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For the Gaussian channel Y(t) = @((5(s), Y(s); s 5 t) + X(t), the mutual 
information I(I, Y) between the message &.) and the output Y(a) is evaluated, 
where X( *) is a Gaussian noise. Furthermore, the optimal coding under average 
power constraints is constructed. 

INTRODUCTION 

We treat, in this paper, the Gaussian channel 

Y(t) = @(t) + W), O=(tIT, 

where the channel input Q(t) is interfered with by the Gaussian noise X(s). The 
channel in this paper is with feedback, so that the channel input Q(t) is to be a 
causal functional of the message [( .) and the channel output Y( .). 

In the first section, we determine the mutual information It(.$, Y) of f(e) and 
Y(e), using the decomposition of the Gaussian process X(.), based upon the 
canonical representation. The formula of &(f, Y) is given by a causal functional 
of Y( *) in the case where the spectral measure of X( *) is continuous. Such causal 
expressions in spatial cases were given in Kadota-Zakai-Ziv [5] and Hitsuda 
[3]. These results are covered in Theorem 1. 
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In the second section, we construct an optimal coding @(*, w) under the 
average power constraint, when l(e) is a Gaussian message. Ihara [4] constructed 
such an optimal coding in the special case of a white Gaussian channel. The 
crucial difference between the present paper and the former [4] is that the noise 
is taken to be a general Gaussian process and that we must consider the mutual 
interaction among many decomposed subchannels arising form the canonical 
representation. Furthermore, our method enables us to evaluate the value of 
the channel capacity (Cor. 2). 

1. GAUSSIAN CHANNELS WITH FEEDBACK 

In this section, we introduce the basic notations and evaluate the amount of 
mutual information between the message and the channel output. 

Let the message be a stochastic process f = g(t), 0 5 t s T, and let the 
noise be a separable Gaussian process X(t), 0 5 t 5 T, independent of [( *). The 
channel to be considered is defined by 

Y(t) = @(t) + X(t), (0 5 t S T < co). U-1) 

Let us assume that the output Y(e) and the modulator output Q(t) = @(t, w) 
satisfies the following. 

ASSUMPTION 1. Y(t) is X(t) v s(t)- measurable for each t, where 3(t) = 
0(X(s); s 5 t}(the u-algebra generated by {X(S); s < t}) and g(t) = a{((~); 
s 5 t}. 

ASSUMPTION 2. Q(t) is ‘I)(t) v g(t)-measurable for each t, where ‘X)(t) = 
{Y(s); s 5 t}. 

ASSUMPTION 3. Almost all paths of @(a, W) belong to the reproducing kernel 
Hilbert space (RKHS) S(X) = Sr(X) corresponding to the Gaussian 
process X(e). 

Based upon Assumption 2, we can write formally @(t) = @(t, Yet, ti), 
where Y,,* and &,” are the paths of the respective processes up to t. 

We put another assumption on the canonical representation of the noise X(t). 

ASSUMPTION 4. The Gaussian process X(t) has the canonical representation 
(in the sense of Hida-Cramer, cf. [2]), 

(1.2) 



108 HITSUDA AND IHARA 

where F,(t, U))S are Volterra kernels and d&(u)‘s are mutually independent 
white noises with continuous measures 

mi(du) = E [ dBi(u)lz, (1.3) 

such that mi(du) > m,+,(dtl). 
Assumptions 3 and 4 imply that the a-algebra Z(t) is equal to the u-algebra 

g(t) generated by {B,(s); i = I,..., N, s 5 t}, and that 

By the representation (1.4) of the RKHS, we obtain the following. 

PROPOSITION 1. Under Assumptions 2, 3, and 4, the modulator output @p(t) 
in (1.1) has a representation in the form 

@(t, W) = zi SbF,(t, u> ~4~2 w> mi(du), 

il jo* Q(uj w> m&W < * (a.e. w), 

(1.5) 

where cpi(u, W) is b(u) v P(u)-measurable for each u. 

Proof. The representation (1.5) follows from (1.4), if we can prove the 
b(u) v g(u)-measurability of qi(u, w). Let us consider the isomorphism 

q(X) 3 @(-, u> +-+ (n(*, w>,..., vN(*, w>) E fi Wmi; LO, tll 0.6) 
i=l 

for any t, where q(X) is the RKHS of the subprocess {X(s); s 5 t}. Since 

@(s, w)(s S t) is b(t) v E(t) -measurable, x,(s, W) = Ji &J, W) mi(du)(s 5 t) is 
also (D(t) v c(t)-measurable for each i. In particular, the xi(s, w)‘s are B(s) v g(s)- 
measurable. Differentiating xi(s, w), we can get the g(s) v g(s)-measurability of 
vi(u, w) for u 5 s, by choosing a suitable version. 

PROPOSITION 2. (i) Let B(t) be th e vector valued Gaussian martingale 
(B,(t),..., BN(t)), and let Z(t) = (&(t),.,., Z,(t)) be the vector valued process 

(B&) + St du, ~1 mddu)~..., &(t) + ~t~N(~. w) m&W). (1.7) 
0 0 
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Then the measure ,uz induced by Z(.) is absolutely continuous with respect to the 

measure pB induced by B(.). In this case, if EICL1 s: q~“(u, w) mi(du)] < 03, the 
density dpzjdpB is given by 

where $i(u) = JQJ&~I 3(u)], 3(u) = u{Z(v); v 5 4. 
(ii) The measure pr induced by Y(.) is absolutely continuous with respect to 

the measure pLx induced by X( .). 

Proof. In the case of N = 1, (i) is proved in Kailath [6] and in Liptzer- 
Shiryaev [7, 81. E ven in the case of N 5 co, the analogous argument to that in 
[6] is available, because 

In order to prove (ii), we note that 

(1.9) 

By (i), there exists a density M(o), such that B(e) under the measure P”(dw) = 
M(U) P(&) has the same distribution as Z(m). Hence 

has the same distribution as Y(*) under the measure P”(A). Therefore, pz 
is absoluteIy continuous with respect to pX . 

PROPOSITION 3. (i) The o-algebras ‘l)(t) and 3(t) are equivalent. 

(ii) The mutual information It(t, Y) between the message {t(s); s S t} 
and the channel output {Y(s); s 5 t> is equal to the mutual information I$(f, Z) 

between (KS); s 5 t} and {Z(s); s I: t>. 

Proof. (i) Since X(t) and B(t) are equivalent, the results follow imme- 
diately by the measure transformation stated in Proposition 2. 

(ii) This statement is trivially derived from (i). 

Based upon these Propositions, we can evaluate the mutual information as 
in the following theorem. 
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THEOREM 1. Under Assumptions 1-4, if 

(1.10) 

then the mutual information It( 5, Y) is given by the formula 

US, Y) = I&Z) = i ,5 1” E / &u, W) - &(u, w)i2 m@s), OI_tIT, 
24 0 

(1.11) 

where Q&, w) = Eh(u, w)I b(41. 

Proof. By Gelfand-Yaglom [l], we know that 

W 4 = I(Z, 8 = W-vddwz.M~z x ,,)K 5)). (1.12) 

In order to show that ~l(~,~) is absolutely continuous with respect to pa x t.+ , 
and to evaluate the right hand side of (1.12), we use the densities of the measures 
pz and pzlc related to the Wiener measure tag , where pZlr means the induced 
measure of Z(o) for a fixed message k = I(*). Note that 

and 
d~zddLLg(Z) = dtl(z.ddmdZs S> (a-e.>, (1.13) 

dtLzldtLg(Z) = d&z x cLddtL(mG 0 (a-e.>, (1.14) 

because ,AL(~,~) = TV, x pE . Let us consider the ratio of (1.13) and (1.14). Then 
we obtain 

(cf. [g, p. 3361). It is well known that for each Z(s), the numerator dpz(,/d&Z) 
is given by 

(cf. [3] in Gaussian case) and the denominator is already given by Proposition 2. 
So the right-hand side of (1.12) is calculated as follows. 
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(by (l-7)) 

The last equality is justified by the fact that 

E ( gl s,r rpiW dB,W) = E ( !l j-)4(4 d&W) = 0, ‘s 
which follows from the assumption (1.10). Thus, Theorem 1 is proved. 

2. CAPACITY OF THE CHANNEL 

In this section, we impose an average power constraint on the-channel input 0 
for Gaussian channels which have been formulated by (1.1) with Assump- 
tions 1-4. 

Let Pi(t) 2 0 (i = l,..., N) be a monotone nondecreasing function. The 
constraint is formulated by 

E [Jo; vi”(u) mi(du)/ I P*(t), 0 I t 5 T, i = l,..., N. 

If we denote the norm in the RKHS X$X) by 11 * Jlt, we then have 

(2-l) 

It is easy to obtain the following proposition by the use of Theorem 1. 

PROPOSITION 4. If the input signal @ satisfies the constraint (2.1), the mutual 
information I$(-$, Y) is evaluated by 

us, y> I (l/2) p,(t). 

It follows from this proposition that if we could find the coding 

w = qt, yet, toy 

(2.3) 

by which the equality holds in (2.3) then the coding would give the optimal one 
in the sense of information transmission. In what follows it is shown that the 
optiial coding does exist and indeed it is found in the class of Gaussian 
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processes. From now on, the construction of such an optimal coding will be 
discussed in the case of Gaussian message l(e), 

Let the message ,$ = {f(t); 0 g t 5 T} be a mean-zero Gaussian process 
satisfying the two conditions (a) and (b): 

(a) g(.) belongs to S(X) for almost all w, i.e., 

&, w) = *$ SbF,(t, 24) &(I4 a> me4 
a-e. wy (2.4) 

where CL, Ji @(u) m,(du) < co. 

(b) E[@(t)] # 0, 0 2 t 5 T, i = l,.,., N. 

Now we get the following theorem. 

THEOREM 2. Let the Gaussian message f = {f(t); 0 s t 5 T) satisfr the 
conditions (a) and (b). If th e constraint functions Pi(t) are absolutely continuous 
with respect to the spectral measures mi(du) = E 1 dB,(u)la(i = l,..., N), then 
there exists a unique output Y(.) andpositive functions &(t)(i = I,..., N) satA-fying 

Y(t) = 5 j t Fdt, 4 44(&(4 - b4) m&u) + W> (2.5) 
i-l 0 

and 

49 E I W - &)I2 = ,4> (i = I,..., N), (2.6) 

where the pi(t) are the densities of the Pi(t) with respect to the mi(dt) and where 

&ct> = mw)l ‘DWl* 
Remark. The channel given by (2.5) satisfies the Assumptions 1-4, and we 

obtain 

&(l, Y) = i a: ,d P&> m&W = i PO(t), (2.7) 

by the use of Theorem 1. Therefore, the coding is the optimal one. It is 
interesting that the optimal coding is attained by a linear functional of f(m) 
and X(a). 

For the proof of Theorem 2, we prepare four lemmas. 

LEMMA 2.1. If there exist a unique vector vaZuedprocessZ( -) = (Z,( -),..., Z,( +)) 
and the functions &(t)(i = l,..., N) sattify 

G(t) = 1” 44(W - &4) m&N + W (i = l,..., N), (2.8) 
0 
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and 
Mt)m(t) - &)I2 = Pi(t)> i%, = Jwi(4l 3(41, (2.9) 

then the statement of Theorem 2 holds. 

Proof. Define 

(2.10) 

Then the process Y(t) and the functions At(t) are desired ones, since 3(t) = g(t) 
for each t and we can apply Theorem 1. 

The following three lemmas, except the inequalities (2.15) and (2.16), are 
proved in the same way as in Ihara [4], where the corresponding lemmas are 
proved in the case of N = 1. 

LEMMA 2.2. Let [(.) satisfy the condition (a), and let f(s, t) = (fij(s, t)), 
where fij(s, t) is a Volterra kernel satisfying 

; JOT Sb’f %s, t) m&s) m@t) < 00. 

Then the stochastic equation 

G(t) = j/” (&W -f&4) m&W + 4(t) (i = l,..., N), 
0 (2.11) 

has a unique solution Z(o) = Z,( *) and the a-algebras 3(t), t E [0, T], are invariant 
under f viewed as a Volterra operator. Moreover, the mutual information I*((, Z) h 
also invariant under f. 

LEMMA 2.3. (i) Let 

A,!‘)(t) > A?)(t), 0 < t < T, 2 = l,..., N. 

And let W(t) = (Zy’(t),..., Z!‘(t)), where 

Z!)(t) = Jt A!‘(u) &(u) m,(du) + l&(t) (j = 1,2). 
0 

(2.12) 
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Then the inequalities 

and 

E I &(t) - $%,I2 < E I k(t) - f!%,l”, (2.13) 

Id 5, Z’“) >= Id 4,2’2’) (2.14) 

hold, where &‘(t) = E[&(t)I s(j)(t)] and #i)(t) = a{Zo)(s); s 2 t}. 

(ii) In addition, let us assume that there exists a measurable set r such that 
mi(lJ > 0 for some i and that 

Al’(t) > d2’(t) z I 7 t E f. 

Then the following inequality holds, 

I&, Z(l)) > I&, zt2’). (2.15) 

SinCe &(*), i = l,..., N, are mutually independent processes with independent 
increments, we can prove the inequalities (2.14) and (2.15), using some basic 
properties on the mutual information. 

LEMMA 2.4. If for each t 

Ala(t) E I ft(t> - [i( I At), i = l,..., N, (2.16) 

then inequalities 

and 

E I L(t) - &t)12 b EL!:(t)] edPott), (2.17) 

hold. 

A:(t) E[f:(t)] < -Pi(t) epott), i = I,..., N, (2.18) 

Remark. If we give a system of positive functions A,(t), i = I,..., N, as a 
multiplier Y(a) can be determined by (2.5). So the conditional expectation 
&(L) has a definite meaning. 

Now, we turn back to the proof of Theorem 2. 

Proof of Theorem 2. At first, we wish to construct an approximating sequence 
A&t) to A,(t). Define Ak,i(*), Zjk)(*), l&-) and &(t) by induction: 

d&J = E I W12, 

4,dt) 4-l.dt) = Pi(t>t 

z?‘(t) = J’ A,,i(u) h(u) m&4 + h(t), 
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where a@)(t) = a{(Zi*)(s),..., ZF’(s)); s 2 t}. Then, by the use of (2.13) in 
Lemma 2.3, we get the monotonicity of A&t) and &(t): 

&At) d &+1&) and 

Thus the desired nonnegative function Ai (i = l,..., IV) can be defined by 

&(t) = $il Ak,&). 

By Lemma 2.4, Ai,i(t) II@?(t)] * b IS ounded uniformly in k, hence At(t) Q&“(t)] 
is also bounded. So we can define 

.2$‘(t) = J” A&) 5,(u) m,(dff) + B,(t), 
0 

P(t) = Jq&(t) I3"'(91 , 

u?(t) = E j t.(t) - x$“‘(t)/” I 1 2 9 

where 3(0)(t) = u((ZjO)(s),..., Z:)(s)); s S t}. Then, 

f$(t) = pI &(t) 

is easily derived. Therefore, 

A;(t) of(t) = pJ &i(t) c&(t) = Pi(t) 

hold. Let us put 

zi(t) = 1’ Ai(“)(ti(u) - s^iC”>) %tdu) + Bi(t)* 
0 

By Lemma 2.2, 3(t) = u{Z(s) = (Z,(s),..., Z,(S)); s I: t) is equal to 3(O)(t) 
for any t, so we get 

%(t) = Jq&(t) l3@)1 = J%(t) I 3'0'(t)l = ZP'W* 

Therefore, we can derive (2.9). 
Now we prove the uniqueness. We assume that there exist two pairs (A?)(t), 

i=l ,..., N,Z(j)(-)) (j = 1,2) of the solution of (2.8) and (2.9). Define the 
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functions Ai*( i = l,..., N, and the vector valued process Z*(e) = 
tZl*(.),...> Z,*t*)) by 

and 

A,*(t) = max(&)(t), /p(t)), 

zj*(t) = I’ A,*(u) (j(U) rnJ(dzt) + B,(t). 
0 

Then, from Lemma 2.2 and 2.3, we have 

E I h(t) - &*@>I2 < E I &(t) - lZj’(t>12, j= 1,2, (2.19) 

where &*(t) = E&(t)] 3*(t)] and &j(t) = E[&(t)l 3(i)(t)]. Using (2.19) and 
the formula (1.1 l), we get 

&t&Z*) = ; ; 1” (A*(W E I t&) - &*@)I” m&u) 
a-1 0 

5 ; jg Iot (&'(u))~ E I Si(u) - cfy'(,," mi(du) 

= &(&Z(j)), 02tdT, (j=1,2). 

On the other hand, if we assume that @J(t) # Ai2)(t), for t E r, where r is a 
measurable set such that mi(P) > 0, then from Lemma 2.2 and 2.3 we have 

&(f, ZX) > &5 Z(j)). (2.21) 

The inequality (2.21) contradicts to the inequality (2.20). 
Thus the proof is completed. 
Now we give two corollaries which are easily seen from Theorem 2. 

COROLLARY 1. Let I(-) satisfy the conditions (a) and (b). Then there exists an 
optimal coding @(t, w) satisfying 

w, Y) = l/2 P,(t), t r 0, (2.22) 

if and only if, there exist nonnegative densities pi(t), 1 < i 5 n, and PO(t) is 
represented as 

pow = 2 Pi@), 
i-1 

P&) = Jot ~44 mi(d@. 
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Proof. The “if” part is none other than the statement of Theorem 2. The 
“only if” part is a direct result from the equality for the optimal coding @(*, w), 

(cf. Theor. 1). 
The following Corollary 2 discusses the case in which some of P,(t)‘s are not 

absolutely continuous with respect to m,(du). Let C,(O 2 t 2 T) be the capacity 
of the channel (1.1) satisfying Assumptions l-4 and (2.1): 

@ = ((6 @); XC-), Qj(*) and Y(.) = ID(.) + X(.) satisfy Assumptions 14 
and (2.1)). 

COROLLARY 2. The channel capacity Ct is evaluated by 

c, = l/2 PO(t), OItST, 
where 

PO(t) = 5 Pi(t), 

i=l 
WI = o”y; Qdt) 

t I 

and 

~2~ = IQ,(-); Qi(s) = loa p(u) m@u) and Qi(s) 5 P&for any s/. 

Proof of Corollary 2 can be easily shown from the proof of Theorem 2. 
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