
P

M
I

a

A
R
R
A
A

K
L
T
A
K
S
P
M
P
P

1

t
e
r
r
r
o
i
[
t
s
p

t
e
t
v
o
O
a
t

g

0
d

CORE c.uk

Provided by 
Leukemia Research 33 (2009) 1539–1551

Contents lists available at ScienceDirect

Leukemia Research

journa l homepage: www.e lsev ier .com/ locate / leukres

rotein phosphatase 4 regulates apoptosis in leukemic and primary human T-cells

irna Mourtada-Maarabouni ∗, Gwyn T. Williams ∗

nstitute for Science and Technology in Medicine and School of Life Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK

r t i c l e i n f o

rticle history:
eceived 13 January 2009
eceived in revised form 8 May 2009
ccepted 12 May 2009
vailable online 18 June 2009

eywords:
eukemia

a b s t r a c t

The control of T-cell survival is of overwhelming importance for preventing leukemia and lymphoma. The
present report demonstrates that the serine/threonine protein phosphatase PP4 regulates the survival of
both leukemic T-cells and untransformed human peripheral blood T-cells, particularly after treatment
with anti-leukemic drugs and other cytotoxic stimuli. PP4-induced apoptosis is mediated, at least in
part, through de-phosphorylation of apoptosis regulator PEA-15, previously implicated in the control of
leukemic cell survival. PP4 activity significantly affects the mutation rate in leukemic T-cells, indicating
that PP4 dysfunction may be important in the development and progression of leukemia.
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. Introduction

Apoptosis plays a crucial role in regulating homoeostasis in
he immune system. This physiological process of cell suicide is
ssential for T-cell development, for the shaping of the immune
epertoire and for coordinating the events leading to immune
esponses [1–3]. Since the inappropriate lymphocyte survival that
esults from apoptosis failure is of great significance for the devel-
pment of leukemia [1–5], dissection of the molecular mechanisms
nvolved in apoptosis is central to understanding leukemogenesis
1,2]. In addition, many anti-leukemic drugs act through induc-
ion of apoptosis [1,2,6], so that failure of apoptosis contributes
ignificantly to the appearance of therapy-resistant leukemic cells,
articularly during relapse.

Like the cell cycle, apoptosis is regulated by conserved signal
ransduction pathways that include many specialised activators,
ffectors and inhibitors [3,6–8]. Genetic or functional alterations of
hese proteins may lead to inappropriate responses to the microen-
ironment, ultimately leading to cancer or autoimmunity, on the

ne hand, or to immunodeficiency, on the other hand [1,2,4,5,9].
ne of the most important mechanisms by which both apoptosis
nd cell proliferation are regulated is the reversible phosphoryla-
ion of many proteins which affects their functions in diverse ways.

∗ Corresponding authors. Tel.: +44 1782 733032; fax: +44 1782 733516.
E-mail addresses: bia19@biol.keele.ac.uk (M. Mourtada-Maarabouni),

.t.williams@keele.ac.uk (G.T. Williams).

145-2126 © 2009 Elsevier Ltd. Open access under CC BY license.
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These include increasing or decreasing enzyme activity, e.g. his-
tone deacetylase 7 (HDAC7) [10], translocation of proteins from
one cellular compartment to another, e.g. K-Ras [11], marking a
protein for degradation, e.g. I�B (Inhibitor of NF�B) [12], or pro-
moting or inhibiting the interaction of one protein with another, e.g.
BAD (Bcl-2/Bcl-X associated death promoter) [13]. In particular, the
phosphorylation status of many pro-apoptotic (BAD, Bid and Bik)
and anti-apoptotic (Bcl-2 and Bcl-XL) Bcl-2-family proteins regu-
lates their cellular activity, and consequently controls cell survival
[13–16]. The well-balanced opposing operation of protein kinases
and phosphatases is therefore critical for the control of cell death
and survival. Many oncogenes encode protein kinases and changes
in their activity certainly contribute to the process of tumorigenic
transformation [17,18]. On the other hand, the exact roles played
by protein phosphatases are much less clear, although, logically,
they must be of great significance in leukemia progression through
their regulation of the phosphorylation status of proteins involved
in key survival and proliferation pathways. Indeed, the study of
protein phosphatases and their regulation has recently become an
expanding field of research, with these protein families becoming
recognised as potential therapeutic targets [19,20].

The mammalian serine/threonine phosphatase (PPP) family
consists of the most abundant protein phosphatases PP1, Ca2+-

dependent PP2B, Mg2+-dependent PP2c, PP2 (formerly PP2A) and
PP2-like phosphatases such as PP6, PP5, PP7 and PP4 [21]. Like
other members of the PPP families, the ubiquitously expressed PP4
(PPP4/PPX) exists as a holoenzyme composed of a highly conserved
catalytic subunit (PP4c), a structural (A) subunit and regulatory (B)
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ubunits [22]. PP4c shares 65% amino acid identity with both iso-
orms of PP2 catalytic subunits (PP2c� and PP2c�), and associates
ith regulatory subunits which are mostly distinct from PP2 regu-

atory subunits [23,24]. In addition to the previously identified core
egulatory subunits R1 and R2, several other related variable reg-
latory subunits of PP4 have been identified; R3�, R3�, the eight
ubunit ATP-dependent chaperonin complex TRiC (also known as
CT) and the �4 regulatory subunit, which is the only subunit
hared with PP2 [24–28]. It has now been recognised that PP4 reg-
lates a variety of cellular functions independently of PP2 and it

s believed that the interaction of these different regulatory sub-
nits with the catalytic subunit PP4c is central to controlling the
unctional effects of this enzyme [22].

PP4 complexes are involved in organelle assembly, regulation
f microtubule growth, cell migration, and centrosome matura-
ion in mitosis and meiosis as well as spliceosomal assembly via
nteraction with the SMN complex [22,24,29,30]. Recent studies
ave shown that PP4c regulates cyclin-dependent kinase 1 (Cdk1)
ctivity and microtubule organization via NDEL1 (nuclear distribu-
ion element 1) dephosphorylation [31]. PP4 also regulates several
ignalling pathways, including NF�B [32,33] and the DNA damage
esponse [34]. PP4 has been reported to regulate haematopoietic
rogenitor kinase 1 (HPK1) activity in a T-cell receptor (TCR)-
ependent manner, suggesting a role for PP4 in T-cell signalling
38]. In addition, PP4 interacts with and down-regulates insulin
eceptor substrate 4 (IRS4) following tumor necrosis factor alpha
TNF�) stimulation [35], is involved in TNF�-induced activation of
he Jun N-terminal protein kinase (Jnk) [36] and has been reported
o associate with HDAC3 and to inhibit its activity [37]. Most
ecently, Nakada et al. [39] have reported that depletion of PP4c
esults in a prolonged checkpoint arrest in human cells, suggesting
hat PP4c plays a critical role in dephosphorylating �H2AX after
NA damage.

Emerging evidence indicates that PP4 may play important and
omplex roles in apoptosis and cell proliferation. Over-expression of
P4c results in an increase in cell death and a decrease in cell prolif-
ration in mouse thymoma cells [40] and in the human embryonic
idney cell line HEK 293T [41]. The present study demonstrates
hat down regulation of PP4c inhibits apoptosis, increases the pro-
iferation rate, and has a strong influence on gene mutation rate,

hich is crucial to oncogenesis. On the other hand, PP4 appears
o be essential for survival and cell proliferation because of its
ole in centrosome maturation [29,42]. The observation that PP4
xerts inhibitory, as well as stimulatory, effects on cell growth in
ome situations is likely to be explained by the activity of differ-
nt PP4 complexes with distinct subcellular locations and diverse
ubstrates. These observations indicate that a certain level of PP4c
ctivity is likely to be required for cell survival so that deletion of
P4, as well as excessive PP4, can be lethal to cells.

Many studies have also implicated PP2 in the regulation of T-
ell signalling, activation and survival [43,44]. Proteomic analysis
as shown that changes in PP4 expression levels affect the phos-
horylation status of many proteins involved in apoptosis and cell
roliferation, including the critical apoptosis regulators BAD and
hosphoprotein enriched in astrocytes 15 kD (PEA-15), which were
oth significantly over-phosphorylated when PP4 was suppressed
41]. PEA-15 is a member of the death effector domain (DED) pro-
ein family known to control cell survival [45,46], and specific
own-regulation of this protein sensitizes B-cell chronic lympho-
ytic leukemia cells to TRAIL-induced apoptosis [47]. The analysis
eported in the current paper is consistent with direct interaction

etween PP4c and PEA-15, but not between PEA-15 and PP2.

Since previous experiments with mouse thymoma cells revealed
pro-apoptotic role for PP4c [40], we have extended the analysis of

he effects of modulation of PP4c expression on apoptosis and cell
roliferation to the human leukemic T-cell lines Jurkat and CEM-
kemia Research 33 (2009) 1539–1551

C7 and to primary human lymphocytes. These studies reveal the
importance of PP4 expression levels in determining the sensitivity
of both leukemic and untransformed human lymphocytes to a range
of anti-leukemic drugs and other cytotoxic stimuli.

2. Materials and methods

2.1. Materials

Cisplatin (155663-27-1), butyrate (B5887), okadaic acid
(#04511) and dexamethasone (D4902) were purchased from
Sigma.

2.2. Cell culture

The cloned human T-leukemic cell lines CEM-C7.CMK1 and
Jurkat.JKM1 [48] were maintained in RPMI-1640 medium (Sigma)
supplemented with 10% heat inactivated fetal calf serum (Hyclone),
2 mM l-glutamine and 200 �g/ml gentamycin (Sigma), at 37 ◦C in
a 5% CO2 humidified incubator. All experiments were carried out
using cells in logarithmic growth phase.

2.3. Primary lymphocyte isolation and culture

Whole blood was collected from healthy volunteers into hep-
arinized tubes. Ethical approval was obtained from the Local Ethical
Committee and peripheral blood lymphocytes were prepared and
PHA-stimulated as described previously [49].

2.4. Determination of cell viability and detection of apoptosis

Cell viability was determined by nigrosin exclusion analysis and
by the MTS assay, (Promega; # G5421). The CaspaTag Caspase Activ-
ity Kit (Intergen; # S7300-025) was used to detect active caspases
in the cells as a marker for caspase-dependent apoptosis. Detection
was performed using a fluorescence microscope.

2.5. Plasmid DNA transfection

pcDNA3.1-PP4c expression constructs, or the vector alone, were
introduced into human leukemic T-cells by electroporation (20 �g
DNA at 248 V (CEM-C7) and 293 V (Jurkat), 1050 �F in 0.4 cm
cuvettes (Biorad) at room temperature). Efficiency of transfection
was 60–70% for CEM-C7 and Jurkat. In order to generate stable
cell lines, at 24 h post-transfection cells were cloned in soft agar
in Iscoves’s medium containing 2 mM glutamine, 20% heat inacti-
vated fetal bovine serum and 0.5 mg/ml G418 (Sigma) for 2–3 weeks
at 37 ◦C in a humidified incubator with 5% CO2. Individual colonies
were picked and expanded in medium containing 0.5 mg/ml G418
and the level of expression of the gene transfected was monitored
by Western analysis or qRT-PCR.

2.6. Transfection of primary lymphocytes

Transfection of plasmid DNA and siRNA into primary lym-
phocytes was carried out by nucleofection (Amaxa Biosystems).
Primary lymphocytes were cultured for 5–6 days in the pres-
ence of 2.5 �g/ml PHA [50] and transfection was carried out using
the Nucleofector kit for stimulated human T-cells (Program T-23;
Amaxa # VPA-1002), following the manufacturer’s instructions.
Transfection efficiency was 60–70%.
2.7. Preparation of cells for cell cycle analysis

Preparation of cells and nuclear propidium iodide (PI) staining
for cell cycle analysis was performed according to standard proce-
dures, as described previously [49].
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.8. Ki-67 labelling

106 cells were supended in 70% ethanol/30% PBS by vortexing
nd incubated at −20 ◦C for 2 h. Fixed cells were then washed twice
ith staining buffer (PBS with 1% fetal calf serum, 0.09% NaN3), cen-

rifuged for 10 min at 200 × g and they were resuspended in 100 �l
n the staining buffer. Ki-67 antibody (Santa Cruz Biotech.; Cat # sc-
3900) was added at 1:50 dilution. Cells were incubated for 30 min

n the dark. After that time, cells were washed twice with the stain-
ng buffer, centrifuged at 200 × g for 10 min, resuspended in 100 �l
f staining buffer and the secondary antibody (Santa Cruz; Anti-
ouse IgG-FITC Cat # sc-2010) added at a dilution of 1:200. Cells
ere incubated in the dark for 1 h before they were washed twice

n staining buffer. After centrifugation, the cells were resuspended
n 50 �l of staining buffer and Ki-67 positive cells were detected
sing a fluorescence microscope.

.9. Clonogenic assay

Long-term survival and proliferation of cells transfected with
P4c expression constructs or with PP4 siRNAs was assessed by
he ability of the cells to form colonies in soft agar. An equal
roportion of the culture from each experimental condition was
iluted in 5 ml Iscove’s medium (Sigma) containing 20% heat inacti-
ated fetal calf serum, 10% CEM-C7- or Jurkat-conditioned medium
nd 0.3% Noble agar (Difco) and plated in 60 mm dishes. Dishes
ere also overlaid with 2.5 ml Iscove’s complete medium con-

aining 10% cell-conditioned medium. The number of colonies
ormed was counted following 2–3 weeks incubation at 37 ◦C in
% CO2.

.10. RNA interference

Two different PP4c siRNAs (siRNAs ID# 105835 (PP4s1); siRNA
D# 105834 (PP4s2)), two PP2c� siRNAs (PP2s1 ID# 5230 and
P2s2 ID# 105844), three different PEA-15 siRNAs (PEA-15s1 ID

137203; PEA-15s2 ID # 137202; PEA-15s3 ID# 43349), nega-
ive control siRNA (siRNA Cat # 4605) and GAPDH (Cat # 4605)
ene specific pre-designed siRNA were purchased from Ambion
HPLC purified, annealed and ready to use). To monitor transfec-
ion efficiency (70–80% at 48 h), siRNA duplexes were labelled with
y3 using the SilencerTM siRNA labelling kit (Ambion; Cat# 1632),

ollowing the manufacturer’s instructions. On the day before trans-
ection, cells were sub-cultured in RPMI supplemented with 10%
CS. On the day of transfection, 106 cells (CEM-C7, Jurkat or pri-
ary lymphocytes) were centrifuged, washed once in Optimem 1

Invitrogen; # 51985-026) and resuspended in 400 �l Optimem 1.
ells were incubated with 20 or 100 nM siRNA duplex for 10 min
t room temperature in a 0.4 cm gap electroporation cuvette and
lectroporated for 25 ms at 248 V (CEM-C7) or 293 V (Jurkat and
rimary lymphocytes) and 1050 �F using a Biorad Gene Pulser.
ollowing electroporation, cells were incubated at room temper-
ture for 20 min and transfered to 6-well plates containing Iscove’s
edium (Sigma) with 2 mM glutamine and 20% heat-inactivated

CS. Analysis of specific silencing of PP4c, PP2c� and PEA-15
xpression was carried out after 48 h by qRT-PCR and Western blot-
ing.

.11. Real-time RT-PCR

The expression of PP4c was determined using real-time RT-

CR. 5 �g of RNA was reverse transcribed using SuperscriptTM
I RNAse H-Reverse Transcriptase and random primers (Promega)
ccording to the manufacturer’s instructions (Invitrogen; #18064).
eal-time PCR was performed using 2 �l of the cDNA (equiva-

ent to 500 ng of the total RNA) with Taq Man MGB probes and
kemia Research 33 (2009) 1539–1551 1541

primers specific to human PP4c (Applied Biosystems; Assay ID: Hs
00427262-m1) or human PP2c� (Applied Biosystems; Assay ID:
Hs Hs01038824 g1) with eukaryotic 18S rRNA as an endogenous
control (Applied Biosystems; Assay ID: Hs99999901 s1), according
to the manufacturer’s instructions. Quantitation of PP4c or PP2c�
gene expression in PP4c- or PP2c�-transfected clones and PP4c- and
PP2c�-knockdown cells, relative to cells transfected with empty
vectors, or (−)siRNA cells, was determined using the comparative
CT method, using parental cells as calibrators. The ABI Prism 7000
sequence detection system was used to measure real time fluores-
cence and data analysis was performed using ABI Prism 7000 SDS
software.

2.12. Western blot analysis

Analysis of expression of PP4c (using anti-PP4c antibody; Santa
Cruz #Sc6118; PPX/PP4 (C-18)) and PEA-15 (using anti-PEA-15 anti-
body; Santa Cruz Sc28255) was carried out as previously described
[41].

2.13. Measurement of HPRT mutations

Radiation from the UVG-54 (UVP) lamp was routinely mea-
sured using the J-225 Black-Ray UV (shortwave) intensity meter
(SER# 44725) and was 2 W/m2 at a distance of 25 cm. 106 cells
were exposed to UV in plastic Petri dishes with the lids removed
for 20 s (40 J/m2). After UV exposure, the irradiated medium was
replace by fresh complete RPMI medium and the cells were incu-
bated for 10 days at 37 ◦C in 95% air:5% CO2, at an initial density
of 5 × 105 cells/ml, followed by cloning in soft agar in the pres-
ence (5 × 105 cells/plate), or in the absence (200 cells/plate), of
50 �M 6-thioguanine (Sigma; #A4660). The mutation frequency
was calculated as [(mean colony count per plate in presence of
6-thioguanine)/(cells per plate in selective medium)/surviving frac-
tion in non-selective medium] [48].

2.14. Statistical analysis

Data are presented as the mean ± standard error of the mean
(S.E.). Statistical significance was determined by analysis of vari-
ance using Origin 6.1. A p-value of <0.01 was considered statistically
significant.

3. Results

3.1. Effects of PP4c over-expression on CEM-C7 and Jurkat T-cells

The EST clone PP4c (accession # BG913014) was cloned direc-
tionally in pcDNA3.1 and transfected into Jurkat and CEM-C7 cells
to generate stable clones selected by growth in G418. Since very sim-
ilar results were obtained from both cell lines, only CEM-C7 results
are shown (the Jurkat cell data are provided as supplementary data
online). Transfection of the PP4c expression construct into both cell
lines led to the growth of 8- to 12-fold fewer colonies than vector-
only transfected cells (Fig. 1a), reflecting the inhibitory effects of
PP4c over-expression on cell growth and colony-forming ability.
Three empty vector-containing clones and six PP4c-transfected
clones from each cell line were further characterized. The degree of
over-expression of PP4c was determined, firstly, by qRT-PCR (a 6–8-
fold over-expression was observed (data not shown), and, secondly,

by Western blotting (Fig. 1b). The effect of PP4c over-expression
on CEM-C7 and Jurkat cell growth rate and apoptosis was exam-
ined. A significant difference in the rate of proliferation between
cells transfected with PP4c and cells transfected with vector only
was consistently observed. Fig. 1c shows that PP4c-transfected cells
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Fig. 1. PP4c over-expression inhibits colony-forming ability, inhibits cell growth and increases apoptosis of CEM-C7 cells. CEM-C7 cells were transfected with either pcDNA3.1
or pcDNA3-PP4c. (a) 24 h post-transfection, cells were cloned in soft agar in the presence of G418 and the number of colonies was determined after 2–3 weeks. (b) Immunoblot
of PP4c expression in CEM-C7 parental cells (lane 1), pcDNA3.1-transfected CEM-C7 cells (lane 2) and pcDNA.1-PP4c-transfected CEM-C7 cells (lanes 3 and 4). Each lane contains
50 �g of whole-cell lysate subjected to SDS-PAGE, followed by Western blot analysis with anti-PP4c antibody. Anti-�-actin antibody was used to reveal �-actin as a loading
control. The resulting autoradiographs were analysed by densitometry. A representative autoradiograph is presented, and the bar graphs represent means ± S.E. from four
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Fig. 2. PP4c-specific siRNAs increase CEM-C7 proliferation and alter the cell cycle profile. CEM-C7 cells were transfected with control (−)siRNA or with PP4c-specific siRNA. (a)
Expression of PP4c protein under the same conditions was determined by Western blotting and equivalent loading was demonstrated using anti-�-actin antibody. The resulting
autoradiographs were analysed by densitometry. A representative autoradiograph is presented, and the bar graph shows means ± S.E. from five independent experiments.
R NA-,
( NA-tr
o s ± S.E

p
t
d
u
w

i
t
f
P
(

elative expression is the ratio of PP4c to �-actin. (b) Viable cell number of (−)siR
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f fixed cells and fluorescence flow cytometry. Results are represented as the mean
roliferated at a significantly lower rate than control pcDNA3.1-
ransfected cells. The observed regulatory effects of PP4c were not
ue to clonal idiosyncrasies, since the results were also confirmed
sing polyclonal populations of CEM-C7 and Jurkat cells transfected
ith PP4c or vector only (results not shown).

ndependent experiments. Relative expression is the ratio of PP4c to �-actin. (c) Growth cu
ransfected cells over 96 h. Viable cell density was determined by nigrosin dye exclusion.
rom five separate experiments, *P < 0.01 compared with vector only and parental cells. (d
P4c-transfected cells. DNA content was quantified by propidium iodide staining of fixed
n = 5). Representative histograms are shown.
PP4s2- and PP4s1-siRNA-treated CEM-C7 cells over 96 h. *P < 0.01 compared with
ansfected CEM-C7 cells. DNA content was quantified by propidium iodide staining
. (n = 5). Representative histograms are shown.
To determine whether the growth suppression by PP4c was due
to increased apoptosis, to cell cycle arrest, or both, a cell cycle analy-
sis was performed. The results revealed that the percentage of cells
in G1 in transfected cells was considerably higher than that of the
controls, suggesting that PP4c may induce arrest in G1 (Fig. 1d), with

rve of CEM-C7, CEM-C7-pcDNA3.1-transcfected cells and CEM-C7-pcDNA3.1-PP4c-
Results are expressed as the means ± S.E., and are representative of data obtained

) Cell cycle analysis of CEM-C7-pcDNA3.1-transfected cells and CEM-C7-pcDNA3.1-
cells and fluorescence flow cytometry. Results are represented as the means ± S.E.
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ig. 3. PP4c knockdown inhibits apoptosis induced by Dexamethasone, anti-Fas an
−)siRNA-, PP4s2- and PP4s1-siRNA-treated CEM-C7 cells were exposed to 10 �M d
mM butyrate or 30 nM okadaic acid. (a) Apoptosis was quantified after 48 h usin
eans ± S.E. from five independent experiments, *P < 0.01 compared with (−)siRNA

corresponding decrease in cells in G2/M and S phases. In addi-
ion, PP4c-transfected clones showed a substantial increase in the
ub-G1 fraction, indicating that the apoptosis rate in these clones
s increased (Fig. 1d).

.2. Effect of PP4c knockdown on apoptosis and cell proliferation

In order to investigate PP4c function further in CEM-C7 and
urkat cells, we used specific siRNAs, PP4cs1 and PP4cs2, to inhibit
ndogenous PP4c expression in these cells. This strategy is par-
icularly important since the effects of over-expression of any
rotein should be confirmed by independent methods in order to
xclude possible artefacts. The effects of PP4c siRNAs were similar
n the CEM-C7 and Jurkat cell lines, therefore only CEM-C7 results

ill be shown here (results from Jurkat cell lines are provided as
upplementary data). The efficiency of PP4c knockdown was deter-
ined by qRT-PCR and immunoblotting 48 h post-transfection and

he specificity of the PP4c siRNAs was tested by comparison with
APDH siRNA and the negative control siRNA ((−)siRNA). Both
P4c-targeted siRNAs (PP4cs1 and PP4cs2) reduced PP4c mRNA lev-

ls by more than 60%. PP4cs2 was more efficient in the silencing of
P4c (70% compared to 60%; data not shown), and this degree of
ilencing was maintained for up to 10 days (data not shown). The
crambled negative control and GAPDH siRNAs had no significant
ffect on PP4c mRNA levels. PP4c down-regulation was also con-
y, TNF�, UV, cisplatin and butyrate in CEM-C7 cells. 72 h post-siRNA transfection,
ethasone, 5 ng/ml anti-Fas antibody, 50 ng/ml TNF�, 40 J/m2 UV, 5 �g/ml cisplatin,
aTag staining. (b) Colony-forming assays were carried out at 72 h. Data represent

sfected cells.

firmed by Western blot analysis (Fig. 2a). Following the knockdown
of PP4c, cells were grown for 4 days and their proliferation rates
were assessed based on viable cell counts. As shown in Fig. 2b, the
growth rates of CEM-C7 cells transfected with PP4cs1 and PP4cs2
were significantly increased relative to (−)siRNA-transfected cells
or GAPDH siRNA-transfected cells. PI staining and FACS analysis
revealed increases in S and G2/M populations in the cells trans-
fected with PP4cs1 and PP4cs2 siRNAs compared with the cells
transfected with control (−)siRNA (Fig. 2c).

Since our original observation of the inhibition of apoptosis
by PP4c down-regulation were made on the mouse thymoma cell
line W7.2c challenged with dexamethasone and UV [40], we inves-
tigated the effects of PP4c down-regulation on Dexamethasone-
and UV-induced apoptosis in CEM-C7 cells. Since induction of T-
cell apoptosis through Fas/APO-1/CD95, TNF�, cisplatin, butyrate
and okadaic acid has many features which are distinct from
Dexamethasone- and UV-induced apoptosis, we also studied the
effects of PP4c knockdown on CEM-C7 cell apoptosis induced by
these stimuli. Cells were exposed to the apoptotic stimuli 48 h
after transfection and apoptosis was quantified after 48 h using

CaspaTag staining, which allows the detection of active caspases
in live cells. Colony-forming assays, which allow the assessment
of long-term survival and proliferation, were also carried out at
72 h. Fig. 3 shows that PP4c down-regulation significantly inhib-
ited apoptosis induced by all the stimuli tested, except for okadaic
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Fig. 4. Up-regulation and down-regulation of PP4c expression produce comple-
mentary effects on the survival and growth of human peripheral blood lymphocytes.
(Graphs (a) and (b)) Peripheral blood lymphocytes were cultured in complete RPMI
medium supplemented with 2.5 �g/ml PHA for 5 days and transiently transfected
with either pcDNA3.1 or pcDNA3.1-PP4c. (a) Apoptosis was determined at 24 and
48 h time points using CaspaTag (means ± S.E. from five independent experiments).

Fig. 5. Comparison between the effects of PP2c�, PP4 phosphatase-dead mutant
PP4-RL, and PP4c on viable cell number of human peripheral blood lymphocytes.
PHA-stimulated lymphocytes were transfected with pcDNA3.1-PP4c or pcDNA3.1,

pCMVSPORT6-PP2c or pCMVSPORT, or the phosphatase-dead PP4c mutant in the
expression vector expression vector pCI-neo. Viable cell number was determined
after 48 h. Results represent means ± S.E. and are representative of data obtained
from five independent experiments, *P < 0.01 compared with vector only.

acid, in both CEM-C7 (Fig. 3a) and Jurkat cells (see supplementary
data) and also protected the colony-forming ability of these cells
(Fig. 3b; supplementary data). The effect of PP4c knockdown on
Dexamethasone-induced cell death in CEM-C7 cells was inter-
esting. Although PP4c silencing significantly protected against
Dexamethasone-induced apoptosis (Fig. 2a), the protective effects
on colony-forming ability were relatively small (Fig. 3b). Down-
regulation of PP4c did not protect against okadaic acid, most likely
because okadaic acid has been reported to inhibit other phos-
phatases in addition to PP4 [21].

3.3. PP4c plays a critical role in apoptosis and cell proliferation in
primary human T-lymphocytes

To confirm that PP4c expression plays a role in apoptosis and
cell proliferation in untransformed lymphoid cells, we manipu-
lated the endogenous levels of PP4c expression in human peripheral
blood lymphocytes stimulated with the mitogen phytohaemagglu-
tinin (PHA) [50]. PHA-stimulated T-lymphocytes were transiently
transfected with pcDNA3.1-PP4c or with pcDNA3.1. Expression of
PP4c was assessed by qRT-PCR 24 h post-transfection and was
found to be increased by 4-fold (results not shown). Transfected
cells were then plated for 4 days in the presence of PHA and
their proliferation rate was monitored every 24 h, based on viable
cell counting. Apoptosis was assessed after 24 and 48 h. PP4c-
transfected cells showed a 1.5- to 2-fold increase in apoptosis
relative to cells transfected with vector only (Fig. 4a), indicating

that over-expression of PP4c by itself enhances apoptosis in nor-
mal human T-lymphocytes. Cells transfected with pcDNA3.1-PP4c
showed a 3-fold decrease in the number of viable cells at every
time point, compared to cells transfected with vector only (Fig. 4b),

(b) Viable cell numbers were determined by vital dye staining, at the indicated
time points (means ± S.E. from seven independent experiments). (Graphs (c) and
(d)) Peripheral blood lymphocytes were cultured in complete RPMI medium sup-
plemented with 2.5 �g/ml PHA for 5 days and transfected with (−)siRNA, PP4s1 or
PP4s2. (c) Caspase activation, as a marker of apoptosis, was determined at 24 and
48 h (means ± S.E. from six independent experiments). (d) Viable cell number was
determined by vital dye staining (means ± S.E. from six independent experiments).
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Fig. 6. Effects of PP2c� down-regulation on PHA-stimulated human periph-
eral blood lymphocyte cell viability. PHA-stimulated human peripheral blood
lymphocytes were transfected with either (−)siRNA or one of the two specific
PP2c�-targeted siRNAs. (a) Viable cell number was determined after 48 and 72 h.
Results represent means ± S.E. and are representative of data obtained from five
independent experiments, *P < 0.01 compared with (−)siRNA. (b) and (c) Comparison
between the effects of PP4c (b) and PP2c� (c) down-regulation on growth inhibition
of human peripheral blood lymphocytes induced by fetal calf serum withdrawal. Cell
kemia Research 33 (2009) 1539–1551

showing the inhibitory effect of PP4c on cell proliferation in primary
human T-lymphocytes.

The effects of PP4c down-regulation on human peripheral blood
lymphocytes were also investigated. PHA-stimulated cells were
transfected with control (−)siRNA or PP4c-specific siRNAs, and
PP4c expression was assessed 48 h post-transfection by qRT-PCR.
The level of PP4c in the cells transfected with PP4c siRNAs was
decreased by 60–70% in comparison to the cells transfected with
(−)siRNA (results not shown). Fig. 4c shows that PP4c knockdown
significantly protected T-lymphocytes from spontaneous apoptosis,
reducing the level of apoptosis to less than half that in control cell
populations transfected with (−)siRNAs. In addition, the number
of viable cells in cultures transfected with PP4c siRNAs was signifi-
cantly higher at both 24 and 48 h than the number of viable cells in
cultures transfected with (−)siRNAs. This is due to both inhibition
of apoptosis and stimulation of the cell proliferation rate (Fig. 4d).
The increase in T-lymphocyte proliferation caused by PP4c down-
regulation was confirmed by Ki67 labelling of proliferating cells [51]
(supplementary data).

Further studies were carried out to compare the effects of PP4c
with those of PP2c� (protein phosphatase 2 catalytic subunit � iso-
form), which has previously been reported to be associated with
cell death [52]. We have also used a functionally deficient PP4c
mutant [32,38] in order to ensure that the effects produced by
PP4c up-regulation were due to the catalytic activity of PP4c. PHA-
stimulated lymphocytes were transfected with pcDNA3.1-PP4c or
pcDNA3.1, pCMVSPORT6-PP2c� (accession # BC012022) or pCMVS-
PORT and the phosphatase-dead PP4c mutant in the expression
vector pCI-neo (Promega) (pCI-PP4-RL), in which arginine (Arg-
235) in the PP4c phosphatase domain has been replaced by leucine
[32,38]. The expression of PP4c and PP2c� was assessed by RT-PCR
24 h post-transfection and was found to be increased by 4.4-fold
on average for PP4c and 5-fold for PP2c�, as compared to cells
transfected with empty vector. Over-expression of PP2c� caused
a decrease in viable cell number which was of a similar magnitude
to that produced by PP4c, as assessed by cell counting 48 h post-
transfection. Transfection with the non-functional mutant of PP4c,
PP4-RL, did not have the same effect as the two catalytic subunits
of PP4 and PP2, since the number of viable cells from these cultures
was actually slightly higher than the number of viable cells from
cultures transfected with empty vector, although the increase in
cell number was not statistically significant (Fig. 5).

The effects of PP2c� down-regulation on PHA-stimulated
human peripheral blood lymphocytes, using two specific PP2c�-
targeted siRNAs, were also investigated and compared to those of
PP4c down-regulation. Transfection of PP2c� siRNAs resulted in an
average 70% decrease in the endogenous level of PP2c� when using
PP2s1 and in a 60% decrease using PP2s2, as assessed using real time
RT-PCR. Fig. 6a shows that down regulation of PP2c� resulted in an
increase in cell survival and proliferation. As compared to negative
control siRNA, transfection with either of the two PP2c� siRNAs
produced a significant increase in viable cell number both at 48 and
72 h (Fig. 6a). The effects of PP2c� down-regulation on viable cell
number were similar to those produced by the knockdown of PP4c
(Fig. 4b). However, a remarkable difference between the effects of
down-regulation of the two phosphatases was revealed when the
transfected cells were incubated in the absence of fetal calf serum.

Cells transfected with PP4c siRNAs were more resistant to serum
withdrawal, relative to cells transfected with control siRNA (Fig. 6b),
while the growth of cells transfected with PP2c� siRNAs was similar
to those transfected with control siRNA (Fig. 6c).

density was determined by nigrosin dye exclusion at different time points. Results
are expressed as the means ± S.E., and are representative of data obtained from five
separate experiments, *P < 0.01 compared with (−)siRNA transfected cells.
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Fig. 7. Modulation of PP4c expression affects colony-forming ability and mutation
frequency at the HPRT locus in CEM-C7 and Jurkat cells. (a) CEM-C7 and Jurkat
cells transfected with either pcDNA3.1, pcDNA3.1-PP4c, (−)siRNA, PP4s1 or PP4s2
siRNAs were exposed to 40 J/m2 UV, and colony-forming ability was determined
48 h after UV exposure. Results are expressed as means ± S.E. from five independent
experiments, *P < 0.01 compared with vector-only and parental cells. (b) Mutation
frequencies at the HPRT locus in CEM-C7 and Jurkat cells transfected with either
pcDNA3.1, pcDNA3.1-PP4c, (−)siRNA, PP4s1 or PP4s2 were determined 10 days
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inducing apoptosis and cell cycle arrest in G1. Our work also showed
ost-UV irradiation by cloning in soft agar in the presence or absence of 50 �M
-thioguanine. Data represent means ± S.E. from five independent experiments.
P < 0.01 compared with vector only and (−)siRNA transfected cells.

.4. The effects of PP4c expression on T-cell survival and mutation
fter UV irradiation

Over-expression of PP4c has been shown to decrease the
utation rate in the UV-treated embryonic kidney cell line
EK 293T [41]. We therefore examined the effects of PP4c on
ell survival and determined the frequency of mutation at the
ypoxanthine-guanine phosphoribosyl transferase (HPRT) locus
fter UV irradiation of human leukemic T-cell lines. We com-
ared HPRT mutation frequencies between control cells and cells
ransfected with pcDNA3-PP4c or PP4c siRNAs. The colony-forming
bility of CEM-C7 and Jurkat cells was substantially reduced after
V exposure 40 J/m2 (results not shown). pcDNA3.1-PP4c trans-
ection enhanced the loss of colony-forming ability of these cells
Fig. 7a). On the other hand, suppression of PP4c significantly
rotected from the loss of colony forming ability induced by UV
Fig. 7a). We therefore analysed the production of mutant HPRT
kemia Research 33 (2009) 1539–1551 1547

cells after UV exposure in pcDNA3.1-PP4c-transfected cells and
PP4c siRNA-transfected cells. A significant decrease in the muta-
tion rate was seen in PP4c-transfected cells (Fig. 7b), whereas cells
transfected with PP4c siRNAs showed a corresponding substantial
increase in the mutation rate (Fig. 7b). Taken together, these data
further indicate an important role for PP4c in the apoptosis which
normally acts to eliminate mutated cells.

3.5. Interaction between PP4c and PEA-15

Phosphoprotein enriched in astrocytes 15 kD (PEA-15) is one of
the proteins that appears to be regulated, directly or indirectly,
through dephosphorylation by PP4c [41]. In order to investigate
whether PEA-15 plays a major role in mediating the apoptosis-
inducing effects of PP4c, we used PEA-15-specific siRNAs to
down-regulate PEA-15 and then studied the effects of modula-
tion of PP4c expression on the viability of these cells. CEM-C7
cells were transfected with PEA-15-specific siRNAs. 48 h post-
transfection, PEA-15 down-regulation was assessed by real-time
RT-PCR and Western blotting (Fig. 8a and data not shown), and
cell viability was determined. All three siRNAs were able to down-
regulate PEA-15 expression to a similar extent (60–70%; Fig. 8a and
data not shown). Down-regulation of PEA-15 caused a decrease
in the number of viable cells and more than doubled the propor-
tion of apoptotic cells, confirming the involvement of PEA-15 in
regulating leukemic cell proliferation and apoptosis (Fig. 8c and
d). 48 h post-transfection, control cells (transfected with nega-
tive control siRNA) and cells transfected with PEA-15 siRNAs were
transiently transfected with pcDNA3.1-PP4c, pcDNA3.1 (−)siRNA or
PP4c-specific siRNAs (transfection efficiency 50–60%). As similar
results were obtained from all three PEA-15 siRNAs, data obtained
using only one PEA-15 siRNA are shown. In the cells transfected
with (−)siRNA, over-expression of PP4c caused 50% reduction in
viable cell number, confirming the results obtained earlier (Fig. 8e),
whereas down-regulation of PP4c caused a 50–60% increase in
viable cell number (Fig. 8e). On the other hand, cells transfected
with PEA-15 siRNAs showed a decrease in viable cell number in con-
trol cells (cells transfected with (−)siRNA and vector only) (Fig. 8e).
Over-expression of PP4c in these cells did not have any additional
effect on cell viability as it was found that the viable cell number of
(−)siRNA transfected cells was similar to that of PP4c transfected
cells (Fig. 8e). However, PP4c-specific siRNAs partially reversed the
effects of PEA-15 down-regulation (Fig. 8e). In order to ensure that
the effects of PEA-15 down-regulation on PP4c function were spe-
cific, we analysed the effects of PP2c� over-expression on PEA-15
siRNA transfected cells. Cells transfected with (−)siRNA or PEA-15
siRNAs were transiently transfected with pCMVSPORT6-PP2c� or
pCMVSPORT6, and viable cell number was determined after 24 h.
Fig. 8f shows that, in contrast to PP4c, transfection of PEA-15 knock-
down cells with PP2c� led to an additional loss of viable cells,
confirming that although PP4c and PP2c� have similar effects on
cell viability, their mechanisms of action are different.

4. Discussion

Here we report that PP4c exerts profound and specific effects
on the growth and survival of both normal and leukemic human
T-cells. The data presented reveal that over-expression of PP4c
in the T-leukemic cell lines CEM-C7 and Jurkat inhibited their
proliferation in the absence of extracellular apoptotic stimuli by
that down-regulation of endogenous PP4c by 60–70% increased
the rate of cell proliferation and conferred resistance to a num-
ber of apoptotic stimuli. While down-regulation of PP4c conferred
substantial resistance to UV, cisplatin and butyrate, it protected
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Fig. 8. PEA-15-specific siRNAs inhibit cell growth and increase apoptosis in CEM-C7 cells. CEM-C7 cells were transfected with control (−)siRNA, GAPDH siRNA or with three
different PEA-15-specific siRNAs. (a) Expression of PEA-15 protein under the same conditions was determined by Western blotting and equivalent loading was demonstrated
using anti-�-actin antibody. The resulting autoradiographs were analysed by densitometry. A representative autoradiograph is presented, and the bar graph (b) shows the
means ± S.E. from five independent experiments. Relative expression is the ratio of PEA-15 to �-actin. (c) Viable cell count of CEM-C7 cells treated with GAPDH siRNA, (−)siRNA
or PEA-15s1, PEA-15s2 or PEA-15s3 siRNA, after 48 h. Data represent means ± S.E. from five independent experiments, *P < 0.01 compared with (−)siRNA transfected cells.
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gainst Fas-induced apoptosis only partially. This partial inhibition
f Fas-induced apoptosis caused by down-regulation of PP4 may
e explained in part by recognizing that, in addition to caspase-
ependent pathways, Fas ligation activates other major signaling
ascades that belong to the family of mitogen-activated protein
inase (MAPK) pathways [52,53]. Down-regulation of PP4c pro-
ected against Dexamethasone-induced apoptosis but was less
ffective in protecting against the loss of colony-forming ability.
his may indicate that PP4c down-regulation protects only against
examethasone-induced apoptosis and is less effective against the
nti-proliferative effects of dexamethasone. These results suggest
hat PP4 may be able to modulate apoptosis in leukemic T-cells via
common factor which affects the apoptosis signaling pathways
ediated by these different apoptotic stimuli. The modulation of

P4c level did not affect cell death induced by okadaic acid, pre-
umably because okadaic acid also inhibits other phosphatases,
articularly PP2, with a comparable IC50 [55]. The critical impor-
ance of PP4c levels for the growth and survival of T-cells was further
emonstrated using primary cultures of PHA-stimulated human
eripheral blood lymphocytes. As for the leukemic T-cell popula-
ions, our data show that over-expression of PP4c caused inhibition
f normal lymphocyte proliferation and an increase in apoptosis,
hereas down-regulation of PP4c was accompanied by a corre-

ponding increase in proliferation and inhibition of apoptosis. Our
esults do not conflict with previous work which showed that PP4c
ctivity is required for microtubule nucleation during centrosome
aturation in Caenorhabditis elegans [29], and for the development

f thymocytes in mice and to have an anti-apoptotic role in thymo-
ytes [42], since these observations can quickly be reconciled by
ecognition of the wide range of cellular processes which involve
P4c. It is therefore likely that a minimum level of this enzyme
s required for survival and proliferation. Since our analysis was
nevitably focused on viable cells capable of replication and colony
ormation, we would not have detected any cells where the PP4
ctivity was below the minimum required for centrosome matura-
ion.

Recent studies have shown that PP4 regulates an increasing
umber of cellular functions in different cellular locations and have
esulted in the identification of several PP4 regulatory subunits and
inding proteins [22,24,29,31]. Like other serine/threonine phos-
hatases, PP4 is probably targeted to its specific sites of action
y these regulatory subunits and it is likely that the interchange
etween the different regulatory subunits and binding proteins
lays a critical role in regulating the activity of PP4 complexes. It is
lso important to note that PP4c is a positive regulator of HPK1
38], which in turn is known to promote apoptosis of murine T
ymphocytes [57,58]. The possibility that over-expression of PP4c
romotes apoptosis via the activation of HPK1 therefore requires
urther investigation.

It is also believed that loss of DNA repair systems that prevent
he fixation of premutagenic lesions in the genome is mandatory
or carcinogenesis, since the increased mutation rates of unstable
ells can give them a growth advantage over normal cells and allow
hem to accumulate aberrations that subsequently lead to cancer

59]. In the present study, we monitored the rate of mutation at the
PRT marker locus in order to study the effects of PP4c modula-

ion on the mutation rate of leukemic T-cells. In agreement with
ur previous studies using HEK 293T cells [41], our results showed
hat over-expression of PP4c significantly reduces mutation at the

d) Active caspase staining, as a marker of apoptosis, was determined using CaspaTag a
xperiments, *P < 0.01 compared with (−)siRNA-transfected cells. (e) Cell density was det
iRNA-transfected cells. CEM-C7 cells were transfected with either control (−)siRNA or PE
ontrol siRNA) and cells transfected with PEA-15 siRNAs were transiently transfected wit
4 h. Data represent means ± S.E. from five independent experiments. (a) P < 0.01 comp
−)siRNA. (d) P < 0.01 compared to pCMVSPORT6.
kemia Research 33 (2009) 1539–1551 1549

HPRT locus. These effects were dependent on PP4c catalytic activ-
ity since the PP4c phosphatase-dead mutant (PP4-RL) did not affect
the mutation rate of these cells (results not shown). On the other
hand, down regulation of endogenous PP4c consistently increased
the HPRT gene mutation frequency. These observations have impor-
tant implications for oncogenesis and further support an important
rate-limiting role for PP4c in the induction of apoptosis after DNA
damage.

PP4 shares 65% amino acid identity with PP2, the most abundant
serine/threonine phosphatase in mammals [23,24], which plays a
crucial role in many fundamental processes including differentia-
tion, embryonic development, and growth control [60,61]. The great
versatility of PP2 is a result of the existence of a large number of
subunits: two isoforms of the catalytic C subunit (C� and C�), two
isoforms of the regulatory/scaffolding A subunit (A� and A�) and
numerous regulatory B subunits that fall into four families desig-
nated B, B′, B′′, and B′′′ [62–66]. In addition, PP2, PP4 and PP6 share
the alpha 4 (�4) protein, the mammalian ortholog of yeast Tap42,
which binds to the catalytic subunits and displaces other regula-
tory subunits [28,67]. Several lines of evidence implicate PP2 in
the regulation of apoptosis [28,43,44,61,68]. However, as for PP4,
the reported effects of PP2 on apoptosis and cell growth appear
variable, since its function has been variously described as pro-
apoptotic [69,70] and as anti-apoptotic [71]. Functional screens of
human phosphatases have identified the � isoform of PP2 catalytic
subunit as associated with survival and the � isoform as associated
with cell death [51]. Our data indicate that PP2c� over-expression
causes an inhibitory effect on cell proliferation and enhances apop-
tosis, producing effects similar to those observed with PP4c in these
cells. In addition, as with the knockdown of PP4c, down-regulation
of PP2c� increased cell proliferation. However, while PP4c knock-
down conferred resistance to fetal calf serum withdrawal, reducing
PP2c� levels had little effect in this situation, indicating that each
of these phosphatases acts independently on different apoptosis
pathways. �4 protein, a PP2- and PP4-regulatory subunit, has been
implicated in the regulation of B- and T-cell differentiation, embry-
onic development and cell death [71–73]. Knockout of �4 decreases
cell proliferation and promotes apoptosis in thymocytes as well as
in other cell types [74,75]. �4 has been shown to interact directly
with PP6, PP4c and PP2 catalytic subunits and exerts opposing
kinetic effects on these target phosphatases [28]. It is likely that
the pro-apoptotic effects observed as a result of �4 knockdown are
produced by the increased activity of PP4c and/or the inhibition
or activation of PP2 catalytic subunits. Further work is required
to investigate the interplay between PP4c, PP2 catalytic subunit
isoforms and �4 and to determine their roles in commitment to
apoptosis.

A multiplexed phosphorylation screen revealed that modula-
tion of the endogenous level of PP4c in HEK 293T cells resulted
in an increase or reduction in the phosphorylation state of many
proteins involved in cellular stress, cellular proliferation and apop-
tosis [41]. The phosphorylation of PEA-15 was found to increase
dramatically (by 223%) when PP4c expression was reduced [41].
PEA-15 has been reported to modulate signalling pathways that

control apoptosis and cell proliferation [45,46] and to play a rate-
limiting role in the induction of B-CLL cell apoptosis induced by
TRAIL [47]. PEA-15 can act to modulate apoptosis and as a criti-
cal regulator of the cell cycle. Its function is tightly regulated by
phosphorylation and is involved in the signalling pathways medi-

nd fluorescence microscopy. Data shown are the means ± S.E from five separate
ermined by nigrosin dye exclusion. (f) Effects of PP2c� over-expression on PEA-15
A-15-specific siRNA. 48 h post-transfection, control cells (transfected with negative
h pCMVSPORT6-PP2c� or pCMVSPORT6. Viable cell number was determined after
ared with (−)siRNA. (b) P < 0.01 compared to pcDNA3.1. (c) P < 0.01 compared to
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ted by ERK1/2, Akt and RSK2 [45,46,56,76,77]. In the present study,
e have investigated the involvement of PEA-15 in mediating the

ffects of PP4c on T-leukemic cells. Down-regulation of PEA-15
educed viable cell number, in accordance with its reported effects
s an anti-apoptotic protein. PP4c over-expression in the cells which
ave down-regulated PEA-15 did not cause additional cell death, in
ontrast to the effects of PP2c� over-expression. These observations
uggest that the induction of apoptosis by over-expression of PP4c is
ediated, at least in part, by the dephosphorylation of PEA-15. This

ighlights clear differences between the pathways which mediate
he effects of PP4c and those that mediate the effects of PP2, which
ppear to be largely independent of PEA-15. Down-regulation of
P4c was able to partially reverse the inhibitory effects of PEA-15
nockdown, suggesting that PP4c activity is normally an important
lement in regulating PEA-15 activity. The interaction between PEA-
5 and PP4c may therefore be critical in leukemogenesis and/or
eukemia progression. The PEA-15 gene is amplified in breast can-
er as well as in other cancers [78], where PEA-15 over-expression
onfers resistance to abroad range of anti-cancer drugs [79]. Since
EA-15 also confers TRAIL-resistance on leukemic cells [47], and
he reistance conferred depends on the phosphorylation status of
EA-15 [54], PP4 activity is likely to play an important role in reg-
lating leukemic cell drug sensitivity. Akt, which phosphorylates
nd stabilises the anti-apoptotic action of PEA-15, is also upreg-
lated in a number of human cancers [80], suggesting that they
ight function cooperatively in tumorigenesis. Developing strate-

ies that enhance the activity of PP4c to oppose the effects Akt on
EA-15 could therefore prove to be effective in treating cancer.

. Conclusions

It is clear that multiple cellular functions are regulated by PP4c
nd its interacting proteins and that several of these are crucial
o determining leukemic cell survival, particularly after treatment
ith cytotoxic drugs. Our findings indicate that the endogenous

evel of PP4c plays a critical role in maintaining the delicate balance
etween cell survival and cell death both in normal lymphocytes
nd T-leukemic cells and acts, at least partly, through direct or
ndirect dephosphorylation of PEA-15. These observations suggest
hat modulating PP4c or PEA-15 function may prove important in
herapeutic strategies for the treatment of leukemia.
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