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Abstract

We derive eigenvalue asymptotics for Sturm–Liouville operators with singular complex-valued potentials
from the space Wα−1

2 (0,1), α ∈ [0,1], and Dirichlet or Neumann–Dirichlet boundary conditions. We also
give application of the obtained results to the inverse spectral problem of recovering the potential from these
two spectra.
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1. Introduction

In this paper we shall study eigenvalue asymptotics for Sturm–Liouville operators on the
interval [0,1] with distributional potentials. Namely, we assume that q is a complex-valued distri-
bution from the Sobolev space Wα−1

2 (0,1), α ∈ [0,1], and consider an operator T that (formally)
corresponds to the differential expression

l(f ) := −f ′′ + qf (1.1)
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and, say, Dirichlet boundary conditions. Explicitly, the operator T is defined by the regularisa-
tion method that was suggested in [4] for the particular potential q(x) = 1/x and was developed
by Savchuk and Shkalikov in [30] for the class of distributional potentials from W−1

2 (0,1). (In-
cidentally, in this situation the form-sum [1,10] and the generalised sum [20] methods yield the
same operator.) We observe that the considered class of singular potentials include Dirac δ-type
and Coulomb 1/x-type interactions that are widely used in quantum mechanics and mathemati-
cal physics; see also [18] for other physical models leading to potentials from negative Sobolev
spaces.

The regularisation method consists in rewriting (1.1) as

l(f ) = lσ (f ) := −(f ′ − σf )′ − σf ′, (1.2)

where σ is any distributional primitive of q . We fix one such primitive σ ∈ L2(0,1) in what
follows and call the expression f ′ − σf =: f [1] the quasi-derivative of the function f . The
natural L2-domain of lσ is

dom lσ = {
f ∈ W 1

1 (0,1) | f [1] ∈ W 1
1 (0,1), lσ (f ) ∈ L2(0,1)

}
,

and we observe that for f ∈ dom lσ the derivative f ′ = σf + f [1] belongs to L2(0,1) (but need
not be continuous), so that dom lσ ⊂ W 1

2 (0,1).
In the present paper, we shall only focus on Sturm–Liouville operators TD = Tσ,D and TN =

Tσ,N that are generated by lσ and the Dirichlet and the Neumann–Dirichlet boundary conditions,
respectively, although other boundary conditions can also be treated in a similar manner (see,
e.g., [18] for periodic and [31] for general regular boundary conditions). In other words, TD and
TN are the restrictions of lσ onto the domains

domTD = {
f ∈ dom lσ | f (0) = f (1) = 0

}
,

domTN = {
f ∈ dom lσ | f [1](0) = f (1) = 0

}
. (1.3)

It is known [30] that the operators TD and TN are closed, densely defined and have discrete
spectra tending to +∞. We denote by λ2

n (respectively, μ2
n) the eigenvalues of TD (respec-

tively, TN) counted with multiplicities and arranged by increasing of the real—and then, if equal,
imaginary—parts of λn (respectively, μn). For definiteness, we shall always take λn and μn from
the set

Ω := {z ∈ C | −π/2 < arg z � π/2} ∪ {z = 0}. (1.4)

If α = 0, i.e., if σ ∈ L2, then the numbers λn and μn obey the asymptotics [15,29–31]

λn = πn + λ̃n, μn = π

(
n − 1

2

)
+ μ̃n, (1.5)

where (λ̃n)n∈N and (μ̃n)n∈N are some �2-sequences. It is reasonable to expect that if σ becomes
smoother, then the remainders λ̃n and μ̃n decay faster; for instance, if α = 1, i.e., if q ∈ L2(0,1),
then the classical result (see, e.g., [26, Theorem 3.4.1] or [28, Theorem 2.4]) states that λ̃n, μ̃n =
O(n−1). Thus the problem arises to characterise the decay of λ̃n, μ̃n depending on α ∈ [0,1].
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Our interest in the above problem has stemmed from the inverse spectral theory for Sturm–
Liouville operators with singular potentials. Namely, we proved in [16] that, as soon as the
numbers λ2

n and μ2
n are real, strictly increase with n, interlace, and obey (1.5) with �2-sequences

(λ̃n) and (μ̃n), then there exists a unique real-valued σ ∈ L2(0,1) such that {λ2
n} and {μ2

n} are
spectra of the Sturm–Liouville operators Tσ,D and Tσ,N, respectively, with distributional poten-
tial q = σ ′ ∈ W−1

2 (0,1). It is reasonable to believe that if λ̃n and μ̃n decay faster, then σ will
be smoother. For example, the classical result of Marchenko [26, Theorem 3.4.1] claims that if,
under the above assumptions, we have, in addition,

λ̃n = A

n
+ λ̃′

n

n
, μ̃n = A

n
+ μ̃′

n

n
(1.6)

with real A and �2-sequences (λ̃′
n) and (μ̃′

n), then the corresponding potential q is in L2(0,1)

(thus α = 1) and A = 1
2π

∫ 1
0 q , cf. also [24, Theorem 3.3.1]. It would be desirable to “interpolate”

between α = 1 and α = 0 and solve the inverse spectral problem for all intermediate α ∈ (0,1).
The essential step towards such project is to derive eigenvalue asymptotics for Sturm–Liouville
operators with potentials in Wα−1

2 (0,1)—i.e., to treat the direct spectral problem. And indeed,
based on the results obtained here, we completely solve the inverse spectral problem for Sturm–
Liouville operators with potentials in the scale Wα−1

2 (0,1), α ∈ [0,1], in our paper [17].
Another motivation for this work is the recent papers [18,31], where similar questions are con-

sidered. In particular, Kappeler and Möhr in [18] found eigenvalue asymptotics for the Dirichlet
and periodic Sturm–Liouville operators with complex-valued potentials that are periodic distrib-
utions from the space Wα−1

2 (0,1), α ∈ (0,1]. The Dirichlet eigenvalues λ2
n were proved there to

obey the asymptotics

λ2
n = π2n2 + q̂(0) − q̂(−2n) + q̂(2n)

2
+ νn, (1.7)

where q̂(n) is the nth Fourier coefficient of q and the sequence (νn) belongs to �2α−1−ε
2 with

ε > 0 arbitrary (the weighted �s
p spaces are defined at the end of Section 1); see [18] for more

precise formulations. The authors performed the Fourier transform to work in the weighted �2

spaces rather than in the Sobolev spaces and then derived the estimates for the resolvent that
yield the detailed localisation of the spectrum.

Savchuk and Shkalikov [31] considered Sturm–Liouville operators with complex-valued po-
tentials q that are distributional derivatives of functions u ∈ L2(0,1). They generalised the notion
of the Birkhoff regular boundary conditions to this singular case and, for Birkhoff regular bound-
ary conditions, found eigenvalue and eigenfunction asymptotics by means of the modified Prüfer
substitution. For the particular case of Dirichlet boundary conditions and the function u that is
either

(i) of bounded variation over [0,1], or
(ii) Lipschitz continuous on [0,1] with exponent α ∈ (0,1), or

(iii) from Wα(0,1), α ∈ [0,1/2),
2
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the authors found several terms of asymptotic expansions for eigenvalues and eigenfunctions. In
particular, for u ∈ Wα

2 (0,1), α ∈ (0,1/2), they gave the formula

λn = πn −
1∫

0

u(t) sin(2πnt)dt + sn (1.8)

with (sn) ∈ �2α
p for all p > 1; the remainders sn were further specified to be equal to

sn := − 1

2πn

1∫
0

σ 2(t) cos(2πnt)dt + 1

2πn

1∫
0

σ 2(t)dt

− 2

1∫
0

t∫
0

u(t)u(s) cos(2πnt) sin(2πns)ds dt + ρn (1.9)

with (ρn) ∈ �2α
1 .

We also mention the papers [2,3,11–13,23,27,32], where the eigenvalue asymptotics were
studied for several other types of singular potentials.

In the present paper, having in mind further concrete applications to the inverse spectral theory,
we do not aim at the utmost possible generality. Instead, we confine ourselves to the Dirichlet
and Neumann–Dirichlet boundary conditions and to potentials from the Sobolev space scale
Wα−1

2 (0,1), α ∈ [0,1], though the derived formula for the characteristic functions can be used
to treat any generalised Birkhoff regular boundary conditions and the developed methods allow
further application to potentials q = σ ′ with σ of bounded variation or Lipschitz continuous as
in [31].

For the Dirichlet eigenvalues, we generalise the related results of [18] in several ways: a wider
class of potentials is treated (no periodicity is assumed and α = 0 is included), ε is removed in
the relation (νn) ∈ �2α−1−ε

2 for νn as in (1.7) (see Remark 6.2), and more terms of asymptotic
expansion are given. The asymptotic formulae for λ2

n derived here are basically the same as
in [31] (see Remark 6.1); however, we allow the case α � 1/2 and simultaneously treat the
Neumann–Dirichlet case. We give a special representation of the remainders (required for the
inverse analysis) as sine Fourier coefficients of some functions from the Ws

2 -scale. This, however,
does not yield an optimal result for the remainders sn of (1.8) in terms of the �s

p-scale—roughly
speaking, it only implies that (sn) ∈ �2α

2 (cf. the above mentioned results of [31]). We extract
from ρn of (1.9) one additional term falling into �2α

1 and show that the modified remainders ρ̃n

form an �
γ∞-sequence with γ = min{3α,1 + α}; observe that this result is incomparable to the

inclusion (ρn) ∈ �2α
1 proved in [31]. Also [31] gives the eigenfunction asymptotics, which we do

not study here (though the derived formula for the Cauchy matrix allows such an analysis).
Our main result describes the asymptotics of λn and μn in the following way. Here and here-

after, we denote by sn(f ) and cn(f ) the nth sine and cosine Fourier coefficient of a function f ,
i.e.,

sn(f ) =
1∫
f (x) sin(πnx)dx, cn(g) =

1∫
f (x) cos(πnx)dx, n ∈ Z+;
0 0
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V and R will stand for the operators in L2(0,1) given by

(Vf )(x) = (1 − 2x)f (x), (Rf )(x) = f (1 − x).

Theorem 1.1. Assume that q ∈ Wα−1
2 (0,1) for some α ∈ [0,1] and fix an arbitrary distributional

primitive σ ∈ Wα
2 (0,1) of q . Then there exists a function σ̃ ∈ W 2α

2 (0,1) such that

λn = πn − s2n(σ ) − s2n(σ̃ ),

μn = π

(
n − 1

2

)
+ s2n−1(σ ) + s2n−1(σ̃ ). (1.10)

A more detailed version of this theorem reads as follows.

Theorem 1.2. Assume that q ∈ Wα−1
2 (0,1) for some α ∈ [0,1] and fix an arbitrary distributional

primitive σ ∈ Wα
2 (0,1) of q . Then there exists a function ω ∈ W

γ

2 (0,1), γ := min{3α,1 + α},
such that

λn = πn + s2n

(
σ−) − s2n(σ )c2n(V σ) + s2n(ω),

μn = π

(
n − 1

2

)
+ s2n−1

(
σ+) − s2n−1(σ )c2n−1(V σ) + s2n−1(ω), (1.11)

where

σ±(x) := ±σ(x) ∓
x∫

0

σ 2(t)dt +
1−x∫
0

σ(x + t)σ (t)dt.

Theorem 1.2 and [31] imply the following corollary.

Corollary 1.3. Under the assumptions (and in the notations) of Theorem 1.2

λn = πn + s2n

(
σ−) − s2n(σ )c2n(V σ) + O

(
n−γ

)
, n → ∞. (1.12)

In rough terms, our main result states that if the potential q belongs to the Sobolev
space Wα−1

2 (0,1), then the remainders λ̃n and μ̃n are sine Fourier coefficients of a function
from Wα

2 (0,1). This statement agrees with the earlier known results for α = 1 and α = 0 men-
tioned above (see also [32] for the case where q is the derivative of a function of bounded
variation, i.e., where q is a signed measure and [2,3] for Sturm–Liouville operators in impedance
form with impedance functions from W 1

p(0,1)). Notice that Theorem 1.1 implies the related
results of the paper [18], though does not imply the results of [31] for the operator TD and
α ∈ [0,1/2). However, Corollary 1.3 gives better than in [31] estimates for the Dirichlet eigen-
values in the uniform norm (i.e., in the �s∞-scale). Moreover, our approach is completely different
from those of the works [18,31] and requires only minor effort to get the next terms in asymptotic
eigenvalue expansions for small α.

The organisation of the paper is as follows. In Section 2 we derive an equivalent factorised
form for the differential expression lσ of (1.2) that is more convenient for our purposes. We use
this factorised form in the next section to derive an integral representation for the characteristic
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functions of the operators TD and TN, and in Section 4 we show that the integrand in this repre-
sentation possesses the desired smoothness. The problem is thus reduced to finding asymptotics
of zeros of certain entire functions, which we establish in Section 5 and then prove the main
results and some corollaries in Section 6. Several applications to the inverse spectral problem
are given in Section 7. Finally, Appendix A provides some necessary facts from the interpolation
theory.

Throughout the paper (in addition to the above-introduced notations sn(f ), cn(f ) for sine
and cosine Fourier coefficients of a function f and V and R for the multiplication operator by
1 − 2x and the reflection operator about x = 1/2, respectively) Ws

p with p ∈ [1,∞) and s ∈ R

will be a shorthand notation for the Sobolev space Ws
p(0,1); we shall also abbreviate Lp(0,1)

to Lp . The norm in Ws
2 is denoted by | · |s (see Appendix A). The space �s

p consists of sequences
x = (xn)n∈N with

|x|�s
p

:=
( ∑

n�1

nps |xn|p
)1/p

< ∞

and is a Banach space (a Hilbert space for p = 2) under the norm | · |�s
p
. For p = ∞ the norm

above should be taken as |x|�s∞ := supn�1 |xn|ns .

2. Reduction of lσ to the factorised form

We recall that, for a given potential q ∈ Wα−1
2 with α ∈ [0,1], we have defined the Sturm–

Liouville operator TD (respectively, TN) corresponding to the differential expression (1.1) and
Dirichlet (respectively, Neumann–Dirichlet) boundary conditions as TDf = lσ (f ) for f ∈
domTD (respectively, as TNf = lσ (f ) for f ∈ domTN). Here σ is a fixed distributional primitive
of q , lσ is given by

lσ (f ) := −(f ′ − σf )′ − σf ′ = −
(

d

dx
+ σ

)(
d

dx
− σ

)
f − σ 2f,

and domTD and domTN are described in (1.3).
In this section, we shall derive a representation for the differential expression lσ in a slightly

different form. Roughly speaking, the claim is that the last summand (−σ 2f ) in the above for-
mula can be removed by changing σ appropriately. More precisely, given τ ∈ L2, we denote by
mτ the differential expression

mτ (f ) := −
(

d

dx
+ τ

)(
d

dx
− τ

)
f

considered on the natural L2-domain

dommτ = {
f ∈ W 1

1

∣∣ f ′ − τf ∈ W 1
1 , mτ (f ) ∈ L2

}
.

Our aim here is to show that (under some not very restrictive assumption) lσ coincides with mτ

for a suitable choice of τ . See also [19] for similar results on the whole axis.
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Denote by tN = tσ,N the quadratic form of the operator TN = Tσ,N. Integration by parts gives
that, for all f ∈ domTN,

tN[f ] :=
1∫

0

lσ (f )f =
1∫

0

(|f ′|2 − σf f ′ − σf ′f
)
.

It is not difficult to show (see, e.g., [5,14]) that the quadratic form
∫ 1

0 (σf f ′ −σf ′f ) is relatively

bounded with respect to the quadratic form
∫ 1

0 (|f ′|2 + |f |2) with relative bound zero; hence
Theorem VI.1.33 of [21] implies that tN is sectorial and that its domain is the same as for the
unperturbed case σ = 0, i.e., that

dom tN = {
f ∈ W 1

2

∣∣ f (1) = 0
}
.

(As an aside we notice that, if we start from the quadratic form tN and denote by SN the cor-
responding sectorial operator, then SN = TN; thus the form-sum method and the regularisation
method yield the same operator. Another consequence of this equality is that domTN ⊂ dom tN ⊂
W 1

2 ; we also note that the inclusion domTN ⊂ W 1
2 follows from the relation dom lσ ⊂ W 1

2 , which
was explained in the Introduction. Finally, similar statements are also true for TD.)

In the next proposition we assume that the quadratic form tN is strictly accretive, i.e., that
Re tN[f ] > 0 for all nonzero f ∈ dom tN. Since tN is sectorial, this situation can be achieved by
adding to q a suitable positive constant and thus is not very restrictive.

Proposition 2.1. Assume that σ ∈ Wα
2 , α ∈ [0,1], and that the quadratic form tN is strictly

accretive. Then there exists a function τ ∈ Wα
2 such that τ −σ ∈ W 1

1 ∩W 2α
2 , (τ −σ)(0) = 0, and

lσ = mτ . Moreover, the function

φ̃(x) := τ(x) − σ(x) +
x∫

0

σ 2(t)dt, x ∈ [0,1],

belongs to W
γ

2 with γ = min{3α,1 + α}.

Proof. We shall take τ in the form u′/u, where u is any function satisfying the equation lσ (u) =
0 and not vanishing anywhere in the interval [0,1]. After we have proved that such an u exists
and that τ is of the required smoothness, verification of the equality lσ = mτ becomes an easy
algebraic exercise (see below).

Denote by u a solution of the equation lσ (f ) = 0 satisfying the initial conditions u(0) = 1
and u[1](0) = 0. We recall that by definition the equality lσ (f ) = 0 is equivalent to the following
first-order system:

d

dx

(
f

f [1]

)
=

(
σ 1

−σ 2 −σ

)(
f

f [1]

)
. (2.1)

Since the entries of the 2 × 2 matrix in (2.1) are summable, this system enjoys the standard
existence and uniqueness properties. In particular, the solution u with the stated initial conditions
exists and is unique; moreover, both u and u[1] belong to W 1 and, a posteriori, u ∈ W 1.
1 2
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We claim that u does not vanish on [0,1]. Assume the contrary, i.e., let there exist x ∈ (0,1]
such that u(x) = 0. Then integration by parts gives

0 =
x∫

0

lσ (u)u =
x∫

0

(|u′|2 − σuu′ − σu′u
)
.

We denote by v the function from W 1
2 that coincides with u on [0, x] and equals zero on [x,1] and

observe that the above equation implies tN[v] = 0. Recall that the quadratic form tN is strictly
accretive by assumption; henceforth we must have v = 0, which is impossible in view of the
equality v(0) = u(0) = 1. The derived contradiction proves that u(x) �= 0 for every x ∈ [0,1].

Put now φ := u[1]/u and τ := φ+σ = u′/u. The function φ is in W 1
1 and satisfies the equation

φ′ = −(φ + σ)2 and the initial condition φ(0) = 0 (so that also (τ − σ)(0) = 0), and therefore

φ(x) = −
x∫

0

φ2(t)dt − 2

x∫
0

φ(t)σ (t)dt −
x∫

0

σ 2(t)dt. (2.2)

It follows from Lemma A.3 that φ ∈ Wα
2 and then repeated application of Lemma A.3 shows that

the right-hand side of (2.2) belongs to W 2α
2 , so that φ ∈ W 2α

2 . Next, Eq. (2.2) implies that

φ̃(x) = −
x∫

0

φ2(t)dt − 2

x∫
0

φ(t)σ (t)dt,

and henceforth φ̃ ∈ W
γ

2 by Lemma A.3 as claimed.
Take now f ∈ dom lσ ; then f ′ −τf = f [1] −φf ∈ W 1

1 and, using the identity φ′ = −(φ+σ)2,
we find that

(
d

dx
+ τ

)(
d

dx
− τ

)
f = (

f [1])′ − φ′f − φf ′ + τf [1] − τφf

= (
f [1])′ + (φ + σ)2f − φf ′ + (φ + σ)(f ′ − σf ) − (φ + σ)φf

= (
f [1])′ + σf ′ = −lσ (f ).

This shows that lσ ⊂ mτ . The reverse inclusion is established analogously, and, as a result, we
get lσ = mτ . The proposition is proved. �
3. Integral representation of the characteristic functions

Assume that σ ∈ L2 is such that the quadratic form tσ,N is strictly accretive (see Section 2 for
definitions). Then by Proposition 2.1 there exists τ ∈ L2 such that φ := τ − σ ∈ W 1

1 , φ(0) = 0,
and lσ = mτ . Consider the differential equation mτu = λ2u, i.e.,

−
(

d + τ

)(
d − τ

)
u = λ2u. (3.1)
dx dx
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It can be written as a first order system

d

dx

(
u1

u2

)
=

(
τ 1

−λ2 −τ

)(
u1

u2

)
(3.2)

with u1 ≡ u and u2 ≡ u′ − τu =: u[1]
τ . For any a, b ∈ C, there exists a unique solution (u1, u2)

T

of (3.2) subject to the initial conditions u1(0) = a, u2(0) = b, whence (3.1) has a unique solution
v satisfying the initial conditions v(0) = a and v

[1]
τ (0) = b.

Denote by s(·, λ) and c(·, λ) the solutions of Eq. (3.1) obeying the initial conditions

s(0, λ) = c[1]
τ (0, λ) = 0, s[1]

τ (0, λ) = c(0, λ) = 1.

Observe that in view of the equality φ(0) = 0 we have u
[1]
τ (0) = u[1](0) − φ(0)u(0) = u[1](0)

for any u ∈ dom lσ = dommτ . Therefore the numbers ±λn coincide with the zeros of the entire
even function s(1, ·), while ±μn coincide with those of c(1, ·). In both cases multiplicities are
taken into account (i.e., if some λ2 is an eigenvalue of TD of algebraic multiplicity m, then λ is
a zero of s(1, ·) of order m, and similarly for TN). The functions c(1, ·) and s(1, ·) are called the
characteristic functions of the operators TN and TD, respectively.

Our aim in this section is to show that the characteristic functions c(1, ·) and s(1, ·) allow
integral representations of a special form (see (3.10)). We do this by deriving first a special
integral representation for the Cauchy matrix of system (3.2).

To begin with, we notice that the matrix-valued function

U(x) = U(x,λ) :=
(

c(x,λ) s(x,λ)

c
[1]
τ (x, λ) s

[1]
τ (x, λ)

)

satisfies the initial condition U(0) = I (with I = diag(1,1)) and solves the equation

U ′ = (A + τJ )U, (3.3)

where

A = Aλ :=
(

0 1
−λ2 0

)
, J :=

(
1 0
0 −1

)
.

In other words, U is the Cauchy matrix of system (3.2). Since τ ∈ L2, Eq. (3.3) with the initial
condition U(0) = I is uniquely soluble and the solution U belongs to W 1

2 entrywise.
We shall, however, need a more explicit formula for the Cauchy matrix U . The standard

variation of constants yields the equivalent integral equation for U in the form

U(x) = exA +
x∫

0

e(x−t)Aτ (t)JU(t)dt, (3.4)

where the exponent exA can be explicitly calculated as

exA =
(

cosλx 1
λ

sinλx

−λ sinλx cosλx

)
.
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Integral equation (3.4) can be solved by the method of successive approximations; namely, with

U0(x) := exA and Un+1(x) =
x∫

0

e(x−t)Aτ (t)JUn(t)dt for n � 0, (3.5)

the solution formally equals
∑∞

n=0 Un. Our next aim is to show that this series converges in a
suitable topology and that the sum is indeed the Cauchy matrix.

To this end we endow the space M2 := M(2,C) of all 2 × 2 matrices with complex entries
with the operator norm | · | of the Euclidean C

2 space and denote by W 1
2 (M2) the Sobolev space

of M2-valued functions on the interval [0,1].

Lemma 3.1. The series
∑∞

n=0 Un with Un given by (3.5) converges in W 1
2 (M2) to the Cauchy

matrix U .

Proof. Bearing in mind the identity J exA = e−xAJ and using recurrent relations (3.5), we derive
the formula

Un(x) =
∫

Πn(x)

e(x−2ξn(t))A τ (t1) . . . τ (tn)J
n dt1 . . .dtn, (3.6)

in which we have put

Πn(x) = {
t := (t1, . . . , tn) ∈ R

n
∣∣ 0 � tn � · · · � t1 � x

}
,

ξn(t) =
n∑

l=1

(−1)l+1tl .

Observe that 0 � ξn(t) � x for t ∈ Πn(x); thus, denoting by C the maximum of |exA| over the
interval [−1,1], we get the estimate

∣∣Un(x)
∣∣ � C

∫
Πn(x)

∣∣τ(t1)
∣∣ . . . ∣∣τ(tn)

∣∣dt1 . . .dtn = C

n!

( x∫
0

|τ |
)n

.

Differentiating recurrent relations (3.5), we find that

U ′
n(x) = AUn(x) + τ(x)JUn−1(x), (3.7)

and hence, with C1 := C(2|A|2 + 3)1/2,

‖Un‖W 1
2 (M2)

:=
( 1∫ (|U ′

n|2 + |Un|2
))1/2

� C1

(n − 1)!

( 1∫
|τ |2

)1/2( 1∫
|τ |

)(n−1)

.

0 0 0
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This estimate justifies convergence of the series
∑∞

k=0 Uk in the W 1
2 (M2)-topology to some

M2-valued function V obeying the initial condition V (0) = I . Bearing in mind (3.7) and differ-
entiating this series term-by-term, we see that V satisfies Eq. (3.3) and thus indeed equals the
Cauchy matrix U . �

Our next aim is to get an integral representation for U(1) of a special form. Upon change of
variables s = ξn(t), yl = tl+1, l = 1,2, . . . , n − 1, we recast the integral in (3.6) for x = 1 as

Un(1) =
1∫

0

e(1−2s)A τn(s)J
n ds.

Here τ1 ≡ τ(s) and, for all n ∈ N,

τn+1(s) =
∫

Π∗
n (s)

τ
(
s + ξn(y)

)
τ(y1) . . . τ (yn)dy1 . . .dyn (3.8)

with

Π∗
n (s) = {

y = (y1, . . . , yn) ∈ R
n

∣∣ 0 � yn � yn−1 � · · · � y1 � s + ξn(y) � 1
}
. (3.9)

Using the Cauchy–Schwarz inequality and Fubini’s theorem, we find that for every n ∈ N the
function τn belongs to L2 and that

|τn|20 =
1∫

0

∣∣τn(s)
∣∣2 ds

� 1

(n − 1)!
1∫

0

ds

∫
Π∗

n−1(s)

∣∣τ(
s + ξn−1(y)

)
τ(y1) . . . τ (yn−1)

∣∣2 dy1 . . .dyn−1

= 1

(n − 1)!
∫

Πn(1)

∣∣τ(t1)
∣∣2

. . .
∣∣τ(tn)

∣∣2 dt1 . . .dtn = 1

(n − 1)!n! |τ |2n
0 .

It follows that the series
∑∞

n=1(±1)nτn converges in L2 to some function τ±; putting K =
diag{τ+, τ−}, we arrive at the desired representation for U(1):

U(1) = eA +
1∫

0

e(1−2s)AK(s)ds.

Spelling out the first row of this matrix equality, we get the following result.
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Theorem 3.2. Assume that σ ∈ L2 is such that the quadratic form tσ,N is strictly accretive and
denote by τ ∈ L2 the function of Proposition 2.1, for which lσ = mτ . Then the characteristic
functions c(1, ·) and s(1, ·) of the operators TN and TD equal

c(1, λ) = cosλ +
1∫

0

τ+(s) cosλ(1 − 2s)ds,

s(1, λ) = sinλ

λ
+

1∫
0

τ−(s)
sinλ(1 − 2s)

λ
ds, (3.10)

where the L2-functions τ± are defined by

τ± =
∞∑

n=1

(±1)nτn (3.11)

with τ1 ≡ τ and τn+1 given by (3.8) for all n ∈ N.

In the case where σ (and thus τ ) belongs to Wα
2 with some positive α the functions τn are also

smoother. We shall establish this fact in the following section.

4. Smoothness of the functions τn

The derivation of the integral representations for the characteristic functions c(1, ·) and s(1, ·)
in Section 3 only used the fact that τ belongs to L2. If, however, the potential q is a distribution
from Wα−1

2 with some α ∈ (0,1], then τ ∈ Wα
2 by Proposition 2.1, and we can expect that the

functions τn of (3.8) also have some additional smoothness. The aim of this section is to make
this statement precise.

Fix a natural n � 2 and consider an n-linear mapping In : (L2)
n → L2 that acts according to

the formula (cf. (3.8))

In(f)(s) =
∫

Π∗
n−1(s)

f1
(
s + ξn−1(y)

)
f2(y1) . . . fn(yn−1)dy1 . . .dyn−1,

f = (f1, . . . , fn) ∈ (L2)
n, the set Π∗

n−1(s) is defined by (3.9), and ξn−1(y) := ∑n−1
l=1 (−1)l+1yl .

In particular, we see that

τn = In(τ, . . . , τ ).

First we show that, indeed, In maps (L2)
n into L2.

Lemma 4.1. For any f = (f1, . . . , fn) ∈ (L2)
n the function g := In(f) belongs to L2 and

|g|0 � 1√
(n − 1)!

n∏
l=1

|fl |0.
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Proof. Repeating the arguments of Section 3 used to prove that τn ∈ L2, we find that

∣∣g(s)
∣∣2 � 1

(n − 1)!
∫

Π∗
n−1(s)

∣∣f1
(
s + ξn−1(y)

)∣∣2∣∣f2(y1)
∣∣2

. . .
∣∣fn(yn−1)

∣∣2 dy1 . . .dyn−1

and thus

|g|20 � 1

(n − 1)!
∫

Πn(1)

∣∣f1(t1)
∣∣2∣∣f2(t2)

∣∣2
. . .

∣∣fn(tn)
∣∣2 dt1 . . .dtn � 1

(n − 1)!
n∏

l=1

|fl |20

as required. �
Now we give an equivalent formula for In. Let g = In(f) and let h be an arbitrary function

in L2; then the L2-scalar product (g,h)L2 of g and h can be recast as

(g,h)L2 =
∫

Πn(1)

f1(t1) . . . fn(tn)h
(
ξn(t)

)
dt1 . . .dtn. (4.1)

Since such scalar products with h from a total set in L2 completely determine the function g, we
can use this formula to define the action of the mapping In.

The main result of this section is contained in Theorems 4.2 and 4.3 that show how In acts
between the spaces Wα

2 .

Theorem 4.2. For α ∈ [0,1], let f ∈ (Wα
2 )n and g := In(f).

(a) For all n � 2 the function g belongs to W 2α
2 and there exists a positive C independent of f

and n such that, with r := max{0, n − 5}, we have

|g|2α � C√
r!

n∏
l=1

|fl |α.

(b) For all n � 4 the function g belongs to W 3α
2 and there exists a positive C independent of f

and n such that, with r := max{0, n − 7}, we have

|g|3α � C√
r!

n∏
l=1

|fl |α.

Proof. Since the family {Wα
2 }, α ∈ R, constitutes a Hilbert scale, by virtue of Theorem A.2 and

Lemma 4.1 it suffices to prove the theorem only for α = 1. Observe also that statement (a) for
n = 2 holds in view of Lemma A.4, so that we may assume that n � 3.

We shall divide the proof of the case α = 1 and n � 3 into several steps and shall throughout
denote by Ck positive constants independent of f and n.
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Step 1. Let n � 3, f := (f1, . . . , fn) ∈ (L2)
n and fn ∈ W 1

2 . We shall show that in this case the
function g belongs to W 1

2 and

|g|1 � C1√
(n − 3)! |fn|1

n−1∏
j=1

|fj |0 (4.2)

for some positive constant C1.
Let φ be an arbitrary test function (i.e., a C∞ function with support in (0,1)); then by the

definition of the distributional derivative we have

(g′, φ) = −(g,φ′).

Integration by parts gives

−
tn−1∫
0

fn(tn)φ
′(ξn(t)

)
dtn = (−1)n

tn−1∫
0

fn(tn)φ
′
tn

(
ξn(t)

)
dtn

= (−1)n+1

tn−1∫
0

f ′
n(tn)φ

(
ξn(t)

)
dtn

+ (−1)nfn(tn−1)φ
(
ξn−2(

˜̃t)) + (−1)n+1fn(0)φ
(
ξn−1(t̃)

)
,

where we have put t̃ = (t1, . . . , tn−1) and ˜̃t = (t1, . . . , tn−2). It follows now that

−(g,φ′) = (−1)n+1(In

(
f1, . . . , fn−1, f

′
n

)
, φ

)
+ (−1)n+1fn(0)

(
In−1(f1, . . . , fn−1),φ

)
+ (−1)n

(
In−2(f1, . . . , fn−3, f̃n−2),φ

)
,

where f̃n−2 := A+(fn−2, fn−1, fn) and the multilinear mapping A+ is given by

A+(h1, h2, h3)(x) := h1(x)

x∫
0

h2(y)h3(y)dy. (4.3)

We observe that A+ acts boundedly from (L2)
3 into L2. In fact, if h1, h2, h3 ∈ L2, then

A+(h1, h2, h3) is a product of an L2-function h1 and a W 1
1 -function

∫ x

0 h2h3 and thus is in L2;
moreover,

∣∣A+(h1, h2, h3)
∣∣
0 � |h1|0 max

x

∣∣∣∣∣
x∫
h2h3

∣∣∣∣∣ � |h1|0|h2|0|h3|0. (4.4)
0
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Hence

g′ = (−1)nIn

(
f1, . . . , fn−1, f

′
n

) + (−1)nfn(0)In−1(f1, . . . , fn−1)

+ (−1)n+1In−2(f1, . . . , fn−3, f̃n−2) (4.5)

in the sense of distributions. Since the right-hand side of the above equation belongs to L2 by
Lemma 4.1, we conclude that g ∈ W 1

2 .
Recall that W 1

2 is continuously embedded into C[0,1] and thus there is C2 > 0 such that
maxx |f | � C2|f |1 for all f ∈ W 1

2 . Applying Lemma 4.1 to (4.5) and using the inequalities
|fn(0)| � C2|fn|1 and |f̃n−2|0 � |fn−2|0|fn−1|0|fn|0 (recall (4.4)), we arrive at estimate (4.2).

Step 2. Let n � 3, f := (f1, . . . , fn) ∈ (L2)
n and f1 ∈ W 1

2 . We shall show that then the function
g belongs to W 1

2 and

|g|1 � C1√
(n − 3)! |f1|1

n∏
j=2

|fj |0 (4.6)

with the same C1 as in (4.2).
A direct verification shows that, with R being the reflection operator about x = 1/2,

In(f1, . . . , fn) = In(Rfn, . . . ,Rf1)

if n is even and

In(f1, . . . , fn) = RIn(Rfn, . . . ,Rf1)

if n is odd. Since R is unitary in Wα
2 for every α ∈ [0,1] (for the cases α = 0 and α = 2 this

is evident and for intermediate values follows by interpolation, see Theorem A.1), the inclusion
g ∈ W 1

2 and estimate (4.6) follow from the results of Step 1.

Step 3. Let n � 3, f := (f1, . . . , fn) ∈ (L2)
n and f1, fn ∈ W 1

2 . Using relation (4.5) and
bounds (4.2) and (4.6), we easily conclude that the function g belongs to W 2

2 and that

|g|2 � C3√
r! |f1|1|fn|1

n−1∏
l=2

|fl |0 (4.7)

with some C3 > 0 independent of f and r := max{0, n − 5}. The only thing to be justified is that
for n = 3 the function I1(f̃1) ≡ f̃1 = A+(f1, f2, f3) belongs to W 1

2 and

|f̃1|1 � C4|f1|1|f2|0|f3|1.
This, however, easily follows from the formula

(f̃1)
′(x) = f ′

1(x)

x∫
0

f2(t)f3(t)dt + f1(x)f2(x)f3(x)

showing that f̃ ′ belongs to L2 and providing the suitable estimate of its L2-norm.
1
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Formula (4.7) combined with the remarks made at the beginning of the proof and the obvious
inequality |h|0 � |h|1 completes the proof of statement (a).

Step 4. Let n � 4, f := (f1, . . . , fn) ∈ (L2)
n and f2 ∈ W 1

2 . We shall show that then the function
g belongs to W 1

2 and the following identity holds:

g′ = −In

(
f1, f

′
2, f3, . . . , fn

) − In−2
(
A+(f1, f2, f3), f4, . . . , fn

)
+ In−2

(
A−(f3, f2, f1), f4, . . . , fn

) + In−2
(
f1,A+(f4, f2, f3), f5, . . . , fn

)
, (4.8)

where A+ is the mapping of (4.3) and A− is given by

A−(h1, h2, h3)(x) := h1(x)

1∫
x

h2(y)h3(y)dy.

Given an arbitrary test function φ and integrating by parts, we get

−
t1∫

t3

f2(t2)φ
′(ξn(t)

)
dt2 =

t1∫
t3

f2(t2)φ
′
t2

(
ξn(t)

)
dt2

= −
t1∫

t3

f ′
2(t2)φ

(
ξn(t)

)
dt2 + f2(t1)φ

(
ξn−2( t̃ )

) − f2(t3)φ
(
ξn−2(

˜̃t )),

where t̃ = (t3, t4, . . . , tn) and ˜̃t = (t1, t4, . . . , tn). Substituting this relation into the expression for
−(g,φ′) (cf. (4.1)), after simple calculations we get

−(g,φ′) = −(
In

(
f1, f

′
2, f3, . . . , fn

)
, φ

) − (
In−2

(
A+(f1, f2, f3), f4, . . . , fn

)
, φ

)
+ (

In−2
(
A−(f3, f2, f1), f4, . . . , fn

)
, φ

)
+ (

In−2
(
f1,A+(f4, f2, f3), f5, . . . , fn

)
, φ

)
,

which yields (4.8).

Step 5. Assume that n � 4, f := (f1, . . . , fn) ∈ (W 1
2 )n and g := In(f). Observe that the multi-

linear transformations A+ and A− map continuously (W 1
2 )3 into W 1

2 , which can be verified by
direct calculation or using Lemma A.3.

It follows from (4.8) by Step 3 of the proof that g′ ∈ W 2
2 , so that g ∈ W 3

2 . The required norm
estimate also follows from (4.7) and the continuity properties of A+ and A−. Thus statement (b)
of the theorem is justified for the case α = 1 and consequently, by the Interpolation theorem A.2,
for all α ∈ [0,1]. The theorem is proved. �

For n = 3 we have a slightly worse result.
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Theorem 4.3. Assume that α ∈ [0,1], γ := min{3α,1 + α}, f := (f1, f2, f3) ∈ (Wα
2 )3, and g :=

I3(f). Then the function g belongs to W
γ

2 and there is a constant C independent of f such that

|g|γ � C|f1|α|f2|α|f3|α.

Proof. Using the definition of I3 and changing the variables via t1 = y1 − y2, t2 = y2, we arrive
at the representation

g(s) =
∫

Π∗
2 (s)

f1(s + y1 − y2)f2(y1)f3(y2)dy1 dy2

=
s∫

0

dt2f3(t2)

1−s∫
0

f1(s + t1)f2(t1 + t2)dt1.

We now put

g1(s) := Ĩ3(f)(s) :=
s∫

0

dt2f1(t2)

t2∫
0

f2(t1)f3(t1)dt1

−
s∫

0

dt2f3(t2)

1∫
t2

f1(t1)f2(t1)dt1

and

h(s) := J3(f) := I3(f)(s) + Ĩ3(f)(s)

and show that the function h belongs to W 3α
2 and that, moreover,

|h|3α � C1|f1|α|f2|α|f3|α (4.9)

for some C1 > 0 independent of f. Since J3 is a multilinear mapping, in view of Interpolation
theorem A.2 and Lemma 4.1 it suffices to treat only the case α = 1.

Assume therefore that f ∈ (W 1
2 )3. Direct calculations show that

h′(s) = g′(s) + g′
1(s)

= f1(s)

s∫
0

f2(t)f3(t)dt − f1(1)

s∫
0

f2(1 − s + t)f3(t)dt

+
s∫

0

dt2f3(t2)

1−s∫
0

f ′
1(s + t1)f2(t1 + t2)dt1.

Integrating by parts in the last integral, we arrive at the relation
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h′(s) = −I3
(
f1, f

′
2, f3

)
,

so that h′ ∈ W 2
2 by Step 3 of the proof of Theorem 4.2. Also

|h′|2 � C2|f1|1
∣∣f ′

2

∣∣
0|f2|1,

which yields estimate (4.9) for α = 1. By interpolation, the results hold also for all intermediate
α ∈ [0,1].

Consider now the function g1. Put

J (ψ1,ψ2) :=
s∫

0

ψ1(t)ψ2(t)dt

for ψ1,ψ2 ∈ L2; then direct calculations show that

g1 = J (f1,ψ23) − J (f3,Rψ12),

where ψ23 := J (f2, f3) and ψ12 := J (Rf1,Rf2). Applying Lemma A.3 twice we find that
ψ12,ψ23 ∈ W 2α

2 , g1 ∈ W
α+min{2α,1}
2 = W

γ

2 and that

|g1|γ � C3|f1|α|ψ23|min{2α,1} + C3|f3|α|ψ12|min{2α,1} � C4|f1|α|f2|α|f3|α.

The theorem is proved. �
Remark 4.4. The statement of the previous theorem cannot be improved in the sense that the
exponent γ = min{3α,1 + α} cannot be made larger. This follows from the fact that the results
of Lemma A.3 are sharp. The same statement holds also for τ3 = I3(τ, τ, τ ).

Corollary 4.5. Assume that α ∈ (0,1], γ := min{3α,1 + α}, τ ∈ Wα
2 and τn := In(τ, . . . , τ ).

Then for every n � 3 the function τn belongs to W
γ

2 and, moreover,

|τn|γ � C√
r! |τ |nα

with some constant C > 0 and r := max{0, n−7}. In particular, the functions τ± in Theorem 3.2
have the form

τ± = ±τ + τ2 + φ±

with some W
γ

2 -functions φ±.



R.O. Hryniv, Y.V. Mykytyuk / Journal of Functional Analysis 238 (2006) 27–57 45
5. Asymptotics of zeros of some entire functions

As we have seen in the previous sections, the eigenvalue asymptotics is completely determined
by the asymptotics of zeros for entire functions of a special form. The main result of this section
shows how this asymptotics can be calculated.

Assume that f is an arbitrary function from Wα
2 and put

Fc(λ) := cosλ +
1∫

0

f (x) cos
[
λ(1 − 2x)

]
dx,

Fs(λ) := sinλ

λ
+

1∫
0

f (x)
sin[λ(1 − 2x)]

λ
dx.

These are even entire functions of λ; we denote by ξ2n−1 and ξ2n, n ∈ N, zeros of Fc and Fs,
respectively, from the set Ω of (1.4). We repeat every zero λ �= 0 according to its multiplicity,
and if λ = 0 is a zero of Fc or Fs of order 2m, then we repeat it m times among ξ2n−1 or
ξ2n, respectively. We shall order ξk so that Re ξ2n+1 > Re ξ2n−1 or Re ξ2n+1 = Re ξ2n−1 and
Im ξ2n+1 � Im ξ2n−1 and similarly for ξ2n.

It is known (cf. [26, Chapter 1.3] and [15]) that for f ∈ L2 the numbers ξn have the form

ξn = πn

2
+ ξ̃n

for some �2-sequence (ξ̃n)n∈N (in particular, the remainders ξ̃n are the Fourier coefficients of
some L2-function). It is reasonable to expect that if f is smoother (say, from Wα

2 ), then ξ̃n decay
faster. This is precisely what the following theorem states.

Recall that for an L2-function g we have denoted by sn(g) and cn(g) its sine and cosine
Fourier coefficients, respectively, and by V : L2 → L2 the operator of multiplication by the
function (1 − 2x).

Theorem 5.1. Assume that α ∈ (0,1], γ = min{3α,1 + α}, f ∈ Wα
2 and that the numbers ξ̃n are

defined as above. Then there exists a function g ∈ W
γ

2 such that

ξ̃n = sn(f ) − sn(f )cn(Vf ) + sn(g), n ∈ N.

In particular, (ξ̃n) is a sequence of sine Fourier coefficients of some function from Wα
2 .

Before proceeding with the proof of the theorem, we introduce the following spaces.
For any g ∈ L2, we denote by c(g) and s(g) the sequences (cn(g))∞n=0 and (sn(g))∞n=0 of its

cosine and sine Fourier coefficients, respectively, and put

Cα := {
c(g)

∣∣ g ∈ Wα
2

}
, Sα := {

s(g)
∣∣ g ∈ Wα

2

}
, α ∈ [0,2].

The lineals Cα and Sα are algebraically embedded into �2(Z+) and become Banach spaces under
the induced norms ∥∥c(g)

∥∥ := ‖g‖Wα,
∥∥s(g)

∥∥ := ‖g‖Wα .
Cα 2 Sα 2
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For any a,b ∈ �2(Z+) we shall denote by ab the entrywise product of a and b, i.e., the element
of �2(Z+) with entries (ab)n := anbn.

To establish Theorem 5.1, we shall essentially rely on the following three lemmas. The first
of them (Lemma 5.2) is proved in Appendix A, and the other two are simple corollaries of well-
known facts and thus their proofs are omitted.

Lemma 5.2. Suppose that α,β ∈ [0,1] and a ∈ Cα , b ∈ Sα , ã ∈ Cβ , b̃ ∈ Sβ . Then aã ∈ Cα+β ,
bb̃ ∈ Cα+β , ab̃ ∈ Sα+β ; moreover, there exists a positive constant ρ > 0 such that

‖aã‖Cα+β
� ρ‖a‖Cα

‖ã‖Cβ
,

‖bb̃‖Cα+β
� ρ‖b‖Sα

‖b̃‖Sβ
,

‖ab̃‖Sα+β
� ρ‖a‖Cα

‖b̃‖Sβ
. (5.1)

Lemma 5.3. For every α ∈ [0,1], the operator Vf (x) = (1 − 2x)f (x) acts boundedly in Wα
2 .

The claim follows directly from the Interpolation theorem A.1.

Lemma 5.4. Suppose that α ∈ [0,1/2). Then the Hilbert space

Hα :=
{

a = (an) ∈ �2(Z+)

∣∣∣ a0 = 0,

∞∑
n=1

n2α|an|2 < ∞
}

with norm ‖a‖Hα := (
∑∞

n=1 n2α|an|2)1/2 coincides with the space Sα , and the norms ‖ · ‖Hα and
‖ · ‖Sα

are equivalent.

This is a corollary of a well-known fact about Fourier transforms of spaces Wα
2 , see, e.g., [18,

25,31].

Proof of Theorem 5.1. Using the obvious relations

cos ξ2n−1 = (−1)n sin ξ̃2n−1,

sin ξ2n = (−1)n sin ξ̃2n,

cos
[
ξ2n−1(1 − 2x)

] = (−1)n sin
[
ξ̃2n−1(1 − 2x) − (2n − 1)πx

]
,

sin
[
ξ2n(1 − 2x)

] = (−1)n sin
[
ξ̃2n(1 − 2x) − 2nπx

]
in the equalities Fc(ξ2n−1) = 0 and Fs(ξ2n) = 0, we find that

sin ξ̃n +
1∫

0

f (x) sin
[
ξ̃n(1 − 2x) − πnx

]
dx = 0, n ∈ N. (5.2)

Writing sin[ξ̃n(1−2x)−πnx] as sin[ξ̃n(1−2x)] cos(πnx)−sin(πnx) cos[ξ̃n(1−2x)], devel-
oping sin[ξ̃n(1 − 2x)] and cos[ξ̃n(1 − 2x)] into the Taylor series, and then changing summation
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and integration order (which is allowed in view of the absolute convergence of the Taylor series
and the integrals), we represent (5.2) as

sin ξ̃n +
∞∑

k=0

(−1)k
ξ̃2k+1
n

(2k + 1)!cn

(
V 2k+1f

) −
∞∑

k=0

(−1)k
ξ̃2k
n

(2k)! sn
(
V 2kf

) = 0. (5.3)

Set ξ̃0 := 0; then, as was mentioned above, the sequence a := (ξ̃n)n∈Z+ belongs to �2(Z+), so
that a ∈ S0. Define the sequence d := (dn)n∈Z+ through the relation

d :=
∞∑

k=0

(−1)k

(2k)! a2ks
(
V 2kf

) −
∞∑

k=0

(−1)k

(2k + 1)!a2k+1c
(
V 2k+1f

)
.

Using Lemmas 5.2 and 5.3 and denoting by ρ1 the norm of the operator V in Wα
2 , we find that

∥∥a2ks
(
V 2kf

)∥∥
Sα

� (ρρ1)
2k‖a‖2k

S0
‖f ‖Wα

2
,∥∥a2k+1c

(
V 2k+1f

)∥∥
Sα

� (ρρ1)
2k+1‖a‖2k+1

S0
‖f ‖Wα

2
,

whence d ∈ Sα .
Equation (5.3) implies that sin ξ̃n = dn for all n ∈ Z+; henceforth there exists n0 ∈ N such that

|ξ̃n| � 2|dn| (5.4)

for all n � n0. Fix an arbitrary number β ∈ (α/3, α/2); then β < α/2 � 1/2 and d ∈ Sβ .
Lemma 5.4 and inequalities (5.4) now yield the inclusion a ∈ Sβ .

Since the sequence (sin ξ̃n)n∈Z+ can be written as

sin a :=
∞∑

k=0

(−1)k
a2k+1

(2k + 1)!

and since by Lemma 5.2 and the inequality 2β < 1 the series

d̃ := sin a − a =
∞∑

k=1

(−1)k
a2k+1

(2k + 1)!

converges in S3β , we find that

a = d − d̃ ∈ Sα + S3β ⊂ Sα. (5.5)

By the definitions of d and d̃ equality (5.5) can be recast as

a =
∞∑

(−1)k
a2k

(2k)! s
(
V 2kf

) −
∞∑

(−1)k
a2k+1

(2k + 1)!c
(
V 2k+1f

) −
∞∑

(−1)k
a2k+1

(2k + 1)! .

k=0 k=0 k=1
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Since in view of Lemmas 5.2 and 5.3 the sum

∞∑
k=1

(−1)k
a2k

(2k)! s
(
V 2kf

) −
∞∑

k=1

(−1)k
a2k+1

(2k + 1)!c
(
V 2k+1f

) −
∞∑

k=1

(−1)k
a2k+1

(2k + 1)!

falls into Sγ , we conclude that

a − s(f ) + ac(Vf ) ∈ Sγ ,

so that also

[
a − s(f )

]
c(Vf ) ∈ [−ac(Vf ) + Sγ

]
c(Vf ) ⊂ Sγ .

This yields the desired result

a − s(f ) + s(f )c(Vf ) ∈ Sγ ,

and the theorem is proved. �
6. Proof of Theorems 1.1, 1.2 and Corollary 1.3

It suffices to establish only the refined asymptotics (1.11). Indeed, since by Lemmas A.3 and
A.4 the functions

∫ x

0 σ 2(t)dt and
∫ 1−x

0 σ(x + t)σ (t)dt belong to W 2α
2 and by Lemmas 5.2 and

5.3 the numbers sn(σ )cn(V σ) are nth sine Fourier coefficients of some function from W 2α
2 ,

formula (1.10) follows from (1.11).
Assume first that the potential q ∈ Wα−1

2 is such that the associated quadratic form tN is
strictly accretive. Then by Proposition 2.1 we can find a function τ ∈ Wα

2 such that φ := τ − σ ∈
W 2α

2 ∩ W 1
1 and lσ = mτ . By Corollary 4.5 the functions τ± of (3.11) can be represented as

τ± = ±τ + τ2 + φ±

with τ2 = I2(τ, τ ) and some W
γ

2 -functions φ±. Taking into account Proposition 2.1 and
Lemma A.4, we conclude that

τ± = σ± + φ̃±, (6.1)

where

σ±(x) := ±σ(x) ∓
x∫

0

σ 2(t)dt + I2(σ,σ )(x) (6.2)

and φ̃± ∈ W
γ

2 . By virtue of Theorems 3.2 and 5.1 there exist functions ψ± ∈ W
γ

2 such that

λ̃n = s2n

(
τ−) − s2n

(
τ−)

c2n

(
V τ−) + s2n

(
ψ−)

,

μ̃n = s2n−1
(
τ+) − s2n−1

(
τ+)

c2n−1
(
V τ+) + s2n−1

(
ψ+)

. (6.3)
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Since (τ± ∓ σ) ∈ W 2α
2 , Eqs. (6.1)–(6.3) and Lemma 5.2 yield the representation

λ̃n = s2n

(
σ−) − s2n(σ )c2n(V σ) + s2n

(
ψ̃−)

,

μ̃n = s2n−1
(
σ+) − s2n−1(σ )c2n−1(V σ) + s2n−1

(
ψ̃+)

(6.4)

with some ψ̃± ∈ W
γ

2 . It remains to put ω := 1
2 (ψ̃+ + Rψ̃+ + ψ̃− − Rψ̃−) to get the required

formula.
In a generic situation we add a suitable constant C to the potential q to get a potential q̂ :=

q + C that falls into the above-considered case. (This can be done since the quadratic form tN is
bounded below, see Section 2.) Then the corresponding Dirichlet eigenvalues λ̂2

n and Neumann–
Dirichlet eigenvalues μ̂2

n have the form (6.4) with σ replaced by σ̂ := σ + Ct and with σ̂±
calculated as in (6.2) for σ̂ instead of σ . Since σ − σ̂ ∈ W 2

2 , it is easily seen that σ± − σ̂± ∈ W
γ

2 .
Calculating now the integrals, we arrive at the relations

λ̂n = πn + s2n

(
σ−) − s2n(σ )c2n(V σ) + s2n

(
ψ̂−)

,

μ̂n = π(n − 1/2) + s2n−1
(
σ+) − s2n−1(σ )c2n−1(V σ) + s2n−1

(
ψ̂+)

for some ψ̂± ∈ W
γ

2 . Since λ̂n = πn + an with (an) ∈ �2, we find that

λ̂n − λn = λ̂n −
√

λ̂2
n − C = C

2λ̂n

+ O
(
λ̂−3

n

) = C

2πn
+ bn

n2

for some (bn) ∈ �2, so that there exists a function χ ∈ W 2
2 such that

s2n(χ) = λ̂n − λn, n ∈ N.

Thus

λ̃n = s2n

(
σ−) − s2n(σ )c2n(V σ) + s2n

(
φ̂−)

with some φ̂− ∈ W
γ

2 . Similar arguments work for μ̃n and yield the representation

μ̃n = s2n−1
(
σ+) − s2n−1(σ )c2n−1(V σ) + s2n−1

(
φ̂+)

with some φ̂+ ∈ W
γ

2 . It remains to put ω := 1
2 (φ̂+ + Rφ̂+ + φ̂− − Rφ̂−), and the proof of

Theorem 1.2 is complete.

Remark 6.1. Straightforward calculations show that the asymptotic formula (1.11) estab-
lished here corresponds to the asymptotic formulae (1.8), (1.9) of the paper [31] with ρn =
2s2n(σ )c2n(tσ ) + s2n(ω). Since (ρn) ∈ �2α

2 by the results of [31] and s2n(σ )c2n(tσ ) falls into
�2α

2 for α ∈ [0,1/2), one concludes that (s2n(ω)) ∈ �2α
2 for such α. Corollary 1.3 states that,

moreover, (s2n(ω)) ∈ �
γ∞ for all α ∈ [0,1].
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Proof of Corollary 1.3. Assume that σ ∈ Wα
2 (0,1) for some α ∈ [0,1] and ω ∈ W

γ

2 is the
function of Theorem 1.2. If α ∈ [0,1/3], then by Lemma A.5 one has

s2n(ω) = O
(
n−3α

)
, n → ∞,

and, in view of (1.11),

λn = πn + s2n

(
σ−) − s2n(σ )c2n(V σ) + O

(
n−3α

)
, n → ∞.

Let now α ∈ (1/3,1]. Since the function σ ∈ Wα
2 satisfy then condition (vi) of Theorem 3.12

of [31], one has

λn = πn − s2n(σ ) + an

with (an) ∈ �1. In view of (1.11) this yields

s2n(ω) = −s2n(ψ) − bn,

where

ψ(x) := (
σ− + σ

)
(x) =

x∫
0

σ 2(t)dt +
1−x∫
0

σ(x + t)σ (t)dt (6.5)

and (bn) ∈ �1. By virtue of Lemmas A.3 and A.4 the function ψ belongs to the space W 2α
2 . Since,

moreover, ψ(0) = ψ(1), Lemma A.5 (see also Remark A.6) yields the inclusion (s2n(ψ))n∈N ∈
�2α

2 ⊂ �1, i.e., (s2n(ω))n∈N ∈ �1. Taking into account that γ � 1, we conclude that ω(0) = ω(1).
Lemma A.5 yields now the inclusion (s2n(ω)) ∈ �

γ

2 and the required relation (1.12) follows. �
Remark 6.2. Developing the above arguments, we can show that the function σ̃ of Theorem 1.1
is such that (s2n(σ̃ )) ∈ �2α

2 . For α ∈ [0,1/2) this is shown in [31]. Observe that

s2n(σ̃ ) = s2n(ω) + s2n(σ )c2n(V σ) + s2n(ψ)

with the function ω of Theorem 1.2 and ψ of (6.5). For α ∈ [1/2,1] the proof of Corollary 1.3
establishes the inclusions (s2n(ω)) ∈ �

γ

2 ⊂ �2α
2 and (s2n(ψ)) ∈ �2α

2 , while

(
s2n(σ )c2n(V σ)

) ∈ �α∞ · �α
2 ⊂ �2α

2

by Lemma A.5.
If q ∈ Wα−1

2 is periodic, then we find that

s2n(σ ) = −c0(q)

2πn
+ c2n(q)

2πn
.

Inserting this into (1.10) and squaring, we get

λ2
n = π2n2 + c0(q) − c2n(q) + dn
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with (dn) ∈ �2α−1
2 , which is to be compared to the corresponding result of [18], see (1.7). One

can also show as in [18] that this estimate is uniform in q from bounded subsets of Wα−1
2 .

Remark 6.3. If α = 1, then σ(x) = h + ∫ x

0 q for some h ∈ C, and formulae (1.11) give

λn = πn +
∫ 1

0 q

2πn
+ λ̃′

n

n
, μn = π

(
n − 1

2

)
+ 2h + ∫ 1

0 q

2πn
+ μ̃′

n

n

for some �2-sequences (λ̃′
n) and (μ̃′

n). The choice h = 0 corresponds to the genuine Neumann
boundary condition y′(0) = 0 at x = 0 for the operator TN, while h �= 0 produces the Robin
boundary condition y′(0) = hy(0), cf. (1.6) and below.

7. Application to inverse spectral problems

In a selfadjoint regular situation (i.e., for real-valued integrable q) the classical result of the
inverse spectral theory states that the spectra λ2

n and μ2
n of Sturm–Liouville operators TD and TN

completely determine the potential. In general, the reconstruction algorithm is quite nontrivial
and requires solvability of the so-called Gelfand–Levitan–Marchenko equation. In this section
we shall show how Theorem 1.1 can be used in the inverse spectral analysis for some singular
(complex-valued) potentials.

Given the eigenvalues λ2
n and μ2

n of TD and TN, respectively, we denote by σ ∗ the function

σ ∗(t) := 2
∞∑

n=1

(
μ̃n sin

[
(2n − 1)πt

] − λ̃n sin[2πnt]). (7.1)

Here, as usual, λ̃n and μ̃n are defined through (1.5) and thus the series converges in L2 as soon
as q ∈ Wα−1

2 with α ∈ [0,1]. We also observe that, according to Theorem 1.1, σ ∗ = σ + σ̃ for
the function σ̃ ∈ W 2α

2 of that theorem.

Proposition 7.1. Assume that q ∈ Wα−1
2 , α ∈ (0,1), is such that the function σ ∗ of (7.1) belongs

to W
β

2 for some β ∈ (0,1], β > α. Then q ∈ W
β−1
2 .

Proof. We use the so-called bootstrap method. Since σ ∗ = σ + σ̃ and σ̃ ∈ W 2α
2 in virtue of

Theorem 1.1, we claim that σ , in fact, belongs to Wα′
2 with α′ = min{2α,β} > α. Thus the

exponent α can either be taken equal to β or otherwise doubled. Repeating this procedure finitely
many times, we reach the desired conclusion that σ ∈ W

β

2 , i.e., that q ∈ W
β−1
2 . �

Developing the above arguments, we conclude that the function σ ∗ determines all principal
singularities of the potential q . The meaning of this claim is that the functions σ and σ ∗ share all
the singularities typical for Wα

2 . We illustrate this issue by the following example.
Assume that q is such that σ(x) = ∫ x

0 q(t)dt has bounded variation over [0,1] (i.e., dσ is a
finite Borel measure). Slightly abusing the terminology, we shall say that the potential q of the
corresponding Sturm–Liouville operators Tσ,D and Tσ,N is a finite Borel measure; see also [6,8,
9,32] for precise definitions.
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Proposition 7.2. Assume that q is a finite Borel measure and σ ∗ is the function of (7.1) con-
structed through the corresponding Dirichlet λ2

n and Neumann–Dirichlet μ2
n eigenvalues. Then

the discrete parts of the measures q and dσ ∗ coincide.

Proof. Observe that σ = ∫
q , being of bounded variation over [0,1], belongs to W

1/2−ε

2 for all

ε ∈ (0,1/2); henceforth σ̃ = σ ∗ − σ belongs to W
1/2+ε

2 for all ε ∈ (0,1/2) and thus is continu-
ous. Therefore σ ∗ has the same (jump) discontinuities as σ , i.e., the measures dσ ∗ and q = dσ

have the same discrete parts. �
As a final remark, we note the following. Roughly speaking, formula (1.11) implies that the

Dirichlet spectrum determines the even part of the potential q , while the Neumann–Dirichlet
spectrum the odd part of q . This explains why the unique reconstruction of the potential by the
Dirichlet spectrum is possible if the odd part of q is prespecified, see [28].
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Appendix A. Interpolation and all that

We recall here some facts about interpolation between Wα
2 spaces. For details, we refer the

reader to [7,22,25].
By definition, the space W 0

2 coincides with L2 and the norm | · |0 in W 0
2 is just the L2-norm.

The Sobolev space W 2
2 consists of all functions f in L2, whose distributional derivatives f ′ and

f ′′ also fall into L2. Being endowed with the norm

|f |2 := (|f |20 + |f ′|20 + |f ′′|20
)1/2

,

W 2
2 becomes the Hilbert space.
Now we interpolate between W 2

2 and W 0
2 to get the intermediate spaces Ws

2 with norms | · |s
for s ∈ (0,2); namely, W 2s

2 := [W 2
2 ,W 0

2 ]1−s . The norms | · |s are nondecreasing with s ∈ [0,2],
i.e., if s < t and f ∈ Wt

2, then |f |s � |f |t . The space W 1
2 consists of L2 functions whose distribu-

tional derivative is again in L2, and (|f |20 +|f ′|20)1/2 is the norm on W 1
2 that is equivalent to | · |1.

Also, the Sobolev embedding theorem implies that Wα
2 for α > 1/2 is continuously embedded

into C[0,1], the space of continuous functions.
The following result [7,22,25] provides a powerful tool in the study of mappings between the

spaces Ws
2 .

Theorem A.1 (Interpolation theorem). Assume that 0 � s0 < s1, 0 � r0 < r1, and let T be a
linear operator such that

|Tf |r0 � C0|f |s0, |T g|r1 � C1|g|s1

for all f ∈ W
s0
2 and all g ∈ W

s1
2 . Put st := (1− t)s0 + ts1 and rt := (1− t)r0 + tr1; then for every

t ∈ [0,1] the operator T acts boundedly from W
st to W

rt with norm not exceeding C1−tCt .
2 2 0 1
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We formulate next one result on multilinear interpolation from [7] adapted to our purposes.
It concerns analytic scales of Banach spaces (see also [22]), and we observe that the scales
{Waθ+b

2 }θ∈[0,1] are analytic for any a > 0 and b � 0.

Theorem A.2. Assume that {Eθ }θ∈[0,1] and {Gθ }θ∈[0,1] are analytic scales of Banach spaces,
n ∈ N, and that J is a multilinear mapping from (E1)

n into G1 satisfying the inequalities

∥∥J (g)
∥∥

G0
� C0

n∏
j=1

‖gj‖E0,
∥∥J (g)

∥∥
G1

� C1

n∏
j=1

‖gj‖E1

for some positive constant C0, C1 and all g := (g1, g2, . . . , gn) ∈ (E1)
n. Then J can be uniquely

extended to a multilinear mapping from (Eθ )
n into Gθ , 0 � θ � 1, with norm not exceeding

C1−θ
0 Cθ

1 .

The following result is used in various places of the paper.

Lemma A.3. Assume that f ∈ Wα
2 and g ∈ W

β

2 for some α,β ∈ [0,1]. Then the function h(x) :=∫ x

0 (fg) belongs to W
α+β

2 and there exists some constant C such that

|h|α+β � C|f |α|g|β. (A.1)

Proof. For α = β = 0 the function h is absolutely continuous and |h(x)| � |f |0|g|0 by the
Cauchy–Schwarz inequality, so that (A.1) holds with C = 1. For α = 0 and β = 1, we find that

|h′|0 = |fg|0 �
(

max
x

∣∣g(x)
∣∣)|f |0 � C1|f |0|g|1;

henceforth h ∈ W 1
2 and (A.1) is satisfied for some C = C2 � 1. To treat the case α = 1, β = 0,

just interchange f and g. For α = β = 1 we find that h′′ = f ′g + fg′ ∈ L2 so that h ∈ W 2
2 with

|h|2 � C3|f |1|g|1.
Consider now a mapping Mf :L2 → L2 given by Mf g(x) = ∫ x

0 (fg) with f ∈ L2 fixed.
Then, by the above, Mf acts boundedly in L2 and W 1

2 and

‖Mf ‖L2→L2, ‖Mf ‖W 1
2 →W 1

2
� C2|f |0.

By interpolation, Mf is continuous in W
β

2 for every β ∈ [0,1] and its norm ‖Mf ‖
W

β
2 →W

β
2

is

bounded by C2|f |0; in particular,

|h|β � C2|f |0|g|β.

Analogously, for a fixed f ∈ W 1
2 the operator Mf maps continuously W

β

2 into W
1+β

2 and

|h|1+β � max{C2,C3}|f |1|g|β.

The two above-displayed formulae show that Mg for a fixed g ∈ W
β

2 is continuous as a mapping

from L2 into W
β and from W 1 into W

1+β . Interpolation now yields its continuity as a mapping
2 2 2
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from Wα
2 into W

α+β

2 for an arbitrary α ∈ [0,1] and establishes inequality (A.1). The lemma is
proved. �

The next lemma establishes the required continuity of the mapping I2, see Section 4.

Lemma A.4. Assume that f ∈ Wα
2 and g ∈ W

β

2 for some α,β ∈ [0,1]. Then the function

h(x) :=
1−x∫
0

f (x + t)g(t)dt

belongs to W
α+β

2 and there exists some constant C such that

|h|α+β � C|f |α|g|β.

Proof. The proof is completely analogous to the one of Lemma A.3: one establishes first the
statement for α and β equal to 0 or 1, and then interpolate. The only remark is that for β = 1 one
should use a representation h(x) = ∫ 1

x
f (s)g(s − x)ds to be able to differentiate h. �

Lemma A.5.

(a) Assume that f ∈ Wα
2 , α ∈ [0,1]; then s2n(f ) ∈ �α∞ and c2n(f ) ∈ �α

2 .

(b) Assume that g ∈ W
β

2 , β ∈ (1,2], and g(0) = g(1); then (s2n(g)) ∈ �
β

2 .

Proof. Part (a) follows by interpolation. Indeed, the mapping

S :f �→ (
s2n(f )

)
n∈N

is bounded from L2 into �∞ and from W 1
2 into �1∞. Since the spaces �s∞ form an analytic Banach

scale [22], Interpolation theorem A.2 yields the result about s2n(f ). Similar arguments justify
the statement about c2n(f ).

Part (b) requires only a slight modification. For an arbitrary s ∈ [1,2] we put

W̃ s
2 := {

h ∈ Ws
2

∣∣ h(0) = h(1)
}
.

Since the family {Wθ+1
2 }θ∈[0,1] forms a Hilbert scale, by virtue of the general interpolation result

from [25, Chapter 1, 13.4], the family {W̃ θ+1
2 }θ∈[0,1] also is a Hilbert scale. Simple integration

by parts shows that the above operator S maps continuously W̃ 1
2 into �1

2 and W̃ 2
2 into �2

2. By
Interpolation theorem A.2 the operator S maps continuously W̃ θ+1

2 into �θ+1
2 for all θ ∈ [0,1],

and the proof is complete. �
Remark A.6. Part (b) of the lemma also holds true for β ∈ (1/2,1) (see, e.g., [18]).
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For L2-functions f and g we denote by f ∗ g their convolution, i.e.,

(f ∗ g)(x) :=
x∫

0

f (x − t)g(t)dt.

Recall also that R is the reflection operator about x = 1/2: (Rf )(x) = f (1 − x).

Lemma A.7. Suppose that f,g ∈ L2; then we have

cn(f )cn(g) = cn(h1), sn(f )sn(g) = cn(h2), sn(f )cn(g) = sn(h3),

where the functions hj , j = 1,2,3, are given by

h1 = 1

2

{
R(Rf ∗ g + f ∗ Rg) + f ∗ g + Rf ∗ Rg

}
,

h2 = 1

2

{
R(Rf ∗ g + f ∗ Rg) − f ∗ g − Rf ∗ Rg

}
,

h3 = 1

2

{
R(Rf ∗ g − f ∗ Rg) + f ∗ g − Rf ∗ Rg

}
. (A.2)

Proof. We shall prove only the first equality, since the other ones are treated analogously. We
have

2cn(f )cn(g) =
1∫

0

1∫
0

f (x)g(t)
[
cosπn(x − t) + cosπn(x + t)

]
dx dt,

and simple calculations lead to

1∫
0

1∫
0

f (x)g(t) cosπn(x − t)dx dt

=
1∫

0

( 1−s∫
0

f (s + t)g(t)dt +
1−s∫
0

f (t)g(s + t)dt

)
cosπns ds,

1∫
0

1∫
0

f (x)g(t) cosπn(x + t)dx dt

=
1∫ ( s∫

f (s − t)g(t)dt +
s∫
f (1 − t)g(1 − s + t)dt

)
cosπns ds.
0 0 0
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Taking into account the relations

1−s∫
0

f (s + t)g(t)dt = R(Rf ∗ g)(s),

s∫
0

f (1 − t)g(1 − s + t)dt = Rf ∗ Rg,

we get cn(f )cn(g) = cn(h1) with h1 as stated. The lemma is proved. �
Proof of Lemma 5.2. By Lemma A.7 we have that c(f )c(g) = c(h1), s(f )s(g) = c(h2), and
s(f )c(g) = s(h3) for the functions h1, h2, and h3 given by (A.2).

It is easily verified that, with the operator I2 of Section 4, we have

I2(f, g) = R(Rf ∗ g).

Recalling that R is unitary in every Wα
2 , we conclude by Lemma A.4 that the functions hj

of (A.2) are in W
α+β

2 as soon as f ∈ Wα
2 and g ∈ W

β

2 for some α,β ∈ [0,1] and that, moreover,
with some ρ > 0 the inequality

|hj |α+β � ρ|f |α|g|β
holds. Recalling the definition of the norm in Sα and Cα , we get the required estimates (5.1). �
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