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0. INTRODUCTION 

0.1. One of the main results of this paper concerns the existence 
of certain classical mechanical systems, generaliking the (finite, nonperiodic) 
Toda lattice (see, e.g., [8, 10, 19, 24, 2.51) w ic one can explicitly integrate h h 
for all values of time. These systems are related to Dyqkin diagrams. One 
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knows these diagrams classify semi-simple Lie groups. The integration of 
the system associated to a Dynkin diagram is expressible in terms of the finite- 
dimensional representations of the corresponding group. In fact, more than 
that is true. The integration of the system and the theory of the finite-dimen- 
sional representation theory of semi-simple Lie groups are in a sense equivalent. 
Indeed, the integration of the system completely determines and is determined 
by the weight structure of the fundamental representations of the corresponding 
group. 

In more detail, recall the Hamilton-Jacobi theory as it would apply to a 
system of particles moving on a line with respect to some potential. We envision 
then n particles, say with masses mi , i = l,..., n, and lR2n with linear canonical 
coordinate functions pi , qi , i, j = l,..., 71 (i.e., phase space), so that any x E lR2n 
is a (classical) state of the system andp,(x), qi( x are, respectively, the momentum ) 
and position of the ith particle in the state X. Assume the potential U is smooth 

( i.e., U E C@(lR2~)), and of course, depends only on the q’s (i.e., (a/Zppi)U = 0, 
i = 1, 2,..., n). The Hamiltonian HE Coc(lR2”) of the system is then given by 

H = g1 g + 0’. 1 
(0.1.1) 

Now if x E lR2n and x(t) E R2n is the state of the system at time t such that 
x(0) = &then z(t) is determined by Hamilton’s equations. That is, 

- z$ (#) = +jl;f@)) , p&(t)) = mj dq$(t)) . (0.1.2) 

The fundamental problem of the Hamilton- Jacobi theory is to integrate (0.1.2), 
that is, to determine the function t + x(t). It is clear from the second equation 
in (0.1.2) that it is enough to determine the position functions t ---f qi(x(t)), 
j = l,..., n. For a general potential function U of course one cannot do this. 
It is one of the main results of this paper to show that for certain very special U 
having to do with Dynkin diagrams one can explicitly integrate (0.1.2) using 
representation theory. 

Let 9 C Cm(lR2~) be the n-dimensional vector space spanned by qi , j = 
I ,-.., n.LetZ<nandlet&~Z?,i= I,..., 1, be I linear independent functions. 
Thus we may write 

i = I,..., I, (0.1.3) 

where (uu) is a constant 1 x n matrix. The potentials we shall consider are 
those of the form 

U = ideal + ... + rLedz, (0.1.4) 
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where the ri are some positive constants. For example, if I = n - 1, m, = 
ri = 1 and & = qi - qi+r , i = I,..., I, then the system is the Toda lattice. 
The interaction between the particles is that of exponential forces between 
nearest neighbors. (Throughout this paper “Toda lattice” will mean “finite 
nonperiodic Toda lattice”.) 

What is crucial for us in our result here is the geometry of the JI’s, that is, 
the lengths of the vectors &E 2 and the angles between them. We hasten 
to add that there is in fact a natural geometry in 2, defined by the Hamiltonian H. 
Indeed let [q~, #] E Cm(lRz~) be the Poisson bracket for any pair of functions 
‘p, # E C”(Ra”). It is easy to see that if v, # E 9 then [q~, [I/J, H]] is a scalar times 
the identity function 1. A positive definite symmetric bilinear form BH is then 
defined in .J?J by the relation 

WP), W = Pa [vi WI. (0.1.5) 

One has in fact 

B&i , qj) = %h . (0.1.6) 

We will say that the #‘s define a Dynkin diagram if there exists a real split 
semi-simple Lie algebra 9 of rank 1 with an invariant bilinear form Q, and 
with a split Cartan subalgebra k with simple roots 011 ,..., iyr such that 

Wh 9 ~4) = Q(ai 3 4 (0.1.7) 

for i,j = l,..., 1. In such a case, as one knows, the possible angles between 
the #‘s are 90, 120, 135, or 150”. The Toda lattice satisfies this condition. 
Here 9 is the Lie algebra of SZ(n, R). The angle between qiel - qi and 
qi - qi+l is 120”. We will give some further examples. (See Section 7.4 here 
and [3; 7, Section 301 for others. See also [3] for suggested physical inter- 
pretations.) 

(1) H= i J’:+ 
2 

,Qr-02 + . . . + eQ4-B, + &L* 
id 

Example (1) is like the Toda lattice except that the last particle also interacts 
with a fixed mass. The diagram here is that of B, ; i.e., 9 is isomorphic to 
the Lie algebra of SO(n, 1z + 1). 

This is a four-body problem where the first three particles are as in (1) but 
where, also, the center of mass of these three particles interacts exponentially 



TODA LATTICE AND REPRESENTATION THEORY 199 

with a fourth particle. The Dynkin diagram here is that of the exceptional 
Lie algebra F., . 

Of course many different systems may correspond to the same diagram. 
For example, the following two four-body problems both correspond to D, . 

Example (4) is like the usual Toda lattice with four particles except that the 
center of mass of the third and fourth particles interacts exponentially with 
a fixed mass. In Section 7.8 we will apply the result Theorem 7.5 to work out 
cli(x(t)) for the three-body problem whose potential is eql-% + e%-‘+ + e2%. 
The Lie algebra in question is that of the symplectic group Sp(6, IF!). 

Before describing the main result we would like to remark that although 
the condition on the #‘s is quite rigid there is in fact some flexibility. Namely, 
by adjusting the masses mi one has, given a potential of form (0.1.4), an n- 
parameter degree of freedom (see (0.1.6)), which one may use to possibly 
satisfy the condition. 

Assume now that the #‘s define a Dynkin diagram and that 9, Q, R, and the 
cy’s are as above. We will occasionally then refer to the mechanical system 
whose potential is (0.1.4) as a generalized Toda lattice. Let riTi , i = l,..., I, 
be the Z-fundamental finite-dimensional irreducible representation of 9 (or 

9c ’ its complexification). Paraphrasing Theorem 7.5 one has the following 
solution to Hamilton’s equation for the generalized Toda lattice. 

THEOREM A. If m(i) is the number of distinct weights of vi there exist constants 

ck and dK , k = l,..., m(i), which depend upon the initial state x E Iw2” of the 

system, whose potential is (0.1.4), and on the weights of rri (see Theorem 7.5 for 
the exact dependence) such that if 

Gi(t) = cleptdl + C2ewtd2 + .*- + Cm(i)e-td”fi) (0.1.8) 

then ai > 0 and except for a linear term (which vanishes if 1 = n and all 

rli = I) one has 

%(x(t)) = - $ i; aii 
3 2=1 Q(cQ ) II!<) log @a 

for j = l,..., n. The aii are given by (0.1.3). 

Remark 0.1. A solution to the generalized Toda lattice has appeared in 
[28]. This solution (see Corollary 1 in [28]) is stated in terms of the diagonal 
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component h(exp ty) of the exponential of a symmetric Jacobi element y. 
The reduction of the problem to h(exp ty) is also an early side step in the proof 
of Theorem 7.5. It is implicit in Theorem 6.8.2 here. The reduction of the 
problem to h(exp ty) has been known and widely discussed by the author 
for a number of years. The main problem lies not with the reduction to h(exp ty) 
-this is relatively easy-but with the determination of h(exp ty). This is 
where representation theory enters. Also entering here is an analysis of the 
variety 2 (a coadjoint orbit) of normalized Jacobi elements. See Sections 2-6.l 

Fixing i the ordering of the weight may be made so that c1 , di corresponds 
to the highest weight of 7ri and c,(~) , dmti) correspond to the lowest weight. 
One then has 

4 > 4 > hi) (0.1.10) 

for all 1 > k > m(i). Write dii = dj and cji = ci . Now if b, , i = l,..., 1, 
are 1 numbers and 

then (1) put erj+ = si in case bi = dmciji , (2) put vj- = si in case bi = dli , 
(3) put Uj+ = --Sj in case bi = log C,(d)( , and (4) put uj- = --s, in case bi = 
log cli . (One knows that c,ciji and cii are positive.) 

We can now express the scattering of the system as t -+ &cc in terms of 
the highest and lowest weights of the fundamental representations. Ignoring 
a trivial linear term as in Theorem A, the following paraphrases Theorem 7.6. 

THEOREM B. For any j = l,..., 1z the curwe (t, qj(x(t))) in the t, qj plane 
is asymptotic to the line vi-t + Uj- a~ t + - CQ and to the line Vj+t + uj+ as 
t -+ + 00. That is, qf are the limiting velocities of the ith particle as t + f CO 
and Ujf are the limiting phases. 

Moser’s result (see 4.3 in [19]) on the scattering of the Toda lattice may 
be readily recovered from Theorem B. See Section 7.7. 

We also remark that we can reverse our considerations here. That is, if 
solution (0.1.9) of Hamilton’s equations is given one solves for Gi(t) and, 
over all initial conditions, one obtains weights of the fundamental representation 
nd . In particular one obtains the highest weight, which of course determines ri . 

0.2. The mechanical system in Theorem A is completely integrable 
in a classical sense. This means the Poisson commutativity of a suitable family 
of functions. In Section 1 we establish the Poisson commutativity in a much 
more general setting than that used to establish Theorem A. In particular 

1 Added in proof. A solution of the Toda lattice using representation theory has 
appeared in [29]. However, the solution in [29] is expressed in terms of integrals. See 
(18) in [29]. In effect, the results in Section 5 of our paper determine these integrals. 
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one has an “isospectral flow” for all suitably translated coadjoint orbits of a 
parabolic subalgebra. 

The technique for dealing with the usual Toda lattice involves the set of 
Jacobi matrices. In particular it involves a decomposition of this set into 
isospectral classes. See, e.g., [19, 251. In Section 2, first of all, the notion of 
Jacobi matrix is generalized and one introduces, using the simple negative 
and positive root vectors, the notion of Jacobi element in a real split or complex 
semi-simple Lie algebra. One is readily reduced to the study of the 21-dimen- 
sional variety 2 of normalized Jacobi elements. Section 2 is devoted to an 
analysis of 2, especially in the complex case. Moser used the theory of con- 
tinued fractions and a method going back to Stieljes to obtain a rationality 
result for the case of diagonalizable Jacobi matrices. Among other structure 
theorems this result is generalized in Section 2. The isomorphisms /I, and 
/3tw, establish, in explicit terms, the rationality of the isospectral leaves Z(y). 
Since we can take the field to be @ in Section 2 the elements in Z(y) can even 
be (principal) nilpotent. The results are, we believe, new even in the matrix 
case, and lead, for example, to a simple iterative procedure for diagonalizing 
a diagonalizable Jacobi matrix once one knows its eigenvalues. The results 
in Section 2 make notable use of the results in Section 1 of [17]. 

The situation in the real case is considerably more subtle. Using an interplay 
between the polar and Bruhat-Gelfand decompositions we obtain in Section 3 
a completeness result for Z(y) (not true over C) which later guarantees the 
integration of certain Hamiltonian vector fields for all values of t. Using an 
isomorphism &,): G,” + Z(y) one obtains (later to be seen) the action angle 
coordinates in terms of the characters of a split Cartan subgroup. In fact &,, 
leads to a parametrization 2 z H x R, where HE Rz is the split Cartan 
subgroup and R, is an open Weyl chamber. The isolation of G,w (which is not 
the identity component) among all the connected components of the centralizer 
Gw of w appears to be rather remarkable. It brings into focus a special auto- 
morphism, denoted by m in Section 3.5, of 8. This automorphism also plays 
a special role in the Whittaker theory (see, e.g., the element h, in [9, p. 106J), 
to which this paper will be related elsewhere. 

In Section 4 it is shown that &): G,” --+ Z(y) is an isomorphism of com- 
plete, flat, aflinely connected manifolds. This sets a correspondence between 
the cosets of one-parameter subgroups in G,,” and the trajectories of the 
(Hamiltonian) vector fields [, in Z(y). It reduces our integration problem to 
the determination of h(g exp(--t)w)A, as will be seen in Section 6. 

In Section 5 we determine h(g exp(-t)w)^ using the representation theory 
of 8. A particular role is played by the explicit formulas for %f(w)-l and ?i+(w). 
It is also seen in Section 5 that the scattering theory is determined by the special 
element d(w) E H. The relationship between the isospectral leaves Z(y) and 
the elements d(w) is rather mysterious (to us) and (we believe) remarkable. 

Section 6 is devoted to the underlying symplectic theory and coadjoint 
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orbits. It is shown that 2 itself is just one coadjoint orbit (suitably translated) 
of the Bore1 subgroup B. The basic formula rpi(exp tf . y) = log h(g exp( -t)w)-@’ 
is established here. See (6.8.4). 

Section 7 starts off with the Hamilton-Jacobi theory. It can be initially 
read without reference to the other sections. However, the results of the 
preceding sections are later brought together yielding Theorem 7.5, which 
gives the formula for qi(x(t)). What is surprising here is the special role of the 
fundamental representations among all the others. The Cartan matrix initially 
enters the formula for 4$(x(t)) b u since we are using the fundamental representa- t 
tions it is canceled out, leaving the coefficients aij in (0.1.9) the same as the 
coefficients aij in (0.1.3). 

0.3. There is by now an extensive literature on both the periodic 
and nonperiodic Toda lattice. There is an even larger literature on completely 
integrable Hamiltonian systems. As examples we cite references [l, 3, 8, 10, 
19,20,24,25, 27,28, 291. This, of course, is only a small part of a complete list. 
There are also connections with semi-simple Lie groups. See, e.g., [3, 201. 
We would like to remark that there is a considerable distance between estab- 
lishing the Poisson commutativity of certain functions-and actually integrating 
and finding the solution. In fact, there is a generalization of the periodic Toda 
lattice in that one replaces the Dynkin diagram by the extended Dynkin 
diagram. Independently this has been observed in [3]. We have been able 
to establish complete integrability in the sense above for this case as well, 
but, as yet, we have not been able to solve for qi(x(t)), which presumably, 
as in [25], requires Abelian integrals. 

We have been principally influenced by Refs. [19, 251. rn fact the starting 
point for us was our recognition that the symplectic form written by van 
Moerbeke [25, formula (42), p. 76] on the space of symmetric Jacobi matrices 
(and also cited by Moser in a lecture) was in fact the symplectic structure 
of a coadjoint orbit of the Bore1 subgroup B. 

Translation by the element f (see (1.5.4)) plays an important role here for 
establishing complete integrabiiity. On the other hand our proof of what is 
referred to as the Kostant-Symes splitting theorem in [27] (another complete 
integrability statement) involved other methods. We wish to thank S. Sternberg 
for pointing out that the proof of Theorem 1.4 here may be readily adapted 
so that the splitting theorem in [27] is a special case (f = 0). 

The coadjoint orbit 2 of B is not only the setting for classical mechanics 
as considered in this paper but it also, recalling geometric quantization, as 
applied in [2], defines a unitary representation ?~z of B. Elsewhere it will be 
seen that the generalized Toda lattice is completely integrable and solvable 
not only in the classical sense, as established here, but also in the quantum 
sense. That is, one can write down the simultaneous spectral resolution of a 
commuting family of operators which includes the Schrodinger operator 
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associated to the Hamiltonian (0.1 .l), where U is given by (0.1.4) and the $‘s 
define a Dynkin diagram. This uses rz and the Whittaker theory as developed 
in [17]. 

1. POISSON COMMUTATIVITY OF TRANSLATED INVARIANTS 

1.1. Assume A is a commutative (associative) algebra over a field F, 
where F has characteristic zero. In fact in our applications here F will be either 
the field of real, R, or complex, C, numbers. We will say that A has a Poisson 
structure if there is a bilinear map A x A -+ A, (a, b) + [a, b] with respect 
to which (1) ,4 is a Lie algebra and is such that (2) 

b, 4 = [a, qc + b[u, cl (1.1.1) 

for any a,b,cEA. 
If V is a finite-dimensional vector space over F then S(V) = @km,,, S,(V) 

will denote the symmetric algebra over V with its usual grading. In particular, 
V = S,( I’) and F = 5’,,( I’). We may regard S(V) as the algebra of polynomial 
functions on the dual space V’ to V. If ZJ E V and V’ E V’ the pairing of z, and ZI’ 
is denoted by (o’, ZJ) so that one has w(v’) = (w’, v). 

Now assume that a is a finite-dimensional Lie algebra over F. For any g E a’ 
let a(g) be the derivation of degree - 1 of S(B) such that a(g)x = (g, x) for 
any x E a. Now if u E S(a) then as a polynomial function on a’ the differential 
du defines a polynomial map CC’ -+ a, g ++ (du)(g). Explicitly one has 

where xi E a, i = I,..., n, is a basis of a and gi E m’ is the dual basis. 

PROPOSITION 1 .I. If u, ZI E S(a) and g E aa) then 

[UT 4(g) = (g, KdWh W(g)l) (1.1.3) 

defines a Poisson structure on S(a) which extends the given Lie algebra structure 
on a. 

Proof. If u E it then clearly (du)(g) = u so that (1.1.3) agrees with the 
bracket structure on a. From the differentiation properties of the exterior 
derivative it is clear that (1.1.1) is satisfied. One only has to see that the Jacobi 
identity is satisfied for any u, v, w E S(a). If udu(w) = [u, w] this amounts to 
showing that 

ud[u, v] = [udu, adw]. (1.1.4) 
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However, both sides of (1.1.4) are derivations of the associative structure 
of S(a) by (1.1.1) and hence one has equality (1.1.4) when applied to w = wlwa 
if it already holds for w1 and wa . The proposition then follows easily since G 
generates S(a) and (1 .1.4) holds for II, zi E a when applied to w E a. Q.E.D. 

Henceforth S(a), f or any finite-dimensional Lie algebra a will always have 
the Poisson structure given by Proposition 1.1. 

Remark 1.2. Since a generates S(a) note that the Poisson structure on 
S(a) is the unique one which reduces on a to the given Lie algebra structure on a. 

1.2. Now assume that 9 is a finite-dimensional Lie algebra over F 
and Q(x, y) E F is a nonsingular invariant symmetric bilinear form on 2. 
Invariance means that Q([x, z], y) = Q(x, [z, y]) for x,y, z ~8. If x ~9 and 
g, E 9’ is defined so that (g, , y) = Q(x, y) then x -+ g, defines an isomorphism 
9 ‘8’. We regard S(f) as the algebra of polynomial functions on 9 itself where 
if u E S(g), x ~9 then U(X) = u(gJ. In particular if u ~9 then 

44 = Q(u, 4. (1.2.1) 

For any x ~9 let z(x) be the derivation of degree -1 on S(9) so that i(X)y = 

Sk, Y) when Y E 9. Let u E S(g). To avoid confusion with du we will let 6u 
be the differential of u when regarded as a function on 8. Thus 8u is the 
polynomial map 9 + 9 given by 

(W(x) = C WMW yj (1.2.2) 

for x E 9, where xi , yi are two bases of 9 such that Q(xi , yj) = aii . 
By Proposition 1.1 one immediately has 

LEMMA 1.2.1. The Poisson structure in S(g) is given by 

b, VI@> = Qk FW(4, WW (1.2.3) 

for any u, v E S(p), x E 9. 

Now assume that F is either Iw or @ and 9 is a semi-simple Lie algebra over F. 
Let Q be a fixed invariant symmetric bilinear form on 9 which on each simple 
component is a positive multiple of the Killing form. Also let 9 = R + 1 
be a Cartan decomposition of 8. Thus R is the Lie algebra of a maximal compact 
subgroup of the adjoint group of 9 and # is the orthogonal complement to A 
with respect to Re Q. Now let 0 be the corresponding Cartan involution. Thus 
8=1onAand8=-lon~.Foranyx~~let~*=--Bx.SinceQisnegative 
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definite on A and positive definite on # one defines an inner product Q* on 9 
(i.e., 9 is a Hilbeit space over F with respect to Q*) by putting 

Q&Y) = Q(x, Y *I- (1.2.4) 

One notes that,,(k)* = xx* for h E F and x ~2, where the bar denotes con- 

jugation. The relation Q*(x, y) = Q&J, x) follows immediately from the 

readily verified relation Q(x*, y*) = Q(x, y). Al so, the positive definiteness of 
Q* is immediate from the fact that Re Q(x, y) = 0 for x E k and y ~b. 

Now if a Cf is any subspace let aa* = {x* 1 x E a}. Clearly a* is a subspace 
of the same dimension as a. There are two other subspaces, aal, and a~, which 
are also associated with a. They both have the same dimension as g/a, The 
subspace a’- is defined as the orthogonal complement to a with respect to 

Q* and a0 is the orthogonal subspace to a with respect to Q. Thus XJ -+ a*, 

CC’-, and a0 define three involutory operations on the set of all subspaces of 8. 
The following lemnia clarifies the relations between them. It asserts that together 
with the identity operation they define an action of the Klein 4-group on the 
set of all subspaces. 

LEMMA 1.2.2. The three operations a + a*, aal, and aa0 commute with one 
another and the composite of any two distinct operations is the third. 

The proof is straightforward and is left to the reader. A particular case 
of Lemma 1.2.2 is the relation 

(a*)l = *to. (1.2.5) 

Now if a Cy is a subspace we regard S(m) as a subalgebra of S(9). The 
fact that Q* is an inner product implies that a and a* are non-singularly paired 

by Q. 

LEMMA 1.2.3. Let u E S(a). Then for any x ~9, y E a0 one has 

u(x + y) = u(x). (1.2.6) 

Further, the restriction map u -+ u 1 a* dejnes an isommphism of S(a) onto 
the algebra of all polynomial functions on a*. 

Proof. Clearly o(y) = 0 f or all o E a. Since u is generated by elements 
in a one has (1.2.6). On the other hand since a and a* are non-singularly 
paired by Q the map w + e, [ m* defines an isomorphism of S(a) onto the algebra 
of all polynomial functions on a*. Q.E.D. 

Now let P,: 9 ---f JZ be the orthogonal projection of 9 on a with respect 
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to the inner product Q* . I f  II E S(8) we recall (see (1.2.2)) that 6u is a polynomial 

map g --t 8. We now define 6,~ to be the map 2 --t a given by 

w&4 = Pa((W(x)). (1.2.7) 

Obviously if a = ar + @a2 is an orthogonal direct sum with respect to Q* then 

In particular one has 

Explicitly one notes 

6&U = $p + Ql. (1.2.8) 

csu = 6,u + S&U. (1.2.9) 

LEMMA 1.2.4. Let xi, i = l,..., d, be any basis of a and let y$ E a* be the 
basis of a* such that Q(xi , yj) = & . Then 6,~ is the polynomial map 2 -+ a 
given by 

&4(x) = t1 (i(YM(4 x5 (1.2.10) 

for any XE:g. 

Proof. Let xi , i = d + I,..., n = dimg, be any basis of aI and let yi , 

i = d + I,..., n, be the basis of (a’)* such that Q(x~ , yj) = 8, for i, j > d + 1. 

Put wa = Cjn=d+l (i(yJu)(x) xi and 1 e wr be given by the right side of (1.2.10). t 
Now since a* = (a”)” and (al)* = a0 by Lemma 1.2.2 it follows that 

Q(xi , y5) = 6,, for i,j = l,..., 1~. Thus w = wr + wa = @u)(x) by (1.2.9). 

But then w, = (&u)(x). This proves the lemma. Q.E.D. 

LEMMA 1.2.5. Let a C 9 be any subspace and let u E S(a). Then 

su = 8,u (1.2.11) 

so that 6u is a polynomial map 9 + a. 

Proof. By (1.2.9) we have only to show that S,lu = 0. But now applying 
(1.2.10) where a1 replaces a one notes that i( yj)u = 0 since yj E (al)* = aO, 
using Lemma 1.2.2. Thus 6,lu = 0. Q.E.D. 

Now if a is a Lie subalgebra of 8 then S( a inherits a Poisson structure ) 
from the Lie algebra structure of a. This has been defined using the dual 
space a’ to a. See Proposition 1 .l. We now note that a’ may be replaced by 

a* -Cy. 
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PROPOSITION 1.2. Let a be a Lie subalgebra of 8. Then S(a) is a Lie subalgebra 
of S(f) with respect to the Poisson structure on S(f). Furthermore the Lie algebra 
structure thus induced on S(a;) is the same as the Poisson structure on S(o) which 
S(a) would normally inherit from the Lie algebra structure in a. Thus if u, v E S(a) 
then [u, v] is unambiguous and is in S(a). Moreover it is given by 

Eu, vI(4 = Qh PK4~ WbN (1.2.12) 

for x ~9 but is in fact determined by the restriction [u, v] 1 a*. In particular, 
[u, v] = 0 if and only sf the right side of (1.2.12) vanishes for all x E a*. 

Proof. The first statement follows from (1 .l .l). The second and hence 
the third follows from Remark 1.2. Relation (1.2.12) is just (1.2.3). Since 
[u, v] E S(a) it is determined using Lemma 1.2.3, by the restriction [u, v] 1 a*. 

Q.E.D. 

1.3. Now let G = Aut 9 be the adjoint group of 9 The action of 
a E G on x ~9 is denoted simply by ax EF The algebra S(g) then becomes 
a G-module where if a E G, u E S(g), and x EJZ one has au(ax) = u(x). From 
the invariance of Q it follows that a(i(x)u) = i(ax) au. It then follows easily 
from (1.2.2) that 

for any u..!.?(g), aEG, and xE:g. 
Now let 1 = rank9 and let S(g)” be the algebra of G-invariants in S(f). 

By Chevalley’s theorem one knows there exist homogeneous elements Ij E S(f)o, 
j = 1, 2,..., Z, referred to as the fundamental invariants, which are algebraically 
independent and which generate S(#)o. That is, by abuse of notation, 

Sc9)” = FII1 ,..., IJ. (1.3.2) 

Now for any x E 2 let 8” denote the centralizer of x in 9 and let cent 8” 
be the center of 9 *. Also let G* be the centralizer (or rather stabilizer) of x in G. 

PROPOSITION 1.3. For any x E 9 and I E S[g)o one has @I)(x) E cent 8%. 
In particular one has 

[x, (W(x)1 = 0. (1.3.3) 

Proof. For any a E G one has aI = I. Thus a((U)(x)) = (SI)(ax) by (1.3.1). 
But then if a E G” one has a((SI)(x)) = (M)(x). That is, if ytGe) is the set of 
fixed elements for the action of G” in 9 one has (U)(x) E #GE). But #GZ) C&8), 
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where #@) is the centralizer of 2” in 8. However, since x E 9% one has g(B) = 
centyx. This proves the proposition. Q.E.D. 

1.4. Now let a be a Lie subalgebra of 8. We shall regard a as fixed. 
This will enable us to suppress G in notation which in fact depends upon a. 

Now let f E 9 and u E S(2). The map x I-+ z~(f + X) is clearly a polynomial 
function on 8. In particular its restriction to a* is a polynomial function. By 
Lemma 1.2.3 therefore there exists a unique element uf E 5’(a) such that 

Uf(X) = u(f + x) (1.4.1) 

for all x E a*. The correspondence II + ZJ therefore defines a homomorphism 

We are particularly interested in the case where u E S(,)c and especially 
when m satisfies the following condition. 

We say that a is a Lie summand in case KZ’J is also a Lie subalgebra of 8. 
The terminology stems from the fact that a is a Lie summand if and only 
if & is a Lie subalgebra of 8. This is clear since, by Lemma 1.2.2, Z& = (a~)* 
and one has [x,T]* = [r*, x*1. 

EXAMPLE. Any parabolic subalgebra of 9 is a Lie summand. This is clear 
since if a is parabolic then a0 is just the nilradical of u,. 

It will be seen later that the following theorem leads to the complete 
integrability of the Toda lattice and to extensive generalizations of it. 

THEOREM 1.4. Let 9 be a semi-simple Lie algebra over IF! or @. Let Q be a 
bilinear form on 9 which on each simple component is a Jixed positive multiple 
of the Killing form and let Q* be the inner product in 9 dejned by Q and a Cartan 
decomposition of 8. See (1.2.4). 

Let a C 9 be a Lie summand. That is, a and its orthocomplement al with respect 
to Q* are Lie subalgebras of 8. Let f  ~9 be any element such that 

Q(f, [a, al + [a’, a’-]) = 0. (1.4.3) 

Then, using the notation of (1.4.1) the elements If, Jf in S(a) Poisson commute 
for any pair of invariants I, J E So. 

Proof. Using Proposition 1.2 it is enough to show that 

Q2(x, P-WW (~Jf>G4N = 0 (1.4.4) 
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for any x ~a*. But now we assert that 

(W4 = w>(f+ 4 (1.4.5) 

for x E a*. Indeed for any y, z ~3 and u G S(8) one has (in) = (d/dt) 
u(z + tr) It=,, . . It follows therefore that if x, y  ~a* one has (i(y) If)(x) = 
(i(r)l)(f + x). Thus recalling (1.2.10) one has (&F)(x) = (SJ)(f + x) for 

x~a*. But S,F = 611 by (1.2.11). This proves (1.4.5). 
But now [(SJ)(f + x), (a,J)(f + x)] E [a, a]. However, f is Q-orthogonal 

to [a, a]. That is, 

Q(f, KW(f+ 4, W)(f+ x)1> = 0. (1.4.6) 

But then adding this relation to the left side of (1.4.4) and recalling (1.4.5) 
it is enough to show that 

Q(f + x, W)(f+ 4, (L.O(f+ 41) = 0. (1.4.7) 

But now by (1.3.3) when f + x replaces x one has 

[f+ x, w)(f+ 41 = 0. (1.4.8) 

Thus by the invariance of Q one does in fact have 

Q(f + x> N*Uf + 4, (LJU + 41) = 0. (1.4.9) 

But (SI)(f + x) = (&I)( f + x) + (S,J)( f + x) by (1.2.9). Substituting in 
(1.4.9) it then suffices to prove 

Q(f+ x, WW)(f+ 4, (W)(f+ -41) = 0. (1.4.10) 

But (1.4.8) is valid if J replaces I. Thus by the invariance of Q one does have 
(1.4.10) if 8 J replaces S, J. Thus it suffices to show 

Q(f + x, [(acil4(f+ 4, (L/)(f + -41) = 0. 

But by (I .4.3) one also has (1.4.6) w h en a1 replaces a. Thus it suffices only 
to show that 

Sk [(*A(f + 4, P,J)(f + 41) = 0. (1.4.11) 

But since al is a Lie algebra the commutator in (1.4.11) is an element in aA. 
However, x E a* and a* = (a’-)” by Lemma I .2.2. This proves (1.4.11). 

Q.E.D. 

607/31/3-2 
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1+5. We consider an example now which illustrates Theorem 1.4 
and which plays a major role in the remainder of the paper. No special assump- 
tions need be made if F = C. However, if F = IR then for this example we 
assume that g is split. We may then find, as one knows, using, say, Weyl’s 
normal form (see, e.g., Section 5 in [13]), a Cartan subalgebra A 2 9 (which 
is split if F = Iw and root vectors e, E 2, 3, E d, where A = d(g, A) is the corre- 
sponding set of roots such that 

and 

e* = e-, m (1.5.1) 

Q(e, , e-,) = 1. (1.5.2) 

Let A+ C A be a fixed chosen system of positive roots and let {q ,..., q} = 
17 C d, be the set of simple positive roots. 

Remark 1.5.1. One notes that the root vectors eeui , i = l,..., 1, may initially 
be chosen arbitrarily. Then e,( are determined by (1.5.2). This then, using 
(1.5.1), determines the Cartan decomposition 9 = R + 1. 

Now 

d = A + c Fe-, and d = k + 1 Fe, (1.5.3) 
WEA+ WEA, 

are “opposing” Bore1 subalgebras and Z = [&,a] and PZ = [&, e] are the corre- 
sponding nilradicals. 

THEOREM 1.5. Let a = 8 and let 

f = i e-,, . (1.5.4) 
i=l 

Then a and f satisfy the conditions of Theorem 1.4. That is, 6 is a Lie summand 
and f satisjk (1.4.3). In particular the elements If and Jf in S(8) Poisson commute 
for any I, J E S(p)“. 

Proof. If q~ E d then as one knows Q(x, e,) = Q(e+ , e,) = 0 for any x E R, 
and I+!J E: A, where 4 # -v. Since 

+V = wz Fe, and G = .z Fe-, (1.5.5) 
+ + 

one then has (& = 2. Hence r? is a Lie summand. But [a, a] = [&,&I = 
Z = (8p. Since f E d this implies Q(f, [a, a]) = 0. But by Lemma 1.2.2 one 
also has & = (a”)* = (G)* = H. Thus [&, al] is spanned by all e, , where 
v E A+ is not simple. Thus Q(f, [*z.l, a”]) = 0. Hence f satisfies (1.4.3). The 
remaining statement follows from Theorem 1.4. Q.E.D. 
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Remark 1.512. If NC G is the subgroup corresponding to 9~ then in 
Section 1.3 of [17] we defined an action of N on 5’(t) so that if S(8)N is the 
algebra of invariants then when a = d 

S(E)>” = {If 1 I E S(gz)G}. (1.5.6) 

Theorem 1.5 then says that the elements of the algebra S(8)” Poisson commute 
with one another. This algebra is very explicit in the case where 9 is the Lie 
algebra of SZ(n,F). In that case choices can be made so that f + d = f + aa* 
is the set of all traceless matrices y of the form 

(1.5.7) 

By abuse of notation regard aii as a linear functional on e and thereby identify 
it with an element in .&, The nontrivial coefficients uk E S(B), k = l,..., I = 
n - 1, of the characteristic polynomial of y, as polynomials in the aij , are 
of the form uk = Ikf, where the Ik are the fundamental invariants. The algebra 
S(8)N is just the algebra generated by the uk . Theorem 1.5 asserts that they 
Poisson commute with one another. It is this example which applies directly 
to the Toda lattice. 

1.6. Let a and f be as in Theorem 1.5 so that a is a Lie summand 
in 9 and f Ef satisfies (1.4.3). N ow consider the translation f + aa* of a.* by f. 
For convenience put f + a* = (a*)f 

7f: a* --+ (a*)f, x+f+x. (1.6.1) 

We will understand that (xz*)~ has the structure of an affine variety and that 
7f is an isomorphism of affine varieties. 

LEMMA 1.6.1. For any I c S(g)c and y  E (a*)f one has [y, (&l)(y)] E a*. 

Proof. Put w = (&J)(y) so that w + (&J)(y) = (U)(y) by (1.2.9). But 
(U)(y) commutes with y by (1.3.3). Thus 

[y, (W(Y)1 = b4 Yl* (1.6.2) 

But now write y = f + x, where x E a*. We assert that 

hfl Ea*. (1.6.3) 
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1 0 Indeed since ma* = (a ) it suffices to show that [w, f] is Q-orthogonal to aL. 
But Q(al, [w, f]) = Q([&, w], f) = 0 by (1.4.3) since w E J-. This proves 
(1.6.3). Thus to prove the lemma it suffices by (1.6.2) to show. that [w, X] E *I*. 
But to prove this it certainly suffices to show that 

w, a*] c a*. (1.6.4) 

But since a* = (a’-)0 it s&ices to show that [a’-, (&)o] is Q-orthogonal to &. 
However, Q(a*, [&, (a’)“]) C Q([rcl, &I, (a’-)“) = 0 since & is a Lie algebra. 
This proves (1.6.4). Q.E.D. 

Now 8, whether or not F = [w or C, has the structure of a vector space 
over R. Thus if y ~9 the tangent space to g at y is naturally identified with 8. 
In this identification if y E (o*)~ then the tangent space to (a*)t at y is clearly a*. 
Let I E S(g)“. The map given by y -+ [y, (&J)(y)] is clearly a polynomial 
map on 9 and hence by Lemma 1.6.1 there exists a smooth vector field 7, on 
(a*), such that 

h)Y = [YY W)(Y~l (1.6.5) 

for any y E (a*)f . 
Now let 7~~: (a*), -+ a * be the isomorphism which is inverse to T? . See 

(1.6.1). Thus q1 “ carries” vector fields on (a*)l to vector fields on a*. In 
particular, using the same notation for this map of vector fields, q1 + 77’~~ 
the vector field ~~lr], can be applied to an element u E S’(g) since by restriction u 
defines a function on act*. We express this action in terms of Poisson brackets. 

LEMMA 1.6.2. For any I E So, u E S(a), x E a* one has 

((+I&)(4 = K 4(x). (1.6.6) 

Proof. Let y = f + x = TAX. We express the left side of (1.6.6) in terms 
of the pairing of vectors and covectors. Let c be the left side of (1.6.6). Recalling 
the definition (see (1.2.2)) of 6~ one has 

But (SJ)(f + x) = (SF)(x) by (1.4.5). Thus 

c = Q(Y~ W)(x), (WWI). 
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But y = f + X. Hence c = [If, U](X) + Q(f, [(W)(X), (MU)]), recalling the 
formula (1.2.3). It suffices therefore to show that 

(1.6.7) 

But since I’, u E S(a) the commutator in (1.6.7) is in [a, a] by Lemma 1.2.5. 
Thus (1.6.7) follows from (1.4.3). Q.E.D. 

Theorems 1.6.1 and 1.6.2 below are corollaries of Theorem 1.5. They are 
familiar consequences in a symplectic context. However, the latter does not 
quite apply here. 

THEOREM 1.6.1. Let 9 be a semi-simple Lie algebra over [w or @. Let a Cg 
and f ~9 satisfy the conditions of Theorem 1.5 and put (a*), = f + a*. For 
any invariant I E So let q, be the vector field on (a*)f defined by (1.6.5). Then 

%J =o (1.6.8) 

on (a*Jrfm my 1, J c S(gJG. 

Proof. Apply Lemma 1.6.2, where u = Jf. But then by Theorem 1.5 
one has ((~&+,)u)(x) = 0 for any x ~a*. However, if y = f + x then 
~~~~~~)(x) = (r],(u o r:‘))(y). But clearly u 0 ~7~ = J 1 (a*)f . This proves the 

. Q.E.D. 

Now let P,,: 9 + a* be the Q,-orthogonal projection of 9 onto a*. For 
any y E (a*), let 

*I*(y) = IPP4xX, A I x E 4. (1.6.9) 

Remark 1.6.1. If A C G is the subgroup corresponding to a then one may 
define an action of A on (a*)f by translating to (a*), , using TV, the coadjoint 
action of A on a*. The subspace a*(y) of a* then turns out to be nothing 
more than the tangent space at y to the A orbit containing y. By Lemma 1.6.1 
one has PP,[y, (&I)(y)] = [y, (&J)(y)]. Since @J’)(y) ~a it follows that 

tdy E a*(Y) for any I E So. (1.6.10) 

THEOREM 1.6.2. Let 9 be a semi-simple Lie algebra over 6.2 or IF& Let a -Cf 
and f ~9 satisfy the conditiotu of Theorem 1.5 and put (a*), = f + a*. For 
any invariant I E S(g)o let 71 be the vector jeld on (a*)f defined by (1.6.5). Then 

h 9 %I = 0 (1.6.11) 
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for any I, J E S(9)G. Furthermore ;f y e (a*)t t/m 

(4 = 0 * &(a*(~), (WY)) = 0, (1.6.12) 

where a*(y) is dejined by (1.6.9) and 61 is defined by (1.2.2). 

Proof. We may iterate the formula (1.6.6). Let I, J E So and u E S(a). 
That is, if x E a*, then 

(1.6.13) 

But then ((T;‘[Q , ?,])u)(x) = [[If, Jf3u](x). However, [P, Jfl = 0 by Theo- 
rem 1.5. But since the set of functions u 1 a*, u E S(a) contains a coordinate 
system (e.g., let u E a) it follows that TT1[rlI , ~~1 = 0 and hence one has (1.6.11). 

Now if x ~a and y E (a*)f then 

Q(x, (TIM = Q(x, [Y, PA(y 

= Q(k ~1, (V)(Y)). 
(1.6.14) 

But now since (a*)’ = a0 we may replace [x, y] in (1.6.14) by PIII[x, y]. 
But then having done that we may replace &1)(y) by (61)(y) since (al)o = a*. 

This uses (1.2.9). Thus 

Q(x, (rl&,) = QV’&, ~1, (&I)(Y)). (1.6.15) 

But since (T,)~ E a* by Lemma 1.6.1 and a and a* are non-singularly paired 
by Q it follows that (T,)~ # 0 if and only if there exists x E a such that (1.6.15) 
is not zero. This implies (1.6.12). Q.E.D. 

Remark 1.6.2. Recalling Remark 1.6.1 one may interpret (1.6.12) as follows: 
Let 0 denote the A-orbit of y with respect to the f-translated coadjoint action 
of A on (a*)l described in Remark 1.6.1. Then (7~~)~ # 0 if and only if the 
differential d(1 1 0), # 0, where of course 11 0 is the restriction of 1 to 0. 
In fact if F = [w then 0 has the structure of a symplectic manifold and q, 1 0 
(see Section 6.4 for the case where 0 = 2) is just the Hamiltonian vector 
field corresponding to the function I 1 0. 

2. THE VARIETY 2 OF NORMALIZED JACOBI ELEMENTS 

2.1. Henceforth we restrict our attention to the case of the example 
in Section 1.5. We recall that there is no restriction on 9 if F = @ but 9 is 
split ifF = 172. Furthermore 4 (which is split ifF = R), A, .4+ , 17 = {aI ,..., a1}, 
e, , for q~ Ed, satisfying (1.5.1) and (1.5.2) are as in Section 1.5. 
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Now let H C G be the subgroup corresponding to A. Let A’ = Horn&‘, F) 
and where Z is the set of integers let 

k’(H) = {v E R’ [ (Y, x} G 27riZ for x E R, where exp x = l}. (2.1.1) 

Remark 2.1. One knows that h’(H) is the lattice xi=, Zari if F = @ and 
A’(H)=R’ifF=R. 

Let F* = exp F so that F* is the multiplicative group of nonzero complex 
numbers if F = @ and F* is the multiplicative group of positive numbers 
if F = R. Then any Y E A’(H) defines a homomorphism H--t F*, h -+ hv, 
where hY = exp(v, x) for x E A such that h = exp x. One of course has 
A CR’(H) and if heH, PEA then 

he, = h@e, . (2.1.2) 

Now let x, E A be that unique element such that (ai , x0) = 1 for i = I,..., 1. 
The eigenvalues of ad x, are in Z. One puts di = (x E 9 1 [x0 , x] = jx} for 
Jo L. We shall refer to the dj as the diagonals of 8. Of course d, = R and 
one has the direct sum decomposition 

where the sum is over Z. 

9 = 04, (2.1.3) 

DEFINITION 2.1. If 0 # x l 9 and Xj E di denotes the component of x 
in dj relative to (2.1.3) then the minimal j such that xj # 0 will be called the 
minimal diagonal degree of x. The element xi is called the minimal diagonal 
component of x. Similarly we will speak of the maximal diagonal degree ,and 
component of x. 

One of course has, for i, j E Z, 

[di 9 dj] C J..+j *  (2.1.4) 

Now let d, 8, PZ, and 2 be the Bore1 subalgebras and their commutators defined 
as in Section 1.5 so that 

(2.1.5) 

and 

Henceforth unless otherwise stated as in the example of Section 1.5 the 
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subalgebra a of Sections 1.2-1.5 will be just 8. Thus all notation and results 
referring to a now apply solely to 8. Furthermore the element f is fixed and 
is given by (1.5.4). Thus in particular, d E S(8) for any u E Sb). Furthermore 
a* = c? by (1.5.1) and (a*)f = f + 8 which of course we now write as df . 
For the case of SZ(n,F) we note that choices can be made so that the typical 
element y E &, is of form (1.5.7). 

Now if x ~9 then for the centralizer 8” of x one knows that dim8x 2 1 
and the set R = {x ~9 1 dirngz = Z} is an open dense subset ofg. The elements 
of R are called regular. 

LEMMA 2.1.1. One has 

4, C R. (2.1.7) 

Proof. It clearly suffices, by complexifkation, to assume that ,F = @. 
But then .Lemma 2.1.1 is Lemma 10 in 1114, p. 3701. Q.E.D. 

If y E .Jf then it is not in general easy to describe the centralizer 8” of y. 
However, one has 

LEMMA 2.1.2. For any y E &, m has 

y n e = 0. (2.1.8) 

Proof. It clearly suffices to assume that F = C. But then Lemma 2.1.2 
is (1.2.4) in [17, p. 1091. Q.E.D. 

Now 

,=d@@t (2.1.9) 

is a Q,-orthogonal direct sum since (6)l = ((@)* = (Z)* = RZ. Thus the 
decomposition (1.2.9) becomes 6~ = Sju + 6,~ for any u E S(g). 

We recall that Ij , j = l,..., Z, are the generators of So. 

PROPOSITION 2.1. Let y E 8, be arbitrary and put 

Then the elements &I,)(y), j = l,..., 1, are linearly independent and are a basis 
of (8j(S(g)G))(y). Furthermore [B, y] C e and one has 

Q(MS(yNGN(~h h ~1) = 0. (2.1.10) 
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In fact [H, y] has codimension 1 in 8 and is the Q-orthocomplement of (S~(S(~)G))(y) 
in &. 

Proof. Assume that there is a nontrivial relation C C<(621i)(y) = 0. This 
implies that if w = C c@1,)(y) th en w E +z by (2.1.9). But w E# by (1.3.3). 
However, 8’ n H. = 0 by (2.1.8). Thus w = 0. But y E R by (2.1.7). This 
contradicts Theorem 9 in [14, p. 3821, which asserts that (81,)(y), i = l,..., 1, 
are linearly independent for any y E R. Thus the (&lJ(y) are linearly inde- 
pendent. From the differentiation properties of the map I + (6$)(y) it is 
clear that they span (6~(S(f)~))(y). This p roves the first statement of the 
proposition. 

Now the minimal diagonal degree (see Definition 2.1) of y is - 1. Thus 
[+z,y] C G by (2.1.4), (2.1.5), and (2.16). Thus if 1~: S(f) one has Q((&J)(y), 
[M, y]) = 0 since do = B. However, Q((U)(y), [H, y]) = 0 by the invariance 
of Q and the fact that [(M)(y), y] = 0. See (1.3.3). Thus, subtracting, 

Q@~Y), hrl) = 0. Th is proves (2.1.10). But now (2.1.8) implies that 
dim[e, y] = dim ?IZ. However, dim d = I + dim /it. Also, 4 and 8 are non- 
singularly paired by Q and we have shown that dim(Gj(S(2))G)(y) = 1. This 
proves the last statement of the proposition. Q.E.D. 

2.2. Now it is clear that the diagonal di is the Z-dimensional subspace 
given by 

dl = i Fe,( . 
i-1 

(2.2.1) 

Let 

d;= i aie,,Iallai#OifF=@;allai>OifF=~. 
I I 

(2.2.2) 
i=l 

Remark 2.2.1. If F = C note that z1 is the set of all principal nilpotent 
elements in di by Theorem 5.3 in [12]. 

Now put 

2, = A + d; (2.2.3) 

so that Z,, is a 2I-dimensional submanifold of &. Our primary concern is with 
the 21-dimensional submanifold Z of t, obtained by translating 2, by f. That is, 

z=f+z,Ce,. (2.2.4) 

Let B C G be the subgroup corresponding to 8. 

Remark 2.2.2. Note that B in the notation of Remark 1.6.2 plays the role 
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of A. We shall not be concerned with this at present but it is easy to prove 
(see Section 6.4) that 2, in the sense of Remark 1.6.2, is an orbit of B in &, . 

For the case of &‘Z(n,F) note that choices can be made so that 2 is the set 
of all traceless Jacobi matrices of the form 1 

b, a, *a* 0 

Y= 3 (2.2.5) 

wherea~,bi~Fandai#OifF=@,ai>OifF=!R. 
The notion of Jacobi matrix generalizes to 9. Let 

Jac 9 = 
I 
x + f: (adie-,, + a,e,,) 1 x E R, uwiui # 0 

61 

Clearly one has 

if F = 62; abl , ui > 0 if F = Iw . 
i 

(2.2.6) 

ZC Jacp (2.2.7) 

Of course the definition of Jacg depends upon the choice of positive and 
negative simple root vectors. Also, it appears at first in considering 2 that 
we would be restricting ourselves in any investigation of Jacg. This, however, 
is not the case. We are in fact just factorizing out the trivial action of H on 
Jacy. That is, one has 

PROPOSITION 2.2. The map 

is bijective. 

H x Z+ Jacy, (a,x)+ax (2.2.8) 

Proof. It is clear that Jacg is stable under the action of H. On the other 
hand since G is the adjoint group the map 

H + (F*)‘, h -+ (h ’ ‘I,..., h”r) (2.2.9) 

is bijective. It follows that h leaves no element of Jac 9 fixed in case h # 1. 
It also follows (replacing 01~ by -ai) that every H-orbit in Jacg contains a 
unique element in 2. This proves the proposition. Q.E.D. 

We refer to Z as the manifold of normalized Jacobi elements. 
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Now if y  E 2 the tangent space to 2 at y  is clearly given by 

T,(Z) = L + Al . (2.2.10) 

On the other hand for any y  E G = a* we have defined a subspace a*(y) 
now written as b(y), by (1.6.9). 

LEMMA 2.2.1. For any y E Z one also has 

t?(y) = A + Al . (2.2.11) 

Proof. The projection P,* o f  Section 1.6 is just Pd and the kernel of Pd 
is z since .& = (@)* = m* = 7~. By definition, b(y) = Pd[&, y]. But since 
the maximal diagonal degree of y  is 1 (see Definition 2.1) one has e(y) C A + Jr 

by (2.1.4) and (2.1.5). On the other hand since [em,+ , e,J = 0 if i # j and the 
elements [e-,, , e,,] are a basis of X it follows that Pd[dmI , y] = d, = A. But 
also since [d, , d,] = 0 one clearly has Pd[d, , y] = dr . Thus A + dI 2 b(y). 
This proves the lemma. Q.E.D. 

Remark 2.2.3. Recalling Remarks 1.6.1 and 2.2.2 note that Lemma 2.2.1 
is anticipated by the fact that Z is an orbit of B in G. 

Now for any y  E 2 note that 

[y, [Z, G]] c n. (2.2.12) 

This is clear since the maximal diagonal degree of y  is 1 and the maximal 

diagonal degree of any nonzero element in [Iz, %] is -2. Now for y  E Z let 

fin(,) = {x E ,&z I Q(% ry, [% ql) = 01. (2.2.13) 

LEMMA 2.2.2. For any y  E Zone has dim ecy) = 1. Furthermore dim(R + JJ n 
[e, y] = 1 and one has 

[*t(Y) > Yl = (A + A) n b, Yl* (2.2.14) 

Proof. One first has that 

y n L” = 0. (2.2.15) 

Indeed if e E& is the maximal diagonal component of y  then y  E e + &. On 
the other hand no normalization was made with regard to the simple root 
vector so that we can interchange the roles of positive and negative roots where 
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d replaces d and e replaces f. But then (2.2.15) follows from (2.18). But now 
one knows 

I?& ;;;3 = c 4 
j<-2 

-- 
so that [GW, RZ] has codimension I in Z. However, ad y has no kernel in [G, ;;3 C d 
by (2.2.15) and hence [y, [%, %];I1 1 a so h as codimensional I in Z, recalling (2.2.12). 
This proves dim RZ(~) = Z. But then by (2.18) one also has 

cWw , ~1 = 1. (2.2.17) 

Again by (2.18) any element in [B, y] is uniquely of the form [x, y] for 
x E RZ. On the other hand A + dI by (2.2.16) is clearly the Q-orthocomplement 
of [Z, Z] in 4. Thus [x, y] is in the right side of (2.2.14) if and only if Q&v, y], 
E, Z]) = 0. Th ere ore f by the invariance of Q the element [x, y] is in the right 
side of (2.2.14) if and only if x E +z(~) , using the definition (2.2.13) of “(Y) - 
This proves (2.2.14) and the lemma follows from (2.2.17). Q.E.D. 

Now recall (see (1.65)) that 7, for any invariant I E 5’(~)~ is the vector field 
on 8, such that 

h)Y = Cr, &uYI1* (2.2.18) 

By (2.2.10), (2.2.11), and (1.6.10), r], is tangent to the submanifold 2. Let 

6 = 7, I z (2.2.19) 

and let z be the space of vector fields on Z defined by 

x = I& I IE ~~)Gl. (2.2.20) 

Also for any y E 2, let 

(2.2.21) 

THEOREM 2.2. Let 9 be any complex or real split semi-simple Lie algebra. 
Let 1 = rankg and let Z be the 2Z-dimensional manifold of normaZized Jacobi 
ehtents in p See (2.2.4). For any invariant I E S(,a>” let & be the vector fierd 
on 2 dejned by putting 

(&I), = [Y, W)(Y)1 (2.2.22) 

for anyy E 2. The element (8$‘)(y) isgiven by (1.2.10). 
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Now let x be the spQce spanned by 4, for all I E S(g)G. Then x is a commutative 
Lie algebra of vector fields. Furthermore for any y E Z the subspace zg C T,(Z) 
defined by (2.2.21) is l-d imensional 
basis of .zl/ , where the I* E S(y)” 

and the elements (f!,), , j = l,..., I, are a 
are the fundamental znvariants. Moreover if 

s=Q,) C PZ is defined by (2.2.13) then the eZements (8,1j)(y), j = l,..., I, are a basis 

of e:(U) and 
., “I = b(Y) 3 Yl- (2.2.23) 

Proof. It follows immediately from Theorem 1.6.2 that z is a commutative 

Lie algebra of vector fields. Now let y  e 2. By Proposition 2.1, &l)(y) is in 
the span of (6&)(y), j = l,..., 1, for any I E So. Thus the elements (6,Jy 
span gV . But also by Proposition 2.1 the elements (S$J( y) are linearly inde- 
pendent. FurthermoregY n d = 0 by (2.2.15). Thus the elements [y, &l,)(y)] = 

(&), are also linearly independent and hence are a basis of xy . But [y, (S1)( y)] = 

0 by (1.3.3). Thus for any I G S(9)o 

(41), = [Y> (y)(Y)1 

= mzUY)> Yl- 
(2.2.24) 

But (&), E T,(Z) = R + J1 . Thus by (2.2.24), (&), E (A + di) n [ti, y]. Thus 
[@J)(y), y] E [a(,) , y] by (2.2.14). But since 8’ n ti = 0 by (2.1.8) this implies 
&Z)(y) E ~4~) . However, by (2.2.24) the elements (6,1,)(y) must be linearly 
independent. But then they are a basis of n(,) by Lemma 2.2.2. Furthermore 

(2.2.24) then immediately implies (2.2.23). Q.E.D. 

2.3. Now the fundamental invariants Ij define a differentiable map 

Ag-tFl, (2.3.1) 

where 4(x) = (II(x),..., I,(x)). 
For each y  in the image, 9(Z), of Z under 9 one defines a nonempty closed 

subset Z(y) of Z by putting 

Z(y) = F-l(y) n Z. (2.3.2) 

One of course then has the disjoint union 

z = u Z(Y)* 
YE-f(Z) 

(2.3.3) 

Remark 2.3. For the case of Sl(n, F) note that the equivalence relation 
in Z defined by regarding (2.3.3) as a union of equivalence classes is the relation 
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x N y when x and y are normalized Jacobi matrices with the same charac- 
teristic polynomial. 

Consider the functions Ii ) Z on Z defined by restricting the fundamental 
invariants to 2. The following guarantees that the Z(y) are submanifolds, 
although at this point it is not clear whether or not they are connected. 

PROPOSITION 2.3.1. FOY any YE 2 the disferentials (d(I, ) Z)), , i = I,..., 1, 
are linearly independent. 

Proof. Now as in (2.2.10) the tangent space to 2 at y is identified with 
A + di . With respect to this identification if w E A + dr then by (1 .1.2) and 
definition (1.2.2) one has 

(w, W I -0,) = Qh W(Y))- (2.3.4) 

Thus (d(I / Z)), = 0 if and only if (61)(y) is Q-orthogonal to SS $ di . But 
4 + di = 6(y) by (2.2.11). Thus (d(I 1 Z)), = 0 if and only if (E,), = 0 by 
(1.6.12). However, the vectors (&), are linearly independent by Theorem 2.2. 
Thus the differentials (d(I, I Z)), are then also linearly independent. Q.E.D. 

Let m, N c G be the subgroups respectively corresponding to Z and 3~. 
We return briefly to &, = f  + 6. 

PROPOSITION 2.3.2. Let yl , yz E 8, . Then there exists n E N such that 
ny, = yz if and only if Y( yl) = Y( yz). Furthermore in such a case n is unique. 

Proof. If such an element n E N exists then by invariance one has 9( yi) = 
9( ys). Conversely assume 9( yi) = Y( ys). W e must show there exists a unique 
n E: N such that ny, = ya . Assume first that F = @. 

Let x, E A be as in Section 2.1. It is clear from (2.1.4) that [f, S] C d and 
[f, n] is stable under ad x, . Let II Cd be any ad x, stable subspace such that 

is a direct sum. Now by Theorem 1.2 in [17] there exist elements ni E N, 
xi E f  + ri such that nixi = yi , i = 1,2. Clearly Y(xi) = Y( yi). However, 
since 4(y,) = 9(y,) one then has $(x1) = #(x2). But then xi = x2 by 
Theorem 7 in [14, p. 3811. (See also Remark 19’ in [14, p. 3751. This proves 
there exists n c N such that ny, = yz . The uniqueness of n follows from 
Theorem 1.2 in [17]. 

Now assume F = K!. Let gc = 9 + $ and let Gc be the adjoint group 
of ye:. Let ~c = @Z + in and let Nc C Gc be the subgroup corresponding 
to Hn,, By the result above there exists a unique n E Nc such that ny, = yz . 
Now regarding N _C Nc we have only to show that n E N. Write n = exp z, 
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where z E +~c , and write x = u + iv, where u, v E H. It is enough to show 
that v = 0. Assume not and let j and vi be respectively the minimal diagonal 
degree of v and the minimal diagonal component of v. Then j 3 1 since v E IC 
and hence 

[Vj , j] E dj-1 c 8. (2.3.5) 

But now 

(1 (ad(u + iv)“) 
m! 1 (f + Xl) = Y2 !  

nz 

(2.3.6) 

where we have written yr = j + x1 so that x1 E &. 
Now the minimal diagonal degree of any nonzero element in [v, e] is at 

least j and any further bracketing with u or v would only increase the degree. 
Thus upon writing yc = C LZ!~ + ;C dk as a real direct sum it follows that 
the component of the left side of (2.3.6) in i&r is just i[vi , j]. But [vj , j] # 0 
by (2.1.8). This contradicts the fact that y2 ~9. Thus v = 0. Q.E.D. 

2.4. Here and in Sections 2.5 and 2.6 we assume that F = @. Now 
the Weyl group W = W&J, A) operates on k and on its dual A’. For each a E W 
let S(U) c G be the unique element in the normalizer of A, corresponding to u, 
such that 

44 em, = eoei , i = I,..., 1. (2.4.1) 

The Bruhat-Gelfand decomposition of G asserts that 

G = (J Ns(u) HN (2.4.2) 
OEW 

is a disjoint union. Now let K E W be the unique element such that Ed+ = --d+ . 
Then S(K) Ns(K)-’ = m. Multiplying the components of (2.4.2) on the left 
by S(K) one also has the disjoint union 

G = (J &T) HN. (2.4.3) 
TEW 

Now if T is the identity then ?7~(7) HN is just NHN Now put 

G, =NHN. (2.4.4) 

One knows that G, is a Zariski open subset of G and the map 

NxHxN+G,, (2.4.5) 

where (7t; h, n) + &n is an isomorphism of algebraic varieties. Thus for any 
d E G, there exist unique elements ad c N, h, E H, and nd E N such that 

d = n,h,n, . (2.4.6) 
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We will retain this notation throughout. One notes in particular that by inverting 
(2.4.5) the map 

G,+N, dt+n6 (2.4.7) 

is a morphism of algebraic varieties. 
Now for any y E G we recall that Gv is the centralizer of y in G. Thus GY 

is a Zariski closed algebraic subgroup of G. In case y is regular, i.e., y E R, 
this group is of a particularly simple form. 

PROPOSITION 2.4. If  y  E R then Gg is an Abelian connected algebraic group 
of complex dimension 1. That is, as algebraic groups one has the isomorfihism 

Gu g (@*)” x @q (2.4.8) 

forsom.ep,qwherep+q=l. 

Proof. The first statement is contained in Proposition 14 in [14, p. 3621. 
The second statement follows then from the well-known classification of 
connected Abelian complex algebraic groups. Q.E.D. 

Now let y E 2. Then y E R so that Proposition 2.4 applies to y. Let 

GY, = G”nG, (2.4.9) 

so that Gg is a Zariski open subset of Gr. Since 1 c Gi it follows that G$ is 
not empty and hence is dense in G II. Furthermore since GY is connected and 
nonsingular it follows that Gg is a connected, nonsingular algebraic variety 
of dimension 1. We recall that a variety of dim 1 is called rational if its function 
field is isomorphic to @(X1 ,..., X,), where the X, are indeterminates. Since 
Gr is an algebraic group it is rational. (This is of course obvious from (2.4.8).) 
Since Gil; is Zariski dense in Gg it has the same function field so that it too is 
rational. 

Now for any d c G: one has the decomposition (2.4.6). That is, d = n,h,ii, 
and by restriction (2.4.7) the map 

GY, --+ N, 

is a morphism of algebraic varieties. 

d -+ nd (2.4.10) 

Now if y is the image 9(Z) of the map 4 it is clear that the “isospectral” 
set Z(y) is a closed subvariety of the variety 2 of normalized Jacobi elements. 
However, it is not clear just what variety it is and in fact whether or not it is 
connected. These questions are settled by 

THEOREM 2.4. Let JZ be a complex semi-simple Lie algebra and let Z be the 
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set of normalized Jacobi elements defined by (2.2.4). Let y E Z, y = Y(y), and 
Z(y) C 2 be deJned by (2.3.2) (so that Z(y) is the set of all elements in Z which 
are conjugate to y). 

Now let G be the adjoint group of 8. Let Gg be the centralizer of y in G and let 
Gi be the Zariski open subset of Gv dejned by (2.4.9). Then for any d E Gz one 
has n,y E Z(y). (See (2.4.6)) Furthermore if&,(d) = n,y then 

A!: G. - Z(Y) (2.4.11) 

is an isomorphism of algebraic varieties. In particular Z(y) is an irreducible, non- 
singular, rational algebraic variety of dimension 1 where 1 = rank9 (so that 
Z(y) is a connected complex manifold of dimension 1. 

Proof. Now since y E Z C 4, and & is stable under the action of N it is 
clear that b,(d) E 8, . Let w = p,(d) and let j and We be respectively the maximal 
diagonal degree and component of w. See Definition 2.1. To prove that w E Z 

it suffices then to show that j = 1 and wj E Jr . Now clearly It6 = h-l(g)-ld, 
where we have written ti = ir, , h = hd . Thus w = h-l(g)-l dy = h-l(e)-ly 
since dy = y. That is, 

/3,(d) = h,‘(Q-‘y. (2.4.12) 

But if y1 is the maximal diagonal component of y then y1 E d; . However, 
clearly the maximal diagonal component is unchanged by the action of any 
element in m. Thus yr is also the maximal diagonal component of (%)-ly. But now 
obviously h-lyl is the maximal diagonal component of h-l(s)-ly = w. That is, 
there exists x E h so that 

&(4=f+x+h;h. (2.4.13) 

Since & is stable under H this proves that p,(d) E Z. However, then certainly 
p,(d) = n,y E Z(y) by the invariance of 9. This defines the map (2.4.11). 
Assume now that /3,(d,) = /$,(dz), where dl , d, E G$ . That is, n,y = nsy, 
where ni = Q, , i = 1,2. But then by the uniqueness in Proposition 2.3.2 
one has nr = ns . But then hy’y, = h;ly, by (2.4.13), where hi = hdi . Since 

H operates in a simple transitive way on d; it follows that h, = h, . Finally 
if tii = ed. one has (%J-ly = (%s)-ly by (2.4.12). But then by Proposition 2.3.2 
with the ;oles of e and d, N and N, f and yl reversed, one has n; = n; by 
uniqueness since y E yl + c?. This proves dI = d2 so that /3, is injective. 

Now let w E Z(y). Since w, y E &f this implies there exists n E N by Proposi- 
tion 2.3.2 such that 

fly = w. (2.4.14) 

Now let y1 and wr be-respectively the maximal diagonal components of y and w. 

6071343-3 



226 BERTRAM KOSTANT 

Then yl, w, E i1 and hence by the transitivity of H on Jr there exists h E H 
such that hw, = yr . Thus hw, y E: y1 + &and 9(hw) = Y(y) = y by invariance 
of .Y under conjugation. But then by Proposition 2.3.2 with the roles reversed 
as above (in the proof of injectivity) there exists %c N such that 

%hw = y. (2.4.15) 

Substituting for w using (2.4.14) one has ithny = y. Thus ?ihn = d E: Gv and 
n = nd . Thus w = /3,(d) by (2.4.14). This proves the surjectivity of &, and 
hence /I, is bijective. On the other hand /I, is clearly a morphism of algebraic 
varieties since (2.4.10), as noted, is such a morphism. Thus Z(y) is an irreducible 
variety. But, by Proposition 2.3.1, Z(y) is certainly nonsingular, using, e.g., 
Zariski’s criterion. Thus Z(y) is a nonsingular irreducible variety. In particular 
it is normal. But then since /3, is bijective it is an isomorphism of algebraic 
varieties by the Zariski main theorem. Q.E.D. 

Remark 2.4.1. We thank D. Mumford and D. Kazhdan for pointing out 
that our isomorphism (2.4.11) * pl rm ies the rationality of Z(y). For the special 
case of SZ(n) and where y has distinct eigenvalues this result is due to J. Moser. 
The rationality in that case was established by Moser, using continued fractions. 

Remark 2.4.2. Since Z(y) is a nonsingular variety it also has the structure 
of a smooth manifold. Moreover as such it is a submanifold of 2. Furthermore 
since 8, is an isomorphism of algebraic varieties one knows then that & is 
also a diffeomorphism of smooth manifolds. See, e.g., Chapter VII, Section 1, 
in [22]. 

2.5. As in Section 2.4 we assume that F = C. Now one can easily 
determine the image 4(Z) of 2 under the map 9. See (2.3.1). Let e E dl and 
putg =f+ e. Let 

JQ A + @Z (2.5.1) 

be the map defined by putting 9g(~) = 9(g + x) for x E R. Recall that W is 
the Weyl group W(g, 4). For any finite set S let 1 S 1 denote its cardinality. 

PROPOSITION 2.5.1. Let y c Cz be arbitrary. Then Y;l(“/) is finite and in fact 

1 < I mr>l < I w I. (2.5.2) 

In particular the map §O is surjective. 

Proof. Let Ji E S(k) be defined by putting Ji = Ii 1 A. (We are of course 
identifying S(R) with its dual using Q 1 R.) If deg Ii = md + 1 then of course 
Jt is also homogeneous of degree m, + 1. On the other hand by Chevalley 
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the Ji are algebraically independent and the algebra s(&)w of Weyl group 
invariants is exactly the polynomial algebra, C[ J1 ,..., J1], generated by the Ji . 
Furthermore it is also due to Chevalley that S(k) is a free S(A)w with ] W [ 
generators. (See, e.g., Theorem 4.15.28 in [26, p. 3861.) That is, there exists 
a graded subspace D C S(k) of d imension 1 W 1 such that S(R) = S(A)w @ D. 
But then since D is graded it is easy to see that 

S(A) = A, @ D, (2.5.3) 

where if Jig E S(A) is defined by Jig(x) = J& + X) for x E R then A = 

@LJ1g,..., Jzg]. One needs only the obvious fact that Ji - Jig is a polynomial 
of degree at most mi . 

Thus S(k) is a free A, module with 1 W / generators. In particular S(A) 
is integral over A, . On the other hand A, is just the pullback of the affine 
algebra on CL with respect to the map $g . Thus $g is a finite map. See, e.g., 
[22, p. 481. But then 9g is surjective (see, e.g., Theorem 4 in [22, p. 481) so 
that 1 < 1 Y;r(r)l f or any y E Cz. On the other hand if (A) denotes the quotient 
field of an integral domain A then (2.5.3) easily implies (S(A)) = (A& @ D 
so that 1 W 1 is the degree of the map Jg. See, e.g., [22, p. 1161. But then one 
knows j J;‘(r)1 < W for any y E Cz. See, e.g., Theorem 6 in [22, p. 1161. 

Q.E.D. 

The set of unramified points is of course nonempty and ‘Zariski open. That is, 

PROPOSITION 2.5.2. Let the notation be as in Proposition 2.5.1. Then the set 

co2 = (y E cz 1 I S,‘(y)1 = I w I} (2.5.4) 

is a nonempty open subset of Cz. 

Proof. Since ] W ] is the degree of the map Yg as noted in the proof of 
Proposition 2.5.1 the result is just Theorem 7 in [22, p. 1171. Q.E.D. 

Summarizing one has 

THEOREM 2.5. Let 9 be a complex semi-simple Lie algebra. Let 1 = rank9 
and let Z be the 21-dimensional variety of normalized Jacobi elements in 9 dejked 
by (2.2.4). For any y E Cz let Z(y) _C Z be the subvariety defined by (2.3.2) in 
terms of the fundamental invariants Ij , j = I,..., 1. Then Z(y) is an l-dimensional 
nonsingular, irreducible closed rational subvariety of Z and hence 

(2.5.5) 

is a foliation of 2 by such subvarieties. 
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Proof. Recall the notation and statement of Proposition 25.1. Since the 
map Yg is surjective it of course follows that 9 is surjective. That is, 

Y(Z) = v. (2.5.6) 

The result then follows from Theorem 2.4 and (2.3.3). Q.E.D. 

Henceforth we will speak of the sets Z(y) as the isospectral leaves of 2. 

Remark 2.5. Although the elements of Z are regular one notes that by 
(25.6) the elements of Z are not in general semi-simple. In fact since two 
regular elements X, y ~9 are G-conjugate if and only if 9(x) = Y(y) (see 
(3.8.4) in [14]) it follows from (2.56) that every regular element is G-conjugate 
to a normalized Jacobi element. In particular taking y = 0 in Q=Z the isospectral 
leaf Z(0) is the set of all nilpotent elements in Z. Since Z C R any element 
in Z(0) is in fact a principal nilpotent element. 

Here again as in Sections 2.4 and 2.5 we assume F = @. 

2.6. Now if y E: 6Y then the isospectral leaf Z(y)of Z has been described 
by Theorem 2.4 in terms of a Zariski open subset of the centralizer Gg of an 
element y E Z. However, the centralizer G* is itself fairly complicated. We 
wish now to describe Z(y) in terms of the centralizer GW of an element w which 
is more readily accessible. 

Now let W,ER and put w =f+w,. Thus WE&~ and hence WER by 
(2.1.7). Thus G” by Proposition 2.4 is a connected Abelian subgroup of complex 
dimension 1. Now since G, = RHN is Zariski open in G the same is true 
for its translate S(K) G, . Thus if we put 

GM = 44 G, (2.6.1) 

then Gf*) is a Zariski open subset of G and for any g E G(*) there exist unique 
elements a(g) E m, h(g) E H, and n(g) E N such that 

g = 44 a) w 4g). (2.6:2) 

This notation as with (2.4.6) will be retained throughout. By inverting (2.4.5) 
it is clear that the map 

GM - N g + w (2.6.3) 

is a morphism of algebraic varieties 

G^iU,, = G” n G(*) (2.6.4) 

so that Gy!+) is Zariski open in G”. 
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Remark 2.6.1. Unlike the case of Gg for y E 2 it is not immediately obvious 
(at least to us) whether G1”,, is empty or not. It is in fact nonempty as stated 
in Theorem 2.6 below. 

Now for any g E G;“!, one has the decomposition (2.6.2). That is, s(K)-ig = 

fw w Nd* Jh-th ermore by restricting (2.6.3) the map 

G&“,, - N g - w (2.6.5) 

is a morphism of algebraic varieties. 

LEMMA 2.6.1. Let y = 3(w) and let g E G;“,, . Then n(g)w E Z(y). 

Proof. Let y = n(g)w. Since &, is stable under the action of N it is clear 
that y E G, . Let j and yj be respectively the maximal diagonal degree and 

component of y. We have to show that i = 1 and y1 E u& . But the maximal 
diagonal component of s(g) h(g)y is clearly just h(g) yj . However, g(g) h(g)y = 
W(g) h(g) n(g)w = s(K)-lgw. But gw = w and s(K)-‘w = K-lw,, + e, where, by 
(2.4.1) and (1.5.4), e = Cl=, emi . Thus h(g) yj = e. Hence i = 1 and yi = 
h(g)-le. That is, 

y1 = i k(g)-“i eai. 
i=l 

Note also that one has 

n(g) h(g)y = K-lW, $ f?. (2.6.7) 

But now (2.6.6) proves y1 E & and hence y E 2. Also, since y and w are G-con- 
jugate one has 4(y) = 9(w) = y so that y E Z(y). Q.E.D. 

Now let the notation be as in Lemma 2.6.1. Put y = n(g)w so that y E Z(y). 
Since n(g) carries w to y one clearly has 

n(g) G%(g)-l = GY. (2.6.8) 

But now for any a E Gw one has g-la E Gw and hence 

&,: GW -+ Gf’ (2.6.9) 

is an isomorphism of varieties (not of groups), where 

Alw = a) ~-14d-1~ (2.6.10) 



230 BERTRAM KOSTANT 

LEMMA 2.6.2. Recalling that G: = Gg n NHNandG;U,, = GW r\ S(U) iVHN 
one has 

h&%4 = GY, . (2.6.11) 

Proof. Let a E Gw and put c = g-la so that s(K)-la = S(K)-lgc = nhnc, 
where we have put ti = g(g), h = h(g), and n = n(g). But nc = ncn-ln = 
&(a)n. Thus if we put d = &,(a) then dc Gv by (2.6.9) and 

s(K)-la = nhdn. (2.6.12) 

But now by the decomposition (2.4.3) there exists a unique a E W such that 
d pi ms(a) HN. Since s(o) normalizes H this implies s(K)-la E Ns(a) HN. Thus 
d = &,(a) c G: if and only if S(K)-‘a E NHN or if and only if a E G1”,, . This 
proves the lemma. Q.E.D. 

Remark 2.6.2. Let the notation be as in the proof above. If a E G;“,, so 
that d E NHN, note that (2.6.12) implies n(a) = ndn using the notation of 
(2.4.6). That is, for any g, a E Gf”,, one has 

where d = &(a). 

44 = w(g) (2.6.13) 

The element w = f  + w, in our considerations here can be chosen so that 
3(w) = y where y is any given element in Cz. That is, one has 

PROPOSITION 2.6. Given any y E cz there exists a w, E R, unique up to con- 
jugacy by W such that 9(wO) = y. Furthermore if w = f + w, then one also has 

so that Y(w) = y. 

44 = J%GJ (2.6.14) 

Proof. The first statement is a well-known result of Chevalley. It follows, 
for example, from the surjectivity part of the proof of Proposition 10 in [14, 
p. 3551 together with Lemma 9.2 in [12]. The second statement is part of 
Lemma 11 in [14, p. 3711. Q.E.D. 

THEOREM 2.6. Let 9 be a complex semi-simple Lie algebra and let Z be the 
set of normalized Jacobi elements in 8. This set is defined by (2.2.4). Let y E d=t and 
let Z(y) c Z be the isospectral leaf in Z defined by y. See (2.3.2). Let w, be any 
element in the Cartan subalgebra A such that S(wO) = y. Such an element w, 
exists. Let w = f + w, , where we recall f  is defined by (1.5.4). Let GIU,, be the 
Zariski open subset of the centralizer of w defined by (2.6.4). Then G,“,, is not 
empty ,so that it is a complex, connected l-dimensional, nonsingular rational variety. 
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Furthermore Z(y) is also such a variety. Moreover if a E G;“,, and n(a) E N is 
defined by (2.6.2) then n(a)w E Z(y) and ;f ,&,,(a) = n(a)w then 

B(w): G% - -W (2.6.15) 

is an isommphism of algebraic varieties. 

Proof. By Theorem 2.5, Z(y) is not empty and by Proposition 2.6 there 

exists an element wu, E A such that 9(w,) = y. 
Now let y  c Z(y). Then y, w E r?, and Y(y) = Y(w) = y  by (2.6.14). But 

then by Proposition 2.3.2 there exists n E N such that 

nw ==y. (2.6.16) 

But now if yr E; d; is the maximal diagonal component of y  there exists h E H 
such that 

e = hyl, (2.6.17) 

where 
1 

e = C elLi. 
$4 

(2.6.18) 

Thus hy E e + z?. On the other hand S(K)-lW = K-‘W, + e since it is clear 
from (2.4.1) that 

S(K)e = f .  (2.6.19) 

Hence hy and S(K)-lW are elements in e + & and 9(hy) = ~(s(K)-lw) = y. 

Thus, as argued in the proof of Theorem 2.4, Proposition 2.3.2 applies with 
the roles of e and &, N and N, and now f  and e reversed. That is, there exists 
fi E m such that %hy = S(K)-1 w or S(K) @hy = w. But since 7tw = y  this implies 
that g c G”, where g = S(K) tihn. Hence g E G;“,, so that G;“,, is not empty. 

Moreover note that 7t = n(g). But now by Lemma 2.6.1 the map p(W) exists 
and is a morphism of algebraic varieties since (2.6.5) is such a morphism. 
Furthermore by (2.6.16) one has 

/%dk) = 4dY = w. (2.6.20) 

Now recall (see (2.4.11)) the map ,6,: Gz -+ Z(y), where if d E Gz then /3,(d) = 
ndy, and the map G&, -+ Gg , defined by restricting #, to G& . See (2.6.11), 
where we recall &(a) = n(g)g-lan(g)-l. We assert the diagram 

(2.6.21) 
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is commutative. Indeed if a E G;“,, and d = k,(a) then Mb(a)) = B,(d) = 
n,y. However, y = rr(g)w by (2.6.16). But n&g) = n(a) by (2.6.13). Thus 
&(+h&a)) = rz(a)w = &,,(a). This proves that diagram (2.6.21) is commutative. 
But &, is an isomorphism by Theorem 2.4. Also since 4, is an isomorphism 
the vertical map in (2.6.11) is an isomorphism by (2.6.11). Thus &,, is an 
isomorphism of algebraic varieties. By Proposition 2.4, G&, and hence Z(y) 
is isomorphic to a nonempty Zariski open subset of (C*)” x @* for some 
p, q where p + q = 1 and hence has the properties described in the statement 
of the theorem. Q.E.D. 

3. THE PARAMETRIZATION 2 g H x A+ IN THE REAL CASE 

3.1. Throughout Section 3 we assume that F = 08. We will see that 
the situation is more complicated but perhaps more interesting. In order to 
make use of the results of Sections 2.4-2.6 we put gc = 9 + iy and let Gc 
be the complex adjoint group. Of course we may assume that G C Gc . Also 
let ezc , /Pc , and %c be the complexifications of IZ, A, and Z and let Nc , Hc , 
and Nc be the corresponding subgroups of Gc . 

Now let KC G be the subgroup corresponding to 1 where we recall 2 = 
k + P is the given Cartan decomposition of 8. See Section 1.2. Thus K is a 
maximal compact subgroup. Put P = exp+ so that as one knows, any g E G 
can be uniquely written 

g = kp, (3.1.1) 

where k E K, p E: P. One refers to (3.1.1) as the polar decomposition of g. 
One also knows that the map 

j + p, x w exp x (3.1.2) 

is a diffeomorphism. This clearly implies the familiar fact that the map 

P-P, p-+p2 (3.1.3) 

is also a diffeomorphism. For any p E P its unique square root in P will be 
denoted by ~11”. 

Now the real form p of pc defines a conjugation operation on yc and Gc . 
That is, if x c gc and we write z = x + iy for x, y E 9 then zc E 9c is defined 
by putting 

2” = x - iy. (3.1.4) 
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Since Gc is the adjoint group the operation induces an automorphism g -+ gc 

of Gc , where of course for any x l 9c 

(exp x)c = exp xc. (3.1.5) 

Now the Cartan involution 0 (see Section 1.2) extends by linearity to an 
automorphism of fc and, since Gc is the adjoint group, it also defines an auto- 
morphism of Gc which we continue to denote by 0. Now recall that the *-opera- 
tion on 9 was defined by putting x * = 0(-x). We now extend the operation 
to 9c as a conjugate linear map by putting x* = 0(-xc) for any x E gc . Thus if 

yu=4+il’t (3.1.6) 

then yU is a compact form of yc and 

x* zzz -x if and only if x E aU . (3.1.7) 

One also defines a *-operation on GE by puttingg* = B((gc)-‘) for anyg E Gc . 
Clearly if a, b E Gc , x, y ~yc one has 

(cd)* = b*a* and [x,Yl* = [Y*, x*1 (3.1.8) 

and also 

(exp x)* = exp x*. (3.1.9) 

Now let G, C Gc be the (maximal compact) subgroup of Gc corresponding 
to fV (see (3.1.6)). Also let P,, = exp i&, so that as one knows P, is a closed 
submanifold of Gc and the map 

G, x Pu-+Gc, (W> 4) * w4 (3.1.10) 

is a diffeomorphism. In fact the decomposition of Gc defined by (3.1.10) is 
just a polar decomposition. One has KC G, , P C P, and restricting (3.1.10) 
one has a diffeomorphism 

KxP-+G, (3.1.11) 

which of course defines our given polar decomposition of G. 
Now it is clear that G is stable under the *-operation and in fact if g E G 

is given by (3.1.1) then by (3.1.8) one sees that 

g* = pk-1. (3.1.12) 
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This also uses (3.1.7) and (3.1.9), which imply a 
if aEG,. 

Now note that 

AC/i. 

Indeed for any p cd let 

h, = [e, , e-,J EA. 

a* if a E P u and a* = a-1 

(3.1.13) 

(3.1.14) 

But then since e-, = ef (see (1.5.1)) one has hg = h, by (3.18) so that k, E+. 
On the other hand the root normals Iz, span A so that one has (3.1.13). Since 
dim A = I the Cartan subalgebra R is of course a Cartan subspace of/z and by 
exponentiating (3.1.13) one has 

HCP. (3.1.15) 

Now let T be the subgroup of Gc corresponding to id. Then by (3.1.6) 
and (3.1 .13) one has T C G, (in fact T is clearly a maximal torus in G,) and 
clearly the restriction of (3.1 .lO) to T x H defines a diffeomorphism 

TX H+H,. (3.1.16) 

One notes then that if a E Hc and we write a = t/z, where t E T and h E H then 

a* = k-l. (3.1.17) 

Now let m be the set of all elements of order 2 or 1 in Hc . Obviously 

@CT (3.1.18) 

by (3.1.16) and since T is a torus of rank 2 it is clear that &% is a finite Abelian 
group and in fact its cardinality 1 A? j is given by 

j M j = 2”. (3.1.19) 

LEMMA 3.1.1. LetaEHc. Thza =a*ifandonlyifa~l@H. 

Proof. This is immediate from (3.1.16) and (3.1.17) since Hc is com- 
mutative. Q.E.D. 

LetM=J?nG. 
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LEMMA 3.1.2. Let g E G and assume g = g*. Then g E K ;f and onZy if 
g2 = 1. Furthermore one has 

M=KnT. (3.1.20) 

Proof. If g = kp is the polar decomposition of g then by (3.1.12) 

hp = ph-1. (3.1.21) 

Thus if g E K one has g = k = k-l so that g2 = 1. On the other hand by 
(3.1.21) one hasg2 = p2 E P. Thus if g2 = 1 thenp2 = 1 which impliesp = 1. 
See (3.1.3). Hence g c K. This proves the first statement. Now MC K n T 
by the first statement and Lemma 3.1 .l. On the other hand if g E K Z G then 
gc = g recalling (3.1.4) and (3.1.5). But if g s T = exp ik then also gc = g-l. 
Thus K n T C a. However, K n T C G also, so that one has (3.1.20). Q.E.D. 

For any x E 9 let G,” be the identity component of the centralizer GE of x in G. 

PROPOSITION 3.1. Assume x E/J is regular. Then 

g = g * for any g E Gx. (3.1.22) 

On the other hand olte has 

G” n P = G,“. (3.1.23) 

Furthermore as Lie groups OM has the isomorphism 

G,” g-g RI. (3.1.24) 

Proof. From the conjugation theory of Cartan subspaces of b one knows 
that x is K-conjugate to an element in 4’. But since the *-operation commutes 
with the conjugacy action of K and P is stable under this action it then suffices 
to assume, as we shall, that x E A. But now clearly G* C Gcx, where GcZ is 
the centralizer of x in Gc . On the other hand Gcx = Hc since Gc” is connected 
by Proposition 2.4 and gcZ = 1, by regularity. Thus 

Gx = Hc n G. (3.1.25) 

But now comparing the diffeomorphisms (3.1.11) and (3.1.16) one has Gx = 
(K n T)H by (3.1.25). But K n T = M by (3.1.20) so that Gx = MH. But 
then in fact restricting (3.1.16) one has a diffeomorphism 

M x H---F G2. (3.1.26) 
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But then by the uniqueness of the polar decomposition this implies 

G” n P = H, (3.1.27) 

However, one also clearly has G, 2 = H by (3.1.26). This proves (3.1.23). 
Furthermore one also has (3.1.22) by Lemma 3.1.1 and (3.1.26). 

Now the restriction of the bijection (3.1.2) to A is clearly an isomorphism 
R -+ H of Abelian Lie groups. This proves (3.1.24). Q.E.D. 

3.2. Now put 

G, = NHN. (3.2.1) 

PROPOSITION 3.2. Assume x E# is regular. Then 

G” A G, = G,“, (3.2.2) 

where we recall that G,” is the identity component of G”. 

Proof. Assume that g is in the left side of (3.2.2). Write g = &z for ii E N, 
h E H and n E N. Then g* = n*hfi*. But now by (1.5.1) and (3.1.9) one has 

N* = m and (m)* = N. (3.2.3) 

Thus n* c m and ($* E N. However, g = g* by (3.1.22). But then by the 
isomorphism (2.4.5) applied to Nc , HC , and Nc one has n* = ii. Hence 
g = n*hn. Thus if we put h% = a E G one has g = a*a. However, for any 
b E G one has 

b*b E P. (3.2.4) 

Indeed if b = kp is the polar decomposition of b then b*b = p2 E P, proving 
(3.2.4). Thus g E P and hence g E: Gz n P. But then g E G,” by (3.1.23). 

Now the Iwasawa decomposition asserts that the map 

KxHxN+G, (k, a, n) -+ kan (3.2.5) 

is a diffeomorphism. Thus if g E G we can uniquely write g = kan, where 
k E K, a E H, and n E N, and we refer to this as the Iwasawa decomposition 
ofg. 

Now recalling that G, = NHN we assert that 

PCG,. (3.2.6) 
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Indeed let p E P and let p112 = kun be the Iwasawa decomposition of the 
square root p112 of p. Then ( pl12)* = n*ak-l. Since (PI/~)* = pll2 this implies 

p = (p’P)*(pW) = n*&z. (3.2.7) 

But n* E m and a2 = h E H. This proves (3.2.6). 
Now to prove the proposition we have only to show that the right side of 

(3.2.2) is contained in the left side. Let g E G,“. Then g E P by (3.1.23). Thus 
g E G, by (3.2.6). Hence g is contained in the left side of (3.2.2). Q.E.D. 

Now recalling (2.3.1) let y EY(Z). W e wish to obtain results about the 
closed subset Z(y) in the present case (i.e., where F = R) which are analogous 
to those given in Theorem 2.6. If y E 2 then even though y is not necessarily 
in / it is H-conjugate to an element in 1” so, as we now observe, the statement 
of Proposition 3.2 holds for y. 

LEMMA 3.2. Let y E 2. Then there exists a unique c E H such that 

CY Ela;* (3.2.8) 

Also, one has 

Gr n G, = G&g. (3.2.9) 

Proof. Let x E k and let ai E R* (i.e., ai > 0), i = l,..., I, be such that 
’ Y =f + X + Ciaie,. , . Now for any c E: H one has 

cy = x + C (c-“*e-ai + caiuiea,,). 
i 

(3.2.10) 

But now recalling the isomorphism (2.2.8) it follows that there is a unique 
c E H such that c-a’ = c%zi , namely, that element c such that cat = a~~/~. 
However, x* = x by (3.1.13) and e,*i = e-,! by (1.5.1). Thus only for this 
value of c does one have (cy)* = cy or eqmvalently cy E#. This proves the 
first statement of the lemma. 

Now fix c E H so that one has (3.2.8). But y E R by (2.1.7). Thus cy is a 
regular element of/z and hence by (3.2.2) one has G@ n G, = Gz’. On the 
other hand one certainly has C-lG@c = GY and a similar relation for the identity 
components. Since m, H, and N are stable under conjugation by c it follows 
that G, is stable under conjugation by c. This proves (3.2.9). Q.E.D. 

Now we may apply the results of Sections 2.4-2.6 to the complexification 
Gc of G. Thus recalling (2.4.5) the map NC x Hc x Nc -+ NcHcNc defined 
by multiplication is an algebraic isomorphism of nonsingular affine varieties. 
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In particular then it is a diffeomorphism. Thus, by dimension, G, is an open 
connected subset of G and, by restriction the map 

WXHXN-+G,, (fr, h, n) + ?ihn (3.2.11) 

is a diffeomorphism. Thus using the notation of (2.4.6) for the complexification 

Gc one has the decomposition 

d = tidhdnd (3.2.12) 

for any dEG*, where now 4 EN, h, E H, and nd E N. Furthermore upon 
restriction of (2.4.7) the map 

G,+N d-+nd (3.2.13) 

is smooth. 

THEOREM 3.2. Let 9 be a real split semi-simple Lie algebra. Let 1 = rank9 
and let G be the adjoint group of 8. Let Z C 9 be the 21 dimensional manifold of 

normalized Jacobi elements in 9 The manifold Z is defined by (2.2.3) and (2.2.4). 
Now let 9: 9 + W be the map (see (2.3.1)) dejked by thefundamental G-invariant 
polynomials on 9 and for any y  E Y(Z) let Z(y) = S-l(y) 2 2. Then the 
isospectral set Z(y) is a closed connected submanifold of dimension 1 in Z. In fact 
one has a diffeomorphism 

Z(y) g w. (3.2.14) 

Furthermore for any y  E Z(y) the identity component Geg of the centralizer of y  
in G is also isomorphic (as Lie groups) to W. Moreover using the notation of (3.2.1) 
one has G,g C G, and iffor any d E G,r the element nd E N is dejined by (3.2.12) 

then ndy E Z(y) and the map 

A: Gev - Z(Y)> d-w (3.2.15) 

is a dz$feomorphism. 

Proof. Let (d,), be the complexification of the diagonal A1 so that ($r)c 

is stable under the HC and let (&)c be defined by (2.2.2), where F = @. Put 

zc =f + A, + (A), so that we can apply Theorem 2.4, where Zc replaces Z. 
But then regarding S(gc) Q as the complexification of S(~)G one has y  E Z,(y). 
Furthermore if we let (&&, now denote the /3, of Theorem 2.4 then by Theo- 
rem 2.4 one has an isomorphism 

Md,: (GA - -&(Y). (3.2.16) 
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But now by (3.2.9) one has G,v Z (Gcg), and clearly for d E Gev the definition 
of hd and nd whether given by (3.2.12) or (2.4.6) is the same. But now Z(y) _C 
Z,(y) and if d E G,g we assert that (/3&,(d) c Z(y). Indeed (/3&(d) = n,y 
so that (/3&(d) ~3. But then recalling (2.4.13) one must have x E A. Furthermore 
again using the notation of (2.4.13) if we write yi = z aieai one has ai > 0 
since y E 2. But then 

hilyl = C (h;“*a,) eai . (3.2.17) 

Since h;;“. * > 0 this implies by (2.4.13) that (/l&(d) E Z(y) and hence one 
has a map (3.2.15) and the map (3.2.15) is just the restriction of (2.4.11) to G,Y. 
We next assert that (3.2.15) is surjective. Let w E Z(y). Recalling the argument 
of the surjectivity of p, in the proof of Theorem 2.4 we first observe that the 
element 71 c Nc of (2.4.14) is in fact in N. This is clear from Proposition 2.3.2 
since y and w are in 8, and not just f + dc . Similarly the unique element 

h E Hc such that hw, = yr is in fact in H since w, , y1 E d; . Finally the element 
%C Nc is in fl again by Proposition 2.3.2 and (2.4.15). Thus d = fihhn is in G 
and we recall (/3&,(d) = w. But clearly d E Gv n G, . Thus d E G,Y by (3.2.9) 
and hence (3.2.15) is surjective. 

Now Z(y), by Proposition 2.3.1, is a (not necessarily connected) submanifold 
of dimension I in 2. But in fact (2.4.11) is an isomorphism of nonsingular 
varieties and hence as noted in Remark 2.4.2 is a diffeomorphism of manifolds. 
Since (3.2.15) is surjective and is the restriction of (2.4.11) to G,v it follows 
that (3.2.15) is a diffeomorphism. Now, using the notation of Lemma 3.2, 
G,u is isomorphic to G”,“. But Gz” is isomorphic to UV as Lie groups by (3.1.24). 
Thus G,Y and hence Z(y) are isomorphic to [wz as manifolds. This proves the 
theorem. Q.E.D. 

Remark 3.2. One aspect of Theorem 3.2 which we think ought to be 
emphasized is the connectivity of Z(y). If Z was defined by (2.2.3) and (2.2.4) 
except that, say, ai < 0 instead of ai > 0, then it would not be necessarily 
true that Z(y) is connected. An example of this disconnectivity is easily con- 
structed for the case where 9 is the Lie algebra of SZ(2, (w). 

3.3. Now let &+ be the open Weyl chamber in A defined by putting 

R, = {x E A j (9, x) > 0 for all v E d,}. (3.3.1) 

Also let z+ be the closure of A+ in k so that z?+ is a closed Weyl chamber. As 
one knows and easily sees, A Cyx for any x E $+ and equality holds if and only 
if x E A+ . That is, 

A+ = 2,. n R. (3.3.2) 

Now recalling the map (2.3.1) one has 
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PROPOSITION 3.3.1. $(A+) is a connected open subset of lRz and the ??zap 

4. + f@+), x + 3(x) (3.3.3) 

is a diffeomorphism. 

Proof. The bilinear form Q is positive definite on A and hence we can 
find a basis xi of 9 such that xi for i < 1 is an orthonormal basis of A and 
Q(xi , x*) = 0 for i < 1 < j. But now if x E k, then @ = 4’. But then for any 
I E So one has (61)(x) E A by (1.3.1). But then using the basis xi of 9 and 
its dual basis the summands in (1.2.2) must vanish for i > 1. That is, one has 

m(x) = CL w5)o(x) x5 * On the other hand as already noted in the proof 
of Proposition 2.1, since x E R, the elements (M,)(x), K = l,..., 2, are linearly 
independent (see Theorem 9 in [14, p. 3821). Thus the I x I matrix Mjk = 
(i(x$) Ik)(x) is nonsingular. But this matrix is just the Jacobian of the map 
(3.3.3) at x with respect to the coordinate system on A, defined by the x, , 
1 <j < 1. Thus 9(/Z+) is open and (3.3.3) is a local diffeomorphism. It is 
connected since &+ is clearly connected. It suffices then only to show that 
(3.3.3) is injective. However, if X, y E &+ and 9(x) = 9(y) then by Chevalley’s 
theorem x and y are W-conjugate. But, as one knows, z+ is a fundamental domain 
for the action of W on A. Thus x = y. Q.E.D. 

An element x ~9 is called semi-simple if ad x is diagonal&able over @. 
It is called real semi-simple if ad x is diagonalizable over R. The following 
is well known. 

LEMMA 3.3.1. Let x ~8. Then x is real semi-simple ;f and only if x is G- 
conjugate to an element in k. 

Proof. See, e.g., Proposition 2.4 in [16] and Theorem 2(2) in [23, p. 3831. 
Q.E.D. 

Now let R, denote the set of all regular real semi-simple elements in 8. 
It is clear that R, is stable under the action of G. 

LEMMA 3.3.2. Let x E 8. The following conditions are all equivalent. 

(1) XER,. 

(2) x is G-conjugate to an element in 4, . 

(3) e> E =e+). 

Proof. Using the fact that g+ is a fundamental domain for the action of 
the Weyl group Won k the equivalence of (1) and (2) follows from Lemma 3.3.1 
and (3.3.2). Obviously (2) implies (3). It suffices to show that (3) implies (1). 
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Assume Y(x) E Y(k+). Let z E k+ be such that X(x) = Y(z). Then since 

z E R one has x f~ G by Theorem 3 in [14, p. 3651 (see in particular (3.8.7) 
in [14]), where the bar denotes closure. However, since z is semi-simple Gcz 
is closed by Lemma 5 in [14, p. 3531. Thus x E Gcz. But then ad x is semi- 
simple with real eigenvalues. But then x is real semi-simple. Furthermore 
xERsince ZER. Thus XCR,. Q.E.D. 

PROPOSITION 3.3.2. One has 

Furthermore 

ZCR,. (3.3.4) 

-“(Z) c Jf(h+). (3.3.5) 

Proof. The second statement follows from (3.3.4) and Lemma 3.3.2. Thus 
it suffices to prove (3.3.4). Lety E Ztheny E R by (2.1.7). But nowy is conjugate 
to an element in + by Lemma 3.2. However, the elements of #. are real semi- 
simple. In fact any element in+ is K-conjugate to an element in A by the con- 
jugacy theorem of Car-tan subspaces. Thus y is real semi-simple by Lemma 3.1, 
Hence y E R+ . Q.E.D. 

Remark 3.3. In the complex case we found (see (2.5.6)) that 4(Z) = Cz. 
From the nonconjugacy of Cartan subalgebras in 9 in the present case it is 
clear from Proposition 3.3 that we cannot now expect an analogous result. 

3.4. Recall that (see (3.1.1)) z -+ zc is the conjugate linear auto- 
morphism of fc given by putting zc = x - iy, where we have written z = 
x + iy for x, y ~9 We recall also that this automorphism induces an auto- 
morphism 

Gc+Gc, a -+ ac (3.4.1) 

of Gc . One of course has 

a%C = (uz)C 

for a~Gc, x~yc. Onealso has 

Now let 

(exp x)~ = exp(9). (3.4.3) 

c.? = {a E Gc 1 ac = a}. (3.4.4) 

(3.4.2) 

One easily has 

w/3413-4 
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PROPOSITION 3.4. e is the set of all elements g E GC which stabilize 8. In 
particular one has 

G C e. (3.4.5) 

Proof. Clearly an element in Gc is determined (since it is @-linear) by 
its restriction to 8. The first statement and hence the second of the proposition 
then follows from (3.4.2) since, in the notation of (3.4.2) zc = z if and only 
if zEg. Q.E.D. 

Recall (see (3.1.18)) that i@ is the set of all a E Hc such that a2 = 1. 

LEMMA 3.4.1. One has 

i%~,=h?!~. (3.4.6) 

Proof. Now recalling (3.1.16) and the notation of (3.1.16) any element 
a E He can be uniquely written a = sh when s c T and h E H. But then one 
clearly has ac = s-lh. Thus a = ac if and only if s = s-l, that is, if and only 
ifsEA?. Q.E.D. 

For any x ~2 let @ denote the centralizer of x in G. 

LEMMA 3.4.2. For any x E A+ one has 

&=i@H. (3.4.7) 

Proof. One has Gx = G n Gcx. But since x is a regular element of pa: 
and x E A+ then 

Gc5 = HC (3.4.8) 

by Proposition 2.4. The result then follows from (3.4.6). Q.E.D. 

Remark 3.4. We note then by (3.1.16) and (3.4.7) that Gx has 2z connected 
components for any x E A, . Recalling Lemma 3.3.2 the same statement is 
then true for any x E R, . Furthermore since H = G,” = (?,” for x E A, 
one has 

Gex = c:,” for any x E R, . (3.4.9) 

LEMMA 3.4.3. One has 

19 n NC~C~C = ~WHN (3.4.10) 



TODA LATTICE AND REPRESENTATION THEORY 243 

and any element g in this set can be unipely written 

g = %mhn, (3.4.11) 

where%Ex,mmi@,hEH,andnEN. 

Pyoof. Clearly the right side of (3.4.10) . IS contained in the left side. Let g 
be in the left side so that we can uniquely write g = iian, where ti E mc , 
aEf&, and nEN,. But gc = (ti)” acne. However, mc , HC , and Nc are 
clearly stable under (3.4.1) by (3.4.3). Th us nc = n; ac = a, and nc = n by 
uniqueness. But the map exp: rfc -+ Nc is a bijection. Thus n E N by (3.4.3). 
Similarly %E N. One also has a E mH by (3.4.6). Thus g is in the right side 
of (3.4.10). The uniqueness of (3.4.11) follows from the injectivity of (2.4.5) 
and (3.1.16). Q.E.D. 

Now for any 0 E W let S(O) E Gc be the unique element in the normalizer 
of R in Gc such that 

40) e,< = e,,, y i = l,..., 1. (3.4.12) 

LEMMA 3.4.4. One has s(a) 6 6 for any CT E: W. 

Proof. By Proposition 3.4 it suffices to show that s(u) stabilizes 8. Since 9 
is generated by eai , e-ai , i = l,..., I, it suffices to show that s(u) e+ ~9 for 
all i. Thus if we let hi E @ be defined by s(u) e-,; = Xie+ it suffices to show 
Xi E R. But now Q(e, , e-,) is a nonvanishing real number for any 9 E d. But 
if we extend Q to gc by @-linearity one has Q(s(a) em,+ , e,,:) = hiQ(eoMi , e-,,:) 
so that it suffices to show Q(s(u) eprr. , eoni) E R. But by the invariance of Q one 
has Q(s(4 e-ni , ecai ) = Q(e+ , ~(4’~ e,i) = QL4 , emi) E R. Q.E.D. 

Now it is clear from Proposition 3.4 that G is the identity component of G. 
On the other hand G, = RHN is an open connected subset of G. But S(K) E G 
by Lemma 3.4.4. Thus if we put 

GM = ~(4 G, (3.4.13) 

then Gt,, is an open connected subset of G. Furthermore using the notation 
of (2.6.2) for the complexification Gc of G one has the decomposition 

SWg = Q> h(g) n(g) (3.4.14) 

for any g E %.) , where now n(g) EN, h(g) c H, and n(g) E N. Furthermore 
by restriction the map 

GM --+ N> g -+ n(g) (3.4.15) 

is smooth. 
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3.5. The following lemma is no doubt known. Because of the overriding 
importance for us of the element +z~(w) in Lemma 3.5.2 we prove Lemma 3.51 
for completeness. 

LEMMA 3.51. For any ff~ fl and XEA+ one has iix~x + Z so that one 
hasamap 

m x A, --t R, + w, (n; x) + ti. (3.5.1) 

Furthermore the map (3.5.1) is a d$feomorphism. 

Proof. Let x E A+ and fi E N. Since x and ilx have the same maximal diagonal 
component (see Definition 2.1) one has %x E x + z This proves the first 
statement of the proposition and establishes the map (3.5.1). But now by (3.4.8) 
one has G” n N = (1) so that (3.5.1) is injective. Now let y E &+ + Z so that 
y = z -+- U, where z E A+ and z, E Z. But 4(y) = Y(z) by Proposition 17 
in [14, p. 3691. Thus 9(y) E $(A+) and hence by Proposition 3.3.1 and 
Lemma 3.3.2 there exists g E G such that gz = y. But now applying the decom- 
position (2.4.3) to Gc there exist u e W, 11 E Nc , h E I& , fig Nc such that 

g = es(o) hn. Put w = (w)-ly so that if w, is the component of w in A,, (=A) 
relative to (2.1.3) then w, = z. However, w = s(a) hnz since gz = y. But 
the component of hnz in $,, relative to (2.1.3) is also z and hence the component 
of w = s(c) hnz in A,, relative to (2.1.3) is uz. Thus uz = z. However, z is 
regular and hence as one knows this implies (T is the identity. Thus S(U) = 1 
so that g = ilhn. But then fi 6 m, h E @H, and n E N by (3.4.10). On the other 
hand the equation becomes w = hnz. But the maximal diagonal degree of w, 
and hence of nz, is zero. Thus nz = z. This implies 71 = 1 since G” n N = (1) 
by (3.4.8). But then y = gz = irhz = tiz. Thus y is in the image of the map 
(3.5.1) so that the map is bijective. 

Obviously the map (3.4.16) is smooth. If x E R, then the tangent space to 
m x X, at (1, x) may be identified with (%, A) and the tangent space to A, + Z 
at x may be identified with A + Z. The differential of the map at (1, x) carries 
(Z, A) to A + [Z, x]. But [Z, x] = in since x is regular. Thus (3.5.1) is a local 
diffeomorphism at (1, x). Translation by N then implies that there is a local 
diffeomorphism at all points. Since the map (3.5.1) is bijective it then follows 
that it is a diffeomorphism. Q.E.D. 

LEMMA 3.5.2. Let w, E 4+ and (using the notation of (1.5.4)) put w = f + w, . 
Then there exists a unique element tif(w) E fl such that 

Et(w) w, = w. (3.5.2) 
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Furthermore the map 

is smooth. 

R, -+ Iv, wo - fi;(w) (3.5.3) 

Proof. The first statement follows from Lemma 3.5.1. Consider the map 

P c+ -+ R, + 2, w,+w=f+-w. (3.5.4) 

Obviously (3.5.4) is smooth. On the other hand (3.5.3) is just the composite 
of (3.5.4) with the inverse to (3.5.1) and then with the projection onto m. This 
proves (3.5.3) is smooth. Q.E.D. 

Remark 3.5.1. The map (3.5.3) will play an important role in Section 5. 
We give an explicit formula for g;(w)-’ in Section 5.8. 

Now by (2.2.9) (for the case where F = C) there exists a unique element 
m E HC such that 

mEi = -emi , i = l,..., 1. (3.5.5) 

Clearly m E %r. Now let J? = (m,}, i = O,..., 2z - 1, be some ordering of 
the set il?, where m,, = m and m, = 1, the identity element of G. Also put 

Hi = m,H, j = O,..., 21 - 1. (3.5.6) 

LEMMA 3.5.3. Let w,, E 4, and as usual put w = f + w, . Then if ef(w) E 15 
is defmed by (3.5.2) one has S(w) Hj(il,(w))-l C @“. In fact if we put 

Gjw = f$(w) H&(w))-l (3.5.7) 

then the Gj” for j = 0, I,..., 21 - 1 are the cosets of the identity component of 
@ so that 

& = u Gi” (3.5.8) 
i=O 

is a disl’oint union. 

Proof. Since w0 E k, one has G Q = MH by (3.4.7). Thus the Hj are the 
cosets of the identity component of Gwo. But since g,(w) w, = w it follows 
immediately that the Gw, defined by (3.5.7), are the cosets of the identity 
component of Gw. Q.E.D. 

Remark 3.5.2. One notes that G,” in the notation of (3.5.8) is in fact the 
identity component of Gw. 

Our interest is not in GIw but in Gow. The following result is somewhat 
surprising (at least to us). 
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PROPOSITION 3.5. I f  w, E A+ and w = f + w, then in the notation of (3.4.13) 
and (3.58) one has 

& n G(.+) = Go”. (3.59) 

Proof. If w, E R, and w = f + w, we may apply the results of Section 2.6 
to Gcw. That is, if (Gcl”)(*) = GcW n (Gc)(*) , where (Gc), = S(K) RCHCNC , 
then, by Theorem 2.6, (GcW)(*) is a nonempty Zariski open subset of Gcw. 

NowforO<j<2z-11et 

(d+)j = {wO E A, 1 GjW n Gt,) is not empty}. (3.5.10) 

If w, E (A+)j we assert that 

CT% n G(,, = Gj”. (3.5.11) 

In order to prove (3.5.11) we first show that the right side is contained in the 
left side. Let a E Giw. We must show a E G(.+.. since of course a E ew by (3.5.8). 
Now by assumption there exists g E; Gj” n G(,) . But G(*) C (Gc)(,, . On the 
other hand if we let Z,(y), where y = S(wJ, be defined as in the proof of 
Theorem 3.2 and let (/&,, be th e map /3tw) of Theorem 2.6 then by Theorem 2.6 
one has an algebraic isomorphism 

(Bchw,: (Gch + Z&h (3.5.12) 

where (/-$&,)(c) = n(c)w for any c E (Gc)(*) and n(c) E Nc is defined by (2.6.2). 
But now since g E Gc,) one has n(g) E N and hence if y = (p&,,(g) = n(g)w 
then y ~9. Furthermore the maximal diagonal component yi of y is given by 
(2.6.6). But h(g) E H so that h(g)+ > 0. Thus 

and Y = Wdd E Z(Y). (3.5.13) 

Now since g and a are in the same connected component of Gv one has 
g-la E Gew and hence if d = n(g)(g-la) n(g)-l then d E G,v = GBv (recalling 
(3.3.4) and (3.4.9)). But G,g C G, by (3.2.9). Thus d E (Gc”), . But then by 
(2.6.11) there exists a’ E (Gc”)(,, such that &,(a’) = n(g) g-la’n(g)-l = d. But 
then from the injectivity of (2.6.9) one has a = a’ so that a c (Gc”)(,, . Thus 
in partidar U E S(K) ?i?&& . But then, by Lemma 3.4.4, s(K)-% E en 

ECHCNC . Thus S(K)% c &%!HN by (3.4.10) so that we can write, using 
(2.6.2) 

for m’Ei@, he H. 

h(u) = m’h (3.5.14) 
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But if z = @&,,(a) then by the commutative diagram (2.6.21) one has 
z = (p,),(d) = /3,(d). But then z E Z(y) by (3.2.15) since d E G,r. Thus if z, 
is the maximal diagonal component of x then z, = C r,e,. , where ri > 0. 
But by (2.6.6) one has ri = /z(u)-Q. However, if m’ in (3.5.14) ‘ls not the identity 
in A? there clearly exists 1 <j < I such that m’eDLj = -eEj . This contradicts 
the positivity of rj . Hence m' = 1 so that a E s(K) I’SHN = Gt*) . Thus we 
have proved the right side of (3.5.11) is contained in the left side. We have 
also shown that if w, E (R?+)~ then 

&)(w)(w) c -w for y = Y(w). (3.5.15) 

Now assume that b is in the left side of (3.5.11). Thus b E GkW for some K. 
Letg be as above. We have to show that zi =j. But now b E Gw n G(,) C (GcZU)(*) 

and &hd~) = 44~ E G(Y), where y = 3(w). But n(b) EN so that if 
x = (p,&(b) then z ~9 On the other hand if x1 is the maximal diagonal 
component of x then z, = C h(b)-“: eOLi by (2.6.6). But h(b) E H so that h(b)-“i > 0. 
Thus z E Z(y) and hence 

&hwd4 E -w* (3.5.16) 

Now let a c (Gc”)(,, be any element such that (p&,)(a) E Z(y). Put ZI = 
@c)c,)(a). Then by the commutative diagram (2.6.21) one has Y = @c),(d) 
for d = &(a) using the notation of (3.5.13), where of course d E (Gc”), and 
y = n(g)w. But by Theorem 3.2 (see (3.2.15)) there exists d’ E Gev such that 
v = ,B,(d’). But since (&, is an isomorphism one has d’ = d or d = y$(u) = 
n(g) g-&z(g)-’ E G,“. Thus g-la E Gew. Hence a E Gjw. Thus we have proved 

in case w, E (k+)j . (3.5.17) 

Thus b E Gjw by (3.5.16) so thatj = k. This proves the assertion. 
Nowforanyw,ER+andO,<j<2r-1 let 

mj(w) = ef(w) mjfif(w)-'. 

Since mj E Hj one has 

mj(w) E Gjw (3.5.19) 

by (3.5.7). NOW let gj be the map 

uj: ad+ -+ e, w, -+ mj(w). (3.5.20) 

(3.5.18) 
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It follows from the smoothness of (3.5.3) that u, is smooth. We assert 

V+)i = ~;‘(Gd (3.5.21) 

Indeed if w, E (k+)j then G,” _C G(.+) by (3.5.11). Thus uj(w,) E G(*) . Con- 
versely if u$(w,) E G(.+. then Gjw n G(,) is not empty. Hence wu, E (A+)j by 
definition. This proves (3.5.21). We next assert that 

u a(k = 4G (3.5.22) 
i=o 

We first observe that the left side of (3.5.22) is contained in the right side 
of (3.5.13). Now let y EY(Z). Then y = Y(wJ for some w EA+ by (3.3.5). 
Now lety E Z(y). By Theorem 2.6 there existsg E (Gcw)(,, such that (/?&)(g) = 
n(g)w = y, where, of course, n(g) E Nc . But w, y E &, so that by Proposition 
2.3.2 one has n(g) E N. But now using the notation of (2.66) one has h(g)-“i > 0 

since yr E ~?r . Thus h(g) E H. Furthermore recalling (2.6.7) and its notation 
one must have h(g)y, K-lw, + e G e + d and by (2.6.7) these elements are 
conjugate under s(g). But then %(g) EN by Proposition 2.3.2 with a reversal 
of positive and negative roots and a reversal of e and f. Thus s(K)-rg = 
fi(g) h(g) n(g) E G. Consequently g E dw n G(*) . But then g E Gjw n G(*) for 
some j by (3.5.8). But then w, E (&+)i by definition and hence y = Y(w,) E 
l((R+)i). This proves equality (3.5.22). 

We next assert that (R,), for any j is closed in A+ . Indeed let w, E (/z+)~ n A+ . 
We first show that 

(Gcw)~(*) n Gj” is not empty. (3.5.23) 

Indeed (Gc”)(,) is not an empty Zariski open subset of Gcw by Theorem 2.6. 
On the other hand #cw is the complexification of 8” so that for any g E: Gjw 
the tangent space to Gj” at g is a real form of the tangent space to Gc:” at g. 
Thus any regular function on Gc” which vanishes on G,o must vanish on Gcw. 
Thus G,” is Zariski dense in GcW, This proves (3.5.23). 

Let g E (Gc”)(,) n Gp. But then S(K)-‘g E G n flcHcNc and hence by 
Lemma 3.4.3 one has %(g) EN, la(g) EN and we can write /z(g) = m’h, where 
m’ E ll?i and h E H. Now if m’ = 1 then g E G(*) and hence G,” n Gt,) is not 
empty. But then w, E (R+)j . Thus in order to prove that (h+)j is closed in k, 
it suffices to prove that m’ = I. Assume m’ # I. Then there exists I < K < 1 
such that rn’eak = -eafi. But then if y = n(g)w and we use the notation of 
(2.6.6) one has y1 = C rie, , where Y* < 0. Now let wb”’ E (A,), , m = I,2 ,..., 
be a sequence such that Girn) converges to w, . Put w@@ = f + wb”‘. But by 
(3.5.7) there exists g, E Hj so that g = #,(w)g&(w)-l. Put gcrn) = 
%;(~(“a)) g,&w(m))-l so that gcrn) converges to g. On the other hand gcrn) E Gy”“’ 
by (3.5.7). But since WA”’ E (k+lj it follows that g(m) c @‘“’ n Gt*) C (G$“‘)(,, 
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by (3.5.11). Furthermore if ycrn) = (/?c)~~,,,~(g(m)) = n(g(“)) wcrn) then ycrn) E 2 
by Theorem 2.6. But clearly ycrn) converges to y since gtrn) and wtrn) respectively 
converge to g and w. Thus if y:“’ = 
ponent of y(m) then r;“” 

Ci ~j~)e,~ is the maximal diagonal com- 
converges to zk < 0. But ~fcm) > 0 since ycm) E 2. 

This is a contradiction and hence (A+), is closed in R, . 
But now by (3.5.7), and recalling Lemma 3.5.2, (A+)i is open in A, since 

G(,) is open in c?. B u c early d, is connected. Hence for any 1 <j < 2z - 1 t 1 
either (R+)j is empty or (A+)f = R, . Furthermore clearly by (3.5.11) the sets 
(A+)i, over all j, are mutually disjoint. But by (3.5.22), since 2 is not empty, 
it follows that there exists a unique 0 < K < 2” - 1 such that 

@+h = A+ and (A+)$ is empty ifi # K. (3.5.24) 

It follows then from (3.5.11) that 

for any w, E A+ . (3.5.25) 

One also notes that (3.5.22) and (3.5.24) imply that 

&@(A+) = J(Z). (3.5.26) 

It remains only to prove that K = 0. 
Now if h, is given by (3.1.14) then for any x E A, one has Q(x, h,) = 

(p, X) Q(e, , e-,) by the invariance of Q. However, Q(e, , e-,) = 1 by (1.5.2). 
Thus if we consider the isomorphism 

kc ---f xc (3.5.27) 

defined by Q then 

4 -+ P (3.5.28) 

with respect to (3.5.27). Now one knows that the root normals hal are a basis 
of X. Let x,, E A be as in Section 2.1 so that (ai , x,) = 1. Let si E Iw be such 
that x, = C s& . We assert that 

si > 0. (3.5.29) 

Indeed one identifies kc with A& by (3.5.27) and if we write x0 = C tpi then 
as one knows (see, e.g., Lemma 8.3 in [6, p. 166J), ti > 0 since Q(x, , o+) > 0. 
However, one has si = ti by (3.5.28). But this implies (3.5.29). (See also the 
argument in Lemma 15 in [18, p. 790.1) 

Now put 

e, = C Sit&, . (3.5.30) 
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Since, as one knows, [e,, , e-J = 0 if i # j it follows that [e, ,f] = X, so 
that if a is the R-span of x, , e, , andf then KZ is a Lie subalgebra whose com- 
plexification ac is a principal TDS of fc in the notation of [12]. See Section 5 

in [12]. Furthermore we note that e, E d; by (3.5.30) and hence there exists 
a E H such that 

ae = e, , (3.5.31) 

where e is given by (2.6.18). 
Now let A and A, be the subgroups of Gc corresponding to a and XZ+ . 

Since all the eigenvalues of ad X, are integers it follows that A, is isomorphic 
to the adjoint group of ac . In particular all of our previous results and notation 
with respect to 8, 9c , G, and Gc may be applied to a, .a, , A, and A, . To 
indicate that such an application is being made we will use L(A) for any 
previously defined notation L (e.g., L = B, N, etc.). 

Now recall that m c @ is defined by the relations rneaj = -eaj for all j. 
But then clearly m = exp i?rx, . Thus m E AC . Now x, E R, and hence using 
our previous notation, where w, E A, , we now fix w, so that w, = x, . Note 
then that w, and w = f + w, are both in +, . If we now put ti(A) = Rf and 
recall that if +Q(w) EN is the unique element given by (3.5.2) (so that 
g,(w) w, = w) one clearly has 

1 # %+(w) E N(A). (3.5.32) 

But now since obviously mf = -f it follows that ?$(w)m = m(irf(w))-r. Thus 
if we put 

g = ii;(w) rngf(w)-l (3.5.33) 

one has g = (ef(w))am and hence g E m(A) m(A) where A(A) = Rx, so that 

(1, m} = B(A). (3.5.34) 

Now g E e(A) and hence there exist c, c’, c” E lF4 such that ge, = c”eo + 
c’xO + cf. We assert that 

c > 0. (3.5.35) 

In fact for any % E m(A) it is clear that we may find d(g), d’ E R such that 
tie, = e, + d’xo + d(n)f. We first prove that 

d(n) < 0 and d(g) < 0 if and only if ti # 1. (3.5.36) 

Indeed write c = exp rf, where Y E R. However, [f, [f, e,]] = [x0 , f ]  = -f. 
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Thus d(e) = --1*/2, which proves (3.5.36). But now g = (%~(w))%n, where 
n;(w)” # 1 by (3.5.32). However, me, = -e, . Thus (3.5.36) implies (3.5.35). 

Now let #Z(A) = Re, . Furthermore from the bracket relations of f, X, , 
and e, it is clear that we can introduce a compact form of KZ~ and hence a 
*-operation, written x + x(*) (to avoid confusion with *-operation in gc), 
so that eb*’ = f. But th en we can fix e(A) = e, and f  (A) = f. Put s = S(K)(A) 

so that sx, = -x0 , se, = f .  If a E H is defined by (3.5.31) we assert that 

SU = S(K). (3.5.37) 

Indeed if h = S(K)-’ sa then clearly hx, = X, since one of course has KX, = -x0 . 

But then h E G2 = HC (recalling (3.4.8)). However, he = e so that hDLl = 1 
for i. Thus h = 1, proving (3.5.37). 

But now the Gelfand-Bruhat decomposition of A, becomes the disjoint 
union 

A, = N,(A) &(A) u B,(A). (3.5.38) 

However, B,(A) normalizes @e so that by (3.5.38) one must have 
g E N,(A) s&(A). Thus there exist n’, n E N,(A) and h’ E He(A) so that 
g = n’sh’n. Thus if il, = s-k’s one has n; E nc and s-rg = n;h’n. But now 
s-lg E (?((A) so that by (3.4.11) one has n; E m(A) n E N(A) and h’ = m’h, , 

where h, E H(A) and m’ is either m or 1 by (3.5.34). Put b = s-‘g and write 
be,, = re, + r’xo + r”f, where Y, Y’, r” E R. Since s-‘f = e, it then follows 
from (3.5.35) that Y > 0. However, b = ‘n;h’n. Hence be, = eIh’eo = (h’)a n;e, , 

where a: = cur(A). But then Y = (h’)” since n;e E e + &((A). Thus (h’)a > 0 
so that m’ = 1. But then s-lg = n;h,n. However, s-l = as(K)-’ by (3.5.37). 
Thus if we put % = ~-%,a and h = a-lh, then n E m and h E H since of course 
m(A) C N and H(A) C H and one has S(K)-lg = ithn. But then g E Gt*) by 
definition (see (3.2.1)). However, recalling (3.5.6) one has m = m, E H, . 

But then g E G,,” by (3.5.7) and (3.5.33). Thus G,” n Gf,. is not empty. Hence 
by definition x, = w, E (A,),, so that (A,), is not empty. Thus K = 0 by 
(3.5.24). The result then follows, as noted, by (3.5.25). Q.E.D. 

3.6. The following is our main result in Section 3. Among other 
things it provides the structure for the integration of Hamilton’s equation 
in Section 7. 

THEOREM 3.6. Let 9 be a split real semi-simple Lie algebra. Let G be the 
normalizer of 9 in the complexified udjoint group of 8. Let 1 = rank9 and let 
9: 9 --f R1 be the map defined by the 1 fundamental polynomial invariants on 9. 

(See (2.3.1).) 
Now let R, be the open Weyl chamber of a split Curtun subalgebra A dejked 
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as in (3.3.1). Let II = {oL1 ,..., az} be the corresponding set of simple positive roots 
and let e,< , epOLr be corresponding root vectors, normalized as in Section 1.5. Let 
K be that element of the Weyl group W(f, k) such that Kn = -.h’. Let S(K) E G 

be that unique element in the normalizer of A such that S(K) emi = e,( . Let 9~ 
and 2 be the nilpotent subalgebras generated respectively by the e,< and the eeoLc 

and let N, H, and N be the subgroup of G corresponding respectively to ilt, H, 
and N. Also let f  = C e+* and let Z, as in Theorem 3.2, be the 21-dimensional 
manifold of all normalized Jacobi elements. That is, all elements y  E 9 of the form 

Y = f  + x + C aieai , wherexEAandai >O. 
Now let w, E R, and put w = f  f  w, . Then for any g in the centralizer Gw 

of w in G there exist uniquely nonzero real numbers r,(g), i = l,..., 1, such that 

ge,, - ri(g) emi E A + z. Put 

Gow = {g E Gw 1 all ri(g) < O}. (3.6.1) 

This set may also be given by (3.5.7). Then for any g E Go* there exist uniquely 

W(g) E N, h(g) E H, and n(g) E N such that g = S(K) W(g) h(g) n(g). Furthermore 
if y  = 9(w,) E Rz and Z(y) = 9-l(~) n Z then n(g)w E Z(y) defining a map 

B(w): Go” --+ Z(Y)- (3.6.2) 

Moreover G,,w and Z(y) are manifolds and (3.6.2) is a difeomorphism. In fact 
both manifolds are dageomorphic to [WZ. Finally 

z = u Z(Y) (3.6.3) 

is a disjoint union where, writing y  = .Y(w,,), the union is over the open Weyl 

chamber &+ as an index set. 

Proof. Now by (3.5.6) and (3.5.7) one has Gw = ii;(w) MH&(w)-I. I f  
g E Gw then by (3.5.8) th ereexistO<j<2z-l andhEHsuchthatg= 
g,(w) m,h%t(w)-l. Let dti = (0, 11, i = l,..., 1, be such that rnje,‘ = (-l)@j eSi . 
But since fleai - e,( E A + Z = d it follows that for 

ri(g) = (-1)d’5 h”’ (3.6.4) 

one has geaj - r&j e,$ E R + Z. This proves the first statement. Furthermore 
by (3.6.4) it follows that ri(g) < 0 if and only if dii = 1 for i = l,..., 1. But 
then by definition of m = m, this is the case if and only if j = 0. Thus Gaw 
can be given by (3.6.1). Next the existence and uniqueness of the decomposition 
g = S(K) n(g) h(g) n(g) .for g E G,” are given by (3.5.9) and (3.4.14). But then 
G,,” _C (Gc”)(,) , recalling (2.6.4), and hence (see (2.6.15)) the map (,9&,, 
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is defined on G,“. By (3.5.19, recalling (3.5.24), one has @c)(,j(G,“) C Z(y) 
so that (3.6.2) is defined where 

PM = (B&w, I Go”. (3.6.5) 

But then recalling that (3.5.12) is bijective it follows from (3.5.17), for i = 0, 
that (3.6.2) is also bijective. However, Z(y) is clearly an Z-dimensional sub- 
manifold of Z,(y) by Theorem 3.2 and furthermore one has a diffeomorphism 
Z(y) g W by Theorem 3.2. Also, G,‘” is clearly a submanifold of (G,“)(,) 
and Go”‘= W by (3.5.7). Thus (3.6.2) is a diffeomorphism by (3.6.5) since 
(/3&, is an algebraic isomorphism, recalling (2.6.15), and hence a diffeo- 
morphism. The relation (3.6.3) now follows from (2.3.3), (3.5.26), and 
Proposition 3.3.1. Q.E.D. 

As in the complex case, we will refer to the submanifolds Z(y) of 2 (now 
in the real case) for y E $(A+), as the isospectral leaves of 2. 

Remark 3.6. Let w, E A,, w = f + w, , y = 9(w,), and g E G,“. Since 
G,,” C (GcW)(*) the diffeomorphism h: (Gc”)(,) -+ (GcY)* , where y = n(g)w E 
Z(y) is defined on G,,“. If a E (Gc”)(,, we recall that &(a) = n(g)g-lan(g)-I. 
It follows then from Remark 3.5.2 that &,(G,,“) = G,Y. Furthermore since, 
recalling Theorem 3.2 and its proof, 

B, = (Bc), I GeY (3.6.6) 

the commutative diagram (2.6.21) of algebraic isomorphisms, upon restriction, 
becomes a commutative diagram 

Go” f%, z(r) 
4 

*cl 
l/ (3.6.7) 

GIY 

where all three maps are diffeomorphisms. If g, a E G,” and &(a) = 
n(g)g-‘an(g)-l = do Gev then by (2.6.13) one has 

44 = wtd, (3.6.8) 

where now n(a), n(g), and nd are in N. 
One consequence of (3.6.3), or rather its proof, is the answer to the following 

question (which perhaps is of independent interest): What is a necessary and 
sufficient condition that an element x E 9 “can be put” in Jacobi form ? The 
answer is: The element x should be a regular real semi-simple element. That is, 
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PROPOSITION 3.6. Let x ~9. A necessary and su$icient condition that x be 
G-conjugate to an element in 2 is that x E R, . (See Section 3.3.) 

Proof. One has Z c R, by (3.3.4). Thus the condition is necessary. But 
if x E R, then x is G-conjugate to an element w, E k, by Lemma 3.3.2. However, 
recalling (3.5.26) one has 

9(Z) = N(R+). 

Thus there exists y E 2 such that 9(y) = f(wO). Hence y is G-conjugate 
to an element in A, by Lemma 3.3.2. This element must be w, by Proposition 
3.3.1. Thus x and y are G-conjugate. Q.E.D. 

3.7. Finally, in this section we show that the space 2 of normalized 
Jacobi elements may be smoothly parametrized by the product H x A, of 
the split Cartan subgroup H and open Weyl chamber R, . 

THEOREM 3.7. Let R, , m, H, N, e, and f be as in Theorem 3.6. Let (go , w,) E 
H x R, and let w = f + w, . Let tif(w) E m be as in (3.5.2) so that n,(w) w, = w. 
Let m E C? be as in Section 3.5 so that mJixes Hand me,* = -eoLi , i = l,..., 1. Put 

g = $(w) mg&(w)-l (3.7.1) 

so that g E GOW by (3.5.7). Let n(g) E N be as in Theorem 3.6 so that n(g)w E 2 
by Theorem 3.6. Now let 

HxR++Z (3.7.2) 

be the map de$ned by (g, , w,) I-+ n(g)w. Then (3.7.2) is a diffeomorphism. 

Proof. It is obvious using Lemma 3.5.2 and (3.7.1) that the map 

H x A, --+ GO”, (go,%)-g (3.7.3) 

is smooth. See (3.5.3). But then the smoothness of (3.4.15) implies that the 
map H x A, -+ N, (go , w,) t-+ n(g) is smooth, It follows immediately then 
that (3.7.2) is smooth. But now if Y(wO) = y then, by Theorem 3.6, the restric- 
tion of (3.7.2) to H x {wO} maps H x {wO} bijectively onto Z(y). But then 
(3.7.2) is a bijection since (3.6.3) is, by Theorem 3.6, a disjoint union. To 
prove Theorem 3.7 it therefore suffices to show that (3.7.2) is a local diffeo- 
morphism. Let T, U, and I’ be the tangent space to H x A+, H x {w,}, and 
&3> x A+ P respectively, at (go , w,) so that T = U @ V. If u denotes the map 
(3.7.2) it suffices then, by dimension, to show that its differential U* is injective 
on T. But now clearly the restriction u 1 H x {w,} = /3cW, 0 7, where 7 is the 
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restriction of (3.7.3) to H x {wO} and ,8cw) is given by (3.6.2). However, /3tw, 
is a diffeomorphism by Theorem 3.6 and T, given by group multiplication 
(see (3.7.1)), is obviously a diffeomorphism. Thus u induces a diffeomorphism 
H x {wO> + Z(y). However, Z(y) is an Z-dimensional submanifold of 2 by 
Theorem 3.2. Thus cr* 1 U is injective. Now clearly we may identify V with 
the tangent space to A, at w, . Let 0 f ZI E V. Then by Proposition 3.3.1 there 
exists an invariant IE S(#)G such that (v, dI) # 0. But since (3.6.2) is defined 
by the action of the adjoint group one has (a,~, dl) = (v, d1) # 0. This 
implies u*‘u $ U*(U) since clearly u*(U) is the tangent space to Z(y) at a(g, , wO) 
and I j Z(y) is a constant function. Thus not only is u* / V injective but 
u*(V) n u*(U) = 0. This implies that u* is injective on T. Q.E.D. 

Given an element y E 2 we will later refer to g, E H and w, E d+ as its 
(H x A+) parameters in case (g, , w,) corresponds to y by (3.7.2). 

Remark 3.7. If y E Z and (go, w,) are its H x A+ parameters note that 

y = f + .2 + i 4g>-“i eai , 
i=l 

(3.7.4) 

where z E R andg is given by (3.7.1). Th’ ’ IS IS clear from (3.6.5) and the application 
of (2.6.6) to Bc . 

4. THE ISOSPECTRAL LEAF Z(y) AS A COMPLETE, FLAT, 
AFFINELY CONNECTED MANIFOLD 

4.1. In Section 4, F is either 08 or C. As in Section 2.1 let 9 be a semi- 
simple Lie algebra over F which is split if F = R and where I = rank9 let 
2 be the 2Z-dimensional manifold of normalized Jacobi elements defined as 
in Section 2.2. For any invariant I E S(f)” we recall that tI is the vector field 
on 2 defined so that (e,), = [y, (8$)(y)] for any y E 2. See (2.2.19). Also, 

% is the subspace of the tangent space to 2 at y whose elements are all vectors 
of the form (&), , IE S(9)“. See (2.2.21). Furthermore we note that by Theo- 
rem 2.2 the map y + au defines a smooth distribution (in the sense of E. Cartan) 
on 2 of dimension 1, which we denote by %“. Of course any smooth involutory 
distribution on a manifold defines a foliation of the manifold by the family 
of maximal integral submanifolds. We refer to this foliation as the corresponding 
foliation. On the other hand for the case of 2 one already has the disjoint union 

z = u Z(Y>> (4.1.1) 
Ye/ 

where the isospectral leaves Z(y) by Theorems 2.5 and 3.6 are connected 
submanifolds of dimension 1. 
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PROPOSITION 4.1. The distribution 9’ on 2 is inoohtory and (4.1 .l) is the 
corresponding foliation. 

Proof. As in Section 2.2 let 

z = (5; I IE S(~>“>. (4.1.2) 

By Theorem 2.6, x is a Lie algebra (in fact, a commutative Lie algebra). This 
proves that %” is involutory. 

Since Z(y) is a closed connected submanifold of dimension I for any y E J(Z) 
it then suffices only to prove 

%I = T&w) (4.1.3) 

for any y E Z(y). Here of course the right side of (4.1.3) is the tangent space 
to Z(y) at y. However, since dim 2 = 21 this is an immediate consequence 
of (1.6.8), Proposition 2.3.1, and Theorem 2.2. Q.E.D. 

4.2. Now let A be any smooth manifold. If /1 has an affine connection 
we can speak of covariant constant vector fields 5 (either global or local) on fl. 
If the affine connection is flat (i.e., the curvature and torsion vanish) then in a 
sufficiently small neighborhood V of any point the space a of such vector fields 
spans the tangent space at all points of V and is a commutative Lie algebra. On 
the other hand one easily sees that if a is any commutative Lie algebra of vector 
fields on /l which spans the tangent space at each point of /I then there exists 
a unique flat affine connection such that the elements of a are covariant constant. 

Remark 4.2. One notes in particular that if (1 is an open subset of a Lie 
group A whose Lie algebra is Abelian then there is a unique flat affine connection 
on rl such that any restriction (1 of a left invariant vector field on A is covariant 
constant. 

Now if 1 E So and y E 9(Z) then the vector field 5, is tangent to the leaf 
Z(y) by Proposition 4.1. Thus .$I 1 Z(y) is a vector field on Z(y). 

PROPOSITION 4.2. Let y E f(Z) be arbitrary. Then there exists a unique flat 
afine connection in the isospectral leaf Z(y) such that e, j Z(y) is cowariant constant 
for any invariant I E S(f)“. 

Proof. Let z(y) = (5, restricted to Z(y) ) IE S(f)G}. By (4.1.3) it is clear 
that x(y) spans the tangent space at all points of Z(y). Thus it suffices to observe 
that ~(7) is a commutative Lie algebra. But if x is defined by (2.2.20) then z 
is a commutative Lie algebra by Theorem 2.2. Thus z(y) is also a commutative 
Lie algebra since it is a homomorphic image of x. Q.E.D. 

Henceforth any isospectral leaf Z(y) will also be regarded as having the 



TODA LATTICE AND REPRESENTATION THEORY 257 

structure of an affinely connected manifold where the affine connection is 
given by Proposition 4.2. 

4.3. Now let x ~9 and I E S(g) G. Recalling the definition of G if 
F = Iw (see (3.4.4)), put G = G if F = @. Now (61)(x) ~8~ by (1.3.3) and 
hence I defines a (left invariant) vector field L,” on the centralizer 0 of x in G 
such that if g E & and 4 is a smooth function on & one has 

(4.3.1) 

PROPOSITION 4.3. Assume x E R (i.e., x is regular) and A is any open set 
in &. Then there exists a unique jlat a&z connection on A such that L,” [ A is 
covariant constant for any I E S(f)G. 

Proof. Recall that Ij E So, j = l,..., Z, are the fundamental invariants. 
Since x E R then, as already noted in the proof of Proposition 2.1, the elements 
(MJ(x) are linearly independent. But since (M)(x) E cent 8” by (1.3.3) for any 
I E So and dimg z = I one recovers not only the well-known fact that 8” 
is Abelian but also the fact that any element in 8” is uniquely of the form 
(H)(x) for some I E S(9)“. Thus any left (or equivalently right) invariant vector 
field on G” is of the form L,5 for some I E So. The result then follows 
immediately as noted in Remark 4.2. Q.E.D. 

We now show that the isomorphisms of Theorems 2.4, 2.6, 3.2, and 3.6 
are also isomorphisms of flat affinely connected manifolds. 

THEOREM 4.3. Let 9 be a semi-simple Lie algebra over F = BB or Q: which 
is split if F = Iw. Let I = rank9 and let 9: 9 -+ IF1 be the map defined as (2.3.1) 
by the fundamental invariant polynomials on 8. Let A be as in Section 2.1 so that R 
is a Cartan subalgebra of 9 (If F = 88 then R is split and A+ is an open Weyl 
chamber in A defined as in (3.3.1).) 

Nowletw,~k,wherew,~k,ifF=[W,andputw=f+w,,wherefis 
defined by (1.5.4). Let y = J(wO) and let Z(y) be the corresponding isospectral 
leaf of normalized Jacobi elements de$ned as in Section 2.3. Let Z(y) have the 
structure of a fit a&.ely connected num;fold as in Proposition 4.2. Put GO” = G&, 
ifF = @ and GO” = GO” ifF = IF8 using the notation of (3.5.7) so that (since 
w E R and GO” is open in &‘) GOw has, as given by Remark 4.2, the structure 
of a fzat afinely connected manifold. Let ,Q,): GO” + Z(y) be the map defined 
as in (2.6.15) and (3.6.2) so that if a E GO” and n(a) is defined by (2.6.2) and 
(3.4.14) then &)(a) = n(a)w. Let g E G,” and let y = &,1(g). Put G,Y = G$ ;f 
F = Q= and G,v = G,Y if F = BB using the notation of (2.4.9) and (3.1.23) so 
that (since y E R and G,Y is open in &) G,Y also has, as given by Remark 4.2, 
the structure of a flat afinely connected manifold. Now for any a c GO” let &(a) = 

607/34/3-s 
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n(g)g-k(g)-l. Then (cI,(G,“) C G,g. Finally let &,: G,v + Z(y) be the map 
giwen by (2.4.11) and (3.2.15) so that if d E Gag and rzd is defined by (2.4.6) and 
(3.2.12) then /l,(d) = n,y. Then one has a commutative diagram 

(4.3.2) 

Furthermore not only are the three maps in (4.3.2) difleomorphisms but they are 
isomorphisms of flat aflnely connected mumfolds. In fact for any invariant I E S(f)G 
one has for the corresponding mappings of vector fields, #,(Lp / GOw) = L,” 1 G,Y 
and 

,4tdL,w I Go”) = MV I G?‘) = t-1 I W, (4.3.3) 

where the vector fields LIw, L1g, and t1 are de$ned by (4.3.1) and (2.2.19). 

Proof. The fact that w and y are in R, as noted previously, is a consequence 
of (2.1.7) since w,y E &, . Now assume first that F = @. Then G;“,, and Gz 
are open respectively in Gw and @ since in fact they are Zariski open. One 
has &,Gy*, C Gg by (2.6.11). The fact that the diagram (4.3.2) is commutative 
and all three maps are diffeomorphisms (in fact they are algebraic isomorphisms) 
was established in the proof of Theorem 2.6. See (2.6.21). 

Now let IE S(y)o. Then by (1.3.1) one has n(g)(SI)(w) = (U)(n(g)w) = 
(U)(y). Thus since n(g) @‘n(g)-1 = G v, conjugation by n(g) carries LIw to LIg. 
On the other hand L,w is fixed by the left translation of Gw by g-l. Thus 
&,(L,” 1 G,“) = L,g 1 G,g. H ence of course by the commutativity of (4.3.2) 
one has /3(&L, / G,W) = &(L,Y 1 G,r). It suffices only to show (for the case 
where F = C) that the vector field is fr j Z(y). But now since g is an arbitrary 
element in G,” it thus suffices to show 

Now let g(t) = exp t(U)(w) for t E R. Put a(t) = gg(t) so that (L,“), is the 
tangent vector to a(t) at t = 0. Let d(t) = &(a(t)) = n(g)g(t) n(g)-‘. Thus 

d(t) = exp W)(Y)> (4.3.5) 

since n(g)w = y. But if v is the left side of (4.3.4) then from the commu- 
tativity of (4.3.2) it follows that v is the tangent vector to /3&a(t)) = &(d(t)) 
at t = 0. Now recalling (2.4.6) put n,(,jh,(,) = hdct) so that 

(4.3.6) 
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where we note that l&u) 
- 

E B. One notes also that sdtO) = n,(,) = 1. Now let 
x E H be the tangent vector to ndu) at t = 0. Then since p,(d(t)) = n,u)y it 
follows that 

v = rx, yl. (4.3.7) 

On the other hand if z E & is the tangent vector to gdtt) at t = 0 then by (4.3.5) 
and (4.3.6) one has 

(W(y) = 2 + x. (4.3.8) 

But then recalling (1.2.9) one must have x = &I)(y) so that v = [(&I)(y), y]. 
But then v = [y, &I)(y)] by (1.3.3) so that v = (&), by the definition of f, . 
This proves (4.3.4) and hence the theorem is proved for F = C. 

Now assume F = Iw. Then G,” and G,,u are, by definition, the connected 
components G,” and G,g (recall that Gaw is not the identity component), 
respectively, of Gw and Gv. In particular they are, respectively, open subsets 
of Gw and @. 

Now the fact that the diagram (4.3.2) is commutative and that the three 
maps in question are diffeomorphisms has been established in the proof of 
Theorem 3.6. See Remark 3.6 and (3.6.7). In fact these statements were proved 
by first applying Theorem 2.6 (and its proof) to 9c and then by restricting 
our considerations of 

Gwh 7 (Gc%~ and -G(Y) (4.3.9) 

to the respective real submanifolds 

Gw, G2, and -e)- (4.3.10) 

But now again from what we have proved above, in the complex case one has 
(4.3.3), where the vector fields in question are, in the obvious order, defined 
on the manifolds in (4.3.9). H owever, they are clearly tangent, in the same 
order, to the real submanifolds appearing in (4.3.10). Hence one has (4.3.3) 
for the case F = IF& Q.E.D. 

Remark 4.3. We point out here that at least in one way there is a significant 
difference between the real and the complex cases of Theorem 4.3. Namely, 
it is only in the real case that the manifolds in question, i.e., in (4.3.10), are 
complete with respect to their flat affine connections. This completeness will 
be more meaningful when we deal with the integration of Hamilton’s equations 
in Section 7. 
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5. REPRESENTATIONS AND THE FUNCTION Qih(gO,w, ;t) 

5.1. Henceforth, that is, for the remainder of the paper, we assume 
F = R so that 9 is a real split semi-simple Lie algebra and all of our previous 
results and notations for the case F = R apply. 

Let w, c 4, and as usual put w = f + w, . Let a E G,” so that h(a) E H 
(see (3.4.14)). N ow recalling (2.1.1) one has A’ = A(H) so that h(a)” is defined 
for any h E R’. Our main results (see Theorem 7.5) depend upon a certain 
formula for hi. Obtaining this formula will be the main objective of Section 5. 
The formula will arise from the finite-dimensional representation theory 
of f-which we now consider. 

Now the restriction Q ] Ac induces a nonsingular bilinear form-also denoted 
by Q-on the dual space &- . We may of course regard k’ as a real form of Rk 
and note that Q is positive definite on X’. Now let A be the lattice in A’ defined by 

(51.1) 

Nowifvicrl,j = l,..., 1, are defined by the relation 2Q(vi , ai)/Q(ai , ai) = 6ij 
then of course one has the direct sum 

A = i zvi. (5.1.2) 
i=l 

Now let Gcs be a fixed simply connected Lie group having gc as its Lie 
algebra. The adjoint representation defines a homomorphism Ad: GcS --f Gc 
and in fact it defines an exact sequence 

(1) -+ cent Gc” + Gc8 A Gc -+ (1). (51.3) 

If x ~gc then to avoid confusion we will write exp* x for its exponential 
image in Gc” and retain the previous notation exp x for its exponential image 
in the adjoint group Gc . Also let He 8, Nc”, and mc8 be the subgroups of Gc* 
corresponding respectively to Ac , RZ~ , and & . 

Now if X~(H~8) C Rk is defined by (2.1.1), where Al, replaces X’, Ac replaces A, 
and exp’ replaces exp, one knows that 

A = &(H;) (5.1.4) 

so that h’ is defined for any v E A, h E Hc 8. The elements of ri are often then 
referred to as the integral linear forms (on H&. The cone D C II of dominant 
integral linear forms is defined by 

D = (A E A / Q(X, at) 2 0, i = l,..., 1). (5.1.5) 
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If Z, is the set of nonnegative integers one clearly has 

D = i Z+vi . (5.1.6) 
i=l 

Now a complex vector space Vc will be called a Cc8 module if it is understood 
that there is a representation P: Gc’ --t Aut Vc of Cc8 on Vc . In such a case 
we will write gw E Vc for rr(g)v, where g E GcS, v E l/c . Assume Vc is a Gcs 
module. A vector v E Vc is called a weight vector for ~1 E (1 if hv = hUc for all 
h E Hc”. For any p E rl let I’&) C Vc be the subspace of all weight vectors 
for CL. The element p E (1 is called a weight of Vc (or a) if I’&) # 0. Now 
if p is a weight of V then 0 # v c V(p) is called a highest (resp. lowest) weight 
vector if 710 = v (resp. %v = v) for all n E Nc” (resp. %E mcS). If V&L) contains 
a highest (resp. lowest) weight vector then p is called a highest (resp. lowest) 
weight. 

We now recall certain fundamental results of the Cartan-Weyl theory of 
representations. For each h E D there exists an irreducible finite-dimensional 
(holomorphic) representation 

WA. * GcS --+ Aut VcA (5.1.7) 

such that h is a highest weight. Furthermore (1) as such VcA is unique up to 
equivalence, (2) h is the only highest weight of VI@~, and (3) dim V,*(h) = 1. 

Now for any /\ E D let (5.1.7) be given and fixed. One knows then that if r is 
any finite-dimensional irreducible holomorphic representation of GcS then r 
is equivalent to rr,, for a unique h E D. 

Now let U = U(g) be the universal enveloping algebra of 2 over R and let 
Uc , its complexification, be the universal enveloping algebra of yc over C. 
If the adjoint representation is extended the group Gc” operates as a group 
of automorphisms of Uc and one has the direct sum 

(5.1.8) 

where as above the U&L) are the weight spaces for this action. On the other 
hand given h E D the representation rrA induces a representation of gc and hence 
of UC on V$, which we also denote by rr,, , so that V$ becomes a UC module 
and one has 

U,(p) Vc”(v> d V&P + 4 (5.1.9) 

for any p, v E A. 
Now let Gs be the subgroup of GcS corresponding to 9 and let N”, Hs and 
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ms be the subgroups of G” corresponding to IZ, A, and 2. Note that since hu 
is real (in fact positive) for any h E H8 (or H) and p E /1 one has the direct sum 

(5.1.10) 

over /1, where U(p) = U n U&L). 
Now let GUS be the maximal compact subgroup of Gcs corresponding to 

the compact form pU. See (3.1.6). One knows then (the “Unitarian trick”) 
that there exists a Hermitian (positive definite) inner product on VcA which 
is invariant under the action of GUS. We will denote the inner product of er, 
9’ E Vc* by (~1, w’}. It is chosen so that it is linear in v and conjugate linear in v’. 

Now since Gcs is simply connected the *-operation on sc (see Section 3.1) 
induces a unique *-operation a w a* on Gcs such that one has (3.1.8) for 
a, be Gc” and (3.1.9) for x~gc, where expP replaces exp. It is clear that the 
*-operations on Gc:” and Gc commute with Ad. It is also clear that the *-opera- 
tion on 9c extends uniquely to UC as a conjugate linear map such that (tilus) * = 
r&T for u, , us E Ud: . One easily has 

{uv, 0’) = (VI, u*v’) (5.1.11) 

for any v, v’ E VcA and u in UC or Gc:“. 
Now fix once and for all a highest weight vector vA E VcA(X) such that 

(v~, v”} = 1 and let VA be the I&subspace of VcA defined by 

v’” = Ud. (51.12) 

Also for any p E (1 let VA(p) = VA r\ V&A). 

PROPOSITION 5.1. The R-subspace VA of VcA is a real form of V/c”. That is, 
VC” = VA + iVA is a real direct sum. Furthermore if Qi is the restriction of the 
inner product {v, v’} to VA then Q”, is real valued (so that VA is a real Hilbert 
space). Furthermore VA is stable under the action of GS and 

(51.13) 

summed over the weights of r,, , is an orthogonal direct sum with respect to Q”, . 

Proof. Now VCA = UCvA since of course VCA is UC irreducible. Thus 
VV@~ = VA + iv”. To show VA is a real form it suffices to show VA n iVA = 0. 
For this it clearly is enough to show that Q2”, is real valued. Let Ts be the sub- 
group (maximal torus) of G,” corresponding to i& Now if pi E: II, i = 1,2, 
are distinct then the characters they define on Ts are distinct and hence one has 

VCA(P1)> vc%4 = 0 (5.1.14) 
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since TS operates as a group of unitary operators on Vc . Now let zli E VA, 
i = 1,2. Write vi = uivA for ui E U. Put u = u.$+ . Then u E U since U 
is clearly stable under the *-operation. But now {vr , va} = {%v~, u&} = 
(u~zqvA, r+} = {z&, v”}, To show Q”, is real valued it suffices then to show 
that {z&, ŵ } E [w. Let 2c0 be the component of I( in U(0) (0 here denotes the 
zero weight) relative to (51.10). By (5.1.9) and (5.1.14) one then has (z&, v”> = 
{u&, d). However, if U(R) is the enveloping algebra of 4 over Iw then one 
knows 

U(0) = U(k) @ ((Lb) A U(0)) (5.1.15) 

is a direct sum, where U+r is the left ideal in U generated by 88. In fact the 
validity of (5.1.15) follows from the validity of (5.1.15) for the complexification 
of the subspace involved. For the case over @ see, e.g., Lemma 7.4.2 in [4, 
p. 2301. (In that case one depends on (5.1.15) to define the Harish-Chandra 
homomorphism.) But since vA is a highest weight vector one has 

xd = 0 for all x E #dc (5.1.16) 

and hence if u1 is the component of u,, in U(A) relative to (5.1.15) one has 
{u,w~, w”} = {u@, v^}. However, if y E dz then ynA = (A, y)~“. But (h, y) c Iw 
since /\ E A’. Thus u,aA = YW~ for some Y E Iw so that {z+zJ~, r?} E Iw. This proves 
that Q”, is real valued and VA is a real form of I’c”. But now U(p - A) vA C VA(p) 
by (5.1.9) and hence one has the sum (5.1.13) by (5.1.10). The sum is orthogonal 
by (5.1.14). The subspace VA is stable under G” since it is clearly stable under 9. 

Q.E.D. 

Remark 5. I . Note that V+), for any p E fl is a real form of the weight 
space Vc+). This follows obviously from (5.1.13) and (5.1.14). 

We will refer to VA with respect to the action of G* by rA 1 G” as a Gs-module. 

5.2. Now let G$ = mH”N” so that G$ , using the Bruhat decom- 
position of GcS, is an open connected subset of G” and the map 

Ad: G”, + G, , (5.2.1) 

recalling (3.2.1) is a diffeomorphism. 
Regarding Ad, as in (5.1.3), as a map from Gc” to Gc 

LEMMA 5.2.1. One has 

(Ad-’ G,) n G” = (cent G”) G”, . 

Furthermore if c, c’ E cent G” are distinct then cG”, and c’Gi are d&joint so that 
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the connected components of (cent Gs) Gi are uniquely of the form cG~ for 
c c cent G”. 

Proof. The first statement is an immediate consequence of (5.1.3) and the 
surjectivity of (5.2.1). Now if a, a’ E G,* and ac = a’c’, where c, c’ E cent G*, 
then Ad a = Ad ac = Ad a’c’ = Ad a’. But then a = a’ from the injectivity 
of (5.2.1) so that c = c’. This proves the lemma. Q.E.D. 

Now let w, E A, and as usual let w = f  + w, . We recall that tif(w) E m 
satisfies c~(w) w, = w. See (3.5.2). Now let m E G be as in (3.5.5) so that 
mea4 = -e,, , i = l,..., 1. Hence of course me-“< = --epUi so that mf = -f. 
But clearly kw, = w, . Thus if we put 

fief(w) = m-%,(w)m (5.2.2) 

then tiJw) EN and tiTf(w) w, = -f + w, . 

IDENTIFICATION 5.2. Henceforth to simplify notation we will identify 
G$ with G, by the diffeomorphism (5.2.1). This means that n and N, HS 
and H and also Ns and N are identified. The only possible confusion that 
can arise is with regard to multiplication of these elements. However, it should 
be clear from the context whether the multiplication is in Gcs or Gc . 

Remark 5.2. One notes that both G$ and G, are stable under the respective 
*-operations in Gcs and Gc and that since Ad commutes with these operations 
no ambiguity with the *-operation is introduced by identifying G$ with G, . 

Let S(K) E 6 be as in (3.4.12). 

LEMMA 5.2.2. One has m-%(K) E G. Furthermore there exists a unique element 
So(K) E G* such that (1) Ad So(K) = m-%,(K) and such that (2) for any h E H 
and w, E A, one has the relation 

in G8. 

S,(K)-1 e+(w) h@(w))-1 C G, (5.2.3) 

Proof. Let w, E: A, and let h E H. Then by (3.5.7) if g E G is defined by 
g = e;(w) mh%,(w)-1 one has g c G,“. Thus s(K)-lg c G, by Proposition 3.5 
(re;B,“ix$.;n.~a;ut S(K)-lg = S(K)-’ tif(W) mh$(w)-l = S(K)-1 m%+(W) h%,(w)-l. 

U 

S(K)-’ m%-l(w) hil,(w)-l E G, . (5.2.4) 

However, since G, C G and of course K,(W) h%,(w)-’ E G one necessarily 
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has S(K)-% E G. This proves the first statement. Now fix S1(K) c G” so that 
Ad So = m-%(K). Thus for any c E Cent Gs one has 

Ad((cs,(K))-’ ti&(w) h%;(w)-‘) E G, , (5.2.5) 

where the multiplication in (5.2.5) is in G”. But then by Lemma 5.2.1 
there exists a unique cr E Cent Gs such that if so(K) = Clsl(K) then 
S,(K)-1 Q(w) b&(w)-l E G; = G, . 

Now consider the map 

A, x H-+ G8, (5.2.6) 

where (WA, h’) w s,(K)-’ ii_, h’%;(w’)-’ and w’ = f + WA . Now by (5.2.4), 
where w’ replaces w and It’ replaces h, and by Lemma 5.2.1 it follows that 
the image of (5.2.6) is in (Cent Gs) Gt . However, by the connectivity of 
A+ x H the image of (5.26) must lie in one component of (Cent G”) Gi . 
Since (wO , h) maps into Gc the entire image of (5.2.6) is in G”, = G, . Except 
for the uniqueness of SO(K) this proves the lemma. The ambiguity of So 
satisfying (1) of the lemma is up to an element in Cent G8. This uniqueness 
then follows immediately from Lemma 5.2.1. Q.E.D. 

Henceforth so(~) will denote the element of G8 given by Lemma 5.2.2. Let 
KS be the (maximal compact) subgroup of Gs corresponding to k’_C 9. 

LEMMA 5.2.3. One has S,(K) E KS. 

Proof. Now for i = l,..., l one has S(K) e = e,, . However since K2 = 1 

in W one then has So eai = rieni for some r:c If& Thus since Qiea. , e-,,) = 1 
one has ri = Q(e+ , S(K)’ em,) = &(s(~)-~ Cm. , S(K) %i) = Q(s(~)” C,: , e,, ) 
by the invariance of Q. But -~cq is also a Ample positive root and he&e 
44 cxai = ecGi . 
This proves 

Thus S(K)-l e-,i = e-.+ so that yi = Q(e+ , eKJ = 1. 

S(K)’ = 1. (5.2.7) 

However, m operates as -1 on eni and ePai so that clearly s(K) and m commute 
and m2 = 1. Hence S1(K)’ = 1, where So = m-%(K). On the other hand 
for anyg E Gc and x EP~ one easily has by (3.1.8) and (3.1.9), 

(g*)-1 x* = (gx)*. (5.2.8) 

Thus (S(K)-l)* e.-,i = e-xari by (5.2.8) and (1.5.1). However, s(K)-1 epai = e--Klri . 

Similarly s(K)-1 (‘s(K)) and (S(K)-‘)* (‘s(K)*) agree on e,( and A so that S(K) = 

s(K)*. Relation (5.2.8) also implies that m = m* so that sl(K) = $1(K)*. But 
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So E G by Lemma 5.2.2 so that So E K by Lemma 3.1.2. However, as one 
knows, K8 is the inverse image of K in Gs under Ad. Thus S,(K) E: KS since 
Ad So = So by Lemma 5.2.2. Q.E.D. 

Let h E D. Now recall we have fixed a highest weight vector V~ E V(X). 
On the other hand one knows the set of weights of nA is stable under the Weyl 
group and in fact since S,(K) E Gs corresponds to K one must have, for any p E /1 

So(K) vc’(P) = V&V‘)* (5.2.9) 

Furthermore Kh is the lowest weight of VA and hence if we fix vKA by putting 

VKA = So(K) VA (5.2.10) 

then vKA is a lowest weight vector. In fact one has 

PROPOSITION 5.2. Let h E D; then V’(K~) is one dimensional over Iw and 
vKA E P(K~), where 

WA, 4) = 1. (5.2.11) 

Proof. One has dim P(K~) = 1 by (5.2.9) and Remark 5.1. But also one 
must have SO(K) v1 E P(KA) since, by Proposition 5.1, VA is stable under G”. 
But now one has (5.3.3) by Lemma 5.2.3 since, clearly, KS C G,* so that Q”, is 
certainly invariant under KS. Q.E.D. 

5.3. Now let w, E: R, and conforming to our standard notation we 
put w = f + w, . Our main concern here is with the determination of h(a)” 
for a E G,,” (see Section 3.5) and h E A’. We first note 

LEMMA 5.3. For any a E G,,“put pW(u) = m-l?$(w)-l aef(w). Then pW(a) E H 
and 

(5.3.1) 

is a disfeomorphism. 

Proof. This is obvious from (3.5.7), which asserts that tit(w) mHif,(w)-1 = 
G,“. Q.E.D. 

We will generally conform to the notation of using the subscript o to denote 
the image in H of an element in G,,” under pw . Thus pw(u) = a, E H for any 
a E Go”. 

Our determination of h(a)” begins with 
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PROPOSITION 5.3. Let w, E R, and let A E D. Put w = f f w, . Then for 
any a c G,” one has (recalling (3.414) and (3.5.9)) 

h(a)” = {a&(w)-’ We, Q(W)* vKA), (5.3.2) 

where tij(w) and Q(W) are defined by (3.5.2) and (5.2.2) and a, = pW(a) E H, 
where pW z’s de$ned by Lemma 5.3. Also the right side of (5.3.2) is a Q”, inner 

product (see Proposition 5.1) of vectors in the Gs-module VA. 

Proof. Let a E G,“‘. Then by (3.4.14) and (3.5.9) one has, in c:, 

s(K)-la = n(a) h(u) n(a). (5.3.3) 

On the other hand if a, = pW(a) E H then clearly a = n;(w) maO~j(w)-l = 
rnn=(w) a@,(w)-I, recalling (5.2.2). Hence 

S(K)-% = (S(K)-%) c+(W) ao%f(w)-1 (5.3.4) 

in G. But then by (5.3.3) one has 

%(a) h(a) n(a) = (s(K)-lm) Q(w) a,*;(w)-‘. (5.3.5) 

On the other hand, in Gs, one has, recalling Lemma 5.2.2, 
S,(K)-’ C,(W) a&(w) E G, = G$ . Thus by Lemma 5.2.2 one has 

in G”. 

S(a) h(a) n(a) = so(~)-’ Q(w) a&(~)-~ (5.3.6) 

Now consider the Gs-module VA. Let g E G be the element given by (53.6). 
Now n(a) DA = vA since vA is a highest weight vector of VA. But (#(a))* E N 
by (1.5.1) and (3.1.9) so that one also has (%(a))* ~1~ = vA. Thus from the left 
side of (5.3.6) one has {gv”, v”> = (h(a) vA, v”> = {h(a)” vA, v”> = h(a)>. But 
now So(K) E KS by Lemma 5.2.3. But of course KS c G* so that so(~)-’ = So(K)* 

and hence (So(K)-‘)* vA = So(K) vA = vKA. Thus from the right side of (5.3.6) 
one has {gw”, u”} = {%J w a&(w)-’ vA, T@) = {a&w)-1 vA, K~(w)* vKA}. This ) 
proves the lemma since {gv”, v”) = h(a)A. Q.E.D. 

Remark 5.3. Since dim VA(&) = 1 there are exactly two vectors v E P(KX) 

such that {w, v} = 1. Thus if one were to choose a normalized lowest weight 
vector there would be an ambiguity up to sign. But now by (5.2.11), vKA is a 
choice of one of these two vectors. We now observe that since h(a)A > 0 Proposi- 
tion 5.3 implies that flA is that choice such that {a&(w)-l vA, Q(W)* vKA} > 0 
for all a, E H (see (53.1)) and all w0 E 4+ . 
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5.4. Now let w, c A+, and, as usual, put w = f + w, . Let g, E H 
and put g = p;‘(g,,) E Gs W. See (5.3.1). Let s(g) EN, h(g) E H, and n(g) EN 
be defined by (3.4.14) recalling (3.5.9). N ow since H is a vector group we can 
consider the square root h(g)‘/” of h(g) in H. Let Pa = expSp. Using KS and 
P8 we can, as one knows, take the polar decomposition of any element in G”. 
Thus there exist unique elements K(g, , w,) E K* and p(gO, wO) E Pa such that, 
in GE, 

h(g)“” 48 SW = kko Y wo) p(g0 > w0), (5.4.1) 

where ilf(w) as usual is given by (3.5.2). 
Now recalling the set Jacg of Jacobi elements in 9 (see (2.2.6)) let 

Jacp = Jacfnj (5.4.2) 

so that Jac# is the set of all symmetric Jacobi elements. Using the notation 
(2.2.6) so that y E Jac 9 if and only if y is of the form 

2 1 

y = x + C a4e-u, + C a,eaS , 
i=l i=l 

(5.4.3) 

where awi > 0 and ai > 0 and x E A, one notes by (1.5.1) that y E Jacp if 
and only if aei = ai , i = l,..., 1. It is clear then that Jacj is a closed connected 
two-dimensional submanifold of Jac 2. 

Now for any y E Y(A+) (see (2.3.1)) let 

(Jac+W = WY) n Jacj 

so that the sets (Jac+)(r), y E Y(R+), are the “isospectral” equivalence classes 
of Jac#. The following is a corollary of Theorem 3.6 and hence could have 
been proved earlier. It is proved now instead for notational convenience. 

THEOREM 5.4. For any w, in the open Weyl chamber A+ (see (3.3.1)) let 
w = f + w, , where f is given by (1.5.4). Let Gow be defined by (3.5.7) and for 
any g, in the split Cartan subgroup H let &go) = g E G,“, where pw is defined 
as in (5.3.1). Then ifp(gO, w,) is defined by (5.4.1) ow has 

(5.4.4) 

On the other hand if k(gO , w,) E K* is de$ned by (5.4.1) one has (regarding 9 
as a G%nodule using Ad) 

k(go , w,) w, E: (Jac bi)(d (5.4.5) 
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where y = S(wJ. Moreover the map 

H x A, - Jacj, (go > %I - 4go > %> wo (54.6) 

is a diSfeomorphism. Furthermore if w, E R, and y = Y(wJ then (Jac#)(y) is a 
closed connected submanifold of dimension 1 in Jac# and 

H - (Jacp>(r), 

is a ds~eomorphism so that as manifolds (Jac b)(y) g W. Finally 

(5.4.8) 

is a disjbint union and in fact (54.8) is the decomposition of Jaci/; as the union 
of leaves of a foliation. 

Proof. Let 2 C Jac 9 be as in (2.2.4) (where of course F = R). Let y E 2 
so that we may write y = f + x + & rie,, . Let aV E H be defined by the 
condition (a# = ~7”‘~ i = I,..., 1. See (2.2.6). Obviously the map 

Z-H, Y * au (5.4.9) 

is smooth. But clearly a,y E Jacp and any element in Jac# is of this form. 
On the other hand it is easy to see that the bijection (2.2.8) is a diffeomorphism 
and hence by considering the graph of (5.4.9) the map 

z+ Jac#, Y + w (5.4.10) 

is a diffeomorphism. Obviously then (5.4.10) induces a diffeomorphism 

-W + (Jac /4(r) (5.4.11) 

for any y E Y(A+). But then, by Theorem 3.2, (Jac;k)(y) is a connected, closed 
submanifold of dimension I of Jac#. The final statement of Theorem 5.4 
and the fact that 

(Jac/W G t?@ (5.4.12) 

follow from (3.6.3), (3.2.14), and Proposition 4.1. 
Now letg,EHand w,ER,. Recall Theorem 3.7. Let w = f + w, so that 

S,(W) w0 = w and let g E H be given by (3.7.1). Let y = n(g)w so that y E Z(y) 
where y = 9(w0). But now a, = h(g)l/” by (3.7.4). Thus if x = h(g)l12y then 
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z E Jac# by (5.4.9). But now z = h(g)llzy = h(g)l12 n(g)w = /z(g)‘/” n(g) tit(w) w, . 
Thus 

z = kpwo (54.13) 

by (5.4.1), where we have written k = k(go , w,) and p = p(go , w,). Thus 
if v = k-lz then pw, = v. But v E fi since .a E fi and k E K*. Thus if one applies 
the *-operation it follows from (5.2.8), w ic h h is clearly valid if Gc” is substituted 
for Gc , that also p-lw, = v. Thus p2w, = w, , which clearly implies pw, = w, 
(since Adp is diagonalizable with positive eigenvalues). Thus Adp E Gwo n P. 

But Gwo n P = H by (3.1.27). However, Ad H = H by Identification 5.2 and 
as one knows the map Ps -+ P induced by Ad is bijective. Thus p E: H, proving 
(5.4.4). But also the relation pw, = w, implies kw, = z by (5.4.13). This 
proves (5.4.5). 

Now the map (5.4.7) is the composite of (5.3.1), (3.6.2), and (5.4.11). Since 
these three maps are diffeomorphisms it follows that (5.4.7) is a diffeomorphism. 
Furthermore the map (5.4.6) is a composite of (3.7.2) and the inverse to 
(5.4.10). Since these two maps are diffeomorphisms it follows also that (5.4.6) 
is a diffeomorphism. Q.E.D. 

Remark 5.4. A familiar question when dealing with symmetric Jacobi 
matrices is the problem of diagonalization, even if one knows the spectrum 
of the matrix. In a more general setting, if x E Jac/ and X E D find the eigen- 
vectors of nA(x) in terms of an orthonormal basis viA, i = l,..., dim VA, of 
weight vectors in VA. Now let (g, , w,) E H x /z+ correspond to x under the 
bijection (5.4.6). Analogous to knowing the spectrum of a Jacobi matrix is 
the knowledge of the element w, . Since the v$ are eigenvectors of am it is now 
clear from (5.4.5) that {rA(k(g, , wO)) vi”} is indeed an orthonormal basis of 
eigenvectors of am. The problem then reduces to determining k(g, , w,). 
By (5.4.1) it is then a question of determining h(g), n(g), and $(w). The element 
h(g) is given by (3.7.4). We will give a formula for ~tf(w)-l in Section 5.8. (The 
formula for tif(w) is obtained from (5.8.7) by eliminating (-I)@) and changing 
s to s.) Since n(g) is unipotent one solves inductively for n(g) by the relation 
n(g)w = y. See Section 7.8, where an example is worked out. 

5.5. Let h E D. One notes that if v is a weight vector of h then, by 
(5.1.9) and (5.1.14) 

{nv, v} = (ml, v} = (0, 7.7) (5.5.1) 

foranynENorfiEfl. 

PROPOSITION 5.5.1. Let g, E H and w, E R, . Write p = p(go , w,), where the 
latter is given by (5.4.1). We recall p c H by (5.4.4). Then g;‘p” is independent 
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of g, , depending only on w, (01 equivalently w = f + w,) so that we can define 
d(w) E H by 

g,lP(go 3 4’ = 44. (5.5.2) 

Furthermore if A E D then 

{(d(w))v, (q(w))-’ v”> = {~-f(w)v, vKA} (5.5.3) 

for any v E VA, where +if(w) and Q(W) are defined by (3.5.2) and (5.2.2). Moreover 
one has 

d(w)A = {K~(w) vA, ~9) (5.5.4) 

and 

d(w)--KA = @;(w)-~ vA, #}. (5.5.5) 

Proof. Put d = g;‘p”. Let A ED and v E VA and put C = {dv, $(w)-l v”}. 
Then C = { pg;‘v, p(f~~(w))-l v”} since g, and p commute and p = p*. But 
p = h-lh%%f(w) in Gs by (5.4.1), where we have written K = k(gO, wJ, 
h = h(g), and n = n(g). Then substituting for p and canceling out K-l (since 
(k-l)* = k) one has C = (hl&@(w) g;‘v, h1/2nvA}. But WV~ = vA. Hence by 
transposing h1/2 one has 

C = {hnn;(w) gi’v, v”} 

= {tihnn;(w) g,‘v, v’}, 
(5.5.6) 

where % = n(g), since ti*@ = vA (recalling that %* EN). But lrhn = 
so(K)-’ ti-f(w)gO@;(w)-l by (5.3.6) in G”. Thus C = {s~(K)-~ Kf(w)v, vA> = 
{Slav, vKA}. That is, 

(dv, n;(w)-’ v”} = (fi+(w)v, vKA}. (5.5.7) 

But now if we choose. v = vA then dvA = dAvA. But {vA, 7i,(w)-l vA} = 1 by 
(5.5.1). Thus 

d” = {Q(W) vA, vKA}. (5.5.8) 

Obviously the right side of (5.5.8) depends only on w, and not on g, . Further- 
more this is true for all Xc D. But d is determined by dYi, i = l,..., I, where 
vi E D is as in (5.1.2), since the vi are a basis of k’. Thus d depends only on w 
proving the first statement. Also, d = d(w). But then (5.5.3) is just (5.5.7) and 
(5.5.4) is just (5.5.8). If we put v = wA in (5.5.7) then since{&(w) vKA, vKA} = 1 
by (5.5.1) and d(w) vKA = d(w)KA vKA one has d(w)XA(vKA, n;(w)-, v”> = 1. But 
then (5.5.8) follows by inverting and reversing the order of the vectors. Q.E.D. 
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If p, v E A we will say that v 2 p if v - p is in the &-cone generated by 
the simple roots 01~ ,..., 01~ . If in addition v # TV we write v > p. One notes that 

v > p implies (v, w,> > (p, w,> for any w, E R, . (5.5.9) 

Now for any X E D let q(h) = dim VA. Let X E: D. By the orthogonal direct 
sum (5.1.13) there exists a &A,-orthonormal basis v$, i = l,..., q(h), of VA 
such that the vi’ are weight vectors. We assume that such a basis is chosen 
once and for all where vIn = vh and VJ~(~, = vKh. See (5.2.10). Let hi G rl, 
i=l ,..., Q(X), be the weight corresponding to z$. Thus X, = X and ho, = KX. 
Furthermore since as one knows 

‘VA = U(H) VA = U(n) VA 

it follows from (5.1.9) that 

h > xi > Kh 

for all 1 < i < q(A). 

(5.5.10) 

(5.5.11) 

Now let w~ER+ and let w =f+ w,. Also let e,(w) and K,(W) be as in 
Proposition 5.5. Now put 

6,(X, w) = {n;(w)-1 VA, wi”>{ii-,(w) w>, VA}. (5.5.12) 

LEMMA 5.5.1. One has bi(X, w) > 0 for 1 < i < q(X). Furthermore one has 
strict positivity at the extremes. That is, 

bl(X, w) = (Kf(W) VA, v”} > 0 (5.5.13) 

und 

hA,,@, 4 = {it- 1 WA, v”3 > 0. (5.5.14) 

Proof. Let d(w) E H be defined by (5.5.2). Then (d(w) wp.A, E,(W)-1 w”} = 
d(w)“r{ti,(w)-1 VA, wi”>. But this equals {K,(W) w$, v”} by (5.5.3) and hence 

d(W)"' bi(h, W) = {@-f(W) Vih, fIxA}** (5.5.15) 

But then (5.5.15) is nonnegative. Since Dot > 0 this proves bi(h, w) >, 0. 
The equality in (55.13) and (5.5.14) is immediate from (5.5.1) and (5.5.12). 
The positivity then follows from the identities 

4(k 4 = d(w)A, (5.5.16) 

b&A, w) = d(w)-“. (5.5.17) 

See (5.5,4) and (5.5.5). Q.E.D. 
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LEMMA 5.5.2. Let a, E H, w, E A, and let A ED. Put a = p;‘(aJ E G,” 
andw=ffw,.Then 

h(a)A = c b&i, w) & 
i=l 

(5.518) 

Proof. By (5.3.2) one has h(a)” = {a&(w)-’ vA, Q(W)* vKA}. Hence if 
ci = {a&(w)-l v*, vi”} and ci = {era”, e+(w)* v”) = {c,~(w) viA, vKA} one has 

h(a)” = C cc; . 
i=l 

(5.5.19) 

But ci = {q(w)-l A v , a,$} = a$(%f(w)-l vA, viAI since a, = a$, recalling that 
a, E HZ P. Thus c& = &(A, w) a t*. But then (5.5.19) implies (5.5.18). Q.E.D. 

PROPOSITION 5.5.2. Let w,, E X, and let w = f + w,, . Let G,,” be as in 
Theorem 3.6. Let g E G,,* and put g,, = pul(g) E H, where pm is defined by (5.3.1). 
Then for all t E IF! one has g exp tw E G,” and 

pdg w tw) = go exp tw, . (5.5.20) 

Now let X E D and let bi(h, w) E R be defined by (5.5.12), i = I ,..., q(X) ==, 
dim I/‘“. Then 

h(g exp tw)” = 1 b@, w) g~iet’Ai*wo’t 
i=l 

(5.5.21) 

where h(a) is dejked by (3.4.14). See (3.5.9). 

Proof. Now, recalling (3.5.7) and (3.5.8), Glw is the identity component of 
cw. Thus G,“G,” C Gow. But of course exp tw E G,w. Thusg exp tw E G,“. Fur- 
thermore pw(g exp tw) = m-‘n;(w)-lg exp twfi;(w) = (m-iii,(w)-l gn;(w)) n;(w)-’ 
exp tw%,(w) = pm(g) ?l;(w)-1 exp twtif(w). But n,(w)-’ exp tw$(w) = exp tw, 
since tif(w) w, = w. Hence pw(g exp tw) = pw(g) exp tw, = g, exp tw, , proving 
(5.5.20). Thus if a, = g, exp tw, then a = g exp tw using the notation of 
Lemma 5.5.2 and (5.5.20). But then a$ = gtiet<Af*wo). Proposition 5.5.2 then 
follows from (5.5.18). Q.E.D. 

The following result will later play the key role in determining the “phase” 
for scattering in the generalized Toda lattice. 

We recall that K is the element in the Weyl group W which maps the set 
of positive roots into the set of negative roots. Now we may regard W as 
operating on Has we11 as R. If d E H we will write d-K for K(d-l). One notes that 
(d-K)A = d--Ka for any X cz A. 

60713413-6 
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THEOREM 5.5. Let w, be arbitrary in the open Weyl chamber X, and let g, 
be arbitrary in the split Cartan subgroup H. Put w = f + wu, , where f is dejned 
by (1.5.4). Let G,” be defined by (3.5.5-3.5.7) and let g = p;‘(gJ, where pw 
is dejined by (5.3.1). N ow or any t E R one hasg exp tw E G,,” andp,(g exp tw) = f 
g, exp tw, E H. Let h(g exp tw) E H be defined by (3.4.14). See (3.5.9), (3.4.13), 
and (3.2.1). Then the curve t -+ h(g exp tw)(g,, exp tw,)-’ in H converges as 
t -+ 03 and the curve t -+ h(exp tw)(gO exp wO)eK in H converges as t + ---CO. 
Furthermore the limits are independent of g, . In fact if d(w) E H is defined by 
(5.5.2) then, in H, 

a?ld 

51 h(g exp tw)(gO exp tw,)-l = d(w) (5.5.22) 

lim h(g exp tw)(gO exp twJK = (d(w))-“. 
t---m (5.5.23) 

Proof. Let c(t) = h(g exp tw)(gO exp tw,)-l and let c”(t) = h(g exp tw) 
(go exp two)-“. Now for any h E D one has by (5.5.21) 

ah) 
c(t)” = b,(h, w) + C bi(X, ~)g~-"e~<"'-~.~o' 

i=2 

and 

Q(A)-1 

,?(t)A = b,q)(h, w) + 1 b,(h, w)g~-KAet’Ai-rA~wO’. 
i=l 

But now (Ai - A, w,) < 0 and (Ai - uh, w,) > 0 by (5.5.11). Thus lim,,, c(t)A = 
b,(A, w) and lim,,-, c”(t)” = b,&X, w). But then lim,,, c(t)” = d(w)” and 
lim,+, Z(t)A = (d(w))-Kh by (5.5.16) and (5.5.17). 

On the other hand, recalling (5.1.2), the map 

H--f (R*)‘, h + @“I,..., h”“) (5.5.24) 

is a diffeomorphism since the elements Ye are a basis of A’. Thus since we can 
put X = vi, i = l,..., 2, this proves lim,,, c(t) = d(w) and lim,+, c”(t) = 
d(w)-“. Q.E.D. 

Related to the two maps H -+ H, g, H h(g) g;’ and g, +-+ h(g) g;;” 
mentioned in Theorem 5.5 one has 

PROPOSITION 5.5.3. Let h E D and let the notation be OS in Theorem 5.5. Then 

(h(g) goTA = @, n(g) vKAh 
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Furthermore there exists a scalar b E lF4 such that S(K)2 vA = bv, and one has 

(h(g) g,l)-A = b{%(g) v’, GA}. (5.5.26) 

Proof. By (5.3.6) one has tihhn = S&K)-’ %-fgOti;l, where we have written 
n; h, and n for ii(g), h(g), and n(g). Also, we have written C, and nor for ti_Xw) 
and nil. But then since a* E N and h = h* one has 

h”{vA, nvK”} = {v”, iihnv”“) 

= (VA, S,(K)-l ti+&fi;lV’KAj. 

(5.5.27) 

But clearly ?i,gOnT1vKA = &%+I\. Thus since (So(K)-‘)* = so(~) by Lemma 5.2.3 
one has hA{vA, nvKA} = gf{vKA, vKA} or (v~, nvKA} = heAgTKA, proving (5.5.25). But 
now on the other hand hA{tivA, vKA} = {%hnv”, vKA} = {so(~)-’ ti-fgOti~lvA, oKA}. 
But one has b E [w such that So(K) vKA = So(K)2 vA = 6vA since of course K~ = 1. 
But %zf and (n+)* are in N and hence they fix vl. Also gt = g, . Thus 
hA{#vA, vKA} = bg/. This proves (5.5.26), since b = f 1 by Lemma 5.2.3. Q.E.D. 

For any p c A let 

44 = 6% x0>, (5.5.28) 

where x, E A is defined as in Section 2.1, 

Remark 5.5. Since h - KA is spanned by roots (using, e.g., (5.1.9)) one has 
o(h - Kh) E Z. We shall not use the following, but one can show that the scalar 
b in Proposition 5.5.3 is given by b = (-l)~(~-~~). 

5.6. In this section we wish to show the connection between the 
development here and the results and calculations of Moser in [19]. Let x E Jac/ 
so that x is a “symmetric” Jacobi element. By Theorem 5.4 there exist unique 
w, E R, and g, E H such that x = k(gO , wO) w, . Let g and w be defined as 
usual so that w = f + w, and p;‘(gO) E G ow. Now for any h E D let, for 1 6 i < 
q(X) = dim VA, 

riA(go , wo) = @vi”, vKA), (5.6.1) 

where k = k(g, , w,). We use the letter r here because of the connection, 
as will soon be seen, between r,^(gO , w,) and the coordinates ri in [19]. Now 
as noted in Remark 5.4 the eigenvectors for rA(x) are just kQ. The corre- 
sponding eigenvalues are clearly ci = (hi, w,). See Section 5.5. Thus if 5 
is indeterminate one has (as an entry in the resolvent) 

((51 _ x)-l #I\, &} = Qf h?* 

is1 5 ’ 
(5.6.2) 
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where 1 is the identity operator on VA and riA = r$(g, , w,,). Equation (5.6.2) 
follows immediately from the relation 

(r;l - n,(x))-1 = Vr#z)(51 - n;\(w,))-r 9%(F). (5.6.3) 

The riA may be given by 

PROPOSITION 5.6. One has 

(r,“(go , w,N2 = h(g)K”g,A”W, 4, (5.6.4) 

where we recaZZ b&h, w) = {%,(w)- l wA, w~}{fi~~(w) wAi, VA). See (55.12). 

Proof, If we put h = h(g), n = n(g), tif = ilf(w), and p = p(gO , w,) then 
recalling (5.4.1) one has K = h112n%$p-1. But riA = (ko$, wKh}. Thus since 
(h112)* = WI2 and n* E w so that n*vKA = vKA one has 

TiA = h”A’“p-A’{%,(w) v;, v”̂ }. (5.6.5) 

Now let m E He be as in (3.55) and let m, E HcS be such that Ad m, = m. 
But then m&(w)(m,)-l = e&(w) in Gcs using (5.2.2), recalling also that 
m2 = 1. But then if c’, c” E @* are defined by m;‘vtA = c’viA and n$vK1 = cWvKA 

one has {g+(w) wiA, wKA}c = {ilf(w) wp, @‘I), where c = c’I?. But 1 c 1 = 1 since 
m, and m,* clearly have finite order. But then one must have 

({Kf(W) vii\, w”A})2 = {q(w) v$, VA}2 (5.6.6) 

since c2 times the left side of (5.6.6) is the right side of (5.6.6), both sides are 
nonnegative, and / c2 1 = 1. (That is, if (5.6.6) is nonzero, one has 8 = 1.) 

But now if d = d(w), recalling (5.5.2) one has dviA = dAivSh and hence 
dAi{v;, ($(w))-’ w”) = {tier(w) ail\, r@). But th en upon substituting for just one 
of the factors in the left side of (5.6.6) one has 

d”“b,(X, w) = (q(w) vi’, vKA}‘. (5.6.7) 

But then by squaring (5.6.5) and substituting (5.6.7) one has 

(T;)~ = h”Ap-2A~d”‘b,(X, w). (5.6.8) 

But p-2d = g;‘. This proves (5.6.4). Q.E.D. 

Now clearly one has 
a(A) 

,r; (ri”>’ = 1 (5.6.9) 

by (5.2.11) and Lemma 5.2.3. 
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In [19] Moser considers the case where for us GS = SZ(n, R) and rrA is the 
standard representation. That is, VA = Rn. In that case if we write yi = riA 
then ~~2 has the same meaning as in [19]. He then changes the definition of 
ri2 so that they become “homogeneous.” That is, in our notation define s,“(gO , eo,) 
by putting 

si”(go , %> = h(P”‘” y2ko 7 %> (5.6.10) 

so that by Proposition 5.6 one has, if siA = Q(g, , wJ, 

(si1\)2 = g,“‘b,(X, w). (5.6.11) 

But then by (5.6.9) Eq. (5.6.2) becomes (see 3.9 in [19]) 

(5.6.12) 

Now the problem of solving the generalized Toda lattice, as we shall see 
in Section 7, rests with determining h(g exp tw)’ for suitable v E R. For the 
standard Toda lattice one needs only the case v = LX~, i = 1,2,..., 1. However, 
if x(t) = K(gO exp two) w, then the functions h(g exp IW)-~~/~ appear as matrix 
entries of x(t). See (3.7.4) and (5.4.10). Furthermore as Moser notes, going 
back to Stieltjes, the left side of (5.6.12) with x(t) replacing x is computed 
using a continued fraction expansion in the matrix entries. One notes that 
VKA = e using the notation of [19]. On the other hand (5.6.12) clearly becomes 
an equa%n for all t E [w if we substitute (Q~)~ e-t<Ai*wo’ for (s~~)~. These being 
simple exponential functions the method of [19] is then to use (5.6.12) to 
inductively solve for h(g exp tw)OL’. 

Now it is clear that a more direct and systematic approach to determine 
h(g exp tw)A, for h E D arises from (5.5.21). However, (5.5.21) is a formula 
for h(g exp tw)A only insofar as one can determine ti;(w)-l and K~(w) (and 
their images under rr,J explicitly. Furthermore the scattering phase change 
also will depend upon such a determination. We will solve this problem in 
Section 5.8 using the machinery of representation theory. 

5.7. Let lR[G”] be the group algebra of G” when the latter is regarded 
as an abstract group. Let D(G”) = R[Gs] OR U. In this section only we will 
write a . u for au, where a E G”, u E U, to denote the adjoint action of a on u. 
This is done to avoid confusion with the multiplication in D(G8), which will 
now be defined. One makes D(GS) into an algebra by retaining the given algebra 
structures in R[G8] and U and putting ma-l = a 3 u for a E Gs, u E U. One 
knows that we may identify D(Gs) with the algebra (under convolution) of 
all distributions (in the sense of Schwartz) of finite support on G8. Thus if 
a E GS then at3 = Ua is the set of all distributions on Gs with support at a. 
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Now if V is a finite-dimensional real vector space then we will say that 
V is a smooth D(G”) module if it is a D(G8) module with respect to a repre- 
sentation r: D(G8) -+ End V such that rr ] Gs is a representation of Lie groups 
and m ] 9 is the differential of 7~ ] Ga. Now a linear functional 4 on D(G”) 
will be called a representative functional if it is in the span of linear functionals 
of the form &,V, , where V is a smooth D(GS) module, v E: V, a’ E V’ (the 
dual to V), and I,&(U) = ( av, 0’) for all a E D(G”). Let D(G8)’ be the space 
of all representative functionals on D(Gs). Then as one knows, D(G8) and 
D(G8)’ are non-singularly paired. (This is clear since (1) 2 Gs C Gc* and Gcs 
has a faithful finite-dimensional representation and (2) D(G”)’ has the structure 
of an algebra-using the coalgebra structure on D(G”). Given distinct elements 
gi E G”, i = l,..., R, one easily then constructs 4 E D(G*)‘, which vanishes to 
any given preassigned order at g, ,..., g, and is such that 4(u) # 0, where u 
is a given distribution with support at g, .) 

We now topologize D(GS) (the weak * topology) so that D(G8)’ is its con- 
tinuous dual. One notes then, for example, that the series C,“=, (~j/j!) converges 
to exps x for any x ~9. Let D(G8) be the completion of D(Gs) with respect 
to this topology. If a E D(GS) then left and right multiplication by a in D(G”) 
is clearly continuous and hence such an operator extends to a(G8). This defines 
on D(G”) the structure of a two-sided D(GS)-module. 

Now let 9 be the set of all finite sequences 

s = (il ,..., ik), (57.1) 

where k 3 0 is arbitrary and ii is an integer such that 1 < ii < 1 for j < k. 
We will write / s / for the length K of the element s E 9’. 

Now let U(G) and U(B) b e respectively the enveloping algebras of Z and H. 
For convenience write ei = emi and ewi = eeai for i = l,..., 1. Furthermore 
if s E Y and s is given by (57.1) put 

and 

e-, = e-ik . . . e-i2e-i, (5.7.2) 

e, = eileiz ... ei, . 

If 1 s 1 = 0 then one puts e, = e-, = 1. In any case 

(5.7.3) 

* 
e, = e-, (5.7.4) 

and since the ei (resp. eJ generate H. (resp. 2) it is clear that the e, (resp. e-,) 
for s E Y span U(N) (resp. U(G)). It should be noted, however, that the e-, 
(for example) are not linearly independent. 

Now let X, E R be as in Section 2.1 so that [edi , x0] = ePi . One thus has 

[e+, ~1 = I s I e-, (5.7.5) 
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for any s E Y. Now let U(;i), = {u E U(G) 1 [u, x0] = ku} so that one has the 
direct sum 

U(G) = f U(G), 
k=O 

(5.7.6) 

and U(Z), is spanned by all e-, , s E ,4a, where 1 s 1 = k. 
Now let D(m) be the subalgebra of D(G”) generated by N and Z and let 

s(m) be the closure of D(m) in b(G”). 

PROPOSITION 5.7.1. For every k c Z, choose an arbitrary element uk E (U(G)), . 
Then the injinite sum CkBZ+ #k converges in B(w). Furthermore any u E B(N) 
can be uniquely written as an in.nite sum 

u=L uk, 

+ 
(5.7.7) 

where uk E U(Z)k . 

Proof. Let U+(G) = cr=“=, u(G), so that U+(G) is the augmentation ideal. 
Furthermore it is clear that the elements eVi , i = I,..., I, are a basis of U(Z)l 
so that if j E Z, and U+(Z) j is the jth power of the augmentation ideal one has 

U+(,)j = f U(G), . 
k=j 

(57.8) 

Now let D(m)’ be the set of all restrictions # / o(m), where 4 E D(G”)‘. 
But if r is any faithful finite-dimensional holomorphic representation of GcS 
then z-(m) is a group of unipotent operators and v 1 ?Vc is faithful. It follows 
easily then that if I,L E D(m)’ then the restriction I/ ] U(Z) vanishes on a power 
of U+(Z) and that every such linear functional on U(Z) is uniquely of this 
form. Thus by (5.7.6) and (5.7.8) if U(Z); is the dual space to U(Z), we may 
regard U(Z); C D(m)‘, where U(g); is identified with the set of all elements 
in D(m)’ which vanish on D(& for j # k. One then has the direct sum 

qmy = 2 U(Z)k . (5.7.9) 
kEZ+ 

Now let yk c Us for all k c E, . Then for any 1,4 E D(m)’ one has $( yk) = 0 
for k sufficiently large. This proves that the sum Cyk converges. On the other 
hand if %E m then we may write ff = exp8 x for x E Z. Thus ti = C (xi/j!). 
This (and in fact also (5.7.9)) . pl rm ies that U(Z) is dense in D(w). Now let 
uEs(m)andletu(j)E U(Z),j = 1,2 ,..., be a sequence such that u(j) converges 
to u. By (5.7.6) we may write u(j) = c u( j)k , where u( j)k E U(Z), . But now 
all , asj + co, must, by (5.7.9), have a limit uk E U(G), and also u = C uk . 
This is clear since #(u(j)) = #(u(j),) converges for any z,4 E U(Z); . This proves 
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the existence in Proposition 5.7. The uniqueness follows easily since uk is 
characterized by the relation $(ux) = $( u w ic is of course defined) for any ) ( h’ h 
* E u(z);. Q.E.D. 

PROPOSITION 5.7.2. For any s E 9 choose a scalar b, E [w. Then the infinite 
sum C bg-, relative to any simple ordering in 9’ converges to an element in B(m) 

and this element is independent of the ordering. Furthermore any element in s(m) 
may be written as such a sum. 

Proof. Given any 1,4 E o(m)’ it suffices in order to prove the first statement 
only to note that #(e-J = 0 f or all s E Sp such that 1 s 1 is sufficiently large. 
But this is clear from (5.7.9) since e+ E U&,)1,1 . See (5.7.5). The second 
statement follows from Proposition 5.7.1 since U(Z& is spanned by all e-, 
such that 1 s 1 = k. Q.E.D. 

5.8. Now let s E Y. Assume s is given by (5.7.1) so that in particular 
) s ) = K. Now if k > 1 let v(s) E d be the linear form on the Cartan subalgebra k 
given by 

v(s) = f  cQj. 
j=l 

One puts p)(s) equal to the constant function 1 on R if 1 s 1 = 0. 
On the other hand for any 0 <j < j s 1 let Sj E Y be the sequence obtained 

from s by “cutting off” the last j terms. That is, 

Sj = (i1 , iz ,..., ilSj-J. (5.8.2) 

One notes of course that ss = s and 

ISjl = Is/ -j. (5.8.3) 

We now observe that s defines a polynomial of degree ) s 1 on A by putting 
for any w, E A 

(5.8.4) 
I=0 

Remark 5.8.1. It is useful to think of p(s, wO) as some sort of generalized 
“factorial” expression. Indeed putting w, = X, (see Section 2.1) note that 
P(S,%) = ISI! 

PROPOSITION 5.8.1. If w,, E k, then p(s, w,) > 0 for any s E 9’. 
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Proof. This is immediate from (5.8.1) and (5.8.2) since (ai, zu,} > 0, 
i=l ,..., 1, for w, E A+ by definition of A+ . Q.E.D. 

Now for any s E Y let s E Y be the sequence obtained from s by reversing 
the order. Thus if s is given by (5.7.1) then 

s = (& ) i,, )..., 2.1). (5.8.5) 

Now recalling Lemma 3.5.2 we can determine the element ii;(w) E IV and 
observe the dependence on w, E 4, . 

PROPOSITION 5.8.2. Let w,, E A, and let w = f + w, , where f  = Cl=, eWL”, . 

Let e,(w) E w be the element defined by (3.5.2) so that C,.(W) . w, = w. Now let 
9’ be the set of all finite sequences s = (il ,..., ik) of integers where 1 < ii < 1. 

For any s E 9’ let p(s, w,) be de$tted by (5.8.4) so that p(s, w,) > 0 (recalling 

Proposition 5.8.1). Let e-, E U(Z) be defined by (5.7.2). Then recalling (5.2.2) 
(and also Proposition 5.7.2) one has 

n=,(w) = c (-1)‘s’ p(f-; ) . 
SE.9 f 0 

Furthermore recalling (5.8.5) one has 

f&(,)-l q (-~)l~I e-,- 
se P(4 %> * 

(5.8.6) 

Proof. Now let s E S. Then if {tl,..., tz} is the set of all t E S such that tl = s 
(using the notation of (5.8.2)) one clearly has 

fe-, = $ e-t, . 

On the other hand one also has 

(5.8.8) 

(5.8.9) 

Now let w f s(m) be the element (see Proposition 5.7.2) defined by the 
right side of (5.84. Then by (5.8.8) one notes that 

-fw = 8F9 C-1)'"' p(s,eTsw) * (5.8.10) 
0 

l-Q1 

On the other hand since [e-, , WJ = (ai , w,) eWi one certainly has 

[eMs , w,] = <p(s), WJ e-, . (5.8.11) 
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But then by (58.10) one has in tj(G”), 

The term for 1 s / = 0 does not occur in (5.8.13) since [l, w,] 
by (5.8.10) one has (in a(G8)) 

0. Thus 

[v, wo] = -fv. (5.8.14) 

(58.12) 

(5.8.13) 

But in D(G”) one has the relation (see the statement following (5.2.2)) 
g-+(w) w,(~i_xw))-l - w, = -f. Substituting then for -f in (5.8.14) one has 
[v, wo] = q(w) w,(fi~f(w))-fv - w,v. Thus VW, = s+(w) w,(~~_~(w))-~v and 
hence if we put u = FL,(W)% then uw, = w,u. That is, u E s(m) and u 
commutes with w, . Now let uk E U(F& be defined by (5.7.7) for any k E: iZ+ . 
Since [wO, U] = 0 and since U(Z)* is stable under ad w, it follows from the 
uniqueness of (5.7.7) that [w, , uk] = 0 for all k. However, since ad w, is 
diagonalizable with a strictly negative spectrum in Z it follows that the same 
is true in U(%& for any k > 0. Thus uk = 0 for all k > 0. On the other hand 
the leading term of v is 1, using (5.7.7), since p(s, w,) = 1 if ( s 1 = 0. By 
considering the exponential series the same is then true for (FL,(W))-l. Thus 
u, = 1. Indeed if s, s’ E P’ then e-,e-,, = e+- for some s” E Y where ] s” ) = 
1 s ) + ] s’ 1 so that using the expansions given by (5.7.7) one easily see that U, 
must be the product of the constant terms of ~$(w)-l and v. Thus u = 1 so 
that R+(W) = v. This proves (5.8.6). 

Now let y be the right side of (5.8.7). Then by (5.8.9) one has 

y f  = - c (-1)181 e-8 

PCS1 9 wo> * 
(5.8.15) 

seY 
ISI> 

On the other hand [wO , y] is also given by the right side of (5.8.15) using (5.8.11) 
and (5.8.12). Thus 

k% > Yl = Yf- (5.8.16) 

But nf(w) w,(ii,(w))-l - w, = f. H ence if we substitute for f in (5.8.16) we 
obtain Y%~(w) = 1 in a manner similar to the proof of (5.8.6). That is, y = 

~%w-l* Q.E.D. 
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Now let D(N) be the subalgebra of D(G8) generated by N and R and let 
B(N) be the closure of D(N) in b(Gs). It is obvious that Proposition 5.7.2 
is valid if N replaces m and e, replaces e-, for all s E Y. 

But now (eef(w))* E N by (1.5.1) and (3.1.9). 

PROPOSITION 5.8.3. Let the notation be as in Proposition 5.8.2. See also 
(5.7.3). Then 

(Kf(w))* = 1 (-1)l”I es 
S~.v PCS, wo) * 

Proof. Let a E Gs and xi E U, j = 1,2,... . Assume that xi converges to a 
in D(GS). We then assert that ~j” converges to a *. Indeed recalling the definition 
of representative functional in Section 5.7 and the particular representative 
functional #,,,, one notes that #V,.U(~T) converges to &&a*) in case V = V” 
by (5.1.11). But then the result follows easily for all V using the complete 
reducibility of smooth D(G”) modules. Thus XT converges to a*. But then 
(5.8.17) follows from (5.8.6) and (5.7.4). Q.E.D. 

Remark 5.8.2. One major advantage of formulas (5.8.6), (5.8.7) and (5.8.17) 
is that for any given smooth D(G”) module we need consider only a finite 
number of summands. 

5+9. Now let h E D and let 

YA = {s E Y / q(s) = x - Kh}. (5.9.1) 

Now h - Kh is the difference between the highest and lowest weights of VA 
and hence we can write h - K;\ = & miai , where mi E z+ . If o(/\ - Kh) 

is defined as in (5.5.28) note that o(h - Kh) = C mi and hence the cardinality 
of YA is given by 

o(h - /CA)! 
I .YA I = m,l . . . m,! * (5.9.2) 

One notes also that YA is stable under the map Y -+ Y, s -+ S. 
Now for any s E YA clearly e-, carries ZIP into a multiple of +A. Thus there 

exists c,,~ g R such that 

e-,vA = cs,Av”A. (5.9.3) 

PROPOSITION 5.9.1. Let X E D and w, E A, . Then if p(s, w,) is deJned by 
(5.8.4) for any s E Y one? has 

= {n=f(W) VA, 7P) 

= d(w)A, (5.9.4) 
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where we recall that d(w) E H is defined by (5.5.2). Furthermore 

(5.9.5) 
= d(w)-‘! 

In particular the numbers given by the sums in (5.9.4) and (5.9.5) are positive. 

Proof. If SEY then by (5.1.14) and (5.2.11) clearly {e-P”, vKA} = 0 if 
s # 9 and {e-PA, vKh} = c,,~ if s E Y. But then (5.9.4) and (5.9.5) follow from 
(5.8.6), (5.8.7), (5.5.4), and (5.5.5). Note that we have interchanged s and s 
in (5.8.7). Q.E.D. 

Since the numbers c,,~ , s E YA play such an important role in our solution 
of the generalized Toda lattice we will give another expression for them purely 
in terms of U. For any s, t c YA the element e,e-, clearly commutes with k. 
That is, in the notation of (5.1.10) one has e,e-, c U(0). Now by (5.1.15) there 
exists a unique element u~,~ E U(R) such that ete-, - ut,8 is in the left ideal UKL 
On the other hand we can regard U(R) as the algebra of real-valued polynomial 
functions on 4’ so that in particular if u E: U(R) then uvA = u(A) v*. 

PROPOSITION 5.9.2. Let h E D. Then th.e o(h - A) x o(h - I&) matrix 
(u,,,(h)), indexed by t, s E YA has rank 1 and hence there exists a unique, up to 
sign, vector {cSSA} in IWO(~-~~) such that 

Cs,ACt.A = ut,,(h) (5.9.6) 

for all s, t. The sign is, howeerer, determined by the relation 

(-l)‘(‘-“) 1 c,,A > 0. (5.9.7) 
se.vA 

Proof. Now clearly {e-p”, e-,vA> = (e&-p”, vA} = {uli,tvA, vA} = u,,,(h) since 
UB annihilates vA. But C&+ = {em@, e-g}. Thus one has (5.9.6) and hence 
{z+Jh)} has rank 1 or 0. Now by Remark 5.8.1 choosing w, = X, one has 
p(s, x,) = 1 s /! Thus, by (5.9.4), the left side of (5.9.7) is just o(X - &I)! d(x)“, 
where x = f  + x, . This proves (5.9.7) and also that the rank of (u,,,(h)} cannot 
be zero. Q.E.D. 

5.10. Now given h E D let AA CA be the set of weights of VA. Now 
for any v E AA let 

SPA(v) = {s c 9” I &&-KA)) = h - 4, (5.10.1) 
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where we use the notation of (5.8.1) and (5.8.2). That is, if s E Y” is given 
by (57.1) then s E YA(v) in case CirL” ai. = A - v. 

Now for any s E Y and integer j, wh&e 0 ,< j < 1 s 1, let pj(s, wJ be the 
polynomial of degree 1 s ) in w, defined by putting 

PAS9 wo) = P((-7sl-j), wo) P(((s)i), wo)~ (5.10.2) 

using the notation of (5.8.2) and (5.8.5). Explicitly ifs = (il ,..., ;isl) then 

It is clear of course that pj(s, w,) > 0. 

Remark 5.10. Recall Remark 5.8.1, where it was suggested that p(s, w,) 
should be regarded as a sort of factorial “function.” In the same sense one 
should perhaps think of pi(s, w,) in terms of binomial coefficients. Indeed if 
w = x, ) recalling Section 2.1, one easily has 

Pj(S, x0) = j!(l s I - j)! 

For the two extreme cases one clearly has 

and 

PI&, wo) = Ph 4 (5.10.4) 

PlSl(S~ WC?) = P(C WC?). (5.10.5) 

Qj,(g, ) w, ; t) = ( -l)oCA--KA) 
CO 

C.9.A 
“EdA sem(,) Pods, wo) 1 &ve-t~v*wo~~ 

(5.10.6) 

where c,~~ is defined by (5.9.3), AA is the set of weights of VA and o(p) is defined 
by (5.5.28). 

THEOREM 5.10. Let 9 be a real split semi-simple Lie algebra. Let A Cp be a 
split Cartan subalgebra and let A, _C & be an open Weyl chamber. Let G be the 
adjoint group and let H C G be the subgroup corresponding to h. Let g, c H, w, s 4+ 
and let /\ be the highest we&ht of an irreducible representatim of 9 and fw any 
t C [w let Q$(g0, w, ; t) be defined by (5.10.6) where c,,~ is defined by (5.9.3) and 
pj(s, w,) is defined by (5.10.3), recalling that aI ,..., 01~ are the simple positive 
roots. Now let w = zi=, emoLi + w, for any fixed choice of negative simple root 
vectors ewar, . . Let G,,” be the connected component of the centralizer of w in G 
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defined by (3.5S43.5.7) so that g exp tw E G,,“, where g = p;‘(g,J and pW 
is dejned by (53.1). Now let h(g exp tw) E H be defined by (2.6.2) using (2.4.5), 

(2.6.1), and (3.5.9). Then one has 

h(g exp(-04” = %(g, , w, ; 0. (5.10.7) 

Proof. For the statement about the arbitrariness of the eetii see Remark 1.5.1. 
Now for any Y E AA let P,: VA + VA(,) be the orthogonal projection relative 
to Qi . Now if bi(h, w,) is defined by (5.5.12) then clearly 

{P&(w)-’ I+, P&(w)* vKA} = C b,(X, w,) 
A‘=v 

(5.10.8) 

and hence by (5.5.21) if b,(h, w,) is the left side of (5.10.8) then 

h(g exp tw)’ = c b,(/\, w,) gOyet(“swo). 
“EdA 

(5.10.9) 

Now for any p E A’ let Y(u) = {s E Y 1 v(s) = CL}. Then by (5.8.7) and (5.8.17) 
for any v E AA one has upon interchanging s’ and S’ 

and 

P&(w)* VKA = 8,E$“-xA) W’“” es”v”* * 
zw, 4 

(5.10.11) 

Now composition of sequences clearly induces a bijection 

Y(,Q-“) x 9(-~) -+ P(v), (s’, s”) I-+ s, (5.10.12) 

where we note that e-, = e-,*e.+’ . One then has {e-,*v”, es*nKA) = (e-$, V”> = 

cSSA . Furthermore p(~‘, w,) = P((s,G-,A)), w,) and P(s”, w,) = P(((%L)), %) 
so that 

P(S’, w,) P(s”, w,) = PoQ--v&P wou- (5.10.13) 

But also ] s’ 1 + 1 s” 1 = o(h - A) so that 

b,(X, w) = (-l)o(A-“A) c C,,A 
sem(“) PodS, %I * 

(5.10.14) 

But then (5.10.7) follows from (5.10.9) and (5.10.14). Q.E.D. 

5.11. Formula (5.10.7) expresses h(gexp(-t)w)A as a finite sum of 
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exponentials with explicit but clearly complicated coefficients. On the other 
hand the asymptotic values of h(g exp(-t)w)A, or rather log h(g exp(-t)w)“, 
as t -+ f co may be given by simple linear formulas. We may also replace 
hEDbyanypCr.EA’. 

THEOREM 5.11. Let the notation be as in Theorem 5.10 and let K be the Weyl 

group element which takes positive roots to negative roots. See Section 2.4. Let 
p E R’ and let d(w) E H be dejined by (5.5.2). (See also (5.5.4) and (5.5.5).) Then 
if R*(g, , w, ; t) are the real-valued remainder functions defined by 

log h(g exp(-t)w)” = (--KIL, wO>t + lo&$(w)-lY + R+(gO , w0 ; t) 

= (-PI, w,)t + log(god(w>)” + R-(go 9 wo ; t) 

one has lim,,,, R+(gO , w, ; t) = lim,+, R-(go , w, ; t) = 0. 

PYoof. By definition, one has with exponentiation 

hk exp( - t)w)” 
et<-~u.ru,~(go d(w)-l)“” 

= eR+(so.us&) 

and 

hk exP( -+4” 
et<-u*loo>(go d(w)) 

= eR-(o,..cu,;t) 

(5.11.1) 

(5.11.2) 

However, the denominators in (5.11.1) and (5.11.2), respectively, are 

(go exp(--t) WdW-Y and (g, exp(-t) w,d(w)p. But then the left sides of 
(5.11.1) and (5.11.2), respectively, approach 1 as t + +co and t -+ -co 
by (5.5.23) and (5.5.22). This proves the theorem. Q.E.D. 

6. THE SYMPLECTIC STRUCTURE OF (2,~~) AND THE INTEGRATION 

OF 61, 1 E S(9)' 

6.1. We recall some aspects of the theory of symplectic manifolds. 
See Chapter 4 in [15] for more details. Let (X, wx), or more simply X, if wr 
is understood, be a symplectic manifold of dimension 2n. That is, X is a smooth 
(i.e., Cm) manifold of dimension 2n and wx is a closed nonsingular smooth 
differential 2-form on X. Thus if Cm(X) is the space of all smooth functions 
on X and Der Cm(X) is the Lie algebra of all smooth vector fields on X then 
wr([, 7) E Cm(X) for any f, 7 E Der Cm(X) and wx([, 7) is alternating in 5 and r]. 

Now for any q~ G Cm(X) one defines a (Hamiltonian) vector field t, on X 
by the relation 

45, ,?I> = w (6.1.1) 
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for all 7 E Der C’“(X). Furthermore Cm(X) inherits a Poisson structure (see 
Section 1.1) where for any y’, # E Cm(X) one defines [v, $1 = &,I$. Moreover 
if Ham X = {& 1 9 G Cm(X)} then Ham X is a Lie subalgebra of Der Cm(X) 
and (assuming X is connected) 

O+lW~Cm(X)~ HamX+O (6.1.2) 

is an exact sequence of Lie algebras defining C”“(X) as a central extension 
of Ham X. We have identified R here with the constant functions on X. 

As one knows, one may express wx in terms of the Poisson structure. 

PROPOSITION 6.1. Assume that vI ,..., vzn is a global coordinate system on X. 
Let ?Pij E Cm(X) be defined by !Pi, = [vi , q+]. Then the 2n x 2n matrix {lu,,} 
is invertible at all points and if (?Fj} is the inverse matrix of functions one has 

(6.1.3) 

Proof. That {Ygj} = (5 TV} is invertible is obvious from the tangent space- 
cotangent space isomorphyim induced by wx. Now for any v, #E C%(X) 
one easily has 

QJx(5, 3 E,) = kf5 #I (6.1.4) 

from (6.1.1). In particular wr(&,, , &,,J = [(p, , P)~]. On the other hand it is 
immediate that if w is the right side of (6.1.3) one also has w(,& , 5,) = 
[TV , p)J. This proves w = wr . Q.E.D. 

6.2, Now symplectic manifolds arise in a number of ways. One of 
these is from the coadjoint orbits of Lie groups. We recall some of the details. 
See Chapter 5 in [15] f or a more complete account. Let A be a connected Lie 
group and let a. be its Lie algebra so that 0 is an A-module with respect to 
the adjoint representation. Also a’, the dual to a, is an A-module with respect 
to the coadjoint representation. The latter is defined by contragradience so 
that if a E A, x E aa, and g E 8’ 

(g, x> = @g, ax>. (6.2.1) 

Now let 0 C a’ be an orbit of A in aa’. That is, 0 is a homogeneous space 
for A of the form 0 = Ah for some h E aa). Now for any y E a let @’ E P(0) 
be the function defined by q?(g) = (g, y) for any g E 0. Also for any x E *x 
let .& E Der P(0) be the vector field on 0 corresponding to the action of the 
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one-parameter group exp(--t)x on 0. The vector field fz is characterized by 
the relation 

&pY = +w (6.2.2) 

for any x, y E 47. 

PROPOSITION 6.2.1. There exists a unique symplectic structure wo on 0 
(dejning a symplectic munifold (0, wo)) such that 

[@, rpp”] = pm1 (6.2.3) 

for any x, y E LL. Furthermore if fWz is the Hamiltonian vector field corresponding 
to qx then 

f,. = fz * (6.2.4) 

Proof. The existence of a symplectic structure w. on 0 where (6.2.3) 
is satisfied is established by Theorem 5.3.1 in [15]. The uniqueness follows 
from Proposition 6.1 since locally the set of functions {cp*}, x E a, contains 
a coordinate system. The relation (6.2.4) follows from the equality of the left 
sides of (6.2.2) and (6.2.3) for ally E a. Q.E.D. 

Henceforth (0, wo), for any coadjoint orbit 0, will be the symplectic manifold 
given by Proposition 6.2.1. 

Now let the notation be as in Section 1 so the symmetric algebra S(a) (here 
F = 08) has a Poisson structure. Also, gi , xi are respectively a basis and a dual 
basis of a’ and a. Furthermore S(a) is regarded as the algebra of polynomial 
functions on a’. Now for any u E S(a) let $‘ be the restriction u 1 0. 

PROPOSITION 6.2.2. For any u E S(a), coadjoint orbit 0 C a’ and g E 0, 
one has 

(6.2.5) 

Furthermore for U, v E S(a) me has 

[cp”, tp”] = owl (6.2.6) 

with respect to the Poisson structure on S(a) deJned by Proposition 6.2.1. 

Proof. It is immediate from (1.1.2) that 

(W‘), = c W&)kNW’>, . (6.2.7) 
I 

607/34!3-7 
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But now (6.2.5) follows from (6.2.4) and (6.2.7). But (6.2.5) and (6.2.7) (for 
z, instead of u) implies 

hJ,“9 v”l = 5 (a(g,>u>(a(gi)v>[~Z’, P,“‘l- (6.2.8) 

But [p”c, @j] = IJJ”~*~~J by (6.2.3) and &*iJjl(g) = (g, [xi , ~$1). But now 
substituting (1.1.2) in (1.1.3) and then comparing (1.1.3) with (6.2.8) one has 
$“.Vl(g) = [u, v](g) = [vu, @j(g). This proves (6.26). Q.E.D. 

6.3. Now let the notation be as in Section 1.2 where F = Iw so that 
9 is a real semi-simple Lie algebra with a fixed Cartan decomposition, and Q 
is an invariant bilinear form which on any simple component is a positive 
multiple of the Killing form. Furthermore a is an arbitrary subalgebra of 2. 
Using Q, the inner product Q* , and the Cartan decomposition we have 
associated to *I three subspaces &, & and a* of 8. We recall that a0 is the 
Q-orthogonal subspace to a, & is Q,-orthocomplement to a and a* is non- 
singularly paired to a by Q. Now let f E 9 be arbitrary and let (a*)f = f + a* 
using the notation of Section 1.6. Even though (xz*)~ is only an affine subspace 
and not necessarily a linear subspace we note that 

$2 = (a*)f @a0 (6.3.1) 

is still a direct sum. (That is, any element in 9 has a unique sum decomposition 
relative to the summands in (6.3.1).) This is clear since a0 = (a*)l by (1.2.5) 
and of course f + 9 = 2. Let 

P= $? -+ (&*)I (6.3.2) 

be the projection on (a*)r according to the decomposition (6.3.1). Now it is 
immediate from (6.3.1) that if g E a’ there exists a unique element y9 E (xz*)~ 
such that 

Q(Y~ ,4 = <g, x> (6.3.3) 

for all x E a and the map 

T: a’ --+ (a*),. , g*y, (6.3.4) 

is bijective and is in fact, clearly, a diffeomorphism. 
Now let A 5 G be the subgroup corresponding to a. For any a E A and 

y E (a*), let a * y E (B*)~ be defined by 

a-y = Pay. (6.3.5) 
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PROPOSITION 6.3. Equation (6.3.5) dejnes an action of A on (KZ*)~ . Furthe-r- 
more regarding a’ as an A-manifold (i.e., a man;fold on which A operates) with 

‘respect to the coadjoint representation the map (6.3.4) is an isomorphism of 
A-manifolds. 

Proof. Let a E A, g E aa’, and x E a. Then substituting a-4 for x one has 
from the invariance of Q that Q(ar, , x) = (ag, x) = Q(yas , x). But now 
ay, - a . yg E a0 so that Q(a * y0 , x) = Q(yas , x). But then a . yg = yap from 
the injectivity of (6.3.4). This proves both statements of the proposition. 

Q.E.D. 

Proposition 6.3 enables one to carry over the coadjoint-symplectic theory 
of A from 0’ to (a*)l. Thus any orbit Y of A in (xz*)~ is a symplectic where 
the symplectic structure wr is defined by 

WY = +Jj--lY), (6.3.6) 

where of course the action of the diffeomorphism I’ on differential forms is 
defined in the usual differential-geometric way. 

6.4. We apply Proposition 6.3 to the case of the example of Sections 1.5 
and 2-5, where 9 is a real split semi-simple Lie algebra. The notation is as in, 
say, Section 1.5, so that a = &, A = B, a* = 8 and f is given by (1.5.4). 
Then (a*)f = &f = f + 8. H owever, we are interested in only one orbit of B 
in G; . 

Let hi , i = I,..., 1, be the basis of k defined by putting 

hi = [e,: , e-J. (6.4.1) 

Now recalling the definition of the 2Z-dimensional submanifold 2 C &, (see 
(2.2.3) and (2.2.4)) one has a global coordinate system pi , yj E Cm(Z), i,j = 
1 ,.**> Z, such that y E 2 if and only if y is of the form 

Y = f + $I 14~1 hi + i YAY) eNj y (6.4.2) 
j=l 

where pi(y) E R and rj(y) E R* are arbitrary. Of course since the yj are positive 
valued they are of course invertible. We recall also that for any invariant 
IE S(p)” we defined a vector field & on 2 by (2.2.18) and (2.2.19) so that 
for any y E 2 one has (&), = [y, (S&(y)] where S,$ is defined by (1.2.7). 
See (1.2.10). 

PROPOSITION 6.4. Z is an orbit of B in 4, . Furthumore the corresponding 
symplectic structure on Z is given by 

wz = c dpi A 7;’ dyi . 
i=l 

(6.4.3) 
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Moreover if &lz is the Hamiltonian vector jield corresponding to I 1 Z C Cm(Z) 
for any I E S(g)” then one has 

!!,lz = 61. (6.4.4) 

Proof. Let bE & We may write 6 = h exp x, where x E Z and h E H. Let 
ci E R be defined by x + C tie++ E [&, Z]. Now let y = f + e, where e = 

CL ea . Then y E 2 C &f . Furthermore if z = f + xi=, cghi + C aieai , where 
hi is g&en by (6.4.1) and ai = hai, then z E 2. But one notes that 

sy - ZEZ. (6.4.5) 

On the other hand Z = (&) so that 6 * y = .s using the notation of (6.3.5). 
However, it is clear that z is an arbitrary element of 2 and hence 2 = B * y. 
This proves that 2 is a B orbit in &, . 

Now let r: 6’ + &, be the map (6.3.4) where of course d = it. Thus if 
0 = r-l(Z) then 0 is a coadjoint orbit of B in 6’. For any ?I G S(J) let pu E Cm(O) 
be defined as in Section 6.1 and let I+@ E Cm(Z) be defined by putting I,@ = u 12. 
It is clear from (6.3.3) that 4” 0 r = vu and hence, using (6.2.3), with regard 
to the Poisson structure in s(8) and Cm(Z) one has 

for u, v E S(G). 

[lp, $“I = zp~l (6.4.6) 

Now let zi E Q’ = l,..., 1, be the basis of A such that 

Q(z~ , hi) = 6ij . 

But from (1.52) it follows that 

Q(x, hi) = <ai 9 X> (6.4.8) 

for any x E A. Thus one must have 

[+ , .zj] = 6ije-,, . 

On the other hand it follows from (6.4.7) and (6.4.2) that 

z/P = pj . 

Furthermore using (1.5.2) one notes that 

(6.4.7) 

(6.4.9) 

(6.4.10) 

(6.4.11) lpi = yt . 
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Thus by (6.4.6) and (6.4.9) one has, in Cm(Z), 

hi > PA = bYi * (6.4.12) 

On the other hand since clearly 4” = 0 for any z E: [Z, Z] and since b is com- 
mutative it follows from (6.4.10) and (6.4.11) that for all i, j 

hi > %I = [Pi 9 PA = 0. (6.4.13) 

On the other hand the yi together with the pj define a coordinate system in 2. 
We may then apply Proposition 6.1 to compute wz in terms of dyi and dpj , 
using of course (6.4.12) and (6.4.13). In fact the computation is immediate 
and yields (6.4.3). 

Now for any x E & let 5, be the vector field in 2 which corresponds to 5, 
by the isomorphism I’. See (6.3.4). Thus by (6.2.2) one has 

&p = p?l (6.4.14) 

for x, z E 8. Now let xi be a basis of 8 and yj be a basis of G such that Q(x~ , yj) = 
Sii . Now for any v E Ccc(Z) let & here be the Hamiltonian vector field on 2 
corresponding to IJL Now for any u E S(p) and z ~9 let in E S(y) be defined 
as in Section 1.2. For any y E 2 we now assert that 

(5ulZ), = ; (~(YM(Y)(L,), . (6.4.15) 

Indeed for any u E S(g) it is clear from (6.3.1) that there exists a unique element 
EE S(8) such that @ ) Jf = u 1 tf . Furthermore since Jf is stable under trans- 

lation by elements in 4 one has upon differentiation, ;(z)u = i(z)a for z G 14. 
But then both sides of (6.4.15) do not change if u is substituted for U. However, 
for ii one has (6.4.15) by (6.2.5). One recalls (6.3.3) and (6.3.6). This proves 
(6.4.15). 

But now we may identify the tangent space to 2 at y with A + Ai C d as 
in (2.2.10). But by (6.2.2) ([,@)(y) = Q(y, [x, z]) = Q([y, x], z). Thus if 
P6: 9 -+ 4 is the Q,-orthogonal projection (i.e., Ker Pd = Z = 80) then clearly 

Kc>, = PAY, Xl E Js + 4 . (6.4.16) 

Now recalling the definition of S& in Section 1.2 one then has 

~5uIZL = P6lYt CGWI (6.4.17) 

by (1.2.10). However, if u = IE S(y)” then (k,), = [y, (6$)(y)] E 8 by (2.2.22). 
Thus 

6, = &;iz . Q.E.D. 
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6.5. Now using the isomorphism (3.5.27) which maps k to A’ the 
bilinear form Q ] A, as one knows, induces a positive definite bilinear form 
Q 1 A’ on A’. For i,j = l,..., 1 let 

bij = Q(CQ , ai). (6.5.1) 

Remark 6.5. Clearly bij depends upon the choice of Q. However, if C 
is the 1 x 1 matrix defined by Cij = bij/bii then C is of course the Cartan 
matrix and is independent of Q. 

Now among the fundamental invariants Ij E So, j = I,..., 1, we may 
clearly fix I1 so that 

I,(x) = $Q(xt 4 (6.5.2) 

for any x E 9. 

PROPOSITION 6.5. Let pi , y3’ E Cm(Z) be dejined by (6.4.2). Since ~~(2) C 88* 

we may define pj E Cm(Z) by putting qua = log y9 . Then pi , ‘pj, i, j = l,..., 1, 
de&e a coordinate system on Z. In fact the map 

z-t IFP (6.5.3) 

given by y  I-+ (pi(y),..., pi(y), q+(y),..., IJJ~(Y)) is a dz#eomorphism. Moreower 

wz = f,, dpi A dpi * (6.5.4) 

Furthermore if bi, is de$ned by (6.5.1) then 

11 / Z = 4 i bijpipi + f:  ewi. 
i,i=l i=l 

(6.5.5) 

Proof. The first statement is immediate from the definition of Z. See (2.2.3) 
and (2.2.4). But now dvi = r;‘dri and hence (6.5.4) follows from (6.4.3). 
On the other hand if y E Z is given by (6.4.2) then II(y) = +Q(y, y) = 

Q(f, Xi Y~Y) eat) + &Ci,j /4Y) Pi(Y) Q(k , 4). But Q(f, e,J = 1 and hence 
Q( f, Ci ri(y) eori) = Ci yi(y) = Ci ernl(“). On the other hand hi -+ oli by 
(3.5.27), recalling (3.5.28), (3.1.14) and (6.4.1) SO that bi, = Q(hi , hj). One 
thus obtains (6.5.5). Q.E.D. 

6.6. Now let (X, wr) be a symplectic manifold. Let 2n = dim X. 
Let T,(X), for any p E X, be the tangent space to X at p. Assume that for any 
p G X one has an n-dimensional subspace F, C T,(Z) and that the map given 
by p t+ F, is a smooth involutory distribution F (in the sense of Cartan) on X. 



TODA LATTICE AND REPRESENTATION THEORY 295 

By a leaf of F we mean a maximal connected integral submanifold MC X. 
Thus F is called a real polarization of (X, wr) in case wx ] M = 0 for any 
leaf M of F. That is, the leaves of F are Lagrangian submanifolds of X. 

Now assume that F is a real polarization of (X, wr). For any open subset 
U C X let CFm( U) = (‘p E Cm(U) 1 ap, = 0 for all p E U and v E FJ. It follows 
easily from (6.1.1) and the maximal isotropic property of F, that, using the 
notation of Section 6.1, one has 

(.&,), E F, for any p E U and q~ E CFm( U). (6.6.1) 

Thus if M is any leaf of F and UC X is any open subset then the restriction 

tQ 1 M n U is tangent to M n U for any p E C,*(U). (6.6.2) 

But then (6.6.1) implies [y, $1 = 0, and hence 

[& ,&I = 0 for any 94 * E CF”(~). (6.6.3) 

But now if M is a leaf of F then it is an easy consequence of (6.6.2) and (6.6.3) 
that there exists a unique flat alKne connection on M such that & 1 M n U 
is covariant constant for any open set U C X and v E CFa( U). See Section 4.2. 
We will refer to this as the affine connection on M induced by F. The real 
polarization F will be said to be complete in case the affine connection induced 
by F on M is complete for every leaf of F. That is, all parametrized geodesics 
on M are defined for all values of the parameter. 

Remark 6.6.1. In case (X, wr) is a coadjoint orbit of a simply connected 
exponential solvable Lie group A and F is an A-invariant real polarization 
the condition of completeness has been called the Pukansky condition. A 
theorem of Pukansky (see [21]) asserts that the unitary representation of A 
associated to F is irreducible if and only if F is complete. 

An important property of completeness is that the vector field [,+ for any 
g, E CFm(X), can be globally integrated. 

PROPOSITION 6.6. Assume that F is a complete, real polarization of a symplectic 
mumfold (X, wx). Then for any q~ E CFm(X) there exists a one-parameter group, 
exp tf, , t E [w, of symplectic d$feomorphisms of X such that for any # E C*(X) 
andpEX 

$ rCl(exp(-4 4, . PI LO = b%W)~ (6.6.4) 

where the dot denotes the dz~eomorphism action on X. 
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Proof. Let q~ E Cpm(X) and let p E X. Let M be the leaf of F containing p. 
Let c(t) E M, for all t E 08, be the geodesic on M whose tangent vector at t = 0 
is (-.&,), . Then (exp t&J . p is defined so that c(t) = (exp t&J . p. It is imme- 
diate then that exp t& is a one-parameter group of symplectic diffeomorphisms 
satisfying (6.6.4). Q.E.D. 

Remark 6.6.2. In general if [ is a globally integrable vector field on a 
manifold M then the corresponding one parameter group of diffeomorphisms 
will be written as exp tt. The direction of the trajectories exp t( . p of 5 will 
also be taken in the reverse direction of [. That is, if # c Cm(M) one has 
(44 #(exp(-t)f . l-9 LO = (&4(P) f or any p E M. This of course guarantees 
the correct functorial properties for a Lie group of diffeomorphisms. Further- 
more it produces the correct signs for Hamilton’s equations. See (7.15). 

6.7. Now recalling Section 4.1, 2” is an involutory distribution of 
dim 1 on 2. To conform to the notation of Section 6.6 we write F = 8 and 
recall then that for any y E 2 (see (2.2.21)) 

(6.7.1) 

where we recall that (see (2.2.22)) 

(a! = [Y, W)(Yll> (6.7.2) 

where S,Z is defined by (1.2.7). 
Furthermore by Proposition 4.1 and (3.5.26) the leaves of F are all the sub- 

manifolds of the form Z(y), y E $(A+), and any such leaf has been given (see 
end of Section 4.2) the structure of a flat affinely connected manifold. 

THEOREM 6.7.1. Let g be a split semi-simple Lie algebra. Let 1 = rank8 
and let Z C 8, deJined as in Section 2.2, be the 21-dimensional submanifold of 

normalized Jacobi elements. Let wz be the symplectic structure on Z defined as 
in Section 6.3 andgiven explicitly by (6.4.3) and let F be the l-dimensional involutory 
distribution on Z dejined by (6.7.1). Let 9: 9 + IIV be the map defined as in (2.3.1) 
and let R, be the open Weyl chamber defined by (3.3.1). For each y  E 9(R+) let 
Z(y) be dejned by (2.3.2) so that by Proposition 4.2 and (3.5.26) the Z(y) are 

flat a@nely connected manifolds and are the leaves of F. 
Then F is a complete real polurization of (Z, wz). Furthermore the afine connec- 

on Z(y) is the same as the one induced by F. Moreover for any invariant I E S(,)G 
one has I 1 Z E CFm(Z) and fI is the corresponding Hamiltonian vector $eld. In 
particular .$/ is globally integrable. In fact let y  E Z and let I E So. Let y  = 9(y) 
so that by (3.5.26) and Proposition 3.3.1 there exists a unique w, c X, such that 
9(wo) = y. Let w = f + w, , where f  is given by (1.5.4), and let x = (61)(w) 
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so that z E&” using the notation of Section 1.2 and recalling (1.3.3). Let GOw 
be as (3.5.5)-(3.5.7) and let &,j: GO” + Z(y) be the isonwrphism (3.6.2). Let 
g = /3$(y) E Go”. Then fez all t c R one has g exp(- t)z E Gaw and 

Bdg exp(-tk) = exp t5, -3 (6.7.3) 

where the dot is the same as in Proposition 6.6. 

Proof. For any I E S(9)G we recall that If E S(d) has been defined by the 
relation If(x) = Z(f + x) for x E B. See Section 1.4. For any II E S(8) let, as 
in the proof of Proposition 6.4, #* E C%(Z) be defined by I/J” = u 1 2. We 
assert that 

p’ = I / 2. (6.7.4) 

Indeed ify E 2 we may write y = f + X, where x E G. Then Z(y) = Z( f + X) = 
If(x) = Zf(f + X) = If(y) using (1.2.6) since f E (8)’ = z. This proves (6.7.4). 
But now if Z, J E S(9)” and we put II = If, v = Jf then [$,, = & and t&W = & 
by (6.4.4). But then by (6.1.4) and (6.4.6) 

But [v, U] = [Jf, Zf] = 0 by Theorem 1.4. Thus (6.7.5) vanishes and hence 
Z(y), recalling Proposition 4.1, is Lagrangian for all y E 9(&+). Thus F is a 
real polarization. Furthermore by definition Z 1 2 is constant on Z(y) so that 
Z 12 E: CFm(Z) and hence 6, is covariant constant with respect to the a&e 
connection induced by F. Recalling the definition (see end of Section 4.2) 
of the given affine connection on Z(y) this proves that both affine connections 
are the same. 

Now let y E 2. Put y = Y(y). By (3.5.26) and Proposition 3.3.1 there exists 
a unique w, E k+ such that #(wJ = y. Then Z(r) is the leaf of F containing y 
and by Theorem 4.3 

P(w): Go” - -W) (6.7.6) 

is an isomorphism of flat affinely connected manifolds where the affine connection 
on Gaw C Gw is defined by the Abelian group structure on Gw. In particular 
the geodesics in G,” are translates of one-parameter groups exp tx, where 
x 690. Since G,” is a connected component of Gw it is obviously complete. 
Thus Z(y) is complete and hence F is complete. 

Now let Z E S(f)” and let g E G,,w be such that p(,)(g) = y. Let L,” be the 
vector field on Gw, defined by (4.3.1), so that if exp tL,” is the one-parameter 
group of diffeomorphisms of Gw defined by LIw, one has exp tLIw . a = 
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a exp(-t)(U)(w) for any a E 0. But BdP’ I Gw) = 61 I Z(Y) by (4.3.3). 
This proves (6.7.3) since z = (U)(w). Q.E.D. 

One also would know the flow defined by [I if one knew the coordinate 
values of exp ttr . y. For .“half” the coordinates this is given explicitly by 

THEOREM 6.7.2. Let y  E Z and let w, E k’+ , as in Theorem 6.7.1, be such that 
9(wJ = J(y). Als o as in Theorem 6.7.1 let w = f + w, and let g E GOW be 
such that /3(,,(g) = y. N ow let H be the split Cartan subgroup defined as in 
Section 1.5 and also as in Section 1.5 let “1 ,..., 01~ be a corresponding set of simple 
positive roots. For any a E GO” let h(u) E H be dejked by (3.4.14). Let I E So 
and let (U)(w) = z ~9~. Finally let v1 ,..., vz E Cm(Z) be “half” the coordinates 
on Z dejined as in Proposition 6.5. Then (see Theorem 6.7.1) 

vi(exp t& .y) = log h(g exp(-t)z)-“‘. (6.7.7) 

Proof. Now, recalling Theorem 3.6, if a E G,,” then we may write a = 
S(K) @(a) h(a) n(a), where the four factors are defined as in the statement of 
Theorem 3.6. Furthermore /3(&u) = n(a)w E 2 by Theorem 3.6 and hence 
we can write n(a)w = f + x + &, cieai , where x E R. But by (3.7.4) one has 
in fact 

ci = h(a)-“. (6.7.8) 

But now if yr E P(Z) is defined by (6.4.2) then (6.7.8) implies r&&j(a)) = 
h(u)-Oli. Thus one has 

~iUko~(4) = log h(a)-“*. (6.7.9) 

But then (6.7.7) follows from (6.7.3) by putting a = g exp(-t)z. Q.E.D. 

6.8. We are mainly interested in applying Theorems 6.7.1 and 6.7.2 
for the case where I is the quadratic invariant II . See (6.5.2). In that case 
the element z becomes w itself. 

Our solution to the generalized Toda lattice will depend on the following 
theorem together with the explicit formula for h(g exp(-t)w)” given in 
Theorem 5.10. See (5.10.6) and (5.10.7). 

THEOREM 6.8.1. Let (pa , vi}, i, j = l,..., 1, be the coordinate system on Z 
given in Proposition 6.5. Let wz be the symplectic structure on Z defined in Section 6.3 
and given explicitly (see (6.5.4)) by 

wz = c dpa A dvi . 
i=l 
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Let I1 E So be dejned by (6.5.2) so that I1 [ Zhas bee-ngiwe-n explicitly (see (6.5.5)) 

bY 

I1 1 Z = 4 i bijpipj + i e”)‘, 
i.j=l i=l 

(6.8.2) 

where bij = Q(ui , uj). Let ..$ be the Hamiltonian vector field on Z corresponding 

to 1; 1 2. Then f  is globally integrable. Let exp tf be the corresponding $0~. (See 
Theorem 6.7.1.) Let y  E Z and let w, E R, be such that Y(y) = Y(w,,). Let 
w = f + w, and let g E G,,” be such that /3(,,(g) = y. (We are using the notation 

of Theorem 6.7.1.) Then 

exp t5 * Y = hdk ed-t>w>. (6.8.3) 

Furthermore 

&exp tc * y) = log h(g exp(-t)w)-“‘, (6.8.4) 

i = l,..., 1. 

Proof. Theorem 6.8.1 follows immediately from Theorems 6.7.1 and 
6.7.2 as soon as one shows that (6Ir)(w) = w. Let {xi> and {yj} both be bases 
of 9 such that Q(xi , yj) = aij . Then clearly 

I, = idYXiYi. (6.8.5) 
i=l 

But then for any x ~9 one has 

(6.8.6) 

by (1.2.1) and (1.2.2). But clearly both sums in (6.8.6) are equal to z. Thus 
(61,)(z) = z. Q.E.D. 

Using the diagram (3.6.7) one may give a conceptually simpler expression 
(in that it only involves y  itself) for the trajectory exp t( * y. However, it does 
not seem to lead to an explicit formula. 

THEOREM 6.8.2. Let the notation be as in Theorem 6.8.1. Then there exist 
for all t E R unique elements 5 E; m, h, E H, and n, c N, where icr, H, and N 
are as in Section 3.2, such that 

exp ty = +i$h,n, . (6.8.7) 
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Moreover with respect to the adjoint action one has nmty E Z and in fact 

exp tf . y = n+y. (6.8.8) 

Proof. Recalling the notation and statement of Theorem 3.6 one has 
/3(&g exp tw) = &,(&(g exp tw)). See (3.6.7). But #,(g exp tw) = 
n(g) exp twn(g)-l. However, n(g)w = &,,(g) = y. Thus #,(g exp tw) = exp ty 
and hence 

Bdg exp 4 = B,(exp 9). (6.8.9) 

But now if we write y(t) = exp ty then y(t) E GIY and hence by Theorem 3.2 
one has (6.8.7), where fit = ego) , h, = hytt) , and nt = n,(,) . But for any 
d E G,v one has ,8,(d) = ndy. Thus /3,(exp ty) = n,y. But then (6.8.8) follows 
from (6.8.9) and (6.8.3). Q.E.D. 

Remark 6.8. The solution to the generalized Toda lattice will be based 
on (6.8.4) and formula (5.10.7) for h(g exp(-t)w)“. Given the “initial condition” 
y what is needed is only the “spectrum” of y, namely, w, . The “input” is w, 
together with the constants (the exponential action angle coordinates of the 
initial condition y) g,” for Y EA. This, however, is determined from (5.5.25). 
That is, one easily determines n(g) inductively by the relation n(g)w = y. 
See, e.g., (7.8.25). But then (5.5.25) yields gE$ and hence g,’ for any v E (1. 
One notes (see (3.7.4)) that y itself has h(g)- a* are coordinates so that h(g)-” 
is known in (5.5.25). Al so we remark that n(g) is naturally determined by y. 
That is, one has 

n(g) %W w. = Y (6.8.10) 

and one sees easily from the injectivity of (2.4.5) that n(g) and ilf(w) are the 
unique elements n E N and tin Ai such that n%w, = y. Finally it is then to be 
noted that ff depends only on the isospectral leaf containing y whereas II depends 
on the “action angle” coordinates of y. 

7. DENOUEMENT; THE FORMULA FOR q&(t)) 

7.1. Let (IP, W) be the classical 2n-dimensional phase space. That is, 
one has linear (canonical) coordinates pi , qi E Cm([W2w), i, j = 1 ,..., n, and the 
symplectic structure is given by 

w = i dpi A dqi . 
i=l 

(7.1.1) 



TODA LATTICE AND REPRESENTATION THEORY 301 

One easily sees that if HE P(tF) then the corresponding Hamiltonian vector 
field &, (see (6.1 .l)) is given explicitly by 

(7.1.2) 

Now recall certain aspects of the Hamilton-Jacobi theory. We envision a 
mechanical system consisting of 71 particles moving on a line. The space RP 
is the set of all classical states, pi and qi are respectively the momentum and 
position of the ith particle and H = H(p, ,...,p, , ql ,..., q,J E Cm(Rzn) is the 
total energy of the system. Assume &, is globally integrable so that one has 
the action on R2n of the one-parameter group exp t&, of symplectic diffeo- 
morphisms where if 4 E Cm(lR2n) and z E R2n then 

(7.1.3) 

That is, the map t + z(t) = exp t&, . x is a trajectory of -&, . In physical 
terms a(t) is the state the mechanical system would occupy at time t if it occupied 
the state z at time t = 0. Now it is immediate from (6.1.1) and (7.1.1) that 

s& =a 
ap, 

and .& = - -5. 
%i 

Now also regardpi and qa , respectively, as the functions t -+ p,(z(t)), t -+ qi(z(t), 
of t. It then follows from (7.1.3), recognizing that [#, H] is also .$H, that 

g (44) = $ 3 g (z(t)) = - $. (7.1.5) 

These relations are of course just Hamilton’s equations. 
Now let mi be the mass of the ith particle. We assume that H takes the usual 

form as the sum of the kinetic and potential energies. That is, where I’ E C”(lR2~) 
depends only on the pi (i.e., aV/ap, = 0), we assume that 

H = gl & + V. 1 (7.1.6) 

It follows then from (7.1.6) that 

&(z(t)) = mi +- (7.1.7) 
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so that the trajectory x(t) is very simply determined as soon as one knows 
the velocities dqJdt. 

Now let B? C Cm( W”“) be the (2n + 1)-dimensional space of functions spanned 
by the pi , qj , and the constant function 1. One defines an alternating bilinear 
form B, on S%’ by the relation 

[r, ~1 = Jt,,(~> $11 (7.1.8) 

for r, s E S?. Let 8, .S? C W be respectively the n-dimensional subspaces spanned 
by the p, and qj . It is clear that B and 2 are totally singular subspaces which, 
however, are non-singularly paired with respect to B, . In fact one readily has 

B,(qi 3 Pi> = h, - 

We now assume that the potential function V takes a certain special form. 
Let I < n and assume that zJi E 9, i = I,..., Z, are linearly independent. That is, 
there exists an 1 x n matrix A = (Q) of rank I such that 

#i = i ai& P 
j=l 

i = l,..., 1. (7.1.10) 

Let riE I%*, i = l,..., 1, be some positive constants. We assume that V = 
xi rie$d so that the Hamiltonian H has the form 

H = $I f&- + i r,eli. 
d=l 

(7.1.11) 

Let z E [Wan be arbitrary. We will consider the question of determining the 
trajectory z(t) = exp t& * z when the #i satisfy a certain property-to be 
stated below. 

Now [q, HI is contained in B for any q E 2. In fact [qi , Hj = pi/m, by 
(7.1.9) and hence 

is a linear isomorphism where pH(q) = [q, H]. One then defines a bilinear 
form BH on 2 by putting 

%(q, 4’) = B&, PI&). (7.1.12) 

That is, 

Bdq, 0 = [q, k’r HII. 



TODA LATTICE AND REPRESENTATION THEORY 303 

It is clear then that BH is symmetric and positive definite. In fact one easily has 

B.&i 2 qj> = Umi * (7.1.14) 

Now let 9, C 9 be the I-dimensional subspace spanned by the & and put 
P1 = &.9, . Since pH is an isomorphism one has dimPI = 1. Furthermore 
since BH is positive definite it follows from (7.1.12) that $r and 9, are non- 
singularly paired by B, . It follows that there exist uniquely pi c 8, , i = I,..., 1, 
such that B,(#i ,pi) = aij . Thus if we define qi ~9, i = I,..., 1, by putting 

q; = #a + log ri1 (7.1.15) 

then for i,j = l,..., 1 

[q; , pi] = &l . (7.1.16) 

Now let 9, be the orthocomplement of 9r in 9 with respect to BH and put 
Pa = /3&&. . Obviously one has the direct sum 

B = 9Jl $ s2. (7.1.17) 

Now let q: , i = 1+ l,..., n, be a BH orthonormal basis of da. Again, 8, is 
non-singularly paired to 1, by B, and hence there exist uniquely pl c 8, , 
i = I + l,..., n, such that [q; , pi] = &I. But now clearly 9, and 9, are each 
other’s orthocomplements with respect to B, . By symmetry the same statement 
is true for Pr and $a . Thus p: , q; , i, j = l,..., n, is a coordinate system in 
lR2n and 

2 n 

w = ,r; 44 A dq; + c dp; A dq; . 
j=Z+l 

(7.1.18) 

Now the symmetric 1 x 1 matrix B = (b:J defined by 

(7.1.19) 

will play an important role for us. We first observe 

PROPOSITION 7.1. Let H be the Hamiltonian given by (7.1 .l 1). Then with 
respect to the coordinates p! q! i j = l,..., n, one has 99 39 9 

H=H,+ i 9, 
i=1+1 

(7.1.20) 
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where 

(7.1.21) 

ProoJ Obviously e$ = r,e&i, i = l,..., 1. It suffices then to prove that if 

(7.1.22) 

then K is the kinetic energy in (7.1.11). Since both K and the kinetic energy 
are in the symmetric subspace Ss(B) it suffices to show that BK = BH , where 
BK is the symmetric bilinear form on S given by B,(q, q’)l = [q, [Q’, K]]. 
But now evidently BK(&, &i> = b& = BH(&, &) by (7.1.15) and (7.1.16). 
Thus BK and BH agree on 9,. Also 3, and 2s are B, orthogonal and d , 
i = 1 + l,..., n, are BK orthonormal. Thus BH = BK . Q.E.D. 

7.2. Now put 2’ = Rzz and let p; , r& E P(Z’), where i, j = l,..., 1, 
be a linear coordinate system. Then (Z’, wz,) is just 21 phase space with the 
pi and 9; as canonical coordinates if we put 

wz’ = zl 44 A 44 - (7.2.1) 

Now let I; E P(2’) be the function defined by putting 

(7.2.2) 

where bi, is given by (7.1.18). Also let 

6: !P -+ 2’ (7.2.3) 

be the unique smooth map such that pi o 8 = pi and vi 0 6 = qj , i = l,..., 1. 
Finally let 

r,:B-+B, (7.2.4) 

be the projection defined by (7.1.17) so that B, = Ker rs . 
Now, recalling the notation of Section 6.1, & and [,; are respectively the 

Hamiltonian vector fields on R2* and 2’ corresponding to the functions H c 
Cm(Rzn) and 1; E P(2’). W e recall also that A is the 1 x n matrix (aij) defined 
in (7.1.10). In addition one notes that since the & are linearly independent 
the Z x Z matrix B defined by (7.1.19) is invertible and hence if A* is the 
transpose of A then A*B-l is an n x 1 matrix. 
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PROPOSITION 7.2. Let H be the Hamiltonian function on R2n giwen by (7.1.11) 
and let 1; E Cm(Z’) be given by (7.2.2). Then .$ is globally integrable otf lR2n 
in case &; is globally integrable on 2’. Furthermore in such a case if x G R2n is an 
arbitrary initialpoint and, for notationalconvenience, weput e(t) = qj(exp t& * x), 
j = I,..., n, then 

qj(t) - qj(0) = -$ (9t + L$ w--lb hat) - ~39), (7.2.5) 

where cj is the constant (I’,pJ(x) (see (7.2.4)) and letting y’ E 2’ be dejked by 
6x = y’ (see (7.2.3)) one dejkes &(t) by putting &(t) = &(exp t&; * y’). 

Proof. Assume 5,; is globally integrable. Let y(t) = exp t&; * y’ and let 
R -+ Wn, t + x(t) be the curve in Iw 2n defined by the relation pi(x(t)) = 

$(z(t,‘l; ;Xx(b)) = rpXY(t)), i = l,-., L p,&(t)) = p&9, and d&(t)) = c&l(x), 
,.*a, n. But now recalling (7.2.3), (7.1.21), and (7.2.2), one obviously 

has 1; o 6 = HI . But since Hamilton’s equations are satisfied for the function 
1; along the curve y(t) with respect to the I$ and pi it follows immediately 
that Hamilton’s equations are satisfied for the function H1 E Cm(R2~) along 
the curve x(t) with respect to the pj and qi . It follows then that &, is globally 
integrable and 

x(t) = exp tEH, * X. (7.2.6) 

Now let U, = C,“=,+, ((p;)s/2). It is obvious that [,, is globally integrable 
where pi(exp t.&, . x) = pi(x), i = I,..., n, qi(exp ttH2 - x) = q;(x) for i < 1 
and q;(exp ttHH, .x) = q;(x) + tp@), i = I + l,..., n. But H = HI + H, and 
clearly [HI , H,] = 0. Thus the vector fields f,vl and [H;i, commute and since 
fH = fHH, + &;I, it follows, as one knows, that & is globally integrable where 

exp ttH . x = exp tfH, . (exp tfHl * x). (7.2.7) 

Now for any f E Cw(Rz”) and t E R’ put f(t) = f(exp t& . x). From (7.1.7) 
one then clearly has the integral 

dt) - qdo) = & It Pi(s) ds- 1 0 

Now for any p E 8, one has [p, &.] = 0, i = I,..., 1, since @s is B, orthogonal 
to $1 . Thus clearly [H, p] = bp = 0. Thus p(t) is a constant function of t. 
But r2pj ~9’~ . Hence 

-& !-’ (r,p,)(s) ds = $, 
i 0 I 

where cj = (I’,pj)(x). 

60713413-8 
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For any g E P(Z’) and t E R let g(t) = g(exp t[,; . y’), where recalling 
(7.2.3) one puts 6x = y’ E 2’. 

Now let I’, = I - I’, , where I is the identity operator on B so that r,: 
B + 8, is the projection whose kernel is 8,. But p, = rlpj + rzpj . Thus 
to prove (7.2.5) it suffices by (7.2.8) and (7.2.9) to show that 

gl (A*B-lMdc(t> - ~~83) = l U’&)(s) ds. (7.2.10) 

Now complete the 1 x n matrix A to an PZ x PZ matrix (a& where for i > I 
one defines aij by the relation & aijpj = 4: . Now recalling (7.1.18) one then 
easily has (taking the transpose with respect to B,) the relation 

$ %jPi = Pj (7.2.11) 

for all 1 < i < n. But now rip; = 0 for i > 1 and rlp; = pj for i < 1. Thus 
applying r, to both sides of (7.2.11) one just replaces n by 1. That is, 

(7.2.12) 

Now let t.~< , i = 1 ,..., I, be the basis of P1 defined by putting pi = IgH(&) = 
[#i y H] = [q! 7 H]. Thus pi = -&I; . But now, recalling the first paragraph 
in this proof, one has q;(t) = &(t). Thus 

(7.2.13) 

But now the pi and pi , where i, j = l,..., 1, are both bases of 8, . We assert 
that 

/.L~ = i b;,p; . 
i=l 

(7.2.14) 

Indeed if sij is defined by the relation p( = Ci Siipi then BJ#j , pi) = Si5 
since B,(#j , Pi) = 6,j . However, pi = ,!I&$ . Thus Sij = B,(& , /3H#i) = 
BH(& , tii) = bij . This proves (7.2.14). But then since B is the I x I matrix 
(bij) one has pi = C:-, (B-l)i, tag . Substituting in (7.2.12) one then has 

c (A*B-l)j, pk = rlPj. 
kl 

(7.2.15) 

But now evaluating both sides along the curve exp s& . x and integrating 
from 0 to t one obtains (7.2.10) from (7.2.13). Q.E.D. 
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7.3. We now recall the definition of a Cartan matrix. (The definition 
will be made for the semi-simple and not just for the simple case.) See [l 1, 
Chap. 111 for more details. We remark first that the Cartan matrices classify 
the complex semi-simple Lie algebras or the compact semi-simple Lie algebra 
or, as we shall take it here, the real split semi-simple Lie algebras. Assume 
that 9 is a real semi-simple Lie algebra, say, of rank I, which admits a Cartan 
subalgebra A Zg such that the eigenvalues of ad x are real for all x E /$. Then 
9 is a real split semi-simple Lie algebra and /: is a split Cartan subalgebra. 
This in fact has been. our assumption in earlier sections. Let d’ be the dual 
space to J% and let (CL, V) be a Weyl group invariant positive definite inner product 
on A’. Let 01~ E R’, i = 1 ,..., I, be the set of simple positive roots relative to 
some lexicographical ordering in R’. Then the 1 x 1 matrix C defined by 

(7.3.1) 

is called a Cartan matrix. One knows that the matrix is independent of the 
bilinear form (as long as it is Weyl group invariant) and the entries Cij are 
integers. Furthermore the matrix completely determines the structure of 9. 
Now assume that I’ is some finite-dimensional real vector space with a positive 
definite inner product P. Let vi ,..., z1r E V be linearly independent vectors. 
Then if 2P(q , q)/P(vj , q) = Cij ’ is a Cartan matrix there thus exist uniquely 
up to isomorphism a split semi-simple Lie algebra 9 of rank I, a split Cartan 
subalgebra 4, and simple roots 01~ such that one has Cii = C,I, . Also if Cij is 
a Cartan matrix one may introduce a diagram, the Dynkin diagram, to describe 
the angles and relative lengths of the vectors vi . The Dynkin diagram is based 
on the fact that if wi and vj are not orthogonal and P(q) vi) > P(oj , Vj) then 

P(oi , v,)/P(q , q) = 1, 2, or 3 (7.3.2) 

and accordingly the angle between ai and vi is 120, 135, or 150”. (See, e.g., [5].) 
With regard to terminology in this paper, where the situation is warranted 
we will either say that C;, is a Cartan matrix or that nui , i = I,..., I, defines 
a Dynkin diagram. In either case we will refer to 9, h, and the ai as a corre- 
sponding split semi-simple Lie algebra, a split Cartan subalgebra, and a set 
of simple positive roots. 

We recall in Section 1.2 we permitted some flexibility in the definition of 
the invariant bilinear form Q on 8. This may now be normalized according 
to P. As usual Q is “carried” over to 4 using the isomorphism R ---f X’ defined 
by Q ] A. 

PROPOSITION 7.3. Assume that v, ,..., vz E V deJnes a Dynkin diagram with 
respect to some positive definite inner product P on V. Let 9, R, and O(~ ,..., 01~ 
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be a corresponding split semi-simple Lie algebra, a Cartan subalgebra, and a set 
of simple positive roots. Then there exists a unique invariant bilinear form Q on 9 
which on each simple component of 9 is a positive multiple of the Killing form such 

that 

for i,j = l,..., 1. 

Qbi ,4 = P(v, , vi) (7.3.3) 

Proof. Recalling the notion of connectedness of a Dynkin diagram (or 
Coxeter graphs-see, e.g., Section 11.3 in [ll]) one notes from (7.3.2) that the 
ratios rii = P(v, , v,)/P(vj , 3) v. are uniquely determined in case 0~~ and 013 are 
in the same connected component. In such a case one then clearly has riI = 

Q(ai > 4/Q@i 3 LYE) for any choice of Q. However, as one knows, the connected 
components of the diagram correspond to the simple components of 8. We 
may thus uniquely normalize Q so that Q(ai , ai) = P(ari , ai) for any i. One 
notes here that replacing Q on a simple component of 9 by a positive multiple 
hQ is equivalent to replacing Q on the corresponding subspace of A’ by the 
positive multiple Q/h. 

One then has (7.3.3) from the equality C& = 2Q(ai, ai)/Q(ai, ai). Q.E.D. 

7.4. Now returning to the Hamiltonian H of (7.1.11) we now assume 
that the I,$E~, i = I,..., 1, define a Dynkin diagram with respect to B, . 
Before proceeding we will give some examples where this is the case. 

(1) 1 = n - l.Allthemassesareequaland& = qi - qi+r ,i = l,...,n - 1. 
Then H is the Hamiltonian of the usual nonperiodic Toda lattice. The potential 
here is that of “nearest-neighbor” particle interaction. The Dynkin diagram 
is that of A,-, , using standard notation so that 2 can be taken to be the Lie 
algebra of Sl(n, W) and A is the space of traceless real diagonal matrices. 

(2) 1 = n. All the masses are equal and & = qi - qi+l , i = l,..., n - 1. 
But 4, = qn . The potential is simiIar to the one above except that the last 
particle may also be regarded as interacting with a fixed mass. The Dynkin 
diagram is of B, so that 9 is the Lie algebra of SO(n, n + 1). 

(3) Similar to (2) except that 4, = 2q,. The last particle interacts even 
more strongly with a fixed mass. Hence the Dynkin diagram is that of C, 
and 9 is the Lie algebra of the symplectic group Sp(%n, [w). In Section 7.8 
we will apply Theorem 7.5 below to solve the three-body problem (the case 
n = 3 here) given by 

(7.4.1) 

(4) 1 = n. All the masses are equal. The case is that of (1) except that in 
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addition 4% = qnpl + qn . Thus the potential is similar to (1) except that the 
center of mass of the last two particles interacts with a fixed mass. Here the 
Dynkin diagram is that of D,, and9 can be taken to be the Lie algebra of SO(a, n). 

We wish to emphasize that there are of course an infinite number of different 
dynamical systems which correspond to the same Dynkin diagram. In (l)-(4) 
above we have just given one system for each of the classical Lie algebras. 
A particularly interesting Dynkin diagram is that of Da . The diagram is 

(7.4.2) 

and as the figure somewhat suggests one may give a system (different from 
that in (4) above) where 1 = n = 4, so that there are four particles, three 
of which are interacting with a fixed body and whose center of gravity is 
interacting with the fourth particle. The Hamiltonian is 

H=$g + eQl + eQ2 + &I3 + eh-J1-02-~3)~2* (7.4.3) 
P=l 

Remark 7.4.1. For a classica Lie algebra one may solve the system by 
considering the usual Toda lattice for a larger number of variables. This is 
no longer true for the exceptional Lie algebras F4, EB , E, , and E, . In these 
cases if z ~9 is a Jacobi element there is no representation ?T such that n(z) 
is a Jacobi operator in the usual sense, as one may show. An example of a 
dynamical system corresponding to F4 is the four-body problem given by 

(7.4.4) 

Among all the others then Theorem 7.5 below will thus describe the trajectories 
of the systems (7.4.3) and (7.4.4) (in terms of the four fundamental representa- 
tions of D., and F4, respectively). 

Remark 7.4.2. Even though our assumption concerning the 9’s is very 
special we wish to note that there is some latitude in satisfying the assumption. 
Namely, given the & one varies the inner product BH within an n-dimensional 
variety of such inner products by varying the masses m, . This raises the possi- 
bility of satisfying the assumption for a certain choice of the masses mi . More 
precisely recalling that bli = B,(& , #& our assumption about the pi is that 
C’ should be a Cartan matrix where C& = 6:,/b;, . This is of course just a 
statement about the matrix B where, as in Proposition 7.2, B = (&). Thus 
given the (bi , that is, given the I x n matrix A (see (7.1 .lO)) the following 
proposition describes how B varies with the masses mi . 

PROPOSITION ‘7.4.1. Let A be respectively the 1 x n matrix defined as in 



310 BERTRAM KOSTANT 

(7.1.10) and let A* be the transpose of A. Let M be the n x n diagonal matrix 
where Mii = l/mi and let B, as in Proposition 7.2, be the 1 x 1 matrix dejined 
by putting Bij = BH(#i , $j). Then 

B = AMA*. (7.4.5) 

Proof. One has for i,j = I,..., Z, 

BH(#i , #j) = BH (rfl aiTs 3 ilwzs). (7.4.6) 

But then (7.4.5) follows from the relation B,(q, , qJ = &/m,. . See (7.1.14). 
Q.E.D. 

Now let 8, 4, and q, i = 1 ,..., 1, correspond to the Dynkin diagram of 
the & . Thus 9 is real split semi-simple Lie algebra, R is a split Cartan sub- 
algebra, and 01~ E: A’ are the simple roots for a fixed system A+ of positive roots 
relative to (9, A). We use the notation and results of Sections 6 and 7.1.3. By 
Proposition 7.3 we may fix the bilinear form Q in 2 so that 

Q(CQ 9 aj) = BH(& 7 $j) (7.4.7) 

for i,j = l,..., 2. That is, recalling (6.5.1) and (7.1.19) one has bij = bij and 
hence the matrix B = (bij) is just given by B = (bij) = (Q(cx( , ai)). 

Now recall (see Sections 6.3 and 6.4) that (2, wz) is a 2Z-dimensional symplectic 
manifold where 2 C 9 is the manifold of normalized Jacobi elements on 9 
and wz is defined in Section 6.4. We recall also (see Proposition 6.5) that pi , vj , 
i,j = 1 >***> 2, are a global coordinate system on 2 and wz is explicitly given 
by (6.5.4). In addition we recall that the restriction Ii 1 2 of the fundamental 
invariant Ii E S(f) G is given by (6.5.5). See (6.5.2). 

Now let (Z’, ~a,), pi , vi , and 1; be as in Section 7.2. 

PROPOSITION 7.4.2. There exists a unique symplectic isomorphism 

a: 2’ + z (7.4.8) 

of (Z’, was) and (2, wz) such that pi 0 u = pi , ‘pj 0 a = ~1. Moreover one has 

II 0 u = I;. 

Proof. Since bdj = bij this is immediate from a comparison of (7.2.1) and 
(7.2.2) with (6.8.1) and (6.8.2). Q.E.D. 

Now let A, B, and M be respectively the I x n, 1 x I, and n x n matrices 
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defined, say, as in (7.1.10), (7.1.19), and Proposition 7.4.1. Obviously B is 
invertible (since the z,6i are linearly independent). Put 

D = B-IAM. (7.4.9) 

PROPOSITION 7.4.3. The 1 x n matrix D is characterized by the properties (1) 

DA* = II, (7.4.10) 

where 1 I is the 1 x 1 identity matrix and (2) A*D is the transpose of the n x n 

matrix corresponding to the projection r,: B --f 9’1 , relative to the basis pi of 8. 
That is, if I’,: B -+ gz is the complementary projection, as in (7.2.4), then for 
j = I,..., n 

Pi - i (A *D)j, Pk = r, Pi . 
k=l 

(7.4.11) 

Proof. One has (7.4.10) immediately from (7.4.5). Now recall (7.1.10). 
We recall also (see the proof of Proposition 7.2) that p.k: = [I/~, H] = 
[ckl ak& , fl- But h, ffl = P&b. Thus 

(7.4.12) 

Now substituting (7.4.12) in (7.2.15) one has I’lpj = CR1 (A*B-‘AM),,.p,. . 
But B-‘AM = D. This proves (7.4.11). Since A*D is then given the 1 x n 
matrix D is uniquely characterized, as one knows, from the additional relation 
DA* = Il. Q.E.D. 

Now Proposition 7.2 enables us now to put into effect Theorem 6.8.1 to 
assert that &, is globally integrable and to determine the trajectory exp t&, . x 
for any x in phase space RF. What of course is needed is the Jacobi element 
(see (7.4.8)) &3x = y E 2. This plays a critical role in more than one way. 
One notes that the corresponding trajectory in 2 is a curve on the isospectral 
leaf .2(r) C 2, where y = 3(y). (See (6.8.3) and (3.6.2).) The following gives 
an explicit formula for y in terms of the position qi(x) and momentum pj(x) 
coordinates of x. 

PROPOSITION 7.4.1. Let x E Rzn and let 2 Cf be as in (2.2.3) and (2.2.4) 
the space of normalized Jacobi elements. Let 6: R2” -+ z’ and let o: z’ + Z be 

defined as in (7.2.3) and (7.4.8), respectively. Put y  = aax. Let hi E A be the 
basis,of k defined as in (6.4.1) andlet f Ef be as in (1.5.4). Let e,, , i = l,..,, 1, 
be the simple positive root vectors defined as in Section 1.5 and let pi , vj , i, j = 
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1 ,..., I, be the coordinate system on Z defined as in Proposition 6.5 so that y  can be 
written 

Y = .f -I- i pi(y) hi + i eOjfnr)ea, . 
i=l j=l 

(7.4.13) 

Then if A = (aij) and D = (dij) are the 1 x n matrices defined by (7.1.10) 
and (7.4.9), respectively, and rj is dejned as in (7.1 .l 1) one has 

94~) = i aikqk(4 + log yj 
k=l 

(7.4.14) 

Pi(Y) = k$l 4kPkW (7.4.15) 

Proof. Recalling (7.2.3) and (7.4.8) one has vj 0 08 = a; so that vj( y) = 
q:(x). But 4; = #j + log rj . The formuia (7.4.14) then follows from (7.1.10). 
Now by (7.2.3) and (7.4.8) one has pi = ps 0 ai% Thus p;(x) = pi(y). But 
now by (7.2.14) one has pi = xi_, (B-l)i, pk. Recalling (7.4.12) one then has 
pi = C%, diBpk since D = B-‘AM. This proves 7.4.15. Q.E.D. 

7.5. Now recalling Section 3.3 let A, C A be the open Weyl chamber 
defined as in (3.3.1) and let H be the Cartan subgroup of G = Ad9 corre- 
sponding to A. Also let D _C A’ be defined in (5.1.5) so that D parametrizes 
the equivalence classes of the finite-dimensional irreducible holomorphic 
representations of 9; or Gcs. We recall that rrn , for h E D, is a representation 
corresponding to h. See (5.1.7). Now let vk E D, k = l,..., 1, be defined as in 
Section 5.1 so that D = CK Z,v, . See (5.1.6). The representations v+, 
k=l ,..., I, are called the fundamental representations of 9~ or Gc”. We will 
write rrk for 7rVk , and in much of the earlier notation we will replace X by k 

whenh=qED. 
Letg,EHand w,EA+. For any h E D and t E [w we defined the function 

@A(& 9 wo ; t) in Section 5.10. See (5.10.6). We write Qk(go, w,, ; t) for this 
function when h = vk . If A” CA’ is th e set of weights of the fundamental 
representation mk then by (5.10.6) 

a&, , w, ; t) = (-])“‘vk-mk’ (7.5.1) 

where Y, is the rational function of w0 given by 

(7.5.2) 
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where P(V) = YA(v) for h = vk and P(V) is defined in (5.10.1). Also, 
c 8.k = cs,vx 9 where the latter is defined by (5.9.3). Furthermore .pp(s, w,) 
is defined in (5.10.2). See also (5.10.3). The expression o(p) is defined in 
(5.5.28). For later use we put Yk = YA when h = vk and YA is defined in 
Section 5.9. 

Now as in (7.3.1) let C be the Car-tan matrix defined by Ci, = ~Q(c+ , ag)/ 
Q()d,a’h~J. If R is the 1 x 1 diagonal matrix defined by putting Rjj = 2/Q(aj, aj) 

C=BR, (7.5.3) 

recalling (7.1.19). But also recalling (see Section 5.1) the definition of the 
highest weights v, of the fundamental representations one notes that the matrix 
expressing the simple roots a$ in terms of the vk is just the Cartan matrix. 
That is, 

olj = C CjkVk 

since 2Q(vi , ag)/Q(aj , aj) = aij . 

(7.5.4) 

Remark 7.5.1. With regard to formula (7.5.2) one first of a11 has Y*(v) _C LP. 
The Car-tan matrix C (or rather C-l) which plays a critical role in describing 
the geometry of the & in our Hamiltonian H also may be used to describe 
the set Yk of sequences 

3 = (i1 ) i2 3-, jdvk-,,~), (7.5.5) 

where 1 < i, < I and, if dk = o(vk - KV~), C& ai = vk - KVk . In fact 
inverting (7.5.4) one has vk = c (C-l), aj . But -Kaj is again a simple positive 
root and if 1 ,( j < I is defined by 

‘+ = -Kaj (7.5.6) 

one has 

vk - KVk = iI ((c-l>kj + (c-l>kJ) @-j - 

Thus (c-%j + (c-1),, is a nonnegative integer and 

o(vk - K”k) = i (c-1)kj + (c-1)k, * 
j-1 

Also, 

(7.5.7) 

(7.5.8) 

card Yk = 
o(Vk - Kvk)! 

nj=l (('-l)kj f q;>! . 
(7.5.9) 
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In fact 9’” is the set of all sequences s such that any 1 < i Q I occurs (C-l),i + 
(C-l),, times in s. 

The following theorem is one of the main results of the paper. It determines 
the trajectories of the Hamiltonian vector field & . In the theorem which 
follows the next theorem we give the expression for the asymptotic, or scattering, 
behavior of the system. First, however, we introduce certain constants. Recalling 
Proposition 1.4.3 let E be the n x n projection matrix defined by putting 
E = A*D. It reduces to the identity if 1 = n. By Proposition 7.4.3, E may 
be given, in general, by 

T,P, = f Eijpj, i = l,..., n. (7.5.10) 
j=l 

For any x E W” and i = l,..., n let 

and 

(7.5.11) 

&i(x) = P,(X) - 5 J%,P,(4. 
j=l 

(7.5.12) 

Also, where ri > 0, j = l,..., , E are the coefficients occurring in (7.1.11) let 

bi = -2 (A*B-l)ij log rj , 
j=l 

using the notation of Proposition 7.4.1, for i = l,..., n. 

Remark 7.5.2. One notes that &i(x) and R(x) vanish if I = rr. Also, 

b, = 0 if all rk = 1 (7.5.14) 

as in the usual Toda lattice and in the examples of Section 7.4. 

THEOREM 7.5. Let (IW2n, W) be a classical phase space with canonical coordinates 
n. Let HE Cm(Wzn) be a Hamiltonian function of 

H=&f!l 
jz1 2mj 

+ r,e”l + .. . + r,dz, 

where (the masses) mj > 0, ri > 0, and 1 < n, 

#i = i ai& T  i = l,..., 1, 
j=l 

(7.5.15) 

(7.5.16) 
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are linearly independent linear combinations of the qj’s which defme a Dynkin 
diagram with respect to the bilinear form BH given by (7.1.12). See (7.1.13) and 
(7.1.14). Then there exist, uniquely up to isomorphism, a real split semi-simple 
Lie algebra 2 of rank 1, a split Cartan subalgebra 4, simple positive roots 01~ ,..., 01~ 

in the dual K, a nonsingular invariant bilinear form Q on 9 and correspondingly 
on h’ such that 

Let X, C A be the open Weyl chamber corresponding to the oli . Let G be the adjoint 

group of 9 and let H C G be the subgroup corresponding to R. 
Now let & be the Hamiltonian vector Jield on Rzn corresponding to the Hamil- 

tonian function H. See (7.1.2). Then & is globally integrable on R2”. Let x E Rsn 

be arbitrary and let x(t) = exp [n . x be the trajectory of & , where x(0) = x. 
In particular then qi(x(t)) is the position of the ith particle at time t when the 
initial state of the system is (qI(x),..., qn(x),pdx),..., P,(X)). Let Y EB. be the 
normalized Jacobi element defined by (7.4.13)-(7.4.15) and let (go, w,) E H x R, 
be the “parameters” corresponding to y  in the sense of Section 3.7. That is, w, E A, 

(the “diagonal” representation of y) is defined by the relation Y(wO) = Y(y) 
(see (2.3.1)) and g, E H is de$ned so that p(g) = g, , where g E G,,” satisfies 
&J(g) = y, using the notation of Theorem 3.6. Then if Qk(go , w, ; t) is the 
finite sum of exponentials defined by (7.5.1) (and hence given in terms of the 

fundamental representation of ac) one has for i = I,..., n 

dxtt)) = dx) + $ (hi + i%cxJt - 2 il Q@;: ak) log @jk(go 1 wo ; t> , * 
(7.5.18) 

where m, is given in (7.5.15), ski is given in (7.5.16) and qi(x), pi(x), and bi are 

given respectively by (7.5.11) (7.5.12) and (7.513). 

Proof. Recalling the notation and statement of Theorem 6.8.1 the Hamil- 
tonian vector field 6 on 2 corresponding to II 1 2 is globally integrable. Further- 
more if, for notational convenience, pJt) = pk(exp tf . y) then, by (6.8.4), 

pJt) = log h(g exp( - t)w)-‘k, (7.5.19) 

where, as usual, w = f  + w, . But then by Proposition 7.4.2 the Hamiltonian 
vector field [I~ on Z’is globally integrable and if one puts p);(t) = &(exp t&; . y’), 
where Sx = y’, one has 

Tw> = P’dt), (7.5.20) 

where we choose y  = (my’. One notes also that, by Proposition 7.4.4, y  is given 
by (7.4.13)-(7.4.15). But now [H is globally integrable by Proposition 7.2 
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and we may apply (7.2.5) to determine qi(t), which we have, more properly, 
written here as qt(x(t)). But now by (7.1.15), v;(O) = q;(x) = &(x) f logy,, 
recalling the definition (see (7.2.3)) of 6. But & = CyCI akjqj . Thus for 
s = l,..., 1 

il (Wsk a34 = g1 W1& !&@) + il (Wsk log Yk 
(7.5.21) 

= i D,jmjqj(x) + i (B-l),, log rk 
j=l k=l 

since one has D = B-lAM and hence B-IA = DM-1. See (7.4.9). But then 
for i = I,..., n, since E = A*D, one has, by (7.5.13) upon applying A* to 
(7.5.21), 

But q<(t) equals q&) for t = 0 and hence by (7.2.5) and (7.511) one has 

‘&if + bi + f: (A*B-‘)a Vi(t) , (7.5.22) 
k-l 

where ci = (I’&)(x). But then by (7.5.10) and (7.5.12) 

ci = &ii(x). (7.5.23) 

Now &(t) = log h(g exp(-t)w)-ai for j = l,..., 1, by (7.5.19) and (7.520) and 
hence for K = l,..., I 

g, @-‘)kj P)3@) = 9$ (B-l)kj log &? exp(-t)w)-“J’ (7.5.24) 

But B-1 = RC-l by (7.5.3) and hence &, (B-l),$ oli = 2vk/Q(&k, ak) by 
(7.5.4). But then if we put (B-l)jk in the exponential on the right side of (7.5.24) 
one has 

gl @-‘)kj vi@> = - 
Qtf , ak,) 

log h(g exp( -t)w)‘” 

=- 
Q@x’, ak) log @k(& Y wf, ; t, 
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by (510.7) for X = vk . Hence applying A* one has for i = l,..., n 

1% @p,(g, , w, ; t). (7.5.25) 
j=l 

The result (7.5.18) then follows from (7.5.22) and (7.5.23), recalling that 
QiW = 4iW)* Q.E.D. 

Remark 7.5.3. One notes that knowing the qi(x(t)) determines the entire 
trajectory r(t) in lRzn. This is clear from Hamilton’s equations, (7.1.5), which 
for the case at hand asserts that 

7.6. We now determine the asymptotic behavior of qi(x(t)) as t + + co 
and --CO. Since qi(x(t)), by (7.5.18), is linear in t plus the log of a finite sum 
of exponentials it follows easily that qi(x(t)) is asymptotic to straight lines 
as t ---f &co. We wish to determine both of these straight lines. 

For any i = l,..., 71 let pi- c R’ be the linear form on the Cartan subalgebra R 
defined by 

1 
akiVk 

A- = 2 zl Q(ak , ak) 

and put pi’ = K~L-, where K, as usual, is the element of the Weyl group which 
interchanges the positive and negative roots. Now let x E R2n and let w, E A+ 
be as in Theorem 7.5. Put 

and 

%-@> = ; (Fdx) + (I%-, w,>). i7.6.3) 
z 

Also let d(w) be the element of the Cartan subgroup H defined in (5.5.2). 
It depends only on the isospectral leaf Z(y) C 2 containing y = U&V. As usual 
w = w, $ f. Also, y = y(y). For i = I ,..., 12 and where g, E H is defined as 
in Theorem 7.5 put 

and 

(7.6.4) 

IQ-(x) = l&(x) + & (bi + log((g,-l d(w)-y-)). (7.6.5) 
2 
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Remark 7.6. Recall that g2 and d(w)Yx are given in more explicit terms 
by (55.25) and (5.5.4). With regard to (5.5.25) one uses (3.7.4) to determine 
h(g)A. On the other hand note that, by (7.6.1), 

log((g,’ d(w)-‘)“l-) = -2 i ski 

6-1 stak I ak,> 
(h&f?) + hM4”9. 

(7.6.6) 

On the other hand if 1 f R < 1 is defined by (7.5.6) then 

lodk,l W)“‘+) = -2 gl eta;; ak) (-b&T) + h$W”9) 
(7.6.7) 

since p(q+ , 01~) = Q(NI; , CX~) and hence -Kvk = vE . 

The point is of course that the two asymptotic lines are q+(x)t + q*(x) 
and oi-(x)t + q(x). They are thus given by the highest vb , and lowest weights, 
KV~ , of the fundamental representations of gc . 

THEOREM 7.6. Let the notation be as in Theorem 7.5 and as in (7.6.2), (7.6.3) 

and (7.6.4), (7.6.5). Thenfor i = l,..., n 

and 

&g(wi+(x>t + u<+(x)) - q&(t)) = 0 (7.6.8) 

Jj&((W($ + uiw - a&(t)) = 0 (7.6.9) 

Proof. By (7.6.1) and (5.10.7) one has 

pi(x(t)) = t&(x) + $ (bi + j&(x)t - log(h(g exp(-t)w)““)). (7.6.11) 
z 

But then if p = p*i- in Theorem 5.11 one easily has 

ai(x(t)) - (vi+(x) + ui+(X)) = --R+(go 5 Wo ; t) (7.6.12) 

and 

q&(t)) - (vi-(+ + q(x)) = -R&o, w, ; t>. (7.6.13) 

However, lim,,,, R+(g, , w, ; t) = lim,+, R-(go , w,, ; t) = 0 by Theorem 
5.11. This proves (7.6.8) and (7.6.9). Q.E.D. 
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We refer respectively to q+(x) and wi-(x) as the + 03 and -RI limiting 
velocities of the ith particle when it occupies the classical state x E KP at time 

t = 0. Also (with J. Moser) under the same conditions we refer to u,.+(z) 
and q-(x), respectively, as the + 00 and - 00 limiting phases of the ith particle. 
Graphically plotting the position qi of the ith particle against time one has 

Of the two “parameters” (g, , w,) of y  = a8x E 2 (see Section 3.7) we recall 
that wu, E A+ picks out the isospectral leaf Z(y), y  = Y(y), containing y  and g, 
(with its action angle coordinates logg,,‘) picks out y  in that leaf. See Theorems 

3.7 and 4.3. 

PROPOSITION 7.6.1. Let the notation be as in Theorem 7.6.1. Then for any 
x E R2n the daj+rence q+(x) - vi-(x) of the limiting velocities of the ith particle 
depends only on the “spectrum” of the Jacobi element y = 08x ~9. In fact one has 

Vi’(X) - y(x) = (K/Q- - pi-, wo). (7.6.14) 

The phase change, on the other hand, depends upon both g, and w, . In fact recalling 
that d(w) depends only on w, one has 

ui+(x) - q(x) z log ggi--“i- + log d(w)“"-+-‘i-. (7.6.15) 

Proof. This is immediate from definitions (7.6.2), (7.6.3) and (7.6.4), 

(7.6.5). Q.E.D. 

PROPOSITION 7.6.2. Let the notation be as in Theorem 7.6.1. Assume that 
every one of the simple components of 9 is of type A, , B, , C, , D,, , G, , F4, 
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E7 OY E, . Then the phase change depends only on the action angle coordinates. 
That is, 

pi+(x) - /h-(x) = 2 log g;“-. (7.6.16) 

Moreover if in addition 1 = n then one has a revasal of velocities. That is, 

7+‘(X) = -q-(x). (7.6.17) 

Proof. If 2 satisfies the condition as stated then one knows that K equals 
minus the identity on k’. (See, e.g., Theorem 0.16 in [7, p. 3351.) Thus pFLi-(x) = 
--pi+(x). But then (7.6.15) implies (7.6.16). On the other hand if 1 = n then 
as noted in Remark 7.5.2 one has &i(x) = 0. Thus (7.6.17) follows from 
definition (7.6.2), (7.6.3). Q.E.D. 

7.7. For the usual Toda lattice I = n - 1 and I& = qi - qi+r, 
i = l,..., n - 1. Also, rt = mi = 1, i = l,..., n. The corresponding Dynkin 
diagram is then of type A, so that we can take 2 to be the space of all real n x n 
matrices of trace zero and R to be the space of all diagonal matrices in 8. If 
W,ER and 

w, = diag(w, , w2 ,..., w,J, where WiE[W, i> 1, 

then we may choose the simple roots ai, i = l,..., 1, so that 

(c$ ) w,) = wi - W&l . 

One then has 

W,Er.fZ’, if and only if wi > wi+r 

for all i = l,..., 1. Also, the Weyl group element K is given by 

KW~ = diag(w, , w,,-r ,..., wr). 

One notes that (recalling that the masses m, all equal 1) BH(& , (bi) 

Q(% , %) = 2 

(7.7.1) 

(7.7.2) 

(7.7.3) 

(7.7.4) 

2 so that 

(7.7.5) 

for the invariant bilinear form Q. It follows easily then that Q is given by 

Q(u, v) = tr uv (7.7.6) 

for u, v ~2, where the multiplication uv is as operators on IL!“. 
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Now the action of 9 on Iwn extends to an action of 9 as a Lie algebra of deriva- 
tions of the exterior algebra AK! n. The homogeneous subspace A*ilV is stable 
under 9 and as one knows, the fundamental representations 7rk , K = 1 ,..., 
n - 1, may be taken so that 

rrlc: 9 + End A”lWn (7.7.7) 

and (7.7.7) is the restriction of this action of 9 to dkIWn. The set dk of weights 
of rrk is in natural correspondence with the set of all (3 subsets 1 < il < 
iz < ..* < iI, < 71 of k integers from 1 to n. In fact using such subsets as param- 
eters, v = v(il ,..., ik) E A”, the correspondence is given by 

Cv9 wo> = wil + wi, + “’ + wik (7.7.8) 

for w, c R. Now also write Y~~,...,~~(wJ = Y~(w,,), using the notation of (7.5.2) 

so that yi,. . . . ,&d is a rational function of the eigenvalues wi of w,. Now H 
can be taken to be the group of all diagonal positive matrices of determinant 1. 
Thus if g, c H then we can write for g, > 0, i = l,..., n, 

go = diag(g, ,..., g,). (7.7.9) 

We then note that for g, E H, w, E 4+ the function @,(g, , w, ; t) takes the form 

@k(go,%;t)=c 1 y. 2,....,i,(wo) gil ... gik exp(--t(wil + ..- + wi,)>, 
l(i,<-**<i,Sn 

(7.7.10) 
where c = (--I) O(Y+Q). See (7.5.1). 

Remark 7.7.1. Recall that Dk(go , w, ; t) = h(g exp(-t)w)“. For com- 
putational purposes, by (7.7.7), one may then determine ok(go, w, ; t) by 
taking the k x k principal minor of the standard representation on W” of the 
element S,(K)-l is_,(w)gO exp(-t) w&ti;(w))-l = u(t), (see (5.3.6)), that is, the 
k x k principal minor of rl(a(t)). Th e matrices rl(sO(~)-l) and rl(gO exp( - t) w,) 
are easy to write down. The matrices q(%,(w)) and 7ri(~~(w)-l) are computable 
from (5.8.6) and (5.8.7). In fact the matrix ni(%-,(w)), using Proposition 5.8.2, 
is written down in Proposition 7.7.3. 

If one does use (7.7.10) to determine @*(go , w, ; t) then first of all with 
regard to the constant c. 

PROPOSITION 7.7.1. One has 

o(c,a - KV~) = k(n - k) (7.7.11) 

so that ;f n is odd then c = 1 for all k and if n is even then c alternates in sign 
with k. 

60713413-9 
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Proof. It is clear from (7.7.2) and (7.7.6) that if w, E R is arbitrary and 
is given by (7.7.1) then 

(Vk 7 w,)=w,+w,-+*~*+w,. (7.7.12) 

Furthermore by (7.7.4) one has 

-KVk = Vn-k . (7.7.13) 

But since wi + a*. + w, = 0 one then easily has 

+k - h-%, w,,) = (WI + “* + wk) - (w,-k + f&,-k+1 + ‘*’ + w,)* (7*7l4) 

On the other hand if X, E A is defined as in Section 2.1, then, by (7.7.2), 

x, = diag ( n-l n-3 l-n 
- , - , . . . , - 

2 2 2 ) 
. (7.7.15) 

But O(V~ - KV~) = (vlc - Kvk , x,). But then by (7.7.14) and (7.7.15) one has 
o(vk - mk) = (n - 1) + (n - 3) + *.f + (n - 2k + 1) = k(n - k). Q.E.D. 

Now by (1.5.2) and (7.7.6) we may clearly choose root vectors eat, e-t ~9 
so that in terms of the usual matrix units eij one has, for i = l,..., n - 1 = 2, 

eai = et i+l , e-,i = ei+l i . (7.7.16) 

It follows then from (1.5.1) (see Remark 1.5.1) that with regard to the Cartan 
decomposition of 9 one has that Ig is the Lie algebra of all n x n skew-sym- 
metric matrices. The inner product (see Section 5.1) in VVh = AklW, using 
the notation of Section 5.1, may then be taken to be the standard inner product 
on AkW. In particular if ei E: W, i = l,..., n, is the standard basis of UP (i.e., 
the jth coordinate of ci is S,,), then the elements {ci A .*. A l ik}, where 1 < 
ii < *a. < i, < n, are an orthonormal weight basis oflAL!lP. In particular the 
highest weight vector, now written vk = vvk, can be taken to be given as 

Ok = El A *.. A E k. (7.7.17) 

Recall that Y for the present case is the set of all finite sequences 

s = (2.1 ,.,., id), (7.7.18) 

where1 ~i~<Z=n-l. 

LEMMA 7.7. Let 1 < j < n. Then for any s E Y one has e-,E5 = 0 unless 
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eithersistrivialorisofthefoms=(j,j+l,j+2,...,i-l),wherej<i~n, 

in which case e-,q = ci . 

Proof. This is immediate from (7.7.16). Indeed by (7.7.16) eVaKEi = 0 
unless k = i in which case eeqea = l i+r . Q.E.D. 

Let rnki E Z, be defined SO that vk - KV~ = Cl=, mkia+ . 

Remark 7.7.2. Note that vk - ICV~ = v,,-~ - KVnek by (7.7.13) so that to 
determine the mkf one need consider only the case where k < [n/2]. In this 
case by (7.7.14) and (7.7.2) one easily has that mki = i for i < k, mki = k 
for k < i < n - k and mki = n - i for i > n - k. 

By definition Pk is the set of all s E Y so that if s is given by (7.7.18) then, 
by (7.7.11), d = k(n - k) an d i occurs mki times among the 4. The definition 
of Ti,...i,(w,) in (7.7.10) d p d e en s u p on a sum over a subset of Y”. By (7.5.2) 
what is needed then, to use (7.7.10) to determine Qk(g,, w, ; t), is a knowledge 
of c,,k for s G Yk. 

PROPOSITION 7.7.2. One has c,,~ = 0 or (-l)k(n-k) for any s E LP. Further- 
more for any s E 9 and 1 < iI < ‘.. < iI, < n one has e+ A ... A Q, = 0 
or there exists 1 < j, < ..* < jk < n so that 

e-.&i1 A ... h l ik = ej, h ..* h ej, . (7.7.19) 

Finally using the notation of (5.2.10) the lowest we+ht vector vKvk is given by 

V ‘% = (-l)k(n-k) <e-k A ‘n-k+l A “’ A En . (7.7.20) 

Proof. For any 1 < i < I note that ePOLiEil A ..* A ciy = 0 unless there 
exists a j such that i = ij and ij+l 3 2 + i, (putting ik+l = n $ l), in which 
case 

e-ui’ii A .” A Eij A ..* A cik = cil A ... A E++~ A “. A Eik e (7.7.21) 

This proves the second statement and (7.7.19) in particular. Thus if s E Yk 
one has either e-,cr A ..’ A ck = 0 or 

e+cl A ... A ek = 6,pk A .*’ A E,. (7.7.22) 

Let 9: be the set of all s E Yk satisfying (7.7.22). But now since vKyk has unit 
length it follows that vKYr = a’,& A ..* A E, , where a is either 1 or -1. But 
then by (7.7.22) one has cSSk = 0 if s 6 9: and cSSk = a if s E 9: . But then 
a = (-l)k(“-k) by (5.9.7) and (7.7.11). Q.E.D. 

Remark 7.7.3. The question as to whether c,,~ = (-l)“(+“) or 0, i.e., 
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whether s E Y”f or not, is of course a readily resolved combinatorial question 
using (7.7.21). 

For the standard Toda lattice Theorem 7.5 becomes 

THEOREM 7.7.1. Let the notation be as in Theorem 7.5, where 1 = n - 1, 

4% = Qi - !zi+1, and r, = m, = 1 for j = l,..., n so that we can take 9 to be 
the set of all real n x n matrices of trace zero, k to be the set of diagonal matrices 

in 8, 0~~ ,..., 0~~ to be the set of simple roots given by (7.7.2), and Q equul to the 
bilinear form on 9 given by (7.7.6). Then for any x in phase spuce Wn one has 

+ 1% @dgo , w, ; 4 - 1% @ik, 9 wo ; t), (7.7.23) 

where log Qi(gO, w, ; t) = 0 for j = 0 or n and is otherwise given by taking 
the log of (7.7.10). 

Proof. Applying Theorem 7.5 for the present case we note first of all that 
bi = 0 by (7.5.14). Next recalling (7.1.17) one easily has that 9s is the one- 
dimensional space spanned by p, + ... + p, and 8, is the (n - l)-dimensional 
space of all p E B of the form p = CL, c,p, , where 2 ci = 0. It follows easily 
that I’spi = (l/n) Cyzlpi for any j. But then by (7.5.11) and (7.5.12) one has 
&i(x) = (I/n) Cy=, qi(x) and &(x) = (l/n) X7= pj(x). Next recalling (7.1 .lO) 
one has aij = 0 unless j = i, i + 1, and 

aii = 1, aiifl = -1. (7.7.24) 

The result (7.7.23) then follows from (7.5.18) and (7.7.5). Q.E.D. 

We now wish to recover the results of Moser (see 4.3 in [19, p. 4811) on the 
scattering of the Toda lattice. 

By (7.6.1) and (7.7.24) one has 

pi- = vi - vi-1 (7.7.25) 

for i = I ,..., n - 1, where we put v,, = 0. But -KV~ = Y,-$ by (7.7.13) and 
hence 

pi+ = v,+1-i - v,-a , (7.7.26) 

where v, = 0. 

PROPOSITION 7.7.3. Let the notation be as in Proposition 5.8.2 and above 
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where w, is given by (7.7.1). Let m = (mii} be the rz X n matrix m = nl(K,(w)). 
Thenmij=Ofori<j,mi,=lmdfot+i>joWha 

mij = (,-l)i+j((wi - ruj+J(wj - Wj+z) ... (wj - Wi))-‘. (7.7.27) 

Proof. As in Lemma 7.7 let s E Y be of the form s = ( j, j + I,..., i - l), 
where 1 < j < i < n. For such a sequence s one clearly has 

p(Sp W,) = (wj - wj+l)(wj - wj+J “’ (wj - wi>, (7.7.28) 

recalling (5.8.4) and (7.7.2). By Lemma 7.7 one has e-,ci = ci if s is of this 
form and e-,cj = 0 if s is not of this form. The result then follows immediately 
from the computation of mI(~-r(w)) ci using (5.8.6). Q.E.D. 

Now let S,(wJ be the product of the determinant of the K x K minor in 
the lower left-hand comer of the matrix m with (- I)k(“-‘i). That is, where m 
is given by Proposition 7.7.3 put 

a,(~,) = ( -l)“(n-k’ det mn--k+i j . (7.7.29) 
i+l,...,k 

Remark 7.7.4. One may show inductively that 

z<&k wi - w j  

6k(w0) = n;,n,,, wi - w, - 
(7.7.30) 

The agreement of the following application of Theorem 7.7.1 with the results 
of Moser in [I91 on the scattering of the Toda lattice will be clarified in 
Remark 7.7.5. 

THEOREM 7.7.2. Let the notation be as in Theorem 7.6 and as above. Thus 
for any point x in phase space v,+(x)t + Ui+(x) and v,-(x)t + ui-(x) respectively, 
are the asymptotic lines of the position curve (t, qi(x(t)), as t + + 03 and t ---f - co, 
of the ithparticle in the standard Toda lattice when the system occupies x at t = 0. 
Then if w, is defined as in Theorem 7.5 (so that w, picks out the isospectral leaf 
of the Jacobi matrix y = USX) and is described as a diagonal matrix by (7.7.1) 
one has, in terms of the es’genvalues of w, , 

vk+(x) = Wn+l-k +$tx) (7.7.31) 

and 

vk-(x) = wk +$(x>, (7.7.32) 
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where 5((x) = (1 /n) Cy=, pi(x). In particuZaar then 

Dk+w = c+,-k(X). (7.7.33) 

Furthermore the phase daj%rence U;f+l-i - ui- also depends only on w, . In 
fact if a,(~,,) is defined by (7.7.29) one has 

U;+l-k(X) - uk-(x) = log 6,(w,)2 - log 6,-,(w,)2. (7.7.34) 

Proof. Recalling (7.7.12) one has 

(Vk 9 w,)=wl+w2+.*.+wk. 

Thus hc*, %> = %+1-k and (tq, w,) = wk by (7.7.25) and (7.7.26). But 
then (7.7.31) and (7.7.32) follow from (7.6.2) and (7.6.3). 

But now computing uZ+~-~ (x) - uk-(x) using (7.6.4) and (7.6.5) note that 
&(x), b&n,, and also the dependence on g, cancel out. That is, by (7.6.4) 
and (7.6.5) 

u;+~-~(x) - uk-(x) = log d(w)2(vL-‘t--l! (7.7.35) 

But now by (5.5.4) one has d(w)y* = {tier(w) VL, r~}. But then recalling 
(7.7.17) and (7.7.20), d(w)vr is just (-1) k(n-k) times the determinant of the 
k x k minor in the lower left-hand corner of ~r(if_~(w)). That is, 

d(wp = S,(wJ. (7.7.36) 

Then (7.7.34) follows from (7.7.35) and (7.7.36). Q.E.D. 

Remark 7.7.5. We now align the notation here with that in [19]. Let L 
be the symmetric Jacobi matrix given in [19, p. 4731. Now let D be the diagonal 
matrix 

Then 

D = diag(e”l”,..., e3cn’2). (7.7.37) 

2 (DLD-1 - $ (tr L)I) = y, (7.7.38) 

where y is the normalized Jacobi element defined in Theorem 7.5 of this paper 
and I is the n x n identity matrix. Since 2b, = -yk by 2.1 in the notation 
of [19] ( yk in [19] is p, here) the initial state of the system u has the negative 
of the momentum considered in this paper. Thus if x*(t) is defined as in [19] 
and qk(x(t)) is defined as in this paper one has 

Xk(-t) = !7k@@))* (7.7.39) 
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In particular 

24 = PkW, (7.7.40) 

where in the notation of Theorem 7.7.2 here pi,(x) is the momentum of the 
kth particle in the initial state X. Now the eigenvalues of y  in decreasing order 
are given here, by (7.7.1) and (7.7.3), as zur ,..., w, . The eigenvalues of L in 
increasing order are given as XI ,,.., h, in [19]. Thus by (7.7.38) one has 

(7.7.41) 

The asymptotic lines in [19] for + CO and -co are written as ar,+t + &+ and 
ark-t + )Bk-. However, by (7.7.39) one must have 

Also, 

O1k 
+ = -vk-(x), ak- = -vk+(%). (7.7.42) 

pk+ = t&-(x), /t&- = t&+(x). (7.7.43) 

But now (see Section 4 in [19]) one has ak+ = -Wn-k+l and OTT- = -2An . 
Noting (7.7.41) this checks with our results (7.7.31) and (7.7.32) since, by 
(7.7.40), F(X) = (2/n) trL. Also, the result 4.2 in [19] is given here as (7.7.33). 

Now by (7.7.43) 

i%t-kf I - f$- = td,,+,(X) - @k+(x). (7.7.44) 

By (7.7.34) the right side of (7.744) is given as log 8,-k(w,)2 - log Sn-k+l(~o)2. 

However, noting Remark 7.7.4 this yields 

pi-;--k.+1 - @k- = 2 log n;i-: (w?z-k+l - wn-j+l) 

rIy4.+l (W-i+1 - %-k+l) * 
(7.7.45) 

But by (7.7.31), (7.7.32), and (7.7.42) 

w,-k+l - w,-,+I = %- - OIk-. 

Thus 

@tk+, - pk- = 2 log 
n;;’ (ai- - cYk-) 

n;z”=k+l (O1k- - %-) ’ 
(7.7.46) 

But this is exactly the result 4.3 in [19, p. 481 J. 

7.8. As a further application of Theorem 7.5 consider the three-body 
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problem mentioned in (7.4.1). Here n = 3 and 1 = 3 and we recall the Hamil- 
tonian H given by 

(7.8.1) 

This then differs from the usual Toda lattice in that the particle whose position 
is given by qs is interacting also exponentially with some fixed mass. The 
Dynkin diagram in question, as one easily sees, is so that fc is of type C’s and 
hence ,.JJ is isomorphic to the Lie algebra of Sp(6, IX). 

We shall be dealing here with 6 x 6 matrices u and we will often write 

A B 
u= c D’ ( ) (7.8.2) 

where A = A(u), B = B(u), C = C(U), and D = D(u) are 3 x 3 matrices. 
If E is a 3 x 3 matrix let E’ be the 3 x 3 matrix obtained from E by transposing 
with respect to the diagonal which runs from the lower left-hand corner to 
the upper right-hand corner. Thus (E’)y = Edei 4-j . We find it particularly 
convenient to identify 9 with the set of all matrices II in (7.8.2), where 

D = -A’, c = C’, and B = B’. (7.8.3) 

Remark 7.8.1. It is hoped that the reader is not mislead by the fact that the 
6 in question describing the sizes of the matrices is also the dimension of the 
phase space of our system. If the e% term in (7.8.1) were replaced by e% then 
9 z SO(3,4) and we would be dealing with 7 x 7 matrices. The present 
case was chosen to simplify the computations. 

The Cartan subalgebra A is the set of all w, ~9 such that C(w,) = B(w,) = 0 
and 

. (7.8.4) 

The open Weyl chamber R, C R may then be defined by the condition that 
w, E k, if and only if wr > wa > ws > 0. One notes that the simple roots 
are given by 

<a1 9 %> = w1- w-2, <% t %> = wz - w3, <a3 > w,) = 2w,. (7.8.5) 

The bilinear form Q on 9 is also easily seen to be given by Q( y, z) = 4 tr ys. 
The condition that R is the set of all skew-symmetric elements in 9 then 
normalizes the root vectors up to sign. The choice of sign for the simple root 
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vectors will be made so ‘that if W, E A, , where A(w,) is given by (7.8.4), then 

/wl 0 0 0 0 0 \ 
1 0 0 0 0 

0 7 

w= 0 0 72 

-“w, ; 8 

’ (7.8.6) 

0 0 0 -1 -wa 0 1 

recalling that w = f + w, and f is given by (1.54). 
Now the Lie group GS of Section 5.1 may be taken to be the subgroup of 

Gl(6, R) corresponding to 8. The unipotent subgroups N, and N of G” are 
easily seen to be respectively groups of lower and upper triangular matrices and 
H C G8 is a group of diagonal matrices. The element e,(w) EN we recall 
is uniquely characterized by the conditions that Qw) w&(w)-l = w. Using 
(5.8.7), as in the case of Proposition 7.7.3, one easily determines n;(w)-I. In 
fact, explicitly 

0 

0 

1 
I9 

(7.8.7) 

1 0 0 
1 

D(n;(w)-1) 1 0 = 
w2 - w3 (7.8.8) 

1 1 . 
\ (Wl - w2@1 - w3) WI - w2 ‘/ 

Of course B(ti,(w)-l) = 0. However, (d/2/2) C(ii,(w)-l) equals 
4 

zw,(w,: w3) 
1 

2%(% + ‘%) 
-1 
2w, 

x (w1+ w3) 

tw2 - w3tw2 + w3) (w2 - wia2 + w3) (w2 - w3:w2 + w3) 

x 2w2@4% + w2) x 2w, 

(Wl - Wihl - w3) (Wl - %t@l - w3) (Wl - wik - w3) 

x (Wl + w3)h + w2) 2% x (w1+ w3e4h + w2) x (Wl + w3) 

Remark 7.8.2. One recognizes the product of roots occurring in the denomi- 
nators. One knows that the most general root ‘p is given by (v, w,,) = *wi f wj , 
1 <i,<j<3. 
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The element Q(W) EN is given by (5.8.6). One has A(Q(w)),~= 
(D(+~,(w)-~)‘)~~(- l)i+j. Th e same is true if A and D are interchanged. Further- 
more 

C(fi~~(W)) = C@(w)-1)‘. (7.8.10) 

One can now be very explicit about the element d(w) E H which we recall 
enters into the scattering of the mechanical system. An element g, E H is deter- 
mined by A(g,) since one easily has 

Dko) = G%W)‘. 

PROPOSITION 7.8.1. One has 

(7.8.11) 

1/z (w12-w22)(w12-w22) 

z= I 0 

2w, 0 0 

4\/z(w~-w22) 

(w22-%2)(wl+w2)2 2w2 
0 

0 0 v'Z(w,2-w,2)(w,2-w,2) 

(wl+%)2(w2+%)2 2% I- 
Proof. One sees easily that the highest weight vi , i = 1, 2, 3, of the funda- 

mental representation vi is given by 

(Vi, w,) = i wj . (7.8.13) 
j=l 

It follows then that if we extend the action of G6 on lFP to the exterior algebra 
rlUP, such that G” operates as a group of automorphisms then we can take 
Vi to be the subspace of A45P spanned by G%r A ... h l i . We are using the 
notation of Section 7.7. Also, the inner product on Vyi is just the restriction 
to ‘CJyi of the inner product on &llP defined in Section 7.7. This is clear since 
I& is just the space of skew-symmetric elements in 8. One then has 

yy” = l l * ... * Ei (7.8.14) 

and OK*” = fcrPi A ... A l s . But now by (5.5.4) 

d(w)y’ = {fiJw) v”“, 0). 

Thus d(w)Yi is given by the absolute value (since it is necessarily positive) 
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of the determinant of the i x i minor in the lower left-hand corner of C(+F~(W)-l). 
See (7.8.9). This fixes 

.#“’ = -Ep-i A *.* A l 6 (7.8.15) 

and one has 

d(w)” = 42 
(W12 - wg2)(w12 - w32) 2w, ’ 

d(w)Y, = tw12 
1 

- w32)(w22 - ws2) w,2w, ’ 
(7.8.16) 

d(w)‘3 = d/z 
(Wl + w2)2(w1 + %)YW2 + %I2 2W22% - 

But then by (7.8.14) the diagonal entries in A(d(w)) are just the relative 

quotients d(w)“‘, d(w)yz-“1, and d(w)Ys-% But then (7.8.12) follows from (7.8.16). 
Q.E.D. 

Now let g, c H and write 

4gJ = ~~%(& > gz 9 &I- 

Thus 

A(go exp two) = 

(7.8.17) 

. (7.8.18) 

3 

Now by (5.2.10), (7.8.14), and (7.8.15) the element so(~)-’ E G is given by 

A&(K)-‘) = 0 = o&(K)-‘), 

(7.8.19) 

and B(SO(K)-l) = -C(&,(K)-l). But a = S,(K)-l ?&(w)(g, exp two) $(w)-’ so that 
recalling (5.3.6), a can be written 

a = @hn (7.8.20) 

for %E x, h E H, n E N. In fact in the notation of Section 5.3, where g is the 
element in G,,w C Ad gc corresponding tog, by (5.3.1), one has A = ti(g exp tw), 
h = h(g exp tw), and ti = “(g exp tw). We are particularly interested in 
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h(g exp tw) since, recalling Theorem 7.5 and (5.10.7), this determines the solu- 
tion of the mechanical system. 

Now let Mi be the 3 x 3 matrix given by putting 

and put 

Ml = C(Q(w)) A(go exp two) A(il,(w)-l) 

+ W-f(4> 4(go exp WP)’ WGtwY 

M(g, , w, ; t) = FM, , 

(7.8.21) 

(7.8.22) 

where 

F= 

,Remark 7.8.3. Note that the 3 x 3 matrix M(gO, w, ; t) has been deter- 
mined here since all the components in (7.8.21) have been written down. 

PROPOSITION 7.8.2. For any g, E H, w, E A, and t E Iw, h(g exp tw)“i for 

i = 1,2, 3 is equal to the determinant of the principal i x i minor of M(gO , w, ; t). 

Proof. By (7.8.20) one has 

h(g exp tw)“’ = {uw”*, v”*}. (7.8.23) 

But then the proposition follows from (7.8.14) and the definition of a. Q.E.D. 

Now let x be a point in the phase space W and regard x as the initial point 
for the time development of the system whose Hamiltonian is given by (7.8.1). 
If we put bi = pi( x ), i = 1,2, 3, and ai = exp(e(x) - qi+l(x)), j = 1,2, and 

as = expP&N th en the Jacobi element y ~9 corresponding to x as defined 
in Theorem 7.5 is clearly given by 

Y= lo 0 

1 b, 0 1 a, b, 1 us 6, 0 Ga, 0 0 0 0 0 

1/2 -b, -a2 

0 0 0 ! 

0 ’ (7.8.24) 

\ 0 0 0 0 0 0 -1 0 -b, -1 -a2 -b, 

Now let g, E H and w, E X, be the “parameters” for y as defined at the end 
of Section 3.7, recalling Theorem 3.7. Thus if w, is given by (7.8.4) then the 
eigenvalues ofy are iw, , i = 1,2, 3, where wr > ws > ws > 0. To determine 
g, first let n E N be the unique element (see Proposition 2.3.2) such that 
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~ZWZ-l = y. In the notation of Theorem 3.7 one has 7t = n(g). Thus w and y 
are explicitly given by (7.8.6) and (7X24), respectively, and n is the unique 
upper triangular unipotent 6 x 6 matrix such that 

nw = yn. (7.8.25) 

Since it is unipotent one inductively solves for nii . In fact what is needed here 
is the 3 x 3 matrix B(n). Then one finds 

B(n),, = a, (2b, + 6, - Wl - w2 - w3) + (61 - WlMl - W2)(bl - %I 
d2 d/z 

B(n)21 = & (lb2 - w& - Wl) + (62 - w2)(b2 - w2) 

+ (bl - Wl)Pl - w2) + a1 + a219 

m%l = ;li-, ((4 - 4 + (62 - w2) + (62 - w2h 

= B(n)12 - +z (%Kh + %K% + 62 - Wl - w2 - wg) 

NOz2 

B(nL2 

- 

+ (62 - %)(bl + 62 - Wl - w2) 

+ (bl - Wl)(bl - w2) + a1 + %I 
+ (b12 - W12Wl - W2Wl - %N, 

- & (4% + 2b2 - "1 - w2) + a,@, + 2b2 + 43 - WI - 4 

+ (61 - WlPl - w2)@1 - %I 

+ (b22 - %2)(b, + b, - Wl - w2) 

+ @2 + %)@l - 4 4 - w2), 

-J- a + a2 + 2a, + (b, - wJ(6, + 62 -q - 24 
vd' 

+ (61 - WlWl - 732) 

+ (6, + %)(bl + b2 + 6, - Wl - 2472 - w,)), 

- 1 a a (WI Jl2 - 63) + 2w,(w, + b,) + a2"@1 - 6,) 

- 4W12 - b2)(w1 + b2) - ~2@4Jl - h)(Wl + b,)(Wl + 63) 

- 2%@1 - h)(W12 - b22) 

+ (WI - b,)(q2 - b,2)(W,2 - bs2)), 
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1 
B(n),, = - - (--2q2 + U&l2 - bs2) + a2(w1 - &)(w, + 63) 

d/z 

+ 2%@, - w% - b2) - (Wl - w% - b2)(W12 - h2)), 

%0,2 = - $2 (-%(Wl - 4) - a2@2 - 62) 

+ 6% - WWl - b2NWl - 4>)- 

As a consequence one has a formula for g,, in terms of y  and w, . 

PROPOSITION 7.8.3. Let l&(n), for i = 1,2, 3, be the i x i minor of the 
3 X 3 matrix B(n). (The matrix B(n) is explicitly written doevn &we.) Then 
if gi , i = 1,2, 3, are the diagonal entries of A(g,) us in (7.8.17) one has 

g, = u1u2u~‘2( -det B,(n)), 

g, = u2uy2 det B,(n)(det B,(n))-I, 

g, = u;” det B,(n) det(B,(n))-1. 

(7.826) 

Proof. Since 9 is of type cs one knows that the Weyl group element K 

is given by 

K = -1, (7.8.27) 

where 1 here is the identity element. Thus in the notation of Theorem 5.5 
one has giK = g, . But then by (5.5.25) 

(h(g)-lg,)” = {w”~, n(g) vKY4) 

= -det Bi(n) 
(7.8.28) 

by (7.8.14) and (7.8.16) since n(g) = n. This implies that B,(n) is invertible. 

But now by (7.8.5) and (7.8.13) one has 

a1 + 012 + 42 = Vl , 

a1 + 2% + Q& = “2 , (7.8.29) 

q + 2aa + 3~xa/2 = v, , 

On the other hand by (3.7.4) one has ai = h(g)-ei, i = 1,2, 3. Thus by (7.8.28) 
and (7.8.29) 

gz = u1a2@( -det B,(n)), 

g? = u,u22u,( -det &(n)), 

g: = u,a2u~‘2(-det B,(n)). 

But g, = g2, g, = g2+1, and gs = g>-“z. This proves (7.8.26). Q.E.D. 
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We can now integrate Hamilton’s equations for the Hamiltonian (7.81). 
The only terms entering into the solution below which we have not written 
down here are the eigenvalues fwi , i = 1,2, 3, for the matrix y. This of 
course reduces to solving a cubic equation. 

THEOREM 7.8.1. Let x be apoint in thephuse space W. Let qi(x(t)), i = 1,2, 3, 
be the position of the ith particle at time t of the mechanical system whose Hamil- 
tonian is 

H = i “;” I eql-‘& + @-% + ezq3 

i=l 

and which at t = 0 occupies the state x. Let y  be the 6 x 6 matrix given by 

(7.8.24), where bi =p,(x), i = 1,2,3, and ai = exp(q,(x) - P~+~(x)), i = 1,2, 
and a3 = e2W). Then there uniquely exists w, > w2 > w, > 0 such that fwi , 
i = 1,2, 3, are the eigenvalues of y. Let w, be the corresponding 6 x 6 diagonal 
matrix defined by (7.8.3) and (7.8.4) and let g, be the 6 x 6 diagonal matrix 

givers by (7.8.11), (7.8.17), and (7.8.26). Let M(g,, w, ; t) be the 3 x 3 matrix 
dejimd by (7.8.21) and (7.8.22) and for i = 1,2,3, let M,(g, , w,, ; t) be the 
principal i x i minor of A4(g0, w, ; t). Then det M,(g,, w, ; t) > 0 and one has 

s(x(t)> = --log det Ml(go , w, ; -t>, 
q2(4t)> = log(det Wgo, w, ; -Wet M2(g, , w, ; -t>), 

&+)) = Wdet M2(go7 w, ; -Wet J&k, , w, ; -9. 

Proof. The statement concerning the eigenvalues of y follows from (7.8.5) 
and (3.3.4). We use formula (7.5.18) for qi(x(t)). Since clearly gI = 9’ in the 
present case one has C&(X) = pi(x) = 0. Also, all b, (as defined in (7.5.13) 
and not as above) vanish by (7.5.14) since all ri = 1). But now the matrix 
A = (ali) defined.as in (7.l.iO) is just 

On the other hand Q(ai , ai) = 2, i = 1,2, and Q(as , %) 
(7.5.18) 

(7.8.30) 

4. Thus by 
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But now recalling (510.7) and the notation of Section 7.5, Ql(g,, w, ; t) = 
h(g exp(-t)w)li. But then the result follows from Proposition (7.8.2). Q.E.D. 

The scattering of our mechanical system is explicitly given in 

THEOREM 7.8.2. For i = 1,2, 3 let vi+(x)t + ui+(x) and let vi-(x)t + ui-(x) 
be the asymptotic ,Zines defzned by (t, qi(x(t)) us t + + 00 and t + - 00, respec- 
tively. Then the asymptotic velocities are given by vi+(x) = -wi and vi-(x) = wi . 
The corresponding phases are given by 

q+(x) = kg, + log 
h2 - W2”)(W12 - ws2) 2w, 

62 
, 

u2’(4 = log g, + log 
(w22 - w32)h + we> 2% 

da%- w2> ’ 

(7.8.31) 

us+(x) = log g, + log 
(w1+ w3xw2 + w3) 2% 
awl - w3)(w2 - w3) ’ 

where gl , g2 , and g, are given by (7.8.26) and one has 

q-(x) = q+(x) - 2 loggi (7.8.32) 

fori= 1,2,3. 

Proof. We use Theorem 7.6 and formulas (7.6.1)-(7.6.3). By (7.830) 
and the relations which follow it one has 

p1-- = v, , p2- = v2 - v, ) p3- = v3 - v2 (7.8.33) 

and hence 

p1’ = -v, , p2+ = VI - v, , p3f = v3 - v2 . (7.8.34) 

But then (pi-, w,) = wi and &+, w,) = -wi . The relation vi+(x) = -wi 
and q-(x) = wi then follow from (7.6.2) and (7.6.3) since as noted in the proof 
of Theorem 7.8.1 one has j&(x) = 0. But also, as noted there, &i(x) = bi = 0. 
Thus 

and 

24-(x) = log (-&y-. 
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But then if do are the diagonal entries of A(d(w)), i = 1,2,3, as defined 
by (7.8.16) one has, by (7.8.5), (7.8.33), and (7.8.34) 

and 

h+(x) = log (-&-) (7.8.37) 

h-w = 1% (g&j. 

But then (7.8.31) follows from Proposition 7.8.1 and (7.8.37). Relation (7.8.32) 
is immediate from (7.8.37) and (7.8.38). Q.E.D. 
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