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Restricted maximum likelthood (REML) estimation is a method employed to
estimate variance—covariance parameters from data that follow a Gaussian linear
model. In applications, it has either been conjectured or assumed that REML
estimators are asymptotically Gaussian with zero mean and variance matrix equal
to the inverse of the restricted information matrix. In this article, we give conditions
under which the conjecture is true and apply our results to variance-components
models. An important application of variance components is to census undercount;
a simulation is carried out to verify REML's properties for a typical census
undercount model. ¢ 1993 Academic Press, Inc.

1. INTRODUCTION

Consider the Gaussian general linear model,

Y ~ N, (XB. 2(0)), (1.1)

where Y is an nx 1 data vector (Y,,...Y,), X is an nx p matrix of
explanatory variables, B=(f,, .., 8,) is a px 1 vector of unknown large-
scale effects, and X'(8) is an r x n positive-definite variance matrix which is
known up to a k x 1 vector of small-scale effects 0= (8,, ..., 8,) € & open in
R*. Define e =Y — XP, the nx 1 vector of errors.

For 0 known, estimation of B is straightforward. Assuming only that
E(Y)= XPB and var(Y)=2(8),

BO)=(X'20) 'X) 'X'X®) 'Y (1.2)

is the best linear unbiased estimator of B, in the sense that for any linear
unbiased estimator f, var(p)— var(f) is nonnegative-definite [1]. More
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realistically, 8 is unknown and has to be estimated: substitution of that
estimator into (1.2) then yields an estimated generalized least squares
estimator of §.

Note that under model (1.1), the negative loglikelihood of p and 0 is

L(B. 0) = (n/2) log(2r) + 3 log(]2(8)])
+3Y—XB) £(8) '(Y-XB), (1.3)
where for any matrix 4, |A| denotes its determinant. Minimization of this

function yields the maximum likelihood (m.l.) estimates f,,, and 0,,,. The
estimating equations, obtained from the profile likelihood of 0, are

mie

tr{Z0) 'Z.(0))+Y(2[1(0)/36,Y=0; i=1,..k  (14)

where X ,(0)=02X2(0)/00, and

0)=x2(0) '—20) 'X(Xx'20) 'x) 'xx0) " (1.5)

Under appropriate regularity conditions {16,917, 0,, is asymptotically
unbiased and

J(8)"2 (8,,—8)—5 N0, 1), (1.6)
where the (i, j)th element of the information matrix J(8) is

(J(8)),=3tr{Z(8) ' Z,(8) Z(8) 'Z,(8)). (1.7)

Although they are asymptotically fully efficient, dissatisfaction with m.l
estimators has come from their finite-sample properties. Simulation studies
by inter alia Swallow and Monahan [15], Mardia and Marshall [9], and
Zimmerman [ 18, Section 2.4] all demonstrate that m.l. estimators can be
badly biased when # is small. Depending on the context, this bias can have
serious consequences, for example, in census undercount (e.g., [2]).

An alternative method of estimating 0 is considered in this article.
Section 2 gives the definition and basic properties of restricted maximum
likelihood (REML) estimation, due to Patterson and Thompson [11, 12].
Section 3, which contains the most important results of the article, gives
general conditions under which the normalized REML estimator is
asymptotically a zero-mean Gaussian random vector. Section 4 applies
these results to variance-components models, and Section 5 compares, via
simulation, exact and asymptotic distributions of the REML estimator in
a census-undercount model. Section 6 contains proofs of the results given
in Sections 3 and 4.
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2. RESTRICTED MAXIMUM LIKELIHOOD

The method of restricted maximum likelihood (REML) estimation of
variance-matrix parameters 0, developed originally by Patterson and
Thompson [ 11, 127, applies maximum likelihood to error contrasts rather
than to the data themselves. (Rao [13] calls this method MML, marginal
maximum likelihood, in the context of estimation of variance components.
Recently, some authors have also called it residual maximum likelihood,
althcugh they have retained the abbreviation REML.)

A linear combination 'Y is called an error contrast if E(y'Y)=0, for all
B and 0. Let U=17"Y represent a vector of n — p linearly independent error
contrasts; ie., the (n— p) columns of I are linearly independent and
I"X=0. Under the Gaussian assumption (1.1), U~N, (0, 772(0) 1),
which does not depend on B. Thus, when I does not depend on 0, the
negative loglikelihood function based on U is

L. (0)=((n— p)/2)log(2n) + 3 log(|7"Z(8) I'l)
+iUrE®) )yt U (2.1)

If another set of (n— p) linearly independent contrasts were used to
define U, the new negative log likelihood function would differ from L ,.(8)
only by an additive constant (Harville [57]). Harville also shows that for a
I that satisfies I'T'=I—X(X'X) "X (and I'"'C=1),

Ly (8)=((n—p)/2)log(2n)— $log(|X'X|)+ }log(|X(8)})
+§log(|X'Z(9)" X&)+%Y’1‘I(9)Y, (2.2)

where [1(8) is given by (1.5). A REML estimator of 0, denoted 9,,, is
obtained by minimizing (2.2) with respect to 8. The distinction between
REML and m.. estimation becomes important when p is large relative to n.

The REML method was originally proposed to estimate variance-
component parameters: Numerical algorithms [6] and robust adaptations
[4] have been developed in this context, although distribution theory is
lacking. REML can also be used to estimate spatial-dependence parameters:
Kitanidis [8] and Zimmerman [18] give computational details for
producing an iterative minimization of (2.2) in this case.

Harville [5] provides a Bayesian justification for REML by assuming a
noninformative prior for B, which is statistically independent of 0, and
showing that the marginal posterior density of 0 is proportional to (2.2)
multiplied by the prior for . When that prior is noninformative, REML
estimates correspond to marginal MAP (maximum a posteriori) estimates.
Thus, in the situation where noninformative prior distributions for f and
0 are independent, REML can be seen as a compromise between m.l. and
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Bayes estimation with squared error loss: REML averages the full
likelihood over B but then maximizes the resulting (restricted or
marginal) likelihood over 8, whereas the Bayesian approach yields
[@exp{—L,(8)} d6. Although the Bayesian interpretation of REML helps
to explain its properties, 8,, also has the obvious frequentist interpretation
of being an m.l. estimator based on restricted information.

Minimization of (2.2) with respect to 0 can proceed by any of the
gradient algorithms (e.g., [6]). The estimating equations, obtained by
differentiating (2.2) with respect to @ and setting the result equal to zero,
are easily seen to be

tr{71(0) £,(0)} + Y/ [AI1(0)/00,) Y=0; i=1, ..k (2.3)

A comparison of (2.3) and (1.4) shows remarkable similarities between the
REML and m.L estimating equations. It is not difficult to establish that,
E[Y'[IT(0)/00,} Y] = —tr{11(8) X,(0)}, and hence the m.l. estimating
equations (1.4) are biased but the REML estimating equations are exactly
unbiased. This goes some way towards explaining the REML estimator’s
superior bias properties in small samples.

3. ASYMPTOTIC DISTRIBUTION OF 0,

In contrast to 0,,, asymptotic propertics for the REML estimator 9,
have received little attention in the literaturc. Mardia and Marshall [9]
studied the consistency and asymptotic normality (CAN) of @, under the
general linear model (1.1) and also gave results for a spatial linear model.
Miller [10] obtained like results for 8,, assuming a variance-components
structure for 2'(0). However, nothing seems to be known about the CAN
properties of 8,,. In this article, we show that, under appropriate regularity
conditions, 8, is asymptotically normal with mean 0 and dispersion matrix
((Ee(ﬂzL(v(O)/ﬁ(),-(‘(),))) ' The main tool used in the proof is a general
result of Sweeting [16] on CAN of m.l estimators, adapted here for
REML estimators.

For easy reference later on, we shall state a version of Sweeting’s [16]
result that is most useful for the present problem. Let .#,(0) denote the
matrix of second-order partial derivatives of the negative log likelihood
function L, (-), defined by (2.1). For a matrix M =(0Y,..,00), .. 0%€ O,
write .#,(M) for the matrix with (i, j)th element (@?L,.(8)/26,730,)]4_ g\
1<i,j<k. For any Ixm matrix B, let |B|={tr(B'B)}'?, |B|, =
sup{||Bt|: [|t| =1, te R"} and (B),=the (i, j)th element of B. Also write
((a;)) for a matrix whose (i, j)th element is a,. Let —» denote uniform
convergence of nonrandom functions over compact subsets of @, and for
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[-dimensional random vectors V,, V, write V, = Vif E, f(V,) —» E f(V)
for all bounded uniformly continuous functions f: R’ — R. Here, and in
what 1s to follow, it is understood that all the limits are taken as n — x.
Note that, by the well-known Helly-Bray theorem, V, ==V implies V,
converges in distribution to V.

The following result can be casily deduced from Theorems |1 and 2 of
Sweeting [16]:

THEOREM 3.1. Asswme that

(C.1)y  X(8) is nwice continyously differentiable on 6,

(C.2) there exist nonrandom, k x k matrices W(0) and {B,(0):nz= 1},
continuous in 8, such that |B,(8) ') = 0 and B,(8) ' 4(0)(B,(0) ') =
W(0), where W(0) is positive-definite (p.d.) for all 8¢ O,

(C.3) forall ¢>0,5>0,

(i) sup{llB,(8) 'B,0°)—1|: [(B,(08))(0-0°)|<c; 0,8°cO}
— O

(i) for M=(07....07). Py(sup{[|B,(8) '(4,(M)—.7,(8))(B,8) Y|l
B8 (0—0)) <, 1 <i<k}>n)—> Q. Ler 0, be the REML estimator

based on the first n observations, Then,
(B,(0)) (8, —8) = N, (0. W(8) ").

In applying Theorem 3.1, one needs to check the validity of assumptions
(C.1), (C.2), and (C.3). Conditions (C.1) and (C.3)(ii) require smoothness
of the dispersion matrix 2(6) as a function of 8 and can be checked directly
for a given model. Condition (C.3)(i) depends on the choice of the
normalizing matrices {B,(0)},. ; typically, such matrices can be chosen
with enough smoothness to guarantee (C.3)(i). Consequently, we shall
concentrate on the verification of (C.2) and, for the rest of this section,
assume

ASSUMPTION (A.1). Conditions (C.1) and (C.3) of Theorem 3.1 hold.

This assumption is verified in Section 4 for variance-components models.
Note that if {B,(0)}, ., and W(0) satisfy the requirements of Theorem 3.1,
then for any k x k nonsingular matrix B(8), continuous in 0, B,(0)= B,(0)
B(8) ' and W{8)= B(6) W(8) B(®) also satisfy conditions (C.2) and (C.3).
Consequently one may choose B,(0) suitably to simplify verification of
these conditions.

Before we formulate Theorem 3.2, we need to state two technical
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assumptions that will be seen to be sufficient for condition (C.2). Define
Cu(e) = (Bn(e)) 2’ (.1”(0) = (Cn(e))i/ﬂ and 211(0) = 522(9)/601 68/, l g i’j< k'

ASSUMPTION (A2) As  n— o, D S ‘,‘12’;_,1,,(,,,{&(17()

2,8 )17(9)2,,. + 37 (Z(0)'7 11(8) X,(0) [1(0) Z(8)'?),, - (X(8)'?
11(8) 2,,(8) (9)2(0)")"}“*0

ASSUMPTION (A.3). As n— w0, ,_1 ,,IZ, L 2K ey, {te(1(8)
Z,(0) I1(8) Z,(8) I1(08) Z,(8) 11(0) £ (8)) + X7_, (X(8)" 2”17(9)2 (8) 11(8)
2,(6)110 )2(9)”),,-(2( )2 I1e) X ( 17(9)2(0)17( ) Z(8)'12),,} == 0.

THEOREM 3.2.  Assume that there exist nonrandom, p.d. matrices W(9)
and {B,(0)},., continuous in O, such that ||B,(8) '| —> 0 and B,(0) '
Eqy5,(8) B (0) '— WI(®). Then, under Assumptions (A.1), (A.2), and (A.3),
0, =0, satisfies

e)(en_e) =>Nk( (0) l)-
CoroLLARY 3.1. Under the conditions of Theorem 3.2,
V,=[E,%,(0)]" (8, - 0) = N6, ]).

For constructing confidence sets, Corollary 3.1 is not very useful since
the normalizing matrix [ E,.%,(0)]"? depends on the unknown parameter 9.
The next result allows for a data-dependent choice of the normalizing
factor.

COROLLARY 3.2. Define R,(0)=[£,.%,(0)]"2 Suppose that there exist
nonrandom matrices W(0) and {B,(0): n=1}, continuous in 0, such that
B,(0) is p.d., W(@) is nonsingular and

R,(8) B.(0) ' —> W(8). (3.1)
Then, under Assumptions (A.1), (A.2), and (A.3),

Rn(én)(én - 0) = Nk(os 1)

Verification of Assumptions {A.2) and (A.3) can be quite lengthy if one
wants to use the natural choice of normalizing matrices, viz., B,(0)=
[E4#,(0)]"% However, the amount of computation can be significantly
reduced under some special choices of B, (8). In Theorem 3.3 below we
choose B,(0) suitably and formulate some easy-to-check sufficient condi-
tions for Assumptions (A.2) and (A.3) to hold. Define the matrix Q,(0) by

(Q,(0)),;=1r(11(8) 2,(8) 11(0) 2,(8))/( 71(8) 2,(8) 177(8) Z.(0)1)),  (3.2)
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1 <1, j<k. Also, let |4,,(0)| < - €]4,(0)| denote the absolute eigen-
values of X(8), |4|,(8)]<--- <|A,(0) denote those of X,(8), and
[AY(0) < --- <|AY (8) denote those of 2',(8), 1 <i, j < k. For convenience,

we usually suppress dependence on 8 and » unless clarity demands it.

THEOREM 3.3.  Assume that Assumption (A.1) holds and that there exists
a p.d. marrix W(8), continuous in 0, such that Q,(0)—> W(0), where Q,(-)
is defined by (3.2). Assume further that T%_ | I1(8) Z .(8)| ' —» O. If there
exists a sequence {r,},-, with 1 <r,<n—p for all n21, such that

k 2
(;01/;'1)4 {n/(n =r,— p)2 } { Z ()~:,//}*£n)2} Tad 0, (33)

i=1
k k
(An/A)? {nfin—r,— p)*}? { YooY (A (AL 2} -0, (34)
i=1 j=1
then @,, = 6,, satisfies

[Eo(£,(8))]"2 (8, —0) == N(0, I).

Remark 3.2. Each of the following conditions implies (3.3) and (3.4):

(S.1) There exist 0 <n < 1 and a sequence of integers {r,} such that
for all 1<i, j<k, (a) limsup,_., . n 'r,<l—pn, (b) limsup,_ . |}
|47 <! (c) Api; =o(n), and (d) Ay(A0)* (4] A1) *=o(n).

(S.2) There exists a sequence of integers {r,} such that r, =o(n),

liminf, . |)-i"| >0, liminf, , . 4, >0, and A3(|A5|* + |A}|?) = o(n), for all
1<i,j<n

COROLLARY 3.3. Ler B,(0)=diag(||/1(0)2,(0)], ... |1(8) X,(0)]) and
recall that R,(0)=[E,.2,(0)]"2 Assume that (3.1) holds for some non-
singular matrix W(@), continuous in 0. Then, under assumptions (3.3) and
(3.4),

R,(0,)(0,—0) = N,(0,1).

4. VARIANCE-COMPONENTS MODELS
In this section, we specialize the original model (1.1) to
2O0)=0lA,+a’A, + - +0lA,, (4.1)

where o5=1, 0=(0,,..,0,)Y =(07,...,6;) €(0,c)x --- x(0,0c) =6,
Ay, A\, ..., A, are known nonnegative-definite (n.n.d.) matrices, and A4, is

68345 2.5



224 CRESSIE AND LAHIRI

p.d. Asymptotic properties of 0,,in variance-components models have been
investigated by Miller [10]. Although 0, is preferred to f),,,, in many
applications, asymptotic results for REML estimators have not been
available. For the variance-components problem, Rao and Kleffe [14,
p. 236] establish the equivalence of REML and a form of iterated MINQ.
They go on to show that if the starting value of the iteration is consistent,
then so is the iterated estimator (their Section 10.5). Further, they consider
the efficiency of REML estimators assuming that the estimators are
asymptotically normal (their Section 10.6). The following theorem gives
sufficient conditions under which REML estimators of 8= (63, ..., g7) are
asymptotically normal.

THEOREM 4.1. Assume that the model (1.1), (4.1) holds, and that

(1} there exists a pd. marrix W(8), continuous in 0, such thar
tr(71(8) A,71(8) A,)/|71(8) A, | 11(8) A, —> (W(8)), for all 1<i.j<k.
and

(2) there exist ne (0, 1) and a sequence {r,} of positive integers such
that for large n, r,<(l—n)n;, (Ti_ a5 2, Y)=o0(n). and a,,>n,
where a, < .- <a,, are the eigenvalues of A,, 0<i<k. Then, 0,=0,
satisfies

[E¢%,(0)1"2 (8, —8) = N,(0, ).

CoOROLLARY 4.1. Let B,(0)=diag(|[/1(8) A,|, ..., |[T(0) A ) and recall
that R(0)=[E,.%,0)]'2. If (3.1) holds for some nonsingular matrix W(0),
continyous in 9, and condition (2) of Theorem 4.1 holds, then

R,(0,)8,—0) = N,(0,]).

Remark 4.1. There are no further conditions beyond (1) and (2) needed
to prove Theorem 4.1. In particular, Assumption (A.1) of Section 3 is not in
effect in this section. The growth condition (X¥_, o )(X5_, 2, ) =o0(n), on
the eigenvalues of 4y, 4,, ..., A, i1s used for verifying conditions (C.2) and
(C.3). In many applications (e.g., [7]), {%;}.51,» 0<i<k, are bounded
and «, >n>0 for all 1 <i<k, so that this condition automatically holds.
However, there are some simple examples (e.g., the two-way random-effects
model), where the component matrices {A,;} have too many zero eigen-
values and condition (2) of Theorem 4.1 fails. In such cases, the more
general result given by Theorem 3.2 may be applied directly.
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5. AprpPLICATION OF REML 10 CENSUs UNDERCOUNT IN THE U.S.A.

Although a census attempts to carry out a complete enumeration of the
population, for various reasons the final tallies are inaccurate. Suppose the
United States is divided into i=1,..,n areas (e.g. states, including
Washington, D.C.). In the ith area, let 7, be the true (unknown) count and
C, be the census count. Then the undercount (in percentage) is defined as,
U,={(T,— C;)/T,;} 100. Adjustment of the census count C,, by the adjust-
ment factor F;=T,/C,;, yields the true count, T;= F,C,. Clearly, F, and U,
are monotonic increasing functions of each other. In what is to follow,
F=(F,,...F,) will be predicted based on further information obtained
from a post-enumeration survey (PES). The PES samples several hundred
thousand households from which capture-recapture estimates are com-
puted to obtain “raw” adjustment factors Y.

Assume, given F, that Y ~ N, (F, 4), where the n x n variance matrix 4
is known from sampling considerations. The vector F is unknown and to
be predicted from the data Y. Assume further that F ~ N, (X, t°D), where
X i1s an ax p matrix of explanatory variables, p is a px/ vector of
(unknown) coefficients of the linear model, 7? is an unknown variance
parameter, and D is a known n x n variance matrix. Then the model (1.1)
holds with 8= 1t? and X(t*)= 4 + t°D.

Based on 1980 PES data at the state level, Cressie [2] models
D =diag(1/C,, .., 1/Cs,;} and X =[X,X,X,], where X, is the 51 x 1 vector
of I's, X, is the vector of percent minority, and X, is the vector of
percentage of people over 25 who have not graduated from high school.
(These and other explanatory variables are discussed by Ericksen, Kadane,
and Tukey [3].)

If 72 is known, then the best linear unbiased predictor (BLUP) of F is

(e.g., [2]):
Y %)= {1—-All(7)} Y, (5.1)

where 71(1?) is given by (1.5). Typically, t? is unknown, so that it has to
be estimated from the data Y. Two possibilities are maximum likelihood
(m.L.) and restricted maximum likelihood (REML). Inference (asymptotic)
on t° follows from results presented in the previous sections. For example,
if conditions (1) and (2) of Theorem 4.1 hold, then 77, is CAN. In this case,
k=1, so that condition (1) holds trivially with W(8)=1. Condition (2)
says that, after removing from consideration areas with large populations,
the maximum of census count ratios should grow slower than n'®. Since
n=>51 is fixed, the condition cannot be verified, but it will be seen from
simulation that Theorem 4.1 offers a reasonable approximation.

To check the asymptotic distribution theory of 2, and 72, a simulation

ri»
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was carried out using realistic parameter values (obtained from various
estimation methods applied to the 1980 Census and PES): f§,=1.0330,
B,=0.000712, B,= —0.000110, t2 =95.00. The simulation of

Y ~N,(XB, 4 +12D) (5.2)

was performed 500 times and, each time, the estimates 72, and 72 were

ml
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F1G. 1. Stem-and-leaf plots of estimated variance component t2, based on 500 simulations
of (5.2): (a) maximum likelihood; (b) restricted maximum likelihood [2].



ASYMPTOTICS OF REML 227

computed using the Gauss—Newton iterative method. (Whenever a negative
value was obtained, the estimate was set equal to zero.) The stem-and-leaf
plots of the two estimates are presented in Figs. la and b. Note the larger
number of zeros for 2, (Fig. 1a).

The means (X) and the standard deviations (S) of the distributions
shown in Fig. 1 are, for 72,: X=283.56, §=45.65, and, for t}: X=94.27,
S=49.17. The means can be compared to the true value of t>=95.00. The
bias in 7., is apparent, whereas 72, has very little bias. In terms of standard
deviations, 12, appears to have an advantage over 72. (In fact, in terms of
mean squared error, this advantage dominates.)

A direct consequence of negative bias in the estimation of t* (such as for
m.l. estimation) is to shrink the data Y too far towards the model Xﬁ,
something the undercount research staff at the U.S. Census Bureau are
very wary of. Since a single set of predictors will be used for adjustment
purposes, bias in estimation of t° is of primary importance. Thus, 7, may
be preferred to 72, although final mean-squared prediction errors may be
larger.

Formulas for asymptotic standard errors can be compared to the sample
standard deviations obtained from the simulation experiment. Upon sub-
stituting t2=95.00 into (1.7) (which is E{@?L(B, t*)/é(z*)*}), we obtain
{var(f},}}'? ~ 48.73, which should be compared to S=45.65. The dis-
crepancy may be partly due to replacing negative variance estimates with
zero in the simulation. A better result is obtained with REML estimation;
substituting 72 = 95.00 into E{8°L(1%)/d(z?)?} yields {var(f})}'? ~50.14,
which should be compared to S=49.17.

6. PrROOFS

In this section, we give the proofs of the results stated in Sections 3 and
4. Since Theorem 3.1 can be deduced directly from Theorems | and 2 of
Sweeting [16], we omit its proof.

Proof of Theorem 3.2. 1In view of Theorem 3.1 and assumption (A.1), it
is enough to verify condition (C.2) only. Define W,(0) = £,.#,(0). Note that
by Lemma 2.3 of Zimmerman [17],

(£(0));=(L}(0)),=tr {I1(8)(2,(0)— X,(0) [1(6) 2',(8))}/2
=Y TI(0)(X,;(8)—22,(0)11(0) 2,(0)) [1(6) Y/2 (6.1)
and

(W,(0)); = (EgLy.(8)),=1tr{I1(8) X,(0) I1(8) Z,(8)}/2.
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for all 1<, j<k. Since 71(8) Y = I1(0) €, one obtains (from (6.1))
Bn(e) ' 'yn(e) Bn(e) l ],,(0) + B"n(e) + B}n( )
where
—2B,,(0)=B,(8) '(('11(8) Z,(8) I1(8) e — tr { 71(8) X',;(8)})) B,(8)
B,,(0)=B,(0) ' (('11(6) X.(0) /1(8) X',(8) /1(8) ¢
—tr{71(0) 2,(0) [1(8) X,(0)})) B,(0) '
and
BJM(B)EBH(G) ! W,,(O) B,,(B) l'
By assumption, B,,(0) —> W(0). Hence, by Lemma 4.2 of Sweeting [16]
and Chebyshev’s inequality, it is enough to show that, for i=1, 2,
Ee “Bm(e)”z——u—> 0. (62)
In the rest of the proof, where necessary, we suppress the dependence on
6 and write [7(0)=11, c,;(0)=c,, Z,(B)—Z and so forth.

Define J, = (('11X;11¢)) and 0, = (( r{112;})). Since [1X[1=11 and
E(J)=0,,

4Ey |B(®)I*=E B, '(J,—0,) B, I’

k
Z Z COV( Cn']n)ua (Cn‘]n)]'i )’

which, after some algebra, is equal to the Lhs. of assumption (A.2).
Similarly, one can show that E || B,,(0)!? is equal to the Lh.s. of assump-
tion (A.3). Hence, by (A.2), (A.3), and (6.2), condition (C.2) holds. This
completes the proof of Theorem 3.2. |

Proof of Corollary 3.1. Let ¢, 4(t) = Eg exp(it'B (9)(0,, 0)) and ¢(t) =
exp( — |/t]|?/2). Since B,,(B)(G,,—O) = N (0, W(9) " Y, for any M >0,

sup ¢, o W(0)'7 t) — g(t)] — 0. (6.3)

Il < a1
Note that, by assumption, B,(0) ' W,(0) B,(0) ' — W(8). Hence,

IW.(8)"2 B,(0) ' W(8) 22— tr(I) = k. (6.4)
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For te R*, define t,(0)= W(8) '? B,(0) ' W, (0)'?t. Then, by (6.4),
I th(e)nz - ””[2' = |tn(9), (1- W(O)Iz Bn(e) W"(G)*l B,,(B) W(O)] 2’ tn(()”
<6, (0)7 (1w (o) | w(e)
—B,(8) W,(8) ' B,8)] — 0. (6.5)

Hence, by (6.3) and (6.5), it follows that for any te R,

19..0(B.,(0) ' W,(8)"2t)—g(t)]
<14, W(0)' 7 t,) — $(t,) +14(t,) — ()| —> 0. 1

Proof of Corollary 3.2. By the assumptlon on R,(0), contmuny of W(0),
(C.3)(i), and Theorem 3.2, we obtain R,(®,) B8, ' W®, '-- Y, in

probability (P4). Corollary 3.2 then follows from Theorem 3.2 and Slutsky s
Theorem. |}

Proof of Theorem 3.3. Without loss of generality, assume (see [6])
that I"/"=1, ,. As in the proof of Theorem 3.2, where necessary we shall
suppress the dependence on 0 and n. Fix 1 <i<k. Note that there exists an
orthogonal matrix O, such that X, =0, diag(4’, .., 1) O,. Write O;I'=
(&1, -v& pluxin. p- Then, there exists {§:n—p<s<n} such that
€, ... &, forms an orthogonal basis of R". Write &,=(&,,,..,¢,.),
1 <s<n Hence, for any | <r<n—p,

n n-p
tr{ 75,51} =tr {10, diag(L}, .. /1) O} = ¥, ( y 5{,) ()
I Ny =

(577 ¢

r=rs=1

— (22 Z( ya- 3 oa)

s=1 s>n—p

>(}~i)2[(n—r+1)— > (Z fi)]
s>n—p \v=1
2 (4 [(n—r-p)]

Next, note that the smallest eigenvalue of (I"27) % is >4 % Hence, for
any | <r<n—p, and for all 1 <i<k,

IIZ 22 A 2 tw{E P E) 2473 (A (n—r — p). (6.6)
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Now choose B,(8)=diag(|[/7Z ], ..., I/1Z,1}). Then, ¢,=0 if i#; and
ci= 11X, "2 for 1 <i, j<k Hence by (6.6), we have

ll //

||M>,-

Ey 11 B1,(0)]? i i eI Y 112 11X ) i
xt; (171 Ay IE I ‘272-17"2)}
L2n(n—r—p) (A, /4" {i (/1;,,’/1',)3}2. (6.7)
By similar arguments,

k k
4E, | B, (0)2<2n(n—r—p) > 3;1’{2 Z().f;)z(/l',};’,)’:} (6.8)

j=1 i=1

Theorem 3.3 now follows from (3.3), (34), (6.7), (6.8), and
Theorem 3.2. |}

Proof of Corollary 3.3. Similar to the proof of Corollary 3.2.

Proof of Theorem 4.1. By (4.1), 2(0) has partial derivatives of all orders
on @ and X2,(0)=4, 2,0)=0, for all 1<i j<k, 00, implying
condition (C.1) of Theorem 3.1. Note that for 4 pd. and B n.nd,
A '"—(A+B) 'isnnd Hence, for 1 <i<k, D=0(r"Xr) ' I' implies

| 412422 = sup{t' AP TTATTA ¢ 1t = 1}
<o, Tsup{t'A}PNEZIA e |t =1}
=g, 2sup{t’ A} At It =1} <a, *. (6.9)

Since IT and A4,, 4,, ... A, are n.n.d., it follows (cf. (6.7), (6.9)) that

tr{ /1A, TTA ITA,TIA,} < |A]PTIA}?| e { T2 A, TATTA, T2 )
<o, A} TA | tr{A, 1A, T} <n/(ca}).  (6.10)

!

Now use (69) and (6.10) to verify conditions (C.2) and (C.3) of
Theorem 3.1.

Verification  of (C2). Let B,(8)=diag(| 17(8) 4, ... | 71(8) A.).
Clearly, it is enough to show that (6.2) holds. Since /,,\Z, 0O, by
(6.10) and the inequalities leading to (6.7), we obtain

k 2
E, Han(e)Hz < 211/1: < 2 0’,»49!,,"2) /‘c‘“ (n—r,— p)2 — 0.

i=1

Also, under (4.1), B,,(0)=0 for all 8. Therefore, condition (C.2) holds.
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Verification of (C.3)1). Note that condition (C.3)(i) holds if and only
if for all ¢>0, sup{| [[7(8) A, | II(t) A,[°—1]: te O,(c)} —» O, where

x
9,,(0)5{(5(!,, ..... L)E@: Y (1,—0,) |1H(0)A,-|12<cz}. (6.11)

i=1

Fix 1<i<k and te ®,(c). Define D,=7"2(t) " and D,=1"X2(0) I Let
K,, K., ... denote positive constants, not depending on »n. Then,

| ILT(6) A2 — | 17(8) A,]1°)

k
Y (8,—t)tr{A, D, (I'"'A,I'D; "+ D,'I"A,I") D, ‘F’A,-}‘
ji=1

k
<K, ), |H1(®) 4, ~ " tr{A,(JI(8) 4,11(1)’

i=1

+11(0)* A,11(1)) A4, }. (6.12)

Note that, |[77(8)] <(6,«,,) ', for all 8 @. Hence, by (6.6), (6.9), (6.11),
and (6.12), we obtain, uniformly in te 0,(c),

k
2 Iy 4,02 18y 4,2 -1

i=1

k
<Kon' 7Y (U022 102 A2 14,37
H IO 2 [T A2 AN 170 )ITT0) 4,1 2

k
12 —1 — 172,32, -2
<Ksn'*n—r,— p) <Z e )

i=1

k 2
x(0,x,,) < Y Oia,-,,) — 1

j=0

for every 8 e @, where recall ,= 1. Hence, (C.3)(i) holds.

Verification of C.J3(ii). Let Z,=¢e' —2(0),U,=2(0) 'ee’'—1, and
b,(t)= tr{Z,(11(8) A, J1(0) A, 11(0) — TI(t) A, T1(t) A, TI(t))}, te O, 1 <i, j< k.
Note that for 1 <, j<k, the (i, j)th element of [.£,(M)— .#4,(0)] is

b, (00) + tr{ 4, (T1(87) A,T1(87) — 11(8) 4,11(8))}/2
+tr{ Z(8)(J1(8) A,11(8) A,11(8)
— 11(87) A,11(87) 4,11(87)) }. (6.13)
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First, we show that for all ¢ >0,

sup{B,(8) ' ((h,;(00))) B,(8) '[:0e@, (), 1<i<k} -0, (6.14)

in probability (P,). By Taylor’s expansion,
b (t)={(t—0) b, (0)/00 + R, (1), (6.15)
where, uniformly over te @,(¢),

IR, ()] < Ky lie—0]1% | U,

k k
x 3 Y sup{ (O II(8) A, T(t) A, TI(t) 4, T1(t)

[=1m—1
- ]2 . . . . . . .
X A T Z() 2| (i, s, i} S L hom)

<K [t=0)7 |U | n' " max {0, “: 1<i<k).
As in the proof of Ey || B,,(0)}* —~ 0, above, one obtains,

Eg U |IP =n(n+1);
Eyl [‘1,7”‘9)3"/(‘391/ ): [c.(0) (',,(0) ('//(9)]l ’ = 0.(6.16)

Now, using condition (2) and relations (6.11), (6.15), and (6.16), one can
complete the proof of (6.14).

Next, applying the mean value theorem to the last two terms of (6.13),
one can show that, uniformly in te @,(c),

itr{A;({1(t) A, TI(t) — 11(0) A,11(8)) )|

k
<Konlt—8] ( S (0,0,6,) )

ftr{A,(11(8) A,11(8) A,11(0) — T1(t) A, T1(t) A, 11(t)) }|

k

SK—;” Ht‘BH ( Z (0,8/010111) ]>'

m=1

Now (C.3)(ii) follows from (6.11), (6.13), and (6.14).
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