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A new property of pseudo-open functions is presented in this paper. Pseudo-open ‘unctions
are monotonic decrcasing with respect to ordinal and cardinal invariants defined by compact and
sequential closures. \ weak form of continuity, cal'zd k-continuous, is defined, characte -ized and
used in the proof oi the nionotonicity properties of pseudo-open mappings. The relztionships
between the class:s »f k-continuous and sequentially continuous mappings in the category of all
topological spaces ard ihe continuous mappings in the subcategories of k-spaces and sequential
spaces are presented
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1. Introduction

The main results of this study provide new insight about the natuie of pseudo-
open functions. In part:cular, it is shown that the pseudo-open functions are ordinal
monotaqnic decreasing with respect to the ordinal invariants ¥ (compact order) and
e (sequential order) introduced by Arhangelskii and Franklin [2] and cardinal
monotonic decreasing for cardinal invariants which are uniquely rzlated to « and o.

Since t}zse invariants are definec in the subcategories of k -spaces and sequential
spaces, this study also contains a presentation of a weak form of continuity, called
k-continuous, which i« the compact analogy of sequertia! coutinuity. Charac-
terizations of these weaker forms of continuity are used in the proof of the
monotonic properties.

The definition and characterizations of k-cortinuous mappings are given in
Section 3. The monotonicity properties are established in Section 4, and sum-
marized in Conclusion 4.4. The relationships between the: properties of these
functions in the category of all tepological spaces and in the subcategories of
k-spaces and sequentizl spaces ar: presented in Section 5. Examples are presented
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ir. Section 6. All spaces are assumed to be Hausdorff and the positive integers are
dcnoted by N.

2. Definitions and preliminhriiés

The ordinal invariants for topological spaces which are considered here are the
compact crder and sequential order of a space. These notions were introduced by
Arhangelskii and Franklin [2] and their definitions, with some notational changes,
are repeated here for completeness. We will denote by kcl(A) (scl(A)) the set of all
points p such that there exists a compact set K such that p € clg (K n A) (there exists
a sequence {p;} in A such that p; > p). As to whether A® denotes the ath k-closure
or sequeniial closure of A will be clear from the context.

Definitions 2.1 [2] Let A be a subset of a topological space X. Let A=A,

(a,) For each non-limit ordinal a = R +1, let A® = kcl(A#). For each limit ordinal
a let A°={J{A®%:B<c. The compact order of X is defined as x(X)=
int{a : A% = clx(A), for all A < X}, if this inf exists.

(b,) For each non-limit ordinal a = B8 +1, let A =scl(A*). For each limit ordinal
a, let A®={U{A®:B<a}. The sequential order of X is defined as o(X)=
ini{a : A” =clx(A), for all A < X}, if this inf exists.

The following theorems indicate the intrinsic relationship between these ordinal
invariants and the subcategories of k-spaces and sequential spaces. Part (a,) of the

following is amended to include a recent result from [4]. The tightness of X is
denoted #(X).

Theorems 2.2 [2]. (a,) X is a k-space if and only if x(X) exisis. In this case k(X)< a
where a is the least ordinal of cardinality t(X)".
(b} X is a sequential space if and only if o(X) exists. In this case o(X)< w;.

Recently cardinal invariants which are related to « and o in a natural way have
been introduced and studied in [4].

De#ninitions 2.3 [4]. Let X be a topological space. The pointwise k-cardinal of X is
defined as PK (X )=sup{PK(A): A c X}, where PK(A) is the least cardinal »1 such
that if g €cl(A) and « is the least ordinal such that g€ A%, then card(a)<m. The
k-cardinal of X is defined as K(X)=sup{K(A):Ac X}, where K(A) is the
cardinality of the least ordinal @ such that cl(A)= A" PS(X, the pointwise
sequential cardinal, and S(X), the sequential cardinal, and defined similarly. These
cardinal invariants are defined only when the sup exists.

Some of the results in [4] relating to this study are the following.
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Lemma 2.3 [4]. If X is a topological space and the following cardirals exist, then
@ PK(X)<sK(X)=PK(X)", and
(b} PS(X)=S(X)<PS(X)".

Theorem 2.4 [4]. (a) X is k-space if and only if PK (X) exists. In this case PK (X)<
HX). ‘
(l)_) X is a k-space if and only if K(X) exists. In this case K (X)<t(X)".
(¢) X is a sequential space if and only if PS(X) exists. In this case, PS(X)<¥o.
(d) X is a sequential space if and only if S(X) exists. In this case, S(X)<N,.

The following definition wili allow the results of the theorems in Section 4 to be
stated in terms of monotonicity of a class of mappings.

Definitions 2.4. Let € be a category of spaces and let & be a class of functions
defined on the spaces in € such that if fe % and f is defined on X € %, then
f(X)e 4.

(a) If n is an ordinal invariant defined on € and for each fe % and for each
X € € such that f is defined on X, n(X)=n(f(X)), then the class F is said to be
ordinal monotonic decreasing (or n-monotonic) on €.

(b) If M is a cardinal invariant defined on € and for each fe # and for each
X € € such that f is defined on X, M(X)=M(f(X)), then the class ¥ is said to be
cardinal monotonic decreasing (or M-monotonic) on €.

3. k-continuous inappings

It is the purpose of this section to properly define and characterize a form of
continuity which is uniquely suited to the subcategory of k-spaces. A. charac-
terization of k-continuous mappings is used in the next section on monotonicity of
pscudo-open functions. Two additional characterizations of sequential continuity
follow from the results of this section.

The sequentially continuous functions are those for which the image of a con-
vergent sequence is a convergent sequence This viewpoint of sequentiz: continuity
does not indicate a nearness preserving analogy for k -continuity. In particular, ‘‘the
image of a compact set is compact” 1s ¢atisfied by f:[0, 1]-> R, defined oy f(x}=0
for rational x and f(x)=1 for irraticuai x. Ancther equivalent way of viewing
sequential continuity is: f: X - Y is sequentially continuous if and only if fs: S > Y
is continuous, for each convergent quuence S={p}tu{p::ie N}, where p;->p.
Accordingly the follcwing definition is given.

Definition 3.1. A mapping f: X > Y is szid to be k-continuous, if fx :X > Y is
continuous for each compact cet K < X.
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From the definition, the k-continuous unage of a comoaa:.t set is: cc)mpact A
useful characterization of k-continuity is: f: X =Y is k-éontmueus if and-only if
for each compact set K < X and for each net {x,}in K, if x isa cluster‘ point of {x,},
then f(x) is a cluster point of {f(x.)} in f(K). A ¢t A < X is k-closed (sequentially
closed) provided: K nA is closed.in K for.eaca compact set K < X (if {p;} is a

sequence in A where p; > p, thenpe A). Recall in the followmg piopositions, that
the k-closure (sequential closure) of a set is not necessan)y k-closed (sequentially

closed). .

Froposition 3.2, Let f: X - Y. The following are equivalent.
(a) fis k-continuous.
®) f(H) is k-closed in X, for each k-closed setH<Y.
©) £ 1(G)is k-open in X, for each k-open setGecY.
(@) F(kci(A))=kci{f(A)), foreach A = X.
() kA (B))<= f(kcl(B)), for each B< Y.

In view of the characterizations, (d) and (e), of this proposition, two additional
characterizations of sequential continuity, (¢) and (f), should be added to the list in
Theorem 3.1 of [5], as follows:

Proposition 3.3. The following are equivalent for a mapping f: X - Y.
(a) fis sequentially continuous.
(b) fH(U) is sequentially open, for each sequentially open set U < Y.
(c) f'(H) is sequemially closed, for each sequentially closed set H< Y.,

(d) If H is countable and sequentiaily closed in Y, then f~'(H) is sequentially
closed.

(e) f(scl(A)ycscl(fA)), for cach A< X.
() scl(f '(BY) < f(scl(B)), for each B< Y.

The following theorem and corellary constitute the exteasion of these charac-
terizations to arbitrary ordinals.

Theoren: 3.4. A ,unctton f: X -> Yis a k-continuous (sequentially continuous ) if and
only if (; N(A)* < fY(A®), for each ordinal & and foreach AcY.

Proof. (The proof of the k-continuous case is given.) Let A ¢ Y, and let « be an
ordinal. Then (f'(A))°=f""(A°) by definition and (F (A)' =f'(A") by Pro-
positicn 3.2(e). Suppose for each 8 <a, (f (A))® = '(A®). Let a be a non-limit
ordinal, say & = 8 +1. Then (f'(4))° = f"'(A®). By Proposition 3.2(e),

() = kcl((f T4 ckel(fTHAPY < f Rel(AP) =FHA").

Thus, in this case, ( '(A)) ¢ F(A%). Now suppose « is a limit ordinal. Since
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(A = 1(AP), for cach B <a, ;
(AN = A B <2y cUlfF (A%): B <a}
=A% B<a}=f(A%).
Hence, in this case also, (f(A))* =1 '(A”). This completes the proof.

Corollary 3.5. A function f:X > Y is a k-continuous (sequentially continuous) if
and only if f(A™Y< (f(A))", for each ordinal v and jor each A = X.

Proof. From Theorem 3.4, (f '(f(A))" < f ((f(A)™). Then, A" < f 1 ({f(4)™)
and f(A")< (f(A))". This completes the proof.

This szction is concluded by a final comment on the relationship between these
two weak forms of continuity. Examples of 4.3 and 4.4 in [3] show that k-quotient
and sequentially quotient are independent notions. In Example 6.3 it is shown that
sequential continuity does not imply k-continuity. Howcever we have the following:

Theorem 3.6. Every k-continuous mapping is sequentiaily continuous.

Proof. Let f: X > Y be a k-continuous mapping, and let {p;} be a convergent
sequence in X, say p;—»n. Let K={pjulp;:ieN}. Then fx:K->f(K) is k-
continuous. By Theorem 5.2, fx is continuous. Hence, siance p; - p in K| f(p;)- f(p)
in f(K). Accordingly, f is sequentially continuous. This completes the proof.

4. Pseudo-open mappings are monotonic decreasing

The notion of a pseudo-open mapping was introduced by Arhangelskii [1]. He
defines a mapping f: X - Y to be pseudo-open if for each y € Y and for each open
set U< X such that f'{yj= U, then yeInt(f(U)). The equivalent statement,
f:X > Y is pseudo-open if and only if p € cly(B) implies FUp)ncx(F(B)#0,
is used in the proof of the following theorem.

Theorem 4.1. If f is a pseudo-open k-continuous mappirg from a k-space X onto a
space Y, then «(X)= k(Y).

Proof. A pseudo-open k-continuous surjection defined on a k-space is a quctient
mapping. Thus, Y is a k-space and «(Y’) exists. Let k(X)=n, and let Bc Y.
Consider any point p € clx (f'(B™)). Then

f(p)efleic(f "B ccly(B™)=clv(B).
Since f(p)ecly(B) and [ is pseudo-open, @) ~elx(F(B))# 0. Since
(B =clx(f'(#) and (F(B)" <f(B").
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i (f(p))n r (B")%0. Hence, f(p»)nB" ae(o and P & r‘ B") Thus cxx(f“ B"))c:
B or f(B")is closed. Since f is a quotient mapplrug, B"’ is ciosed in Y. Thus,
for each B € Y, B™ is closed. Accordingly x(Y)=infl¢ : B* lny) BcYlsqy=
«(X). This completes the proof.

Theorem 4.2. If f is a pseudo-open sequentially continuo.s mappmg jrom a seq uentml
space X onto a space Y, then o X)= cr(Y)

Theorems 4.1 and 4.2 cannot be improved by replacing pseudo-open. with
quotient, as is shown in Example 6.4. Also, in Example 6.5 it is shown that
monotonicity of a quotier.t mapping does not imply the mapping is pseudo-open.

Let KTOP and STOP be the subcategories of k-spaces anc' sequential spaces
respectively. From the preceding theorems, and the definitions of the cardinal
invariants PK, K, PS and 5, the following specific conclusions can be stated.

Conclusions 4.3. (3) The class of pseudo-open k-continuous functions in KTCP are
«-monotonic, PK and K -monotonic.

(b) The class of pseudo-open sequenttally continuous functions in STOP are
o-morotonic, PS and S-monotonic.

The conclusions in 4.3 are specific in the sense that tiiey are made in the restricted
subcategories KTOP and STOP. These conclusions can easily be extended to the
category of all topological spaces, TOP, by letting kX and sX be the &k -extension and
sequential extension of a space X in TOP. The x-extension of a space X is the set X
retopologized by letting each k-open set be an open setin the larger topology. Define
sX in the same manmner. Now extend the domain of definition of x and o, as
Arhangelskii and Franklin [2] indicate, as follows: for each X in TOP let x(X)=

x(kX)and o(X)=c(sX ) By this method the following more general conclusion
may be stated.

Conclusions 4.4. (a) The class of pseudo-open k-continuous functions in TOP are
k-morotonic, PK and K -monotonic.

(b} The class of pseudo-open sequenticlly continuous functions in TOP are o-
monotonic, PS and S-monotonic.

5. Properties of classes of mappings

In this section a functional characterization of k -spaces is presented. From this and
other known characterizations the relationships between the weaker forms of
continuous (and quotient) mappings in TOP and the continuity (and quotient)
properties of these mappings in KTOP and STOP can be observed. The intrinsic
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connection between sequential spaces and sequentially continuous mappings has
been shown in [6].

Theoxem 5.1 [6]. A space is sequential if and only if each sequentially continuous
mapping on X is continuous.

Thus, the following characterization of k-spaces comes as no surprise. It can be
proven easily by supposing X is not a k-space. Then the ideatity mapping e : X » kX
is k-continuous vut not continuous.

Theorem 5.2. A space X is a k-space if and only if each k -continuous mapping on X is
continuous.

Corollaries 5.3. (a) f: X > Y is k-continuous if and only if f : kX - kY is continuous.
(b) f: X - Yisseq: *ntially continuous if and only if f: sX —» sY is continuous.

That is, the clas: Jf functions in TOP which are k-continuous (sequentially
continuous) isprecis ly the class of functions which are continuous in KTOP (STOP).

In regard to the t :havior of quotient mappings in the subcategories KTOP and
STOP, we refer tc the classes of k-quotient [3] and sequentially quorient [5]
mappings. A mappiag f: X » Y is k-quotient (sequeniially quotient) provided: H is
k-closed (sequentizlly closed) in Y if and only if f~'(H) is k-closed (sequentially
closed) in X. Clearly, every k-quotient (sequentiaily quotient) mapping is k-
continuous (sequertially continuous). From Theorems 3.1 and 3.2 of [2] and
Theorems 5.7 and 5.3 in [5], the following statements are valid.

Theorem 5.4. If X is k-space (sequential space), then every quotient imapping defined
on X is k-quotient (sequentially quotient).

Theorem 5.5. Y is a k-space (sequential space) if and only if every k-quctient
(sequentially quotient) coniinuous mapping onto Y is quotient.

Corollaries 5.6. (a) f: X = Y is k-quotient if and only if f: kX - k'Y is quotient.
(b) f: X - Y is sequentially quotient if and only if f:sX - sY is quotient.

That is, the class of functions in TOP which are k -quotient (sequentialy quotient)
is precisely the class of functions which are in quotients in KTOP (§7UP).

6. Examples

Example 6.1. The coni.nuous one to one compact k-quotient sequentially guotient
image of a sequential space is not necessarily a k-space.
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Consider Arens’ space, A={(0,0)}u{(1/n,1/m):n,meN} topologized as
follows: each {(1/n, 1/m)} is open and a basic cpen nhood of (0, 0) is any set of the
form

{0, 0% u{(1/n, 1/m):r = no, m =my}.

The set {(0, 0)j is k-open, but notopen Thus, A isno. a k-space. Let A* be theset A
with the discrete topology. Let e : A* -+ A be the identity mapping. The compact sets
in both A and .4* are finite. Clearly ¢ is continuous one to one compact and both
k-quotient and sequentially quotient, but not quotient as e ~*({(0, 0)}) is open but
{(0, 0)} is not open in A. Note that sA - kA = A*,

Example 6.2. There is a continuous o,'en countable to one mapping f from a sequential
space onto a convergent sequence such that kcl(f '(A)#f '(kcl(A)) and

scl(f7'(A))# f ' (scl(A)).
Consider the space

S$2={(0,0)}u{(1/n,0):neN}u{(1/n,1/m):n,me N}

in [2] and [4], and let f be the horizontal projection onto X ={(—1,0)}u
{—1,1/m):m e N} with the usual relative topology. Then

(©,0)ef (kel({(— 1, 1/m):me N})),

but

0, 0)zkel(f '{(~1,1/m): me N}).
Alsc,

K (82)=c(S2)=2>1=«(f(52)) = o(f(S2))
and

K(82)=5(52)=2>1=K(f(52)) = S(f(S2)).

Example 6.3. There is a sequentially continuous one to one open perfect (not continu-
ous) mapping defined on a compact space, which is not k& -continuous.

Let ¥ be the ordinal space [0, 2], where 2 is the first uncountable ordinal. The
sequential extension of Y, sY, has the same open sets with the singular exception that
{€2} is open in s Y. The identity mapping e : Y - sY has ail the properties mentioned
above. But e is not k-continuous, because {2} is k-open in sY and {2} =2"'({2}) is
sequentially open in Y but not k-open in Y.

Example 6.4. There is a quotient mapping defined on a countable locally compact

metric space which is not monotonic. The mapping is also compact covering {7} and
sequence covering [8).
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Consider S, as the quotient space of the disjoint topological union, X, of the spaces
{0}u{i/j:je N}. Then the quotient mapping has the properties mentioned and
k(X)=0o(X)=1<2=k(S2)=(S2).

It should be noted that since compact covering and sequence covering mappings
are not necessarily monotonic, these com»act and sequential znalogs of pseudo-open
mappings do not suffice to insure monotonicity. They are analogous to pscudo-open
mappings in the sense that they distinguish points in the closure of a set versus
distinguishing non-closed sets as the quotient marpings do.

Example 6.5. Monotonicity of a quotient mapping from a locally compact countably
compact space onto a compact space does not imply inat the inapping is pseudo -open.

Let Y ={0, 2] be the ordinal space of Example 6.3. Let X; =Y —{£2} and let X,
be the subspace of Y consisting of all limit ordinals. Let X be the disjoint topological
unicn of X; and X,. The mapping f: X - Y defined by f(a) = a is a quotient mapping
which is not pseudo-open and f is monctonic because k(X )= 1=« (Y).

Acknowledgement

I would like to thank Sheldon Davis for supplying importaat comments regarding
the results in this paper and the referee for asking the appropriate question which
lead to the cleaner and more interesting form of Definition 3.1.

Refearences

[1] A. V. Arhangelskii, Some types of factor mappirgs and the relations between classes of topelogical
spaces, Soviet Math. Dokl. 4 (1963) 1726-1729.

[2] A. V. Arhangelskii and S. P. Frankim, Ordinal invariants for topological spaces, Michigan Math. J. 15
{1968) 313-320.

(3] J. R. Boone, On k-quotient mappings, Pacific J. Math. 51 (1974) 369-377.

[4] J. R. Boone, S. W. Davis and G. Gruenhage, Cardinal functions for k-spaces, Proc. Amer. Math. Soc.

68 (1978) 355-358.

[5] 1. R. Boone and F. Siwec, Sequentially quotient mappings, Czechoslovak IMath.J. 26 (1976)174-182

[6] S. Leader and S. Baron, Sequential topologies, Amer. Math. Monthly, 73 (1966) 677-678.

[7) E. Michael, Ro-spaces, J. Math. Mech. 15 (1966) 983-1002.

(8] F. Siwiec, Sequence covering anu countably bi-quotient mappings, General Topology and Appl. 1
(1971) 143-154.



