
Infection, Genetics and Evolution 12 (2012) 1079–1086

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Infection, Genetics and Evolution

journal homepage: www.elsevier .com/locate /meegid
Phylodynamics of HIV-1 subtype F1 in Angola, Brazil and Romania

Gonzalo Bello a,⇑, Joana Morais Afonso a,b, Mariza G. Morgado a

a Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, Brazil
b Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola
a r t i c l e i n f o

Article history:
Received 25 January 2012
Received in revised form 7 March 2012
Accepted 14 March 2012
Available online 29 March 2012

Keywords:
HIV-1
Subtype F1
Angola
Brazil
Romania
Demographic history
1567-1348 � 2012 Elsevier B.V.
http://dx.doi.org/10.1016/j.meegid.2012.03.014

⇑ Corresponding author. Address: Laboratório de A
IOC/FIOCRUZ, Av. Brasil 4365, Leonidas Deane Buildin
21040-900, Brazil. Tel.: +55 21 3865 8154; fax: +55 2

E-mail address: gbello@ioc.fiocruz.br (G. Bello).

Open access under the Elsevie
a b s t r a c t

The HIV-1 subtype F1 is exceptionally prevalent in Angola, Brazil and Romania. The epidemiological con-
text in which the spread of HIV occurred was highly variable from one country to another, mainly due to
the existence of a long-term civil war in Angola and the contamination of a large number of children in
Romania. Here we apply phylogenetic and Bayesian coalescent-based methods to reconstruct the phylo-
dynamic patterns of HIV-1 subtype F1 in such different epidemiological settings. The phylogenetic anal-
yses of HIV-1 subtype F1 pol sequences sampled worldwide confirmed that most sequences from Angola,
Brazil and Romania segregated in country-specific monophyletic groups, while most subtype F1
sequences from Romanian children branched as a monophyletic sub-cluster (Romania-CH) nested within
sequences from adults. The inferred time of the most recent common ancestor of the different subtype F1
clades were as follow: Angola = 1983 (1978–1989), Brazil = 1977 (1972–1981), Romania adults = 1980
(1973–1987), and Romania-CH = 1985 (1978–1989). All subtype F1 clades showed a demographic history
best explained by a model of logistic population growth. Although the expansion phase of subtype F1 epi-
demic in Angola (mid 1980s to early 2000s) overlaps with the civil war period (1975–2002), the mean
estimated growth rate of the Angolan F1 clade (0.49 year�1) was not exceptionally high, but quite similar
to that estimated for the Brazilian (0.69 year�1) and Romanian adult (0.36 year�1) subtype F1 clades. The
Romania-CH subtype F1 lineage, by contrast, displayed a short and explosive dissemination phase, with a
median growth rate (2.47 year�1) much higher than that estimated for adult populations. This result sup-
ports the idea that the AIDS epidemic that affected the Romanian children was mainly caused by the
spread of the HIV through highly efficient parenteral transmission networks, unlike adult populations
where HIV is predominantly transmitted through sexual route.

� 2012 Elsevier B.V. Open access under the Elsevier OA license. 
1. Introduction

Phylogeographic analyses of the human immunodeficiency
virus type 1 (HIV-1) group M, the pandemic branch of HIV, suggest
that this clade originates in western-central Africa at around 1900–
1930 and then spread to the rest of the world during the second
half of the twentieth century (Korber et al., 2000; Worobey et al.,
2008). The global dissemination of HIV-1 group M resulted from
the random exportation of a few pandemic clades designated as
subtypes (A–D, F–H, J and K) and inter-subtype recombinants.
The most successful HIV-1 group M pandemic clades are subtype
C (48% of all global infections), subtype A (12%), subtype B (11%),
circulating recombinant form (CRF) 02_AG (8%), CRF01_AE (5%),
subtype G (5%) and subtype D (2%); while subtypes F, H, J and K
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together cause less than 1% of infections worldwide (Hemelaar
et al., 2011).

Despite its low overall prevalence, subtype F1 is widely spread,
being exceptionally prevalent in some specific countries of Central
Africa, South America and Europe. Most of the HIV-1 subtype F1
infections described in Africa until date have been documented
in Angola and the Democratic Republic of Congo (DRC). Molecular
epidemiological data indicates a high prevalence of subtype F1
infections in Angola, ranging from 8% to 23%, being one of the most
prevalent clades in the country (Abecasis et al., 2005; Bartolo et al.,
2009; Castelbranco et al., 2010). By contrast, subtype F1 clade rep-
resent a small percentage (<5%) of the HIV-1 strains circulating in
the DRC (Kalish et al., 2004; Mokili et al., 1999; Vidal et al., 2005,
2000; Yang et al., 2005). In South America, subtype F1 and BF1 re-
combinant variants reach a high prevalence (10–20%) in Brazil
(Bongertz et al., 2000; Brindeiro et al., 2003). Other American coun-
tries from the Southern cone also displayed high prevalence of BF1
recombinants, but only sporadic cases of ‘‘pure’’ subtype F1 were
described (Aulicino et al., 2007). In Europe, most subtype F1 infec-
tions are concentrated in Romania, where this subtype reaches a
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Table 1
HIV-1 subtype F1 sequences.

Country N Sampling date

DRC + Belgiuma 5 1987–2003
Angola 32 2001–2010
Brazil 49 1989–2009
Romania (AD)b 18 1997–2004
Romania (CH)b 18 1993–2004
Romania (CH-treated)b 333 2003–2007

a DRC, Democratic Republic of Congo.
b HIV-1 subtype F1 Romanian sequences derived from antiretroviral (ARV)

therapy-naïve adults (AD) and children (CH), and from heavily treated adolescents
infected during childhood (CH-treated).
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prevalence >70% (Apetrei et al., 2003, 1998; Op De Coul et al., 2000;
Paraschiv et al., 2007).

The epidemiological context in which subtype F1 dissemination
occurred is highly variable among different countries. Heterosex-
ual intercourse is the main epidemic’s driving force in Angola,
but the existence of a long-term civil war may have had profound
effects on the HIV epidemic growth pattern. In Brazil, subtype F1
circulates among heterosexual, homosexual and intravenous drug
users (IDU) (Guimaraes et al., 2001; Lacerda et al., 2007; Morgado
et al., 1998; Raboni et al., 2010; Sabino et al., 1996; Teixeira et al.,
2004; Vicente et al., 2000), indicating that both sexual and iatro-
genic routes may have played an important role in viral dissemina-
tion. In Romania, subtype F1 seems to have been disseminated by
the heterosexual route among adult population and by parenteral
route in institutionalized children. The first pediatric case of HIV
in Romania was reported in 1989 (Patrascu et al., 1990) and hun-
dreds of cases were reported in the following years. Phylogenetic
and epidemiologic evidences indicate that most Romanian children
became horizontally infected by subtype F1 viruses from the adult
population (Apetrei et al., 1997, 1998; Bandea et al., 1995; Op De
Coul et al., 2000; Paraschiv et al., 2009), that probably entered in
a health care environment and were subsequent disseminated
through the use of contaminated needles and syringes and/or
transfusion of unscreened blood or blood products (Hersh et al.,
1991, 1993).

Such large differences in the epidemiological background may
have a great impact in the patterns of epidemic growth of HIV-1
subtype F1 across diverse regions and populations. To test this
hypothesis, we applied a Bayesian coalescent-based method to
reconstruct the evolutionary and demographic history of the
HIV-1 subtype F1 epidemic in Angola, Brazil, Romanian adults
and Romanian children.

2. Material and methods

2.1. Sequence datasets

HIV-1 subtype F1 pol sequences from Angola, Brazil, Romania
and the DRC, and some Belgian subtype F1 sequences probably
linked to the DRC, that matched the selected genomic region
(nucleotides 2550–3415 relative to HXB2) and from which the year
of isolation was available were downloaded from the Los Alamos
HIV Sequence Database (http://www.hiv.lanl.gov) by July 2011.
The subtype assignment was confirmed using the REGA HIV sub-
typing tool v.2 (de Oliveira et al., 2005) and the Simplot software
(Ray). All sequences with evidence of inter-subtype recombination,
erroneous subtype F1 classification, stop codons and frame-shift
mutations were removed. Sequences displaying major antiretrovi-
ral drug resistance mutations (DRM) were also initially excluded to
avoid the effect of drug-induced convergent evolution on the phy-
logenetic analyses. Selected sequences were combined with 12
new subtype F1 sequences sampled in Angola between 2008 and
2010 (Afonso et al., unpublished results). This resulted in a final
alignment of 122 subtype F1 sequences (Table 1). We also con-
structed a second alignment that further included 333 subtype
F1 Romanian sequences with multiple DRM obtained from heavily
treated adolescents infected during childhood (Paraschiv et al.,
2009). Sequence alignments were created using the Clustal X pro-
gram (Thompson et al., 1997) and are available from the authors
upon request.

2.2. Phylogenetic analyses

Phylogenetic trees were inferred by the maximum likelihood
(ML) and Bayesian methods under the GTR+I+C4 nucleotide substi-
tution model, selected using the jModeltest program (Posada,
2008). ML trees were reconstructed with program PhyML (Guindon
and Gascuel, 2003) using an online web server (Guindon et al.,
2005). Heuristic tree search was performed using the SPR
branch-swapping algorithm and the reliability of the obtained
topology was estimated with the approximate likelihood-ratio test
(aLRT) (Anisimova and Gascuel, 2006) based on the Shimodaira–
Hasegawa-like procedure. Bayesian tree reconstructions were per-
formed using MrBayes version 3.1.2 (Ronquist and Huelsenbeck,
2003). Two runs of four chains each were run for 2 � 107 genera-
tions, with a burn-in of 2 � 106 generations. Convergence of
parameters was assessed by calculating the Effective Sample Size
(ESS) using TRACER v1.4 (Rambaut and Drummond, 2007), after
excluding an initial 10% for each run. All parameter estimates for
each run showed ESS values >100. ML and Bayesian majority-rule
consensus trees were visualized using the FigTree v1.3.1 program
(Rambaut, 2009).

2.3. Estimation of the evolutionary and demographic history

The evolutionary rate (l, units are nucleotide substitutions per
site per year, subst./site/year), the age of the most recent common
ancestor (Tmrca, years), and the mode and rate (r, years�1) of popu-
lation growth for the Angolan, Brazilian and Romanian subtype F1
epidemics were estimated using a Bayesian Markov Chain Monte
Carlo (MCMC) approach as implemented in BEAST v1.6.2 (Drum-
mond et al., 2002; Drummond and Rambaut, 2007). The temporal
structure of subtype F1 pol datasets was not sufficient to reliably
estimate the evolutionary rate under a chronological time-scale
employing the dates of the sequences. Therefore, the interval of
mean substitution rates at pol gene previously estimated for other
HIV-1 group M subtypes (1.5 � 10�3 to 2.5 � 10�3 subst./site/year)
(Bello et al., 2008; Hue et al., 2005; Paraskevis et al., 2007; Passaes
et al., 2009; Salemi et al., 2008) was incorporated as a prior prob-
ability distribution in our analyses. Analyses were performed using
the GTR+I+C nucleotide substitution model assuming either a
strict or a relaxed (uncorrelated Lognormal) molecular clock model
(Drummond et al., 2006).

Estimations of evolutionary and demographic parameters in-
volved two steps. First, the Bayesian skyline plot method (Drum-
mond et al., 2005), was used to estimate l, the Tmrca, and the
change in effective population size through time. Second, two dif-
ferent demographic models for each data set were compared:
exponential and logistic growth; and estimates of the population
growth rate were then obtained under the model that provided
the best fit to the demographic signal in each data set. Model com-
parisons in a Bayesian framework were performed by calculating
the Bayes Factor (BF) (Suchard et al., 2001) with TRACER v1.4.
Two separate MCMC chains were run for 1–5 � 107 generations
for each data set, with a burn-in of 1–5 � 106. BEAST output was
analyzed using TRACER v1.4, with uncertainty in parameter esti-
mates reflected in the 95% Highest Probability Density (HPD) val-

http://www.hiv.lanl.gov
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Fig. 1. Maximum likelihood tree of the pol gene of HIV-1 subtype F1 strains circulating in Angola, Brazil, Romania (adults and children), the DRC and Belgium (linked to the
DRC). The aLRT support values are indicated only at key nodes. The color of each branch represents the country of origin of sequence corresponding to that branch, according
to the legend in the figure. Brackets indicate the different monophyletic clusters identified. The tree was rooted using subtype F2 reference strains (green branches) as
outgroups. Horizontal branch lengths are drawn to scale with the bar at the bottom indicating 0.03 nucleotide substitutions per site. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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ues. Convergence of parameters was assessed through the ESS after
excluding an initial 10% for each run. All parameter estimates for
each run showed ESS values >200. A graphical representation of
the effective number of infections through time was generated
by using programs TRACER v1.4 and Prism 4 (GraphPad Software).
2.4. GenBank accession numbers

The new Angolan HIV-1 subtype F1 pol sequences used in this
study have been deposited in GenBank under Accession Nos.
JN937026, JN937039, JN937044, JN937051, JN937064, JN937068,



Romania CH
(n = 316) 

Romania 

Angola 

Brazil 

ROMANIA CHILDREN/ADOLESCENTS 

ROMANIA ADULTS 

ANGOLA 

BRAZIL 

DRC/BELGIUM 

0.80 

0.89 

0.75 

0.92 

0.92 

0.96 
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JN937080, JN937089, JN937092, JN937111, JN937113 and
JN937114.
3. Results

3.1. Phylogenetics analyses of HIV-1 subtype F1 sequences

The ML phylogenetic tree (Fig. 1) of 122 HIV-1 subtype F1 pol
sequences sampled worldwide showed that isolates from the
DRC and Belgium (probably linked to the DRC) occupy the most
basal positions in subtype F1 phylogeny, while most subtype
F1 sequences from Angola, Brazil and Romania segregated in
country-specific monophyletic groups (aLRT P 0.84) nested among
the basal strains from the DRC and Belgium. Two isolates sampled
in Angola at 2001 (EU068351 and EU068372) and one isolate sam-
pled in Brazil at 1994 (AY455781) were intermixed among strains
from the DRC and Belgium, outside the major Angolan and Brazil-
ian clades. This phylogenetic analysis also showed that Romanian
and Angolan F1 clades formed a highly supported (aLRT = 0.92)
monophyletic lineage, suggesting that both epidemics arisen from
closely related subtype F1 strains. The Bayesian tree displayed the
same overall topology (Supplementary Fig. 1).

The observed tree topology is fully consistent with a previous
study conducted by our group (Guimaraes et al., 2009), but is in
contrast with a recent work that described the nesting of the major



Fig. 3. Bayesian skyline plots representing estimates of effective number of infections (y-axis; log10 scale) through time (x-axis; calendar years) for HIV-1 subtypes F1
epidemics in Angola (a), Brazil (b), Romanian adults (c), and Romanian children (d). Median estimate of the effective number of infections (solid line) and 95% confidence
limits of the estimate (dashed lines) are shown in each graphic.
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Angolan lineage within the Romanian clade (Mehta et al., 2011).
The study of Mehta et al. includes all Romanian subtype F1 pol
sequences available at the Los Alamos HIV database, most of which
(>90%) were retrieved from heavily treated adolescents (Paraschiv
et al., 2009). Because all pol sequences from Romanian treated ado-
lescents displayed multiple DRM, they were excluded from our
previous analyses. In order to test whether the inclusion of such se-
quences may produce a different tree topology, the 122 subtype F1
pol sequences previously used were aligned with 333 subtype F1
pol sequences obtained from Romanian treated adolescents. The
new ML phylogenetic tree (Fig. 2), however, confirmed the recipro-
cal monophyly between subtype F1 lineages from Angola and
Romania.

A closer inspection of the Romanian subtype F1 clade revealed
that adult sequences occupied the most basal positions within
the lineage whereas sequences from drug-naïve children branched
as a monophyletic sub-cluster (Romania-CH; aLRT = 0.94) nested
within adult sequences (Fig. 1). The Romania-CH clade also in-
cludes six sequences from adults (AF204051, HM191569,
HM191570, HM191574, HM191575, HM191577); most of which
were reported to be infected by the heterosexual route (Paraschiv
et al., 2007). The analysis of subtype F1 sequences from heavily
Table 2
Time-scale and population dynamics estimates for Angolan, Brazilian and Romanian HIV-

Data-set Demographic model l (subst./site/year)

Angola Bayesian skyline 1.7 � 10�3 (1.5 � 10�3 to 2.1 � 10�

Logistic growth 1.7 � 10�3 (1.5 � 10�3 to 2.2 � 10�

Brazil Bayesian skyline 1.6 � 10�3 (1.5 � 10�3 to 1.8 � 10�

Logistic growth 1.6 � 10�3 (1.5 � 10�3 to 1.8 � 10�

Romania (AD) Bayesian skyline 1.8 � 10�3 (1.5 � 10�3 to 2.4 � 10�

Logistic growth 1.8 � 10�3 (1.5 � 10�3 to 2.4 � 10�

Romania (CH) Bayesian skyline 1.7 � 10�3 (1.5 � 10�3 to 2.3 � 10�

Logistic growth 1.7 � 10�3 (1.5 � 10�3 to 2.3 � 10�

Median substitution rate (l), median time of the most recent common ancestor (Tmrca)
different HIV-1 subtype F1 clades. Ninety-five percent HPD intervals are shown in paren
treated adolescents infected during childhood showed that most
(88%) of adolescent sequences branched within the Romania-CH
clade together with pediatric sequences, while a minor proportion
(12%) was interspersed with adult sequences at basal positions in
the Romanian clade (Fig. 2). These results confirm the hypothesis
that subtype F1 viruses circulating in Romanian children origi-
nated from the adult population and further suggest the existence
of a major lineage circulating in the pediatric population.

3.2. Timing the emergence of country-specific subtype F1 clades

Bayesian MCMC analyses under a skyline tree prior were used
to estimate the time-scale of the following country-specific sub-
type F1 clades: Angola (n = 30), Brazil (n = 49), Romanian adults
(AD; n = 18) and Romanian children (CH; n = 18). For all subtype
F1 data sets, the BF analysis favored the relaxed molecular clock
over a strict molecular clock model (ln BF > 10), demonstrating a
significant variation of substitution rate among branches (Supple-
mentary Table 1). The median rate of evolution estimated under
the relaxed molecular clock model was almost equal for all subtype
F1 data sets (1.6–1.8 � 10�3 subst./site/year) (Table 2). The 95%
HPD intervals of such estimates (Table 2), however, almost coin-
1 subtype F1 clades.

Tmrca r (year�1) k (year)

3) 1983 (1978–1989) – –
3) 1983 (1978–1989) 0.49 (0.30–0.77) 1.41 (0.90–2.31)
3) 1977 (1972–1981) – –
3) 1978 (1974–1982) 0.69 (0.43–1.02) 1.00 (0.68–1.61)
3) 1980 (1973–1987) – –
3) 1981 (1974–1987) 0.36 (0.04–1.05) 1.92 (0.66–17.33)
3) 1985 (1978–1989) – –
3) 1986 (1980–1989) 2.47 (0.57–7.16) 0.28 (0.10–1.22)

, median growth rate (r) and median epidemic doubling time (k) estimated for the
theses.
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Fig. 4. Estimates of net number of migrants in Angola. The symbols represent the
net number of migrants (number of immigrants minus the number of emigrants per
thousands on the y-axis) for 5-year intervals (x-axis) from 1960 to 2010. Data were
obtained from the United Nations World Population Prospects database (http://
esa.un.org/unpd/wpp/Excel-Data/migration.htm). The arrow indicates the median
age of the most recent common ancestor of Angolan subtype F1 clade.
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cide with the informative prior interval used in our analyses (1.5–
2.5 � 10�3 subst./site/year), indicating that not much temporal
information was added by the data. The median Tmrca for the differ-
ent subtype F1 clades estimated under those substitution rates
were as follows: Angola = 1983, Brazil = 1977, Romania-
AD = 1980, and Romania-CH = 1985 (Table 2).

3.3. Demographic history of country-specific subtype F1 clades

The Bayesian skyline plot analyses suggest that all subtype F1
clades experienced an initial phase of fast exponential growth fol-
lowed by a more recent decline in growth rate (Fig. 3). The precise
time in which the growth rate starts to slow down, however, seems
to vary among clades. While the growth rate of the Brazil and
Romania-CH clades started to decrease around the early 1990s,
subtype F1 continues to spread in Angola and Romanian adults un-
til the early 2000s. To test the significance of such a recent decline
in the epidemic growth rate, we compared the logistic and the
exponential demographic models for each subtype F1 data set.
According to the BF analysis, the model of logistic population
growth was strongly supported over the exponential one for Ango-
la, Brazil and Romania-CH datasets, and weakly supported for the
Romania-AD dataset (Supplementary Table 1). A coalescent model
of logistic growth was then used to estimate the initial growth rate
of subtype F1 epidemics in the different populations, giving the fol-
lowing median values: Angola = 0.49 year�1, Brazil = 0.69 year�1,
Romania-AD = 0.36 year�1 and Romania-CH = 2.47 year�1 (Table 2).

4. Discussion

Our phylogenetic analyses showed that most HIV-1 subtype F1
sequences from Angola, Brazil and Romania segregate in country-
specific monophyletic groups nested within more basal subtype
F1 sequences from the DRC and Belgium (probably linked to the
DRC), indicating that the original diversification of the HIV-1 sub-
type F1 clade probably occurred within the DRC and subsequently
spread to the other countries.

A recent study of Mehta et al. (2011) indicates that Angolan
subtype F1 strains form a monophyletic cluster nested within the
Romanian one, suggesting that an Angolan sub-epidemic stemmed
from the Romanian epidemic. Alternatively, authors suggest that
the Angolan epidemic has not been sampled as densely as the
Romanian epidemic and that several introductions of HIV-1 sub-
type F1 occurred from Angola to Romania. This result contrast with
a previous study conducted by our group that indicates that Ango-
lan and Romanian subtype F1 isolates segregate in two reciprocal
monophyletic clusters (Guimaraes et al., 2009). The study of Mehta
et al. included a large number of Romanian subtype F1 sequences
retrieved from heavily treated adolescent containing multiple
DRM, that were not considered in our previous work. In this study
we have include those Romanian sequences from treated adoles-
cent and we further expand the number of Angolan sequences ana-
lyzed. The new phylogenetic trees obtained, however, confirmed
the reciprocal monophyly of Angolan and Romanian subtype F1
clades, supporting the hypothesis that both epidemics arose from
single founder events involving closely related subtype F1 strains.
Thus, factors other than the number of sequences and/or the pres-
ence of DRM should explain the differences between studies.

The Tmrca of Angolan, Brazilian and Romanian subtype F1 clades
were estimated at 1983 (95% HPD: 1978–1989), 1977 (95% HPD:
1972–1981) and 1980 (95% HPD: 1973–1987), respectively; con-
sistent with previous studies (Aulicino et al., 2007; Bello et al.,
2007, 2006; Mehta et al., 2011). This indicates that the three sub-
type F1 sub-epidemics started to spread at around the same time,
between the late 1970s and the early 1980s. This time-frame coin-
cides with important socio-political changes that occurred in An-
gola after the beginning of the civil war in 1975. The Angolan
civil war was not only associated to an important wave of emigra-
tion, but also received substantial support of several foreign pow-
ers including Cuba, countries from the Eastern bloc (including
Romania), USA, South Africa and Zaire (current DRC). This situation
gave an international dimension to the Angolan conflict that may
have triggered the migration of subtype F1 viruses from Central
Africa to Europe and South America as well as the dissemination
of subtype F1 viruses within Angola. Of note, the estimated mean
onset date of the Angolan subtype F1 clade coincides with a period
of positive migration influx (1980–1985) that was preceded by a
phase of negative migratory outflow (1960–1980), according to
the estimates of the United Nations World Population Prospects
for Angola (Fig. 4). This supports a scenario in which one Angolan
individual that migrated to the DRC between 1960 and 1980, be-
came infected with a subtype F1 strain and then returned to Ango-
la in the early 1980s, initiating the local dissemination of the virus.

Our coalescent analyses suggest that subtype F1 infections in
Angola and Brazil experienced an initial phase of fast exponential
growth, followed by a deceleration of the rate of expansion in re-
cent years. The expansion phase of the Angolan clade probably
lasted from the mid 1980s to early 2000s, thus overlapping with
the Angolan civil war period (1975–2002). While, the exponential
growth of the Brazilian clade was probably from the late 1970s to
early 1990s, in agreement with our previous estimations (Bello
et al., 2007); covering a period during which no armed conflict oc-
curred in the country. Despite such a difference in the socio-polit-
ical context, the mean estimated growth rate of the Angolan
subtype F1 epidemic (0.49 year�1) was quite similar to that esti-
mated for the Brazilian subtype F1 epidemic here (0.69 year�1)
and in a previous study (�0.60 year�1) (Bello et al., 2007). This re-
sult challenge the notion that HIV transmission is either hampered
(Gisselquist, 2004; Strand et al., 2007) or accelerated (Hankins
et al., 2002; Salama and Dondero, 2001) by the armed conflicts.

Romania was a special case in the global AIDS epidemic because
it displayed of what may represent the world’s largest population
of HIV-infected children by parenteral transmission. Our phyloge-
netic analyses revealed that subtype F1 viruses from adults lie at
the base of the Romanian clade together with some viruses from
Romanian adolescents that were infected during childhood, sup-
porting the hypothesis that the Romanian HIV pediatric epidemic
was the result of multiple transmissions of subtype F1 from adult
to children (Mehta et al., 2011; Op De Coul et al., 2000). One of
those transmissions, however, was particularly successful in
spreading among Romanian children because most subtype F1
viruses from adolescents and children included in this analysis
branched in a monophyletic sub-cluster (Romania-CH) nested

http://esa.un.org/unpd/wpp/Excel-Data/migration.htm
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within adult sequences. The Tmrca of the Romania-CH clade was
estimated at 1985 (95% HPD: 1978–1989), five years after the
estimated introduction of subtype F1 into the adult Romanian
population. The existence of a Romanian subtype F1 sub-cluster
made up almost entirely of pediatric sequences was recently de-
scribed by two independent studies that also estimate the origin
of this clade to around the middle 1980s (Mbisa et al., in press;
Mehta et al., 2011).

The reconstruction of the demographic history of subtype F1
viruses showed that HIV epidemics in Romanian adults and chil-
dren seem to have followed very different growth patterns. Sub-
type F1 epidemic in adults experienced a slow but steady
increase until the early 2000s, after which the epidemic growth
rate started to slow-down. The Romania-CH clade, by contrast,
experienced a short period of extremely fast growth between
1985 and 1990, before stabilizing. A very similar demographic
pattern was recently described for subtype F1 epidemic among
Romanian children (Mbisa et al., in press). The reconstructed
demographic patterns are fully consistent with the epidemiological
data that shows that the number of pediatric AIDS cases in Roma-
nia reached a peak in 1990 and then registered a roughly continu-
ous decline; while there was a slower but steady increase in
number of adult AIDS cases up to the early 2000s (Ruta and Cerne-
scu, 2008). The sudden stabilization of subtype F1 expansion
among Romanian children around 1990 further coincides with
the first recognition of the AIDS pediatric epidemic in Romania
and the subsequent implementation of prevention and control
measures for avoid HIV transmission in health care settings
(Danziger, 1996).

Coalescent-based analyses also indicate that the Romania-CH
clade spread at a mean rate of 2.47 year�1, which corresponds to
an epidemic doubling time of only three months. Such a mean
growth rate is much faster than that estimated for subtype F1
clades circulating in adult populations from Romania (0.36 year�1),
Angola (0.49 year�1) and Brazil (0.69 year�1), and is one of the
highest ever estimated for HIV using coalescent methods. The ex-
tremely high rate of subtype F1 expansion estimated among chil-
dren points to a very efficient route of viral spread, consistent
with the presumed dissemination of the virus through the re-use
of unsterilized needles and syringes and/or transfusion of
unscreened blood or blood products (Hersh et al., 1991, 1993), in
sharp contrast to adult populations where HIV is mainly transmit-
ted through sexual contacts. Recovering growth rates estimates
from Romanian adult and children with narrower confidence inter-
vals will be crucial to confirm these results.
5. Conclusions

In summary, this study confirms that Angolan, Brazilian and
Romanian HIV-1 subtype F1 epidemics resulted from single foun-
der events that probably occurred between the late 1970s and
the early 1980s. The DRC seems to be the epicenter of subtype F1
dissemination, but the precise pathways of migration from Central
Africa to South America and Europe are not fully resolved. The pat-
tern of growth of the HIV subtype F1 epidemic in adult populations
of countries with (Angola) or without (Brazil and Romania) long-
term armed conflicts was roughly similar. Subtype F1 epidemic
in Romanian children, by contrast, displayed a more explosive
and shorter period of growth than that observed in adult popula-
tions, consistent with the notion that HIV was primary spread in
Romanian children through highly efficient parenteral transmis-
sion networks. A denser sampling of subtype F1 viruses from the
DRC, Angola and Romania will be necessary to fully understand
the world-wide migration routes of this subtype and to obtain
more precise demographic estimates.
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