomorphism. Moreover
13
Wz = Z dpl A d‘P’L . (6.5.4)

=1

Furthermore if by; is defined by (6.5.1) then

4
bz’jPin + 2 e’ (6-5-5)

1 i=1

I1|Z=%

1
1,d=

Proof. The first statement is immediate from the definition of Z. See (2.2.3)
and (2.2.4). But now dgp; = y;'dy; and hence (6.5.4) follows from (6.4.3).
On the other hand if yeZ is given by (6.4.2) then I,(y) = 30(y,y) =
O Zivi(y) &) + 3 Zi pi(¥) p{y) QB s ). But Q(f,e,) =1 and hence
O(f, Ziviy) &) =2 vy) = 2:¢®®. On the other hand h;~—o; by
(3.5.27), recalling (3.5.28), (3.1.14), and (6.4.1) so that b; = Q(k,, ;). One
thus obtains (6.5.5). Q.E.D.

6.6. Now let (X, wy) be a symplectic manifold. Let 27 == dim X.
Let T,(X), for any p € X, be the tangent space to X at p. Assume that for any
P € X one has an n-dimensional subspace F,, C T (Z) and that the map given
by p > F, is a smooth involutory distribution F (in the sense of Cartan) on X.



TODA LATTICE AND REPRESENTATION THEORY 295

By a leaf of F we mean a maximal connected integral submanifold M C X,
Thus F is called a real polarization of (X, wy) in case wy | M = 0 for any
leaf M of F. That is, the leaves of F are Lagrangian submanifolds of X.

Now assume that F is a real polarization of (X, wy). For any open subset
UC X let Coo(U) ={peC>(U)|vp =0 for all pe U and v € F,}. It follows
easily from (6.1.1) and the maximal isotropic property of F, that, using the
notation of Section 6.1, one has

(¢,),€F, for any p e U and p € C>(U). (6.6.1)
Thus if M is any leaf of F and U C X is any open subset then the restriction
£, M N Uis tangent to M N U for any ¢ € Cp2(U). (6.6.2)

But then (6.6.1) implies [¢, §] = 0, and hence

[£,, £,] = O for any g, € Cp=(U). (6.6.3)

But now if M is a leaf of F then it is an easy consequence of (6.6.2) and (6.6.3)
that there exists a unique flat affine connection on M such that £, | M N U
is covariant constant for any open set U C X and ¢ € C;(U). See Section 4.2.
We will refer to this as the affine connection on M induced by F. The real
polarization F will be said to be complete in case the affine connection induced
by F on M is complete for every leaf of F. That is, all parametrized geodesics
on M are defined for all values of the parameter.

Remark 6.6.1. In case (X, wy) is a coadjoint orbit of a simply connected
exponential solvable Lie group A and F is an A-invariant real polarization
the condition of completeness has been called the Pukansky condition. A
theorem of Pukansky (see [21]) asserts that the unitary representation of A4
associated to F is irreducible if and only if F is complete.

An important property of completeness is that the vector field £, for any
@ € C®(X), can be globally integrated.

PROPOSITION 6.6. Assume that F is a complete, real polarization of a symplectic
manifold (X, wy). Then for any ¢ € Cx(X) there exists a one-parameter group,

exp tf,, t € R, of symplectic diffeomorphisms of X such that for any € C*(X)
and pe X

I Yexp(—1) &0 D) I,co = EtD) (6.6.4)

where the dot denotes the diffeomorphism action on X.
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Proof, let ¢ € Cpo(X) and let p € X. Let M be the leaf of F containing p.
Let ¢(t) € M, for all t € R, be the geodesic on M whose tangent vector at ¢ == 0
is (—£,)p - Then (exp t£,) - p is defined so that ¢(t) = (exp t£,) - p. It is imme-
diate then that exp £, is a one-parameter group of symplectic diffeomorphisms
satisfying (6.6.4). Q.E.D.

Remark 6.6.2. In genera] if £ is a globally integrable vector field on a
manifold M then the corresponding one parameter group of diffeomorphisms
will be written as exp ¢£. The direction of the trajectories exp 2£ - p of £ will
also be taken in the reverse direction of £ That is, if € C*(M) one has
(d/dt) P(exp(—1)¢ - P) |1mo = (E)( p) for any p € M. This of coutse guarantees
the correct functorial properties for a Lie group of diffeomorphisms. Further-
more it produces the correct signs for Hamilton’s equations. See (7.1.5).

6.7. Now recalling Section 4.1, & is an involutory distribution of
dim/ on Z. To conform to the notation of Section 6.6 we write F = & and
recall then that for any y € Z (see (2.2.21))

Fy ={(¢), [ 1€ S(g)%, (6.7.1)

where we recall that (see (2.2.22))

(¢y = [, GaIX»)]), (6.7.2)

where 8,1 is defined by (1.2.7).

Furthermore by Proposition 4.1 and (3.5.26) the leaves of F are all the sub-
manifolds of the form Z(y), y € #(#,), and any such leaf has been given (see
end of Section 4.2) the structure of a flat affinely connected manifold.

THEOREM 6.7.1. Let g be a split semi-simple Lie algebra. Let | = rank g
and let ZC g, defined as in Section 2.2, be the 2l-dimensional submanifold of
normalized Jacobi elements. Let w, be the symplectic structure on Z defined as
in Section 6.3 and given explicitly by (6.4.3) and let F be the I-dimensional involutory
distribution on Z defined by (6.7.1). Let S g — R® be the map defined as in (2.3.1)
and let /. be the open Weyl chamber defined by (3.3.1). For each y € #(4,) let
Z(y) be defined by (2.3.2) so that by Proposition 4.2 and (3.5.26) the Z(y) are
flat affinely connected manifolds and are the leaves of F.

Then F is a complete real polarization of (Z, wz). Furthermore the affine connec-
on Z(y) is the same as the one induced by F. Moreover for any invariant I &€ S(4)¢
one has I | Z e Cp°(Z) and & is the corrvesponding Hamiltonian vector field. In
particular £, is globally integrable. In fact let y € Z and let I € S(g)°. Let y == F(y)
so that by (3.5.26) and Proposition 3.3.1 there exists a unique w, € 4. such that
H(w,) = y. Let w = f+ w,, where f is given by (1.5.4), and let z = (8I)(w)
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so that z € g using the notation of Section 1.2 and recalling (1.3.3). Let G¢*
be as (3.5.5)43.5.7) and let Byy: Go® — Z(y) be the isomorphism (3.6.2). Let
g = Bm(¥) € Gy®. Then for all t € R one has g exp(—t)z € G,* and

Baw)(g exp(—1)2) = exp t,* y, (6.7.3)
where the dot is the same as in Proposition 6.6.

Proof. For any I € S(g)¢ we recall that I’ € S(£) has been defined by the
relation I/(x) = I(f + x) for x € 4. See Section 1.4. For any u € S(£) let, as
in the proof of Proposition 6.4, y*e C*(Z) be defined by y* =u|Z. We
assert that

=1 Z. (6.7.4)

Indeed if y € Z we may write y = f + x, where x € £. ThenI(y) =I(f 4 x) =
Ii(x) = I'(f + x) = I’(y) using (1.2.6) since f € (£)° = %. This proves (6.7.4).
But now if I, J € S(g)¢ and we put u = I7, v = J’ then {,u = §{rand £ = &
by (6.4.4). But then by (6.1.4) and (6.4.6)

wz(ér, &) = [° ] = ¢iovl (6.7.5)

But [v, 4] = [J7,I"] =0 by Theorem 1.4. Thus (6.7.5) vanishes and hence
Z(y), recalling Proposition 4.1, is Lagrangian for all y € #(#4,). Thus F is a
real polarization. Furthermore by definition I | Z is constant on Z(y) so that
I|ZeCg=(Z) and hence £; is covariant constant with respect to the affine
connection induced by F. Recalling the definition (see end of Section 4.2)
of the given affine connection on Z(y) this proves that both affine connections
are the same.

Now let y € Z. Put y = #(). By (3.5.26) and Proposition 3.3.1 there exists
a unique w, € 4, such that #(w,) = y. Then Z(y) is the leaf of F containing y
and by Theorem 4.3

B Go® — Z(¥) (6.7.6)

is an isomorphism of flat affinely connected manifolds where the affine connection
on Gy C G® is defined by the Abelian group structure on G*. In particular
the geodesics in Gy* are translates of one-parameter groups exp ix, where
x € g¥. Since Gy is a connected component of G" it is obviously complete.
Thus Z(y) is complete and hence F is complete.

Now let I € S(#)¢ and let g € Gy be such that B,(g) = y. Let L,” be the
vector field on G¥, defined by (4.3.1), so that if exp tL,” is the one-parameter
group of diffeomorphisms of G defined by L”, one has exptL¥-a =
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a exp(—t)(I)(w) for any ae G But Buy(L*| Gy®) = £| Z(y) by (4.3.3).
This proves (6.7.3) since 2 = (8I)(w). QE.D.

One also would know the flow defined by £; if one knew the coordinate
values of exp #£;-y. For “half” the coordinates this is given explicitly by

THEOREM 6.7.2. Let y€ Z and let w, € %, as in Theorem 6.7.1, be such that
SHw,) = F(y). Also as in Theorem 6.7.1 let w = f + w, and let ge Gy* be
such that B(,)(g) =y. Now let H be the split Cartan subgroup defined as in
Section 1.5 and also as in Section 1.5 let o, ..., o, be a corresponding set of simple
positive roots. For any a € Gy let h(a) € H be defined by (3.4.14). Let 1 € S(g)°
and let (8I)(w) = z € g¥. Finally let o, ..., p, € C*(Z) be “‘half > the coordinates
on Z defined as in Proposition 6.5. Then (see Theorem 6.7.1)

pi(exp £ - y) = log (g exp(—r)2)*. (6.7.7)

Proof. Now, recalling Theorem 3.6, if ae Gy? then we may write a =
s(x) 7i(a) h(a) n(a), where the four factors are defined as in the statement of
Theorem 3.6. Furthermore B,(a) = n(a)we Z by Theorem 3.6 and hence
we can write n(a)w == f -+ x + ZLI cie,, » Where x € 4. But by (3.7.4) one has
in fact

¢; = h(a)™. (6.7.8)

But now if y; € C%(Z) is defined by (6.4.2) then (6.7.8) implies y,(Bw)(a)) =
h(a)™. Thus one has

#4Bun(@) = log h(a)™. (6.7.9)

But then (6.7.7) follows from (6.7.3) by putting a = g exp(—t)z. Q.E.D.

6.8. We are mainly interested in applying Theorems 6.7.1 and 6.7.2
for the case where I is the quadratic invariant I, . See (6.5.2). In that case
the element z becomes w itself.

Our solution to the generalized Toda lattice will depend on the following
theorem together with the explicit formula for (g exp(—#)w)* given in
Theorem 5.10. See (5.10.6) and (5.10.7).

THEOREM 6.8.1. Let {p;, ¢;}, 1,7 = 1,..., I, be the coordinate system on Z
givenin Proposition 6.5. Let w be the symplectic structure on Z defined in Section 6.3
and given explicitly (see (6.5.4)) by

i
Wz = Z dpz A d¢1 . (6.8.1)

i=1
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Let 1, € S(g)° be defined by (6.5.2) so that I, | Z has been given explicitly (see (6.5.5))
by
[4 i
L Z=1% Z bipips + Z &%, (6.8.2)
2,9=1 i=1

where b;; = Qo , o). Let ¢ be the Hamiltonian vector field on Z corresponding
to I, | Z. Then £ is globally integrable. Let exp t¢ be the corresponding flow. (See
Theorem 6.7.1.) Let yeZ and let w,c /4, be such that SF(y) = F(w,). Let
w = f -+ w, and let g € Gy be such that Byy(g) = v. (We are using the notation
of Theorem 6.7.1.) Then

exp 1€+ y = (g exp(—t)m). (6.83)
Furthermore
pilexp té - ) = log (g exp(—t)w)™, (6.8.4)
i=1,.,1L

Proof. Theorem 6.8.1 follows immediately from Theorems 6.7.1 and
6.7.2 as soon as one shows that (8I;)(w) = w. Let {x;} and {y;} both be bases
of ¢ such that O(x;, ;) = 8;;. Then clearly

dlmy
L=1%1 ) xy. (6.8.5)
i=1
But then for any 2 € 4 one has
(L)=) = 1 (T 0, 9 3: + ¥, 03s, ) ) (68.6)
3 i

by (1.2.1) and (1.2.2). But clearly both sums in (6.8.6) are equal to 2. Thus
L) (z) = = Q.E.D.

Using the diagram (3.6.7) one may give a conceptually simpler expression
(in that it only involves y itself) for the trajectory exp t£ - y. However, it does
not seem to lead to an explicit formula.

THEOREM 6.8.2. Let the notation be as in Theorem 6.8.1. Then there exist
for all t€ R unique elements #,e N, h,c H, and n,e N, where N, H, and N
are as in Section 3.2, such that

exp ty = fihmn; . (6.8.7)
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Moreover with respect to the adjoint action one has n_,y € Z and in fact
exp té -y = n_,y. (6.8.8)

Proof. Recalling the notation and statement of Theorem 3.6 one has

Bu(g exp tw) = B,(fy(g exp tw)). See (3.6.7). But (g exp tw) =
n(g) exp twn(g)~L. However, n(g)w = B(,(g) = y. Thus (g exp tw) = exp ty
and hence

Bus(g exp tw) = B,(exp ). (6.8.9)

But now if we write y(¢) = exp #y then y(t) € G,¥ and hence by Theorem 3.2
one has (6.8.7), where I, = i, , h; = by, and n, = n,() . But for any
de G,Y one has B,(d) = nyy. Thus B,(exp ty) = n;y. But then (6.8.8) follows
from (6.8.9) and (6.8.3). QED.

Remark 6.8. The solution to the generalized Toda lattice will be based
on (6.8.4) and formula (5.10.7) for h(g exp(—¢)w)*. Given the “initial condition”
y what is needed is only the “spectrum” of y, namely, w, . The “input” is w,
together with the constants (the exponential action angle coordinates of the
initial condition y) g,” for v € A. This, however, is determined from (5.5.25).
That is, one easily determines n(g) inductively by the relation n(g)w = y.
See, e.g., (7.8.25). But then (5.5.25) yields g} and hence g,” for any ve /.
One notes (see (3.7.4)) that y itself has A(g)~* are coordinates so that h(g)™
is known in (5.5.25). Also we remark that n(g) is naturally determined by y.
That is, one has

n(g) Aidw) w, =y (6.8.10)

and one sees easily from the injectivity of (2.4.5) that n(g) and #,(w) are the
unique elements # € N and #€ N such that a#iw, = y. Finally it is then to be
noted that # depends only on the isospectral leaf containing y whereas n depends
on the “action angle” coordinates of y.

7. DENOUEMENT; THE FORMULA FOR gy(x(2))

7.1. Let (R%*, w) be the classical 2n-dimensional phase space. That is,
one has linear (canonical) coordinates p;, ¢; € C*(R?"), 7,j = 1,..., n, and the
symplectic structure is given by

n

w =Y dp;Adg;. (7.L.1)

i=1
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One easily sees that if H € C<(R®") then the corresponding Hamiltonian vector
field £, (see (6.1.1)) is given explicitly by

L 9H ¢ oH @

én =),

= 04, Op; op; og;

(7.1.2)

Now recall certain aspects of the Hamilton—Jacobi theory. We envision a
mechanical system consisting of n particles moving on a line. The space R*®
is the set of all classical states, p; and g, are respectively the momentum and
position of the ith particle and H = H(p; ,..., Pu » G1 5> €n) € C°(R3) is the
total energy of the system. Assume £ is globally integrable so that one has
the action on R2" of the one-parameter group exp t{, of symplectic diffeo-
morphisms where if § € C*(R?**) and 2z € R?* then

[, HI(z) = —(xd)(?) (7.1.3)

= T?t_ Plexp t&y * 2) |, -

That is, the map t — z(t) = exp tfy4 - 2 is a trajectory of —£y . In physical
terms z(¢) is the state the mechanical system would occupy at time ¢ if it occupied
the state z at time £ = 0. Now it is immediate from (6.1.1) and (7.1.1) that

0 17
7y and §pi = — e

b, = (7.1.4)

Now also regard p, and g, , respectively, as the functions £ — p,(2(2)), t — ¢,(=(¢),
of ¢. It then follows from (7.1.3), recognizing that [, H] is also £,H, that

%g(z(t» - "Zqi (a(0) = — -2t (7.1.5)

These relations are of course just Hamilton’s equations.

Now let m; be the mass of the ith particle. We assume that H takes the usual
form as the sum of the kinetic and potential energies. That is, where V' € C=(R2?)
depends only on the g, (i.e., &V/0p, = 0), we assume that

2
Py, (7.1.6)

H= 2m;

‘M

i=1

It follows then from (7.1.6) that

(1)) = my ‘fl“’;’ (7.1.7)
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so that the trajectory z(¢) is very simply determined as soon as one knows
the velocities dg;/dt.

Now let # C C=([R?") be the (2n + 1)-dimensional space of functions spanned
by the p,, ¢;, and the constant function 1. One defines an alternating bilinear
form B, on # by the relation

[r, 5] = B(r, 5)1 (7.1.8)

for 7, s € #. Let #, 2 C & be respectively the n-dimensional subspaces spanned
by the p; and g; . It is clear that & and 2 are totally singular subspaces which,
however, are non-singularly paired with respect to B, . In fact one readily has

B.(g:, ;) = 8 - (7.1.9)

We now assume that the potential function ¥V takes a certain special form.
Let ] < n and assume that ; € 2, ¢ = 1,..., /, are linearly independent. That is,
there exists an [ X n matrix 4 = (a;) of rank [ such that

di =Y ayg, i=Ll..,L (7.1.10)
je=1

Let r;e R*, i = 1,..., ], be some positive constants. We assume that V =
>, r;e% so that the Hamiltonian H has the form

_y 2 S
H = 1-2221 o + Z& 7%, (7.1.11)

Let z e R2 be arbitrary. We will consider the question of determining the
trajectory z(¢) = exp £y * = when the ; satisfy a certain property—to be
stated below.

Now [g, H] is contained in & for any ge 2. In fact [g;, H] = p;/m; by
(7.1.9) and hence

ﬁ]ﬁ.@ﬁy

is a linear isomorphism where By(q) = [¢, H]. One then defines a bilinear
form By on 2 by putting

Bu(g, ¢') = Bu(g, Buq')- (7.1.12)
That is,

Byu(g, )1 = (g, l9 H}- (7.1.13)
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It is clear then that By is symmetric and positive definite. In fact one easily has

By(g; 5 ¢5) = 8i5/m; . (7.1.14)

Now let 2, C 2 be the l-dimensional subspace spanned by the i, and put
P, = By2, . Since By is an isomorphism one has dim %, = /. Furthermore
since By is positive definite it follows from (7.1.12) that 2, and &, are non-
singularly paired by B,, . It follows that there exist uniquely p; € 2, ,i = 1,..., ],
such that B,(y;, p;) = 8;;. Thus if we define ¢; €%, i = 1,..., ], by putting

9 = ¥ + log ;1 (7.1.15)

then for 4,5 = 1,...,1

[4: 7] = 851 (7.1.16)

Now let 2, be the orthocomplement of 2, in 2 with respect to By and put
P, = By2; . Obviously one has the direct sum

P =P, P, (7.1.17)

Now let ¢;, i = [+ 1,...,n, be a By orthonormal basis of 2,. Again, &, is
non-singularly paired to 2, by B, and hence there exist uniquely p; e Z,,
i = I+ 1,..., n, such that [g;, p;] = 8;;1. But now clearly &, and 2, are each
other’s orthocomplements with respect to B, . By symmetry the same statement
is true for #, and 4, . Thus p;, q;, 1,j = 1,...,n, is a coordinate system in
R2» and

[4 n
w=2Y dpindg,+ ¥ dp)ndg. (7.1.18)

i=1 J=l+1
Now the symmetric / X I matrix B = (b};) defined by
biy = Bu(s , ;) (7.1.19)

will play an important role for us, We first observe

ProrosiTioN 7.1. Let H be the Hamiltonian given by (7.1.11). Then with
respect to the coordinates p; s 4i s 5] = 1,..., n, one has

(7.1.20)
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where
! L,
Hy=1% Y bypip;+ Y €™ (7.1.21)
i,=1 i=1
Proof. Obviously e%: = r,e%, i = 1,..., I. It suffices then to prove that if
11 n "2
K=1% 3% bpip;+ &) (7.1.22)
%=1 i=1+1 2

then X is the kinetic energy in (7.1.11). Since both K and the kinetic energy
are in the symmetric subspace S¥ ) it suffices to show that By = By, where
By is the symmetric bilinedr form on 2 given by Bg(g, ¢)1 = [g, [¢', K]].
But now evidently By(y;, ¥;) = b;, = By(;, ;) by (7.1.15) and (7.1.16).
Thus By and By agree on 2, . Also 2, and 2, are By orthogonal and g¢;,
i =1+ 1,..., n, are By orthonormal. Thus By = By . Q.E.D.

7.2. Now put Z' = R# and let p;, ¢;€ C=(Z’), where i,j = 1,..., [,
be a linear coordinate system. Then (Z’, w;) is just 2! phase space with the
p; and ¢; as canonical coordinates if we put

1
wy =Y dp} A dy. (7.2.1)

i=1

Now let I; € C*(Z’) be the function defined by putting

l ’
L=} Y bipip;+ Y & (722)

[4
tj=1 i=1
where b}, is given by (7.1.18). Also let
8: RE" — Z' (7.2.3)

be the unique smooth map such that p;o8 = p; and ;08 =¢q;, 7 = 1,..., L.
Finally let

Iy?—2, (7.2.4)

be the projection defined by (7.1.17) so that &, = Ker I';.

Now, recalling the notation of Section 6.1, {4 and &, are respectively the
Hamiltonian vector fields on R?** and Z’ corresponding to the functions H e
C>(R2") and I; € C*(Z’). We recall also that A4 is the I X n matrix (a;;) defined
in (7.1.10). In addition one notes that since the i; are linearly independent
the / X I matrix B defined by (7.1.19) is invertible and hence if A* is the
transpose of 4 then A*B-1is an n X I matrix.
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ProrositioN 7.2. Let H be the Hamiltonian function on R*® given by (7.1.11)
and let I.e C2(Z') be given by (1.2.2). Then &y is globally integrable on R*"
in case &y is globally integrable on Z'. Furthermore in such a case if x € R* is an
arbitrary initial point and, for notational convenience, we put q,(t) = q;(exp t&y - ),
J = 1,..,n, then

a(t) — ¢/(0) = ’(ct+ Y (4B i) — i), (12:)

where ¢; 1s the constant (I'yp;)(x) (see (7.2.4)) and letting y' € Z' be defined by
Sx =y’ (see (7.2.3)) one defines qi(t) by putting qi(t) = gilexp téy; - ¥').

Proof. Assume &, is globally integrable. Let y(f) = exp £y 3" and let
R—R*, t— x(f) be the curve in R defined by the relation pix()) =
P ¥(), gi(x(1)) = @i 3(), ¢ = L1,..., ], pifa(t) = pi(x), and gi(x(t)) = gu(%),

= [+ 1,...,, n. But now recalling (7.2.3), (7.1.21), and (7.2.2), one obviously
has I; 0 8 = H, . But since Hamilton’s equations are satisfied for the function
I along the curve y(t) with respect to the @; and p; it follows immediately
that Hamilton’s equations are satisfied for the function H, € C~(R?®*") along

the curve x(¢) with respect to the p; and g¢; . It follows then that §H1 is globally
integrable and

x(t) = exp téy, * x. (7.2.6)

Now let H, =Y}, +1 ((P1)?2). It is obvious that £y, is globally integrable
where pi{exp thy, - %) = pix), i =1,...,n, giexp z‘f,, %) = gix) for i <!
and gj(exp téy, x) = qi(x) + tpi(x), i =1+ 1,..., But H — H, + H, and
clearly [H,, Hz] = 0. Thus the vector fields £y, and £y, commute and since
€y = &y + sz it follows, as one knows, that fH is globally integrable where

exp thy + ¥ = exp ty, * (exp thy, - %) (72.7)

Now for any fe C=(R?) and te R put f(t) = f(exp téy - x). From (7.1.7)
one then clearly has the integral

00— 4/0) = 5 [ p6) e (7.2.8)

m;

Now for any p e @, one has [p, ;] = 0,7 = 1,..., [, since Z, is B, orthogonal
to 2, . Thus clearly [H, p] = £, p = 0. Thus p(¢) is a constant function of .
But I',p; €, . Hence

| T i = 2, (129)

3

where ¢; = (Iyp;)(x).

607/34/3-8
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For any ge C*(Z’) and teR let g(f) = glexp t£;; " '), where recalling
(7.2.3) one puts éx = y' € Z.

Now let Iy =1 — I'y, where I is the identity operator on & so that I7:
& — P, is the projection whose kernel is 2, . But p; = I';p; + I',p,; . Thus
to prove (7.2.5) it suffices by (7.2.8) and (7.2.9) to show that

’;1 (A*B™){@ilt) — ou(0)) = fo t (T'y25)(s) ds. (7.2.10)

Now complete the [ X »n matrix 4 to an # X n matrix (a;;), where for 7 > !
one defines a;; by the relation Y, a;,4; = ¢; . Now recalling (7.1.18) one then
easily has (taking the transpose with respect to B,) the relation

n

Y @it = p; (7.2.11)
im1
for all 1 <7 < n. But now I';p; = 0 for i > l and I',p; = p; for i < I. Thus
applying I to both sides of (7.2.11) one just replaces # by /. That is,

1

Y ayp; = I'yp;. (7.2.12)

i=1

Now let i, , i = 1,..., [, be the basis of %, defined by putting p; = B4(¥;) =
[#:, H] = [g; , H]. Thus p; = —£gq; . But now, recalling the first paragraph
in this proof, one has ¢;(f) = @;(¢). Thus

(0 — 910 = | " ils) d. (72.13)

But now the p; and p;, where 7, = 1,..., ], are both bases of #, . We assert
that

1
;= Z b;p; - (7.2.14)
=1

Indeed if s;; is defined by the relation pu; ==Y ;s;;p; then B,(;, ;) = s
since B,(;, p;) = 8;;. However, p; = Byb;. Thus s;; = B(d;, Buths) =
By(; , ;) = b;; . This proves (7.2.14). But then since B is the [ X [ matrix
(bi;) one has p; = - (B4 ps, - Substituting in (7.2.12) one then has

J
Y (A*B N = Tip; . (7.2.15)
k=1

But now evaluating both sides along the curve exp séy - x and integrating
from O to ¢ one obtains (7.2.10) from (7.2.13). Q.E.D.
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7.3, We now recall the definition of a Cartan matrix. (The definition
will be made for the semi-simple and not just for the simple case.) See [11,
Chap. 11] for more details. We remark first that the Cartan matrices classify
the complex semi-simple Lie algebras or the compact semi-simple Lie algebra
or, as we shall take it here, the real split semi-simple Lie algebras. Assume
that g is a real semi-simple Lie algebra, say, of rank /, which admits a Cartan
subalgebra 4 C g such that the eigenvalues of ad x are real for all x € 4. Then
# is a real split semi-simple Lie algebra and / is a split Cartan subalgebra.
This in fact has been our assumption in earlier sections. Let 4’ be the dual
space to 4 and let (i, v) be a Weyl group invariant positive definite inner product
on /. Let a;€ /%', i = 1,..., I, be the set of simple positive roots relative to
some lexicographical ordering in #’. Then the / X / matrix C defined by

C,y = 2o2%) (7.3.1)
(ai > 0‘J')

is called a Cartan matrix. One knows that the matrix is independent of the
bilinear form (as long as it is Weyl group invariant) and the entries Cy; are
integers. Furthermore the matrix completely determines the structure of 4.
Now assume that V is some finite-dimensional real vector space with a positive
definite inner product P. Let v ,.., v;€ V' be linearly independent vectors.
Then if 2P(v; , v;)/P(v; , v;) = Cj; is a Cartan matrix there thus exist uniquely
up to isomorphism a split semi-simple Lie algebra ¢ of rank /, a split Cartan
subalgebra 4, and simple roots «; such that one has C;; = Cj; . Also if C}; is
a Cartan matrix one may introduce a diagram, the Dynkin diagram, to describe
the angles and relative lengths of the vectors v; . The Dynkin diagram is based
on the fact that if v; and v; are not orthogonal and P(v;, v;) > P(v;, v;) then

P(v;, v)[P(v;,v;) = 1,2, 0r3 (7.3.2)

and accordingly the angle between v, and v; is 120, 135, or 150°. (See, e.g., [5].)
With regard to terminology in this paper, where the situation is warranted
we will either say that C;; is a Cartan matrix or that v;, i = 1,..., [, defines
a Dynkin diagram. In either case we will refer to ¢, #, and the «; as a corre-
sponding split semi-simple Lie algebra, a split Cartan subalgebra, and a set
of simple positive roots.

We recall in Section 1.2 we permitted some flexibility in the definition of
the invariant bilinear form () on 4. This may now be normalized according
to P. As usual Q is “carried” over to #' using the isomorphism # — /" defined
by Q| 4.

ProposITION 7.3. Assume that v, ,..., v, € V defines a Dynkin diagram with
respect to some positive definite inner product P on V. Let g, £, and o; ...,
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be a corresponding split semi-simple Lie algebra, a Cartan subalgebra, and a set
of simple positive roots. Then there exists a unique invariant bilinear form Q on ¢
which on each simple component of 4 is a positive multiple of the Killing form such
that

O , oy) = P(vi » U3) (7.3.3)
Jor i,j =1,..,1L

Proof. Recalling the notion of connectedness of a Dynkin diagram (or
Coxeter graphs—see, e.g., Section 11.3 in [11]) one notes from (7.3.2) that the
ratios 7;; = P(v; , v;)/P(v; , v;) are uniquely determined in case a; and o; are
in the same connected component. In such a case one then clearly has r,; =
O(o , o)/ O(as , o) for any choice of Q. However, as one knows, the connected
components of the diagram correspond to the simple components of 4. We
may thus uniquely normalize Q so that (v, o;) = P(o;, o;) for any 7. One
notes here that replacing Q on a simple component of ¢ by a positive multiple
AQ is equivalent to replacing O on the corresponding subspace of 4’ by the
positive multiple Q/A.

One then has (7.3.3) from the equality C;; = 20(e; , o;)/O(e;, o). Q.E.D.

7.4. Now returning to the Hamiltonian H of (7.1.11) we now assume
that the ¢, € 2, i = 1,..., ], define a2 Dynkin diagram with respect to By .
Before proceeding we will give some examples where this is the case.

(1) I =mn—1.Allthemassesareequalandyy; = ¢; — ¢,y ,¢ = 1,.., 2 — 1.
Then H is the Hamiltonian of the usual nonperiodic Toda lattice. The potential
here is that of “nearest-neighbor” particle interaction. The Dynkin diagram
is that of 4, ,, using standard notation so that 4 can be taken to be the Lie
algebra of Sl(n, R) and # is the space of traceless real diagonal matrices.

(2) ! =mn. All the masses are equal and ¢; = ¢, — ¢;4;, 1 = 1,...,n — 1,
But , = ¢, . The potential is similar to the one above except that the last
particle may also be regarded as interacting with a fixed mass. The Dynkin
diagram is of B, so that ¢ is the Lie algebra of SO(n, n 4- 1).

(3) Similar to (2) except that i, = 2¢g,, . The last particle interacts even
more strongly with a fixed mass. Hence the Dynkin diagram is that of C,
and g is the Lie algebra of the symplectic group Sp(2#, R). In Section 7.8
we will apply Theorem 7.5 below to solve the three-body problem (the case
n = 3 here) given by

3 2
H= Zl __1’21 4ol | g s (7.4.1)

(4) 1 =mn. All the masses are equal. The case is that of (1) except that in



TODA LATTICE AND REPRESENTATION THEORY 309

addition , = ¢,_; + ¢, . Thus the potential is similar to (1) except that the
center of mass of the last two patticles interacts with a fixed mass. Here the
Dynkin diagram is that of D, and 4 can be taken to be the Lie algebra of SO(n, n).

We wish to emphasize that there are of course an infinite number of different
dynamical systems which correspond to the same Dynkin diagram. In (1)-(4)
above we have just given one system for each of the classical Lie algebras.
A particularly interesting Dynkin diagram is that of D, . The diagram is

N (7.4.2)

and as the figure somewhat suggests one may give a system (different from
that in (4) above) where I = n =4, so that there are four particles, three
of which are interacting with a fixed body and whose center of gravity is
interacting with the fourth particle. The Hamiltonian is

H= _}i ——1’2"2 6 % B P2, (7.4.3)

Remark 74.1. For a classical Lie algebra one may solve the system by
considering the usual Toda lattice for a larger number of variables. This is
no longer true for the exceptional Lie algebras F,, E,, E,, and E;. In these
cases if 7€ g is a Jacobi element there is no representation 7 such that 7(z)
is a Jacobi operator in the usual sense, as one may show. An example of a
dynamical system corresponding to F, is the four-body problem given by

4 2
H=Y _L’Z‘ e g | gtz (7.4.4)
Among all the others then Theorem 7.5 below will thus describe the trajectories
of the systems (7.4.3) and (7.4.4) (in terms of the four fundamental representa-
tions of D, and F,, respectively).

Remark 7.4.2. Even though our assumption concerning the ¢’s is very
special we wish to note that there is some latitude in satisfying the assumption.
Namely, given the i; one varies the inner product By within an n-dimensional
variety of such inner products by varying the masses m; . This raises the possi-
bility of satisfying the assumption for a certain choice of the masses m; . More
precisely recalling that ;; = By(f; , ¥;) our assumption about the i; is that
C’ should be a Cartan matrix where C;; = b;;/b;; . This is of course just a
statement about the matrix B where, as in Proposition 7.2, B = (b;;). Thus
given the i, , that is, given the / X » matrix 4 (see (7.1.10)) the following
proposition describes how B varies with the masses m; .

ProrosiTion 7.4.1. Let A be respectively the | X n matrix defined as in
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(7.1.10) and let A* be the transpose of A. Let M be the n X n diagonal matrix
where M;; = 1/m; and let B, as in Proposition 7.2, be the 1 x 1 matrix defined
by putting B;; = By(; , ;). Then

B = AMA*. (7.4.5)

Proof. One has for i,j = 1,..., ],

Bufs ) = Ba ( z ot 3 a,-sqs). (7.4.6)

But then (7.4.5) follows from the relation By(q, , g;) = 8,5/m, . See (7.1.14).
Q.E.D.

Now let g, #, and «;, ¢ = 1,..., ], correspond to the Dynkin diagram of
the ;. Thus 4 is real split semi-simple Lie algebra, # is a split Cartan sub-
algebra, and «, € 4’ are the simple roots for a fixed system 4_ of positive roots
relative to (g, #). We use the notation and results of Sections 6 and 7.1.3. By
Proposition 7.3 we may fix the bilinear form 0 in g so that

oy 5 ;) = By(hs , ¥5) (7.4.7)

for i,j = 1,..., I. That is, recalling (6.5.1) and (7.1.19) one has b;; = b;; and
hence the matrix B = (;,) is just given by B = (b;;) = (Q(x; , o).

Now recall (see Sections 6.3 and 6.4) that (Z, w) is a 2/-dimensional symplectic
manifold where Z C 4 is the manifold of normalized Jacobi elements on ¢
and wy is defined in Section 6.4. We recall also (see Proposition 6.5) that p, , ;,
7,§ = 1,..., I, are a global coordinate system on Z and w, is explicitly given
by (6.5.4). In addition we recall that the restriction I, | Z of the fundamental
invariant I; € S(4) is given by (6.5.5). See (6.5.2).

Now let (Z', wyz'), p; » @, , and I; be as in Section 7.2.

ProposiTION 7.4.2. There exists a unique symplectic isomorphism
AR A (7.4.8)

of (Z', wz") and (Z, wz) such that p;o o = p;, ;o0 = ;. Moreover one has
Loo=1.

Proof. Since b;; = b;; this is immediate from a comparison of (7.2.1) and
(7.2.2) with (6.8.1) and (6.8.2). Q.ED.

Now let. A, B, and M be respectively the I X n, I X I, and n X n matrices
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defined, say, as in (7.1.10), (7.1.19), and Proposition 7.4.1. Obviously B is
invertible (since the i; are linearly independent). Put

D = B1AM. (7.4.9)
Proposrrion 7.4.3. The l X n matrix D is characterized by the properties (1)
DA* =1,, (7.4.10)

where 1, is the | X 1 identity matrix and (2) A*D is the transpose of the n X n
matrix corresponding to the projection I';: P — P, , relative to the basis p; of P.
That is, if I'y: P — P, is the complementary projection, as in (7.2.4), then for
J=1.,n

pi— Y (A*D)p pr = Ip; . (7.4.11)

k=1

Proof. One has (7.4.10) immediately from (7.4.5). Now recall (7.1.10).
We recall also (see the proof of Proposition 7.2) that yu;, = [, H] =

[Zf:l s H] But [qr ’ H] = Pr/mr . Thus

2

m,

g = Y. @y (7.4.12)

r=1
Now substituting (7.4.12) in (7.2.15) one has I} p;, = 3,_, (4*B1AM),, p, .
But B-14AM = D. This proves (7.4.11). Since 4*D is then given the I X n

matrix D is uniquely characterized, as one knows, from the additional relation
DA* =1,. Q.E.D.

Now Proposition 7.2 enables us now to put into effect Theorem 6.8.1 to
assert that £y is globally integrable and to determine the trajectory exp té, - x
for any x in phase space R?*. What of course is needed is the Jacobi element
(see (7.4.8)) o8x = y e Z. This plays a critical role in more than one way.
One notes that the corresponding trajectory in Z is a curve on the isospectral
leaf Z(y) C Z, where y == .#(y). (See (6.8.3) and (3.6.2).) The following gives
an explicit formula for y in terms of the position ¢;(x) and momentum p,(x)
coordinates of x.

ProposiTiON 7.4.1. Let x€R?" and let ZC 4 be as in (2.2.3) and (2.2.4)
the space of normalized Jacobi elements. Let 8: R*™ — Z' and let 6: Z' — Z be
defined as in (7.2.3) and (7.4.8), respectively. Put y = odx. Let h;€ /4 be the
basts of % defined as in (6.4.1) and let f€ 4 be as in (1.5.4). Let ¢, , 1 = 1,..., ],
be the simple positive root vectors defined as tn Section 1.5 and let p; , @; , ,§ =
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1,..., I, be the coordinate system on Z defined as in Proposition 6.5 so that y can be
written

z 1
y=f+Y pNhi+ Y e, (1.4.13)
i=1 j=1

Then if A = (a;;) and D = (d;;) are the 1 X n matrices defined by (7.1.10)
and (7.4.9), respectively, and r; is defined as in (7.1.11) one has

n

o(y) = Y anqi(x) + logr; (7.4.14)
k=1
and
Pi(y) - 21 d,ikpk(x). (7.4-15)
=

Proof. Recalling (7.2.3) and (7.4.8) one has ;¢ 08 = g; so that ¢;(y) =
gi(*). But ¢; = ¢; + log7; . The formula (7.4.14) then follows from (7.1.10).
Now by (7.2.3) and (7.4.8) one has p; = p; 0 08. Thus p;(x) = p,(y). But
now by (7.2.14) one has p; = Z£=1 (B™Y);1 . - Recalling (7.4.12) one then has
Py = Tra dinpy since D = B-1AM. This proves 7.4.15. QE.D.

7.5. Now recalling Section 3.3 let £, C # be the open Weyl chamber
defined as in (3.3.1) and let H be the Cartan subgroup of G = Ad g corre-
sponding to 4. Also let DC 4’ be defined in (5.1.5) so that D parametrizes
the equivalence classes of the finite-dimensional irreducible holomorphic
representations of y&; or G¢*. We recall that m, , for A€ D, is a representation
corresponding to A. See (5.1.7). Now let v, e D, k = 1,..., ], be defined as in
Section 5.1 so that D =3 Z.» . See (5.1.6). The representations =, ,
k = 1,..., ], are called the fundamental representations of g¢ or G¢*. We will
write m; for m, , and in much of the earlier notation we will replace A by k
when A = v, e D.

Let g,e H and w,e #,. For any Ae D and te€ R we defined the function
D,(g,, w, ; £) in Section 5.10. See (5.10.6). We write Dy(g, , w, ; ¢) for this
function when A = v, . If 44 C 4’ is the set of weights of the fundamental
representation m, then by (5.10.6)

Bilgo, w5 1) = (=1 T nwr) g'e 0, (7:5.1)
ved®
where 7, is the rational function of w, given by

€,k
4 Wy) = ’ » 7.5.2
() seFE(p) Pa(vk-v)(s» w,) ( )
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where FH*(v) = FNv) for A = v, and FXv) is defined in (5.10.1). Also,
€,k = Cs,, , Where the latter is defined by (5.9.3). Furthermore . (s, »,)
is defined in (5.10.2). See also (5.10.3). The expression o(u) is defined in
(5.5.28). For later use we put % = % when A = v, and ¥ is defined in
Section 5.9.

Now as in (7.3.1) let C be the Cartan matrix defined by C,; = 20(«; , «;)/
Qo , o). If Ris the I X I diagonal matrix defined by putting R;; = 2/Q(«; , o;)
one has

C = BR, (1.5.3)

recalling (7.1.19). But also recalling (see Section 5.1) the definition of the
highest weights », of the fundamental representations one notes that the matrix

expressing the simple roots «; in terms of the vy is just the Cartan matrix.
That is,

o =Y Cyyy (7.5.4)
since 20(v; , o)/ Xy , o) = 85 .

Remark 7.5.1. With regard to formula (7.5.2) one first of all has *(v) C &%,
The Cartan matrix C (or rather C-!) which plays a critical role in describing
the geometry of the i, in our Hamiltonian H also may be used to describe
the set ¥ of sequences

s = (11 ’ i2 3seey ia(vk-—ka))) (7-5.5)

where 1 <4 <! and, if d = o(v; — wvy), Zjﬁl oy = v, — k. In fact
inverting (7.5.4) one has v;, =Y (C-1);; o; . But —«uy is again a simple positive
root and if 1 < j < /is defined by

ay = —xoy (7.5.6)
one has
1
ve — 1 = 3 ((C s+ (C V) ;. (7.5.7)
i=1

Thus (C),; + (C-Y),; is a nonnegative integer and

o(ve — rvy) = z (C Vs + (C Vs - (7.5.8)

j=1

Also,

dok— e — ot 7.59
I, (€, + &) (7:59)
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In fact &% is the set of all sequences s such that any 1 < j < occurs (C1); +
(C )y, times in s.

The following theorem is one of the main results of the paper. It determines
the trajectories of the Hamiltonian vector field £ . In the theorem which
follows the next theorem we give the expression for the asymptotic, or scattering,
behavior of the system. First, however, we introduce certain constants. Recalling
Proposition 7.4.3 let E be the n X # projection matrix defined by putting
E = A*D. It reduces to the identity if / = n. By Proposition 7.4.3, E may
be given, in general, by

Iipi=Y Eyp;, i=l.,n (7:5.10)

i=1

For any xe R and { = 1,...,m let

00) = 9469~ 5= 3, Eama) (@.511)
and
Px) = pilx) — é E;; pi{x). (7.5.12)
Also, where r; > 0, j = 1,..., ], are the coefficients occurring in (7.1.11) let
b, = —i (4*BY),; logr,, (7.5.13)
i1

using the notation of Proposition 7.4.1, for ¢ = 1,..., n.

Remark 7.5.2. One notes that §;(x) and p,(x) vanish if [ = n. Also,
by =0 ifall r,=1 (7.5.14)
as in the usual Toda lattice and in the examples of Section 7.4.
TueorEM 7.5. Let (R*", w) be a classical phase space with canonical coordinates

Pisq; € Co(Re), i,j = 1,...,n. Let He C=(R*") be a Hamiltonian function of
the form

n 2
H — 2 P] _+__ rle'bl + oo + rle‘l’l, (7.5-15)

=1 2m;

where (the massesy m; > 0,7, > 0, and 1 < n,

n

b=, @i, i=1.,1 (7.5.16)

=1
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are linearly independent linear combinations of the q;'s which define a Dynkin
diagram with respect to the bilinear form By given by (7.1.12). See (7.1.13) and
(7.1.14). Then there exist, uniquely up to isomorphism, a real split semi-simple
Lie algebra g of rank I, a split Cartan subalgebra %, simple positive roots oy ..., o
in the dual /', a nonsmgular invariant bilinear form Q on 4 and correspondingly
on £ such that

By(s, ) = O, o). (7.5.17)

Let /i C /i be the open Weyl chamber corresponding to the «; . Let G be the adjoint
group of g and let HC G be the subgroup corresponding to 7.

Now let ¢y be the Hamiltonian vector field on R corresponding to the Hamil-
tonian function H. See (7.1.2). Then &y is globally integrable on R*". Let x € R*"
be arbitrary and let x(t) = exp £y - x be the trajectory of £y, where x(0) = x.
In particular then qx(t)) is the position of the ith particle at time t when the
imitial state of the system is (qy(x),..., @u(%), Ps(*)ye.., Pu(%)). Let y € 4 be the
normalized Jacobi element defined by (7.4.13)~(7.4.15) and let (g, , w,) € H X 4,
be the “parameters” corresponding to v in the sense of Section 3.7. That is, w, € 4,
(the “‘diagonal” representation of y) is defined by the relation SF(w,) = ()
(see (2.3.1)) and g,e H is defined so that p(g) = g,, where g€ G,” satisfies
Buwy(g) = ¥, using the notation of Theorem 3.6. Then if ®(g,,w, ;1) is the
finite sum of expomentials defined by (7.5.1) (and hence given in terms of the
fundamental representation of gc) one has for i = 1,...,n

4ix(t) = 4(x) +miz_(bi LA — }: S log B, m)),

(7.5.18)
where m; is given in (7.5.15), ay; is given in (7.5.16) and §{x), p(x), and b, are
given respectively by (7.5.11), (7.5.12), and (7.5.13).

Proof. Recalling the notation and statement of Theorem 6.8.1 the Hamil-
tonian vector field £ on Z corresponding to I, | Z is globally integrable. Further-
more if, for notational convenience, ¢,(f) = @i (exp ¢£ - ¥) then, by (6.8.4),

x(t) = log h(g exp(—t)w)™, (7.5.19)

where, as usual, w = f + w, . But then by Proposition 7.4.2 the Hamiltonian
vector field {;; on Z'is globally mtegrable and if one puts ¢;(f) = pi(exp téy -y,
where éx = y’, one has

Pi(t) = ei(t), (7.5.20)

where we choose 3 = oy’. One notes also that, by Proposition 7.4.4, y is given
by (7.4.13)~(7.4.15). But now &, is globally integrable by Proposition 7.2
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and we may apply (7.2.5) to determine g,(t), which we have, more properly,
written here as g,(%(£)). But now by (7.1.15), ¢1(0) = gi(*) = Pu(x) + log 7y,
recalling the definition (see (7.2.3)) of 8. But ¢ = 3, ; a,;. Thus for
s =1,.,1

;;1 (B s oi(0) = i (B4),; 4x) + k);l (B~ log 7

=1

(7.5.21)
n 1
= Z Dy miq(x) + Z (B ), log 7y,
j=1

k=1

since one has D = B-1AM and hence B-14 = DML, See (7.4.9). But then
for i = 1,...,m, since E = A*D, one has, by (7.5.13) upon applying 4* to
(1.5.21),

i n
P! *B N ei(0) = 2 E;myqx) —b;.
k=1 i=1
But ¢,(t) equals g,(x) for ¢ = 0 and hence by (7.2.5) and (7.5.11) one has
1 ! _ ,
gt) = 3(x) + -— (c,-t +b,+ Y (4*B M)y tpk(t)), (7.5.22)

k=1

where ¢; = (I'yp;)(x). But then by (7.5.10) and (7.5.12)
¢; = pi(%). (7.5.23)

Now ¢j(t) = log h(g exp(—t)w)~* for j = 1,..., ], by (7.5.19) and (7.5.20) and
hence for £ = 1,..., 1

4 4
% (B ilt) = 3, (B log hlg exp(—ta) ™. (7.5.24)

But B! = RC-! by (7.5.3) and hence St (B Y o = 20O, ) by
(7.5.4). But then if we put (B-1);; in the exponential on the right side of (7.5.24)
one has

% (B 9i0) = — gy 08 e expl—t)e)

2
= — —————log Py(g,, w,; t
Doy o) (08 Prlgor 03 0)
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by (5.10.7) for A = v;, . Hence applying A* one has for i = 1,...,n

!
2 (A*B7);; i) = Z 7 log Pulgo o 1) (7:5.25)
= Q(aka %)

The result (7.5.18) then follows from (7.5.22) and (7.5.23), recalling that

9:(t) = gi(x(2))- QE.D.

Remark 7.5.3. One notes that knowing the ¢;(%(t)) determines the entire
trajectory x(¢) in R**. This is clear from Hamilton’s equations, (7.1.5), which
for the case at hand asserts that

2As(0) = me (5 (),

7.6. We now determine the asymptotic behavior of ¢,(x(¢)) as t — + oo
and — 0. Since g¢,(x(t)), by (7.5.18), is linear in ¢ plus the log of a finite sum
of exponentials it follows easily that g,(x(?)) is asymptotic to straight lines
as t — 400, We wish to determine both of these straight lines.

For any i = 1,..., n let u,~ € 4’ be the linear form on the Cartan subalgebra 4
defined by

l

K22 e (760

and put p;7 = wp,~, where «, as usual, is the element of the Weyl group which
interchanges the positive and negative roots. Now let x € R?* and let w, € /£,
be as in Theorem 7.5. Put

0 (8) = o (Bi) + ity ) (7.62)

and
o (x) = —,}l— (Bix) + <> ). (7.6.3)

Also let d(w) be the element of the Cartan subgroup H defined in (5.5.2).
It depends only on the isospectral leaf Z(y) C Z containing y = ¢dx. As usual
w = w, + f. Also, y = F(). For i = 1,...,n and where g, € H is defined as
in Theorem 7.5 put

() = 88) + 5 (0 + log((g5* d@)) (7.6.4)

and

() = ) + 5 (b + log((g5" d(@ ). (7.6.5)
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Remark 7.6. Recall that gi* and d(w)* are given in more explicit terms

by (5.5.25) and (5.5.4). With regard to (5.5.25) one uses (3.7.4) to determine
h(g)". On the other hand note that, by (7.6.1),

log((g5" d(w) ') ) = —2 2 Q(a oy Uos(er?) + log(d(w)™)).

(7.6.6)
On the other hand if 1 < & < ! is defined by (7.5.6) then
log((g; d(w)"") = Z (—log(gs") + log(d(w)*))
Q("‘k %) (7.6.7)

since O(ay, , o) = O(og , o) and hence —wy, = vg .

The point is of course that the two asymptotic lines are v;+(x)t + #;*(x)
and v;~(x)¢ 4+ u;~(x). They are thus given by the highest v, , and lowest weights,
kvy , of the fundamental representations of g¢ .

THEOREM 7.6. Let the notation be as in Theorem 7.5 and as in (7.6.2), (7.6.3)
and (7.6.4), (7.6.5). Then for¢ = 1,...,n

Jim (0 (=)t + () — gx(t) = 0 (7.6.8)
and
Jim (07 (x)t + () — gi(x() = 0 (7.6.9)

Proof. By (7.6.1) and (5.10.7) one has

log(h(g exp(—t)w)"' ) =2 Z Q(O‘k ) log q)k(go » Wo s )
(1.6.10)
so that by (7.5.18)

g:(x(1)) = (%) + ;llj (b; + Pi{x)t — log(h(g exp(—t)w)* )). (7.6.11)
But then if 4 = p;~ in Theorem 5.11 one easily has
9:(x(2)) — (vt (x)t + (%)) = —R. (g, %, ; 1) (7.6.12)
and

qi(x(t)) — (v (x)t + u,7(x)) = —R_(g,, w, 5 ). (7.6.13)

However, lim,,, , R.(g,,%w,;¢) = limy,_, R (g,,w,;t) =0 by Theorem

5.11. This proves (7.6.8) and (7.6.9). QE.D.
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We refer respectively to v;7(x) and v,(x) as the 400 and —oo limiting
velocities of the 7th particle when it occupies the classical state x € R?* at time
t = 0. Also (with J. Moser) under the same conditions we refer to u,1(x)
and u;(x), respectively, as the 00 and — o limiting phases of the ith particle.
Graphically plotting the position g; of the ith particle against time one has

-

v?(x)f + ui—(x)

v*i'(x)t + u'i"(x)

Of the two “parameters” (g, , ,) of y = o8x € Z (see Section 3.7) we recall
that w, € 4, picks out the isospectral leaf Z(y), y = #(y), containing y and g,
(with its action angle coordinates log g,*) picks out y in that leaf, See Theorems
3.7and 4.3.

ProPOSITION 7.6.1. Let the notation be as in Theorem 7.6.1. Then for any
x € R the difference v;*(x) — v,(x) of the limiting velocities of the ith particle
depends only on the “spectrum’ of the Jacobi element y = obx € 4. In fact one has

v (%) — (%) = Qeps™ — g, W) (7.6.14)

The phase change, on the other hand, depends upon both g, and w, . In fact recalling
that d(w) depends only on w, one has

ut(x) — u~(x) = log g ~™ 4 log d(w)* < . (7.6.15)

Proof. This is immediate from definitions (7.6.2), (7.6.3) and (7.6.4),
(7.6.5). Q.E.D.

ProrosiTioN 7.6.2. Let the notation be as in Theorem 7.6.1. Assume that
every one of the simple components of 4 is of type A,, B,, C,, Dy, Gy, F,
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E; or Eg. Then the phase change depends only on the action angle coordinates.
That s,

pit(a) — pi(%) = 2log g5 . (7.6.16)

Moreover if in addition | = n then one has a reversal of velocities. That is,
v %) = —v;(x). (7.6.17)
Proof. 1f 4 satisfies the condition as stated then one knows that « equals
minus the identity on £'. (See, e.g., Theorem 0.16 in [7, p. 335].) Thus p;~(x) =
—u;*(x). But then (7.6.15) implies (7.6.16). On the other hand if / = » then
as noted in Remark 7.5.2 one has p;(x) == 0. Thus (7.6.17) follows from
definition (7.6.2), (7.6.3). QE.D.
7.7. For the usual Toda lattice ! =n—1 and ¢; =¢q, — ¢y,
i=1,.,n— 1. Also, r;, =m; = 1, i = 1,...,n. The corresponding Dynkin
diagram is then of type 4, so that we can take g to be the space of all real z X n

matrices of trace zero and # to be the space of all diagonal matrices in 4. If
w, € £ and

w, = diag(w, , 2, ,..., Wy), where w,eR, 7>1, (7.7.1)
then we may choose the simple roots a;, i == 1,..., ], so that
oty Wy = W; — Wiy - (71.7.2)
One then has
w,e4, ifandonlyif w;, > w,, (71.1.3)
for all ¢ = 1,..., I. Also, the Weyl group element « is given by
kw, == diag(w, , Wy g s, W) (7.7.4)
One notes that (recalling that the masses m; all equal 1) By(s; , ;) = 2 so that
e, o) = 2 (7.7.5)
for the invariant bilinear form Q. It follows easily then that Q is given by
O(u, v) = truv (7.7.6)

for u, v € g, where the multiplication uv is as operators on R™.
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Now the action of 4 on R" extends to an action of g as a Lie algebra of deriva-
tions of the exterior algebra AR". The homogeneous subspace A*R" is stable
under g and as one knows, the fundamental representations = , & = 1,...,
n — 1, may be taken so that

m¢ g — End A*R» (7.7.7)

and (7.7.7) is the restriction of this action of g to A*R". The set 4* of weights
of m, is in natural correspondence with the set of all (%) subsets 1 < 7; <
iy <+ <, < nof kintegers from I to . In fact using such subsets as param-
eters, v = ¥y ..., 1) € 4%, the correspondence is given by

<V) wo> - wil + wiz + + wik (778)

for w, € 4. Now also write Ti.....i,(Wo) = 1,(%,), using the notation of (7.5.2)
so that 7;  _;(w,) is a rational function of the eigenvalues w; of w,. Now H
can be taken to be the group of all diagonal positive matrices of determinant 1.
Thus if g, e H then we can write for g; > 0,7 = 1,..., n,

g, = diag(gy ,..., gn)- (7.7.9)
We then note that for g, € H, w, € #, the function @,(g, , w, ; t) takes the form

Di(go, o5 t) =c¢ Y Tigeoit(®o) 8oy &3, €Xp(—H{wy, + -+ + w,.)),

1y <o <iggn
(7.7.10)
where ¢ = (—1)°x—), See (7.5.1).

Remark 7.7.1. Recall that P (g,,w,;t) = h(g exp(—t)w)*. For com-
putational purposes, by (7.7.7), one may then determine (g, ,w, ;) by
taking the 2 X k& principal minor of the standard representation on R* of the
element s,(x)~1 71 (w) g, exp(—1) w,(fi(w)) ! = a(t), (see (5.3.6)), that is, the
k x k principal minor of my(a(t)). The matrices m(s,(«)™*) and m(g, exp(—t) w,)
are easy to write down. The matrices m(#_,(w)) and m(7,(w)~1) are computable
from (5.8.6) and (5.8.7). In fact the matrix m(%_g(w)), using Proposition 5.8.2,
is written down in Proposition 7.7.3.

If one does use (7.7.10) to determine @,(g,, w, ; f) then first of all with
regard to the constant c.

ProrosiTioN 7.7.1. One has
o(vy, — wvy) = k{n — k) (7.7.11)

so that if n is odd then ¢ =1 for all k and if n is even then c alternates in sign
with k.

607/34/3-9
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Proof. 1t is clear from (7.7.2) and (7.7.6) that if w, € # is arbitrary and
is given by (7.7.1) then

g, Wop = Wy + Wy + 0 + Wy, (7.7.12)
Furthermore by (7.7.4) one has
— KV =V - (7.7.13)
But since w; 4+ *** -} w, == 0 one then easily has
v — wvge, W) = (W + W) — (Wygp + W+ + ). (7.7.14)

On the other hand if x, € # is defined as in Section 2.1, then, by (7.7.2),

n—1 n-3 l-n).

g (1.7.15)

x, = diag (

But o(v, — wv,) = {vy — wv;, x,>. But then by (7.7.14) and (7.7.15) one has
vy —w)y=Mm—1)4+m—3)+ "+ m—2k+1)=kn—k). QED.

Now by (1.5.2) and (7.7.6) we may clearly choose root vectors e, , e_, € ¢
so that in terms of the usual matrix units ¢;; one has, fori = 1,..,n — 1 = [,

eui = €; 441> e—-a,- = €;114 - (7.7.16)

It follows then from (1.5.1) (see Remark 1.5.1) that with regard to the Cartan
decomposition of 4 one has that £ is the Lie algebra of all n X n skew-sym-
metric matrices. The inner product (see Section 5.1) in V' = A*R", using
the notation of Section 5.1, may then be taken to be the standard inner product
on A*R?, In particular if ;€ R?, ¢ = 1,..., n, is the standard basis of R* (i.e.,
the jth coordinate of ¢; is 8;;), then the elements {¢; A - A¢;}, where 1 <<
f, < -+ <1 < n, are an orthonormal weight basis of A*R". In particular the
highest weight vector, now written ¥ = ¢, can be taken to be given as

F =€ A Agg. (7.7.17)
Recall that & for the present case is the set of all finite sequences
§ = (13 ,0re, £a), (7.7.18)
where ] <4, <l=n—1.

Lemma 7.7. Let 1 <<j < n. Then for any se€ S one has e_,e; = O unless
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either s is trivial or isof the forms = (7, j + 1, J + 2,..., i — 1), where j < i <,
in which case e_ge; = ¢; .

Proof. This is immediate from (7.7.16). Indeed by (7.7.16) e_, ¢ =0
unless 2 = 7 in which case € o€ = €1y - Q.ED.

1
Let m;; € Z, be defined so that v, — wv;, = 3, My, .

Remark 7.7.2. Note that v, — kv = v,_; — xkv,_; by (7.7.13) so that to
determine the my; one need consider only the case where k& < [#/2]. In this
case by (7.7.14) and (7.7.2) one easily has that my; =i for i <k, my,; =k
fork<i<n—kandm,,=n—ifori>=n—=F

By definition &% is the set of all s e & so that if s is given by (7.7.18) then,
by (7.7.11), d = k(r — k) and i occurs my,; times among the 7; . The definition
of 7; ...¢(w,) in (7.7.10) depends upon a sum over a subset of &*. By (7.5.2)
what is needed then, to use (7.7.10) to determine ®,(g, , w, ; t), is a knowledge
of ¢, for se F%.

ProposiTioN 7.7.2. One has ¢, = 0 or (—1)*™® for any s € S*. Further-
more for any s€ & and 1 <iy < - <ipy < nome has e_ye; A Ae =0
or there exists | < j; < -+ < J < n 5o that

e_sei A A€ =€ A A e (7.7.19)
Finally using the notation of (5.2.10) the lowest weight vector v* is given by
v = (—1)PP e A i A A, (7.7.20)

Proof. For any 1 <7 <[ note that bggs NN € = 0 unless there
exists a j such that 7 = 7; and #;,; > 2 + ¢; (putting #;,; = »# -+ 1), in which
case

é_,.€ A""‘Eij/\“'/\eiszi

—a €, At Agah T Ae, (T7.21)

1

This proves the second statement and (7.7.19) in particular. Thus if se &*
one has either e_e; A - A ¢, =0 or

e_ &g N ANE =€ AT A€, (7.7.22)

Let & be the set of all s € &* satisfying (7.7.22). But now since ©*** has unit
length it follows that v** = ae,_; A - A €, , where q is either 1 or —1. But
then by (7.7.22) one has ¢, = 0 if s¢ #% and ¢, = a if s€ % . But then
a = (—1)¥=% by (5.9.7) and (7.7.11). QED.

Remark 7.7.3. The question as to whether ¢,; = (—1)¥% or 0, ie,
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whether s € &% or not, is of course a readily resolved combinatorial question
using (7.7.21).
For the standard Toda lattice Theorem 7.5 becomes

TuroreM 7.7.1. Let the notation be as in Theorem 7.5, where | = n — 1,
$i = ¢ — Gin, and 1; = m; =1 for j = 1,...,n so that we can take g to be
the set of all real n X n matrices of trace zero, # to be the set of diagonal matrices
in g, & ..., & to be the set of simple roots given by (1.1.2), and Q equal to the
bilinear form on 4 given by (1.7.6). Then for any x in phase space R®" one has

(o) = 3 (3 @) + 1)

j=1
+ log D;_4(g,, w, ; t) — log Dy(g,, w,; t), (7.7.23)

where log Di(g,,w, ;1) =0 for 1 =0 or n and is otherwise given by taking
the log of (7.7.10).

Proof. Applying Theorem 7.5 for the present case we note first of all that
b; = 0 by (7.5.14). Next recalling (7.1.17) one easily has that 2, is the one-
dimensional space spanned by p, + -+ + p, and &, is the (n — 1)-dimensional
space of all p € # of the form p = ¥;_; ¢; p;, where Y ¢; = 0. It follows easily
that I'yp; = (1/n) 3, p; for any j. But then by (7.5.11) and (7.5.12) one has

3x) = (1/n) Tp1 ¢/x) and 5x) = (1) 5 py(x). Next recalling (7.1.10)
one has a;; = O unless j = ¢, 7 + 1, and

a;,; = 1, a; i1 = —1. (7.7.24)
The result (7.7.23) then follows from (7.5.18) and (7.7.5). Q.E.D.

We now wish to recover the results of Moser (see 4.3 in [19, p. 481]) on the
scattering of the Toda lattice.

By (7.6.1) and (7.7.24) one has
e R (7.7.25)

for i = 1,...,n — 1, where we put vy = 0. But —xv; = v,_; by (7.7.13) and
hence

mt = Ve = Vi (7.7.26)

where v, = 0.

ProposiTioN 7.7.3. Let the notation be as in Proposition 5.8.2 and above
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where w, is given by (7.7.1). Let m = {m;;} be the n X n matrix m = m(fi_{w)).
Then my; = Q for i < j, my; = 1 and for i > j one has

ey = (=)0 — gy — i) - (g — W)L (7.7.27)

Proof. Asin Lemma 7.7 let s€ % be of the form s = (7,7 + 1,...,7 — 1),
where 1 <{j << < n. For such a sequence s one clearly has

s, wo) = (w; — wia)(w; — wiss) = (w5 — wy), (7.7.28)

recalling (5.8.4) and (7.7.2). By Lemma 7.7 one has e_,; = ¢; if s is of this
form and e_,e; = 0 if s is not of this form. The result then follows immediately
from the computation. of m(7i_{(w)) ¢; using (5.8.6). Q.E.D.

Now let 8;(w,) be the product of the determinant of the 2 X & minor in
the lower left-hand corner of the matrix m with (—1)*¥"=*), That is, where m
is given by Proposition 7.7.3 put

8u(w,) = (—1Yb  det my_p.;; . (7.7.29)

2,d=1,...,k

Remark 1.7.4. One may show inductively that

Sy(t0,) — L Lissk s Z Wi (7.7.30)

T Ti<ssn, i< @i — s

The agreement of the following application of Theorem 7.7.1 with the results
of Moser in [19] on the scattering of the Toda lattice will be clarified in
Remark 7.7.5.

Tueorem 7.7.2. Let the notation be as in Theorem 7.6 and as above. Thus
for any point x in phase space v;¥(x)t + u;*(x) and v,~(x)t + u,~(x) respectively,
are the asymptotic lines of the position curve (t, g;(x(t)), as t — 400 and t —~ — o0,
of the ith particle in the standard Toda lattice when the system occupies x at t = 0.
Then if w, is defined as in Theorem 7.5 (so that w, picks out the isospectral leaf
of the Jacobi matrix y = o8x) and is described as a diagonal matrix by (7.7.1)
one has, in terms of the etgenvalues of w, ,

D) = Dpa s + 5 (7.7.31)

and

v (%) = w; + p(), (7.7.32)
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where p(x) = (1/n) 3, p*). In particular then
Ve (%) = Upyq (). (7.7.33)

Furthermore the phase difference u; , ; — u,~ also depends only on w,. In
Sact if 8,(w,) is defined by (7.7.29) one has

# 1-®) — w, (%) = log 8,(w,)2 — log &,_,(w,)?. (7.7.34)
Proof. Recalling (7.7.12) one has
Qog s Wop == Wy + Wy + -+ + g

Thus {u*, wey = Wiy g and {py~, w,» = w, by (7.7.25) and (7.7.26). But
then (7.7.31) and (7.7.32) follow from (7.6.2) and (7.6.3).

But now computing u;},; () — u;~(x) using (7.6.4) and (7.6.5) note that
gr(x), by/m, , and also the dependence on g, cancel out. That is, by (7.6.4)
and (7.6.5)

Uy s1(®) — (%) = log d(w)** -, (1.1.35)

But now by (5.5.4) one has d(w)* = {f_g(w) v**, v*}. But then recalling
(7.7.17) and (7.7.20), d(w)* is just (—1)**® times the determinant of the
k X k minor in the lower left-hand corner of m(#_s(w)). That is,

d(w)* = 3y(w,). (7.7.36)

Then (7.7.34) follows from (7.7.35) and (7.7.36). Q.ED.

Remark 7.7.5. We now align the notation here with that in [19]. Let L
be the symmetric Jacobi matrix given in [19, p. 473]. Now let D be the diagonal
matrix

D = diag(e™,..., €™'%). (1.1.37)
Then

2 (pLD — % (D)) =3, (7.7.38)

where y is the normalized Jacobi element defined in Theorem 7.5 of this paper
and [ is the #n X n identity matrix. Since 25, = —y, by 2.1 in the notation
of [19] (¥, in [19] is p; here) the initial state of the system u has the negative
of the momentum considered in this paper. Thus if x,(¢) is defined as in [19]
and g,(x(t)) is defined as in this paper one has

x(—1) = qula(?))- (7.7.39)
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In particular

2b;, = pu(%), (7.7.40)
where in the notation of ‘Theorem 7.7.2 here p,(x) is the momentum of the
kth particle in the initial state x. Now the eigenvalues of y in decreasing order

are given here, by (7.7.1) and (7.7.3), as @, ,..., w, . The eigenvalues of L in
increasing order are given as A, ,..., A, in [19]. Thus by (7.7.38) one has

2trL

+ow,. (1.7.41)

g =

The asymptotic lines in [19] for 400 and — o0 are written as oy 77 + 8, and
oyt 4 B,~. However, by (7.7.39) one must have

ak+ = ——‘vk_-(x), ak-— = —1lk+(x). (7-7.42)

Also,
Bt = u(x),  Bi = wH(x). (7.7.43)
But now (see Section 4 in [19]) one has o, " = —24, ;4 and o~ = -2);.

Noting (7.7.41) this checks with our results (7.7.31) and (7.7.32) since, by
(7.7.40), p(x) = (2/n) tr L. Also, the result 4.2 in [19] is given here as (7.7.33).
Now by (7.7.43)

Brrir — Be™ = thppa(%) — " (x). (7.7.44)
By (7.7.34) the right side of (7.7.44) is given as log 8,,_;(w,)* — log 8, _;.,(w,)%
However, noting Remark 7.7.4 this yields

k—1
Bt — B = 2 log - L=t (nopn = Cncyiy) (7.7.45)

?=k+1 (wn—i+1 - 'wn—kﬂ) )

But by (7.7.31), (7.7.32), and (7.7.42)

Wy g1 — Wnorpa = 0 — 0 .
Thus
k—1 — -
o — B =21lo i (7 — o) 7.7.46
:3 k+1 Bk‘ g n:}=k+1 (ak_ _ ai_) ( )

But this is exactly the result 4.3 in [19, p. 481].

7.8. As a further application of Theorem 7.5 consider the three-body
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problem mentioned in (7.4.1). Here n = 3 and ! = 3 and we recall the Hamil-
tonian H given by

H = i LE | e g g (7.8.1)
-3 2 , 8.

i=1

This then differs from the usual Toda lattice in that the particle whose position
is given by g, is interacting also exponentially with some fixed mass. The
Dynkin diagram in question, as one easily sees, is so that g¢ is of type C; and
hence 4 is isomorphic to the Lie algebra of Sp(6, R).

We shall be dealing here with 6 X 6 matrices » and we will often write

= (21 g), (7.8.2)

where 4 = A(u), B = B(x), C = C(u), and D = D(u) are 3 X 3 matrices.
If Eisa3 X 3 matrix let E’ be the 3 X 3 matrix obtained from E by transposing
with respect to the diagonal which runs from the lower left-hand corner to
the upper right-hand corner. Thus (E’), = E, ;,_;. We find it particularly
convenient to identify g with the set of all matrices u in (7.8.2), where

D=-4, C=0C, and B =", (7.8.3)

Remark 7.8.1. Tt is hoped that the reader is not mislead by the fact that the
6 in question describing the sizes of the matrices is also the dimension of the
phase space of our system. If the £2% term in (7.8.1) were replaced by e% then
# = SO(3,4) and we would be dealing with 7 X 7 matrices. The present
case was chosen to simplify the computations.

The Cartan subalgebra # is the set of all w, € ¢ such that C(w,) = B(w,) = 0

and

_ w; 0 0

Aw,) =0 w, 0 ). (7.8.4)

0 0
The open Weyl chamber #, C # may then be defined by the condition that

w, € 4, if and only if w; > w, > w; > 0. One notes that the simple roots
are given by
{og , W,y = Wy, — Wy, {og , Wyy = Wy — Wy, {og, w,y = 2wy . (7.8.5)
The bilinear form Q on g4 is also easily seen to be given by Q(y, 2) = § tr y2.

The condition that £ is the set of all skew-symmetric elements in g then
normalizes the root vectors up to sign. The choice of sign for the simple root
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vectors will be made so that if w, € 4, , where A(w,) is given by (7.8.4), then

0 0 0 0 0
W, 0 0 0 0
1 W, 0 0 0
0 v2 —w, O o r
0 0 —1 —w, O
0 0 0 -1  —wy

(7.8.6)

cocooco~8

recalling that w = f + w, and f is given by (1.5.4).

Now the Lie group G* of Section 5.1 may be taken to be the subgroup of
GI(6, R) corresponding to 4. The unipotent subgroups N, and N of G* are
easily seen to be respectively groups of lower and upper triangular matrices and
HCG* is a group of diagonal matrices. The element # {w)e N we recall
is uniquely characterized by the conditions that #i{w) w,fi{w)* = w. Using
(5.8.7), as in the case of Proposition 7.7.3, one easily determines #iw)1. In
fact, explicitly

1 0 0
_ 1 10
A(nw)™) = Wy — Wy , (187
1 1 )
(wy — ws)(w, — wy) Wy — Wy
1 0 0
—1_ 1 0
D(ay(w)y™) = Wy — Wy . (188)
1 1 1

(wy — wy)(wy, — wy) Wy — W

Of course B(i(w)~!) = 0. However, (v/2/2) C({w)™") equals

-1 _r =1 A
Zwa(wz + w;) 2wy(w, + ;) 2w,
X (203 + w05)
1 —1 1
(wp — wa)(wy + wy) (wy — ws)(w, + w,) (w5 — wg)(ws + w3)
X 2wq(w; + w,) X 2,
—1 1 —1
(wy — wy)(w, ~~ w,) (w0, — wy)(w; — wy) (0, ~ wo)(w; — w,)
UX (w0 + wy)(wy + wp) 2w, X (w0, + wa)(wy + w,) X (w0 + w;) R

Remark 7.8.2. One recognizes the product of roots occurring in the denomi-
nators. One knows that the most general root ¢ is given by {g, w,> = 4w, 4+ w;,
1<i<j<3
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The element 7#_fw)e N is given by (5.8.6). One has A(fi_(w));=
(D(#Ew)1));(— 1)+, The same is true if 4 and D are interchanged. Further-
more

C(n_fw)) = C(a(w)™)" (7.8.10)
One can now be very explicit about the element d(w) e H which we recall

enters into the scattering of the mechanical system. An element g, € H is deter-
mined by A(g,) since one easily has

D(g,) = (A(g,)?)" (7.8.11)

ProrosiTION 7.8.1. Omne has

A(dw)
- V2 3
(w42 —w,?)(e2 —w,?) 2, 0 0
_ 0 \/j(wlz-—_w22) 0
- (wo—wy?)(wy-+o0,)? 2w,
L 0 0 V2w —w?)(wy? —wy?)
(o1 )2 (wy+w,)? 205 J

Proof. One sees easily that the highest weight »;, 7 = 1, 2, 3, of the funda-
mental representation =; is given by

<Vi) wo> = i w; - (7813)
=1

It follows then that if we extend the action of G* on R® to the exterior algebra
ARS, such that G* operates as a group of automorphisms then we can take
V¥ to be the subspace of A‘R® spanned by G%; A - A ¢;. We are using the
notation of Section 7.7. Also, the inner product on P*i is just the restriction
to V¥ of the inner product on A*R* defined in Section 7.7. This is clear since
£ is just the space of skew-symmetric elements in g. One then has

Ti=€ AN Ag (7.8.14)
and v = J-e,; A *** A €g. But now by (5.5.4)
d(w)'t = {a_J(w) ¢, v}

Thus d(w)” is given by the absolute value (since it is necessarily positive)
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of the determinant of the / X / minor in the lower left-hand corner of C(77,(w)™2).
See (7.8.9). This fixes

VY= e A A € (7.8.15)
and one has
" V2
A = T = — ) 2w,
Vz — 1
dw)* = (w1® — ws?)(w,? — wy?) w 2w, ’ (7:8.16)
Aoy = vz

- (w1 + wo)i(my + 203)2(w, + w,)? 2w,2w,

But then by (7.8.14) the diagonal entries in A(d(w)) are just the relative
quotients d(w)", d(w)> 1, and d(w)’s=. But then (7.8.12) follows from (7.8.16).
Q.E.D.

Now let g, e H and write

A(g,) = diag(g,, &2, £3)- (7.8.17)
Thus
/g € 0 0\
A(g,exptw,) = 0 g™ 0 |. (7.8.18)
0 0 g™

Now by (5.2.10), (7.8.14), and (7.8.15) the element s, (k)™ € G is given by
Aso(x)?) = 0 = D(so{x)™Y),

0 0 —1
Cls(k)) = ( 0 1 0 ) (7.8.19)
10 0

and B(s,(x) 1) = —C(s,(x)2). Put a = s,(x) L 7i_qw)(g, exp tw,) #(w)™! so that
recalling (5.3.6), a can be written

a = ihn (7.8.20)
for ne N, ke H, ne N. In fact in the notation of Section 5.3, where g is the

element in Gy* C Ad 4 corresponding to g, by (5.3.1), one has # = #i(g exp tw),
h = h(gexp tw), and n = n(g exp tw). We are particularly interested in
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h(g exp tw) since, recalling Theorem 7.5 and (5.10.7), this determines the solu-
tion of the mechanical system.
Now let M, be the 3 X 3 matrix given by putting

M, = C(n_y(w)) A(g, exp tw,) A(n,(w)™)
+ D(n_f(w)) A((g, exp two)Y) C(aifw))™ (7.8.21)
and put
M(g,,w,;t) =FM,, (7.8.22)

-1 0 O
F=| 0 1 0}
0 0-—1

Remark 7.8.3. Note that the 3 x 3 matrix M(g,, w, ; t) has been deter-
mined here since all the components in (7.8.21) have been written down.

where

PrOPOSITION 7.8.2. For any g,€ H, w,e 4, and teR, h(g exp tw): for
i =1, 2, 3is equal to the determinant of the principal i X i minor of M(g, , w, ; t).

Proof. By (7.8.20) one has
h(g exp tw)? = {av", "1} (7.8.23)

But then the proposition follows from (7.8.14) and the definition of a. Q.E.D.

Now let x be a point in the phase space R® and regard x as the initial point
for the time development of the system whose Hamiltonian is given by (7.8.1).
If we put b; = pix), ¢ = 1,2, 3, and a; = exp(gy(x) — ¢;1a(%)), j = 1,2, and
a; = exp(2¢y(x)) then the Jacobi element y € ¢ corresponding to x as defined
in Theorem 7.5 is clearly given by

b, a4 0 O 0 0

1 b, a, 0 0 0

{0 1 b V2 O 0
=10 o v3 —b —a O (7.8.24)

o 0 0 -1 —b —a

0 0 O 0 o

Now let g, € H and w, € %, be the “parameters” for y as defined at the end
of Section 3.7, recalling Theorem 3.7. Thus if w, is given by (7.8.4) then the
eigenvalues of y are 4w, ,i = 1, 2, 3, where w; > w, > w; > 0. To determine
g first let e N be the unique element (see Proposition 2.3.2) such that
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nwn™! = y, In the notation of Theorem 3.7 one has # = n(g). Thus w and y
are explicitly given by (7.8.6) and (7.8.24), respectively, and » is the unique
upper triangular unipotent 6 X 6 matrix such that

nw = yn. (7.8.25)

Since n is unipotent one inductively solves for z;; . In fact what is needed here
is the 3 X 3 matrix B(n). Then one finds

B(n),, = —% 26y + by — w, — wy — wy) + (b — wi)(by \—/—2102)(171 — W,)
B(n)y = —\-/1—2 (B — )by — ) + (b — wg)(by — )

+ (by — wy)(by — wy) + a; + ay),

B(n)y, = % ((by — wy) + (b2 — wp) + (b3 — wy)),

B(n)yy = — 7‘5 (@s[(by + w)(2by -+ by — 0y — w, — wy)

+ (b — wa)(by + by — wy — w,)
+ (b, — wy)(by — wy) + a; + ay]
+ (b — w?)(by — we)(by — wy)),

1
B(n)yy = — % (ay(2by + 2b, — w, — w,) + ay(by + 2b, + by — w; — w,)

+ (b — wi)(by — wy)(b; — wy)
+ (6% — wy?)(b, + b, — wy — wy)
+ (b + w3)(by — wy) b, — wy),

‘ 1
B(n)ze = — 75 (ay + ay + 2a3 + (b, — wy)(b; + by — wy — w,)

+ (b — wi)(by — w,)
+ (bs + wa)(by + by + by — wy — wy, — wy)),

(Ba = — —s (sl — b) + 2oy + ) + a¥e, — b,
— ay(w,? — 532)(5"1 + by) — ag(wy — b)) (w, + b2)(wl + ba)
— 2ay((w, — b,)(w,? — b,2)
+ (2w — by)(wy? — b2) (w2 — b5?)),
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B(n)ys = — ‘\‘/1_2 (—2a185 + ay(wy® — bg?) + ay(w; — b,l).(wl + bs)
+ 2a5(w; — by, — by) — (w; — by)(wy — by)(wy? — by?)),

B(n)s; = — 712‘ (—ay(wy — by) — ay(w, — by)
+ (wg — b1}y — by)(wy — by)).

As a consequence one has a formula for g, in terms of y and w, .

ProrositioN 7.8.3. Let By(n), for i = 1,2,3, be the i X i minor of the
3 X 3 matrix B(n). (The matrix B(n) is explicitly written down above.) Then
ifg;,i=1,2,3, are the diagonal entries of A(g,) as in (7.8.17) one has

& = aya,3,*(—det By(n)),
g2 = 4,a3"% det By(n)(det B,(n)), (7.8.26)
gs = ai'® det By(n) det(B,(n))L.

Proof. Since g is of type C; one knows that the Weyl group element «
is given by

k= —1, (7.8.27)
where 1 here is the identity element. Thus in the notation of Theorem 5.5
one has g;* = g,. But then by (5.5.25)
(h(g) g0 = {v", n(g) v}

_ qe B (7.8.28)

by (7.8.14) and (7.8.16) since n(g) = n. This implies that B,(n) is invertible.
But now by (7.8.5) and (7.8.13) one has
o oo+ a2 =,
o + 205 + a5 = vy, (7.8.29)
oq + 209 + 304/2 = 5.

On the other hand by (3.7.4) one has a; = h(g)*, { = 1, 2, 3. Thus by (7.8.28)
and (7.8.29)

g = ayaay’*(—det By(n)),
& = aiatay(—det By(n)),

g = @,a,d3 *(—det By(n)).

But g, == gi1, g, = gl#"1, and g, = glv2. This proves (7.8.26). Q.E.D.



TODA LATTICE AND REPRESENTATION THEORY 335

We can now integrate Hamilton’s equations for the Hamiltonian (7.8.1).
The only terms entering into the solution below which we have not written
down here are the eigenvalues 4w;, i = 1,2, 3, for the matrix y. This of
course reduces to solving a cubic equation.

THEOREM 7.8.1. Let x be a point in the phase space RS. Let q,(x(t)),i = 1, 2, 3,
be the position of the ith particle at time t of the mechanical system whose Hamil-
tonian is

8 2
H = El _221_ _+_ eql—qz + e‘lz—qa + e2q3
and which at t = 0 occupies the state x. Let y be the 6 X 6 matrix given by
(7.8.24), where b; = py(x), i = 1,2, 3, and a; = exp(q(x) — ¢:1(%)), ¢ = 1, 2,
and a; = 2139, Then there uniquely exists w, > w, > wg > 0 such that +w, ,
i =1, 2,3, are the eigenvalues of y. Let w, be the corresponding 6 X 6 diagonal
matrix defined by (7.8.3) and (7.8.4) and let g, be the 6 X 6 diagonal matrix
given by (7.8.11), (7.8.17), and (7.8.26). Let M(g,, w, ; t) be the 3 X 3 matrix
defined by (7.8.21) and (7.8.22) and for i = 1,2, 3, let M(g,,w,;t) be the
principal i X i minor of M(g, , w, ; t). Then det M,(g,, w, ; t) > 0 and one has

q(%(t)) = —log det Mi(g, , w, ; —1),
q2(x(t)) = log(det Ml(go y Wo 5 '—t)/det Mz(go » Wo 5 _"t))’
and

g5(*(2)) = log(det My(g, , w, ; —1)/det My(g, , w, ; —1)).

Proof. The statement concerning the eigenvalues of y follows from (7.8.5)
and (3.3.4). We use formula (7.5.18) for ¢;(x(¢)). Since clearly #, = & in the
present case one has §(x) = p,(x) = 0. Also, all b; (as defined in (7.5.13)
and not as above) vanish by (7.5.14) since all 7, = 1). But now the matrix
A = (a;;) defined as in (7.1.10) is just

1—1 0
0 1—1}) (7.8.30)
0 0 2

On the other hand Q(w;, ;) =2, i = 1,2, and Oy, o) = 4. Thus by
(7.5.18)

¢ (*(t)) = —log Di(g,, w, ; 1),

qZ(x(t)) = log((pl(go » Wo 5 t)/(p2(go y Wo 5 t))’

g5(x(2)) == 1og(DPy(go » %o 5 1)/ Pa(&o » %o 5 1))-
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But now recalling (5.10.7) and the notation of Section 7.5, P(g,,w,;t) =
h(g exp(—t)w):. But then the result follows from Proposition (7.8.2). Q.E.D.
The scattering of our mechanical system is explicitly given in
TueOREM 7.8.2. Fori = 1,2, 3 let v;*(x)t + uH(x) and let v, (x)t + u;~(x)
be the asymptotic lines defined by (¢, q(%(t)) as t - 40 and t — — o0, respec-

tively. Then the asymptotic velocities are given by v;+(x) = —w,; and v (x) = w; .
The corresponding phases are given by '

(w? — we?)(wy® — wy?) 2wy

ul+(x) = lOg gl + IOg \/2 ’
. (wy® — wy?)(wy + wy) 2wy
uyt(x) = log g, + log Vs — ) - (7.8.31)

(wy + ws)(w; + wy) 2wy
V2w, — wa)(wy — w,) '

uy*(x) = log g5 + log

where gy , g, , and gq are given by (7.8.26) and one has
u;(x) = u;H(x) — 2logg; (7.8.32)
fori=1,23.

Proof. We use Theorem 7.6 and formulas (7.6.1)«7.6.3). By (7.8.30)
and the relations which follow it one has

B =V, My TV, Mg T3l (7.8.33)

and hence
mt =, pot =v —my, pgt =v3—v,. (7.8.34)
But then {u;,~, w,> = w; and {u;*, w,» = —w;. The relation v;*(x) = —w;

and #;7(x) = w; then follow from (7.6.2) and (7.6.3) since as noted in the proof
of Theorem 7.8.1 one has p,(x) = 0. But also, as noted there, g,(x) = b, = 0.
Thus
— 1og (@)Y
u;H(x) = log (—g——) (7.8.35)
and

u-(%) — log (Eo—;@;)“i . (7.8.36)
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But then if d(w); are the diagonal entries of A(d(w)), i = 1, 2, 3, as defined
by (7.8.16) one has, by (7.8.5), (7.8.33), and (7.8.34)

u;*(x) = log ( d(g;). ) (7.8.37)
and
ui-(x) = log (—1—) (7.8.38)
g d(w);
But then (7.8.31) follows from Proposition 7.8.1 and (7.8.37). Relation (7.8.32)
is immediate from (7.8.37) and (7.8.38). Q.E.D.
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