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Abstract

In this paper we study the monodromy action on the first Betti and de Rham non-Abelian

cohomology arising from a family of smooth curves. We describe sufficient conditions for the

existence of a Zariski-dense monodromy orbit. In particular, we show that for a Lefschetz

pencil of sufficiently high degree the monodromy action is dense.

r 2003 Elsevier Inc. All rights reserved.

1. Introduction

We work in the category of quasi-projective schemes over C: Let f : X-B be a
smooth projective morphism with connected fibers of dimension one and genus at
least two. Fix a base point oAB and let Xo be the corresponding fiber of f : In this
paper we study the monodromy action of p1ðB; oÞ on the degree one non-Abelian
Betti and de Rham cohomology of Xo: Let p1ðXoÞ denote the abstract fundamental
group of Xo and let

mon : p1ðB; oÞ-Outðp1ðXoÞÞ

ARTICLE IN PRESS

�Corresponding author. Fax: +1-215-573-4063.

E-mail address: tpantev@math.upenn.edu (T. Pantev).
1 Partially supported by NSF Career Award DMS-9875383 and A.P. Sloan research fellowship.
2 Partially supported by NSF Grant DMS-9800790 and A.P. Sloan research fellowship.

0001-8708/03/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0001-8708(02)00070-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82787586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


be the geometric monodromy representation of the family f : X-B: For any positive
integer n let

monn
B : p1ðB; oÞ-AutðH1

BðXo;GLðn;CÞÞÞ

be the induced monodromy action on the non-Abelian Betti cohomology with
coefficients in GLðn;CÞ:

The de Rham object which corresponds to monn
B is the Gauss–Manin connection

rn
DR on the relative de Rham cohomology stack H1

DRðX=B;GLðn;CÞÞ: While the

non-Abelian Betti and de Rham cohomology are most naturally viewed as stacks, for
the purposes of the present paper it suffices to work with the corresponding coarse
moduli spaces. To indicate that we will write MBðXo; nÞ and MDRðX=B; nÞ rather

than H1
BðXo;GLðn;CÞÞ and H1

DRðX=B;GLðn;CÞÞ: Concretely, MBðXo; nÞ denotes

the moduli space of (semisimplifications of) representations of p1ðXoÞ in GLðn;CÞ
and MDRðXo; nÞ denotes the moduli space of rank n algebraic local systems of
complex vector spaces on Xo: The total space MDRðX=B; nÞ-B is a quasi-projective
variety over B whose fiber over the point o is MDRðXo; nÞ:

For a loop gAp1ðB; oÞ the action of monn
BðgÞ on MBðXo; nÞ is given by composing a

n-dimensional representation of p1ðXoÞ with some lift of the outer automorphism
monðgÞ of p1ðXoÞ: This gives a well-defined action on conjugacy classes of
representations of p1ðXoÞ and results in an algebraic automorphism monn

BðgÞ :

MBðXo; nÞ-MBðXo; nÞ:
There is an analytic action monn

DR of p1ðB; oÞ on MDRðXo; nÞ which is most

naturally described through the Riemann–Hilbert correspondence (see e.g. [2,17,
Section 7]). It is shown in [17, Section 7] that the passage from a local system to its
monodromy representation induces an isomorphism of analytic spaces

t : MDRðXo; nÞanf--MBðXo; nÞan:

Now given g we can define an analytic automorphism of monn
DRðgÞ of MDRðXo; nÞ

by putting monn
DRðgÞ ¼ t�1

3 monn
BðgÞ 3 t: This analytic action is the monodromy of

the algebraic non-Abelian Gauss–Manin connection rn
DR on the total space

MDRðX=B; nÞ [17, Section 8].
It is natural to try to understand the complexity of the algebraic (respectively

analytic) action of p1ðB; oÞ on MBðXo; nÞ (respectively MDRðXo; nÞ) by measuring in
some way the size of the p1ðB; oÞ-orbits on MBðXo; nÞ and MDRðXo; nÞ: Analogous
questions concerning the monodromy action of p1ðB; oÞ on spaces of special
representations of p1ðXoÞ (e.g. real representations, representations with compact
image, projective structures, etc.) have been the focus of active research in the recent
years [4,5,12]. In that direction the result most relevant to our setup is a theorem of
Goldman who showed in [5] that the mapping class group acts ergodically on the
space of all representations of p1ðXoÞ into SUð2Þ: Unfortunately, Goldman’s proof
does not generalize to the case of representations into SUðnÞ for n42 and we do not
know whether the mapping class group of Xo still acts ergodically on the space of
such representations. Instead of pursuing the ergodicity question in its full generality
we chose to work with non-Abelian cohomology with complex coefficients. This
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allows us to use the algebraic (respectively analytic) nature of the monodromy action
on MBðXo; nÞ (respectively MDRðXo; nÞ) and to describe the size of the monodromy
orbits on those spaces in geometric, rather than measure-theoretic terms.

Our first result is of essentially topological nature. Before we state it we will
need to introduce some notation. Let as before f : X-B be a smooth holomorphic
family of genus g curves and let oAB be a base point. Let Xo be the fiber of f over o

and let

map : p1ðB; oÞ-MapðXoÞCOutðp1ðXoÞÞ

be the corresponding geometric monodromy representation. Here MapðXoÞ denotes

the mapping class group of Xo: By definition MapðXoÞ :¼ p0ðDiffþðXoÞÞ is the group
of connected components of the group of orientation preserving diffeomorphisms of
Xo: Alternatively, MapðXoÞ can be identified with the subgroup of index two in

Outðp1ðXoÞÞ consisting of all outer automorphisms which act trivially on H2ðXo;ZÞ:
Fix some topological double cover n : Xo-P1 and let iAMapðXoÞ be the mapping
class of the covering involution. The hyperelliptic mapping class group of Xo is
defined to be the centralizer DðXoÞ of i in MapðXoÞ:

DðXoÞ :¼ ffAMapðXoÞ j fif�1 ¼ ig:

Note that the definition of DðXoÞ depends on the choice of the double cover n and so
the hyperelliptic mapping class group is defined as a subgroup in MapðXoÞ only up to
conjugation. We will say that the geometric monodromy of f dominates the

hyperelliptic monodromy if up to conjugation in MapðXoÞ the monodromy group
monðp1ðB; oÞÞCMapðXoÞ contains a subgroup of finite index in DðXoÞ:

Theorem A. Assume that the monodromy of f dominates the hyperelliptic monodromy,
e.g. assume that the image monðp1ðB; oÞÞCOutðp1ðXoÞÞ is of finite index in

Outðp1ðXoÞÞ: Then there exists a positive integer g0 so that if gXg0 and n is any

fixed odd integer, we have

(i) There is no meromorphic function on MBðXo; nÞan
which is invariant under the

action of monn
Bðp1ðB; oÞÞ (equivalently there is no meromorphic function on

MDRðX=B; nÞan
which is rn

DR-invariant);

(ii) In the case of MBðXo; nÞ; considered with its natural structure of an affine

algebraic variety, there exists a point xBAMBðXo; nÞ so that the orbit

monn
Bðp1ðB; oÞÞ � xBCMBðXo; nÞ

is Zariski-dense in MBðXo; nÞ; or in the case of MDRðX=B; nÞ-B there is a leaf of

the foliation defined by rn
DR which is Zariski-dense in the algebraic Zariski

topology.

This theorem suggests that for families f : X-B with a ‘‘large enough’’ geometric
monodromy one should expect Zariski-dense monodromy actions on non-Abelian
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cohomology. Geometrically, families with large monodromy naturally arise from
hyperplane sections and Lefschetz fibrations. In this context we prove the following

Theorem B. Let Z be a smooth projective surface with b1ðZÞ ¼ 0: Let OZð1Þ be an

ample line bundle on Z and let n41 be a fixed odd integer. Then there exists a positive

integer c (depending only on Z and OZð1Þ), such that for every kXc and for every

Lefschetz fibration f : bZZ-P1 in the linear system jOZðkÞj we have

(i) there is no meromorphic function on MBðZo; nÞan
which is invariant under the

action of monn
Bðp1ðP1

\fp1;y; pmg; oÞÞ (equivalently there is no meromorphic

function on MDRð bZZ=P1
\fp1;y; pmg; nÞan

which is rn
DR-invariant);

(ii) in the case of MBðZo; nÞ; there exist a point xBAMBðZo; nÞ so that the orbit

monn
Bðp1ðP1

\fp1;y; pmg; oÞÞ � xBCMBðZo; nÞ

is Zariski-dense in MBðZo; nÞ; or in the case of the space

MDRð bZZ=P1
\fp1;y; pmg; nÞ the foliation defined by rn

DR has a Zariski-dense leaf.

Here as usual bZZ is the blow-up of Z at the base points of the pencil and p1;y; pmAP1

are the points where the map bZZ-P1 is not submersive.

These statements can be viewed as non-Abelian analogues of Deligne’s
irreducibility theorem [3, Section 4.4; 7], which asserts that the monodromy group
on the first cohomology of a Lefschetz pencil of curves is a subgroup of finite index
in the full symplectic group of the lattice of vanishing cycles.

The paper is organized as follows. In Section 2.1 we examine the action of a
finitely generated group on an affine algebraic variety. We show how the existence of
a Zariski-dense orbit can be deduced from the existence of an open orbit for
the linearized action on the tangent space at a fixed point. Section 2.2 describes
a particular point in the moduli space of representations of the fundamental group
of a curve Xo; which corresponds to the Schrödinger representation of a suitably
chosen finite dihedral Heisenberg group. This point is smooth and fixed by a
subgroup of finite index in the monodromy. Moreover, the tangent space of
the moduli of representations at the ‘Schrödinger point’ is naturally identified with
the first cohomology of an etale cover Yo of Xo: Finally in Section 4.1, we discuss the
necessity of the hypotheses of Theorems A and B for the existence of a dense
monodromy orbit. We conjecture that the density holds under very mild
assumptions and give some additional evidence supporting the conjecture.

2. Preliminary reductions

We start with some general results about linear group actions on algebraic
varieties, which will allow us to localize at a point the Zariski density property of an
action.
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2.1. Open orbits and dense actions

Suppose M is a reduced irreducible affine scheme of finite type over C: Write
M ¼ SpecðAÞ and let G be a finitely presented discrete group acting on M by
algebraic automorphisms. Thus G acts on A by C-algebra automorphisms.

Lemma 2.1. If there is one point in M whose orbit under G is Zariski-dense, then there

is a countable union of proper closed subvarieties of M such that for any x not on this

countable union, the orbit of x is Zariski-dense.

Proof. The fact that A is of finite type over C means that we have a surjection from a
polynomial ring to A: In particular (doing an enumeration of the monomial basis for
this polynomial ring) we obtain a filtration of A:

A ¼
[N
i¼0

Ai

by finite-dimensional sub-C-vector spaces AiCA:
For each pair of integers i; kX0 let G0

i;k denote the space of k-tuples of elements of

Ai: It is a finite-dimensional affine space. For VAG0
i;k let IAðVÞ denote the ideal in A

generated by V ¼ ðv1;y; vkÞ and let ZVCM denote the reduced closed subvariety of
M defined by V :

There is a closed algebraic subset

Z0
i;kCG0

i;k  M

such that for each VAG0
i;k the fiber over V is equal to ZV : To see this, note that the

coordinate ring of G0
i;k is the symmetric algebra on the dual of A"k

i : The coordinate

ring of G0
i;k  M is thus the tensor product and the projections–inclusions A"k

i -A

can be viewed as elements of this coordinate ring; they generate the ideal of the

closed subset Z0
i;k: Let Gi;kCG0

i;k be the complement of the origin and let Zi;k be the

inverse image of Gi;k: The family

Zi;kCGi;k  M

parameterizes precisely the closed proper subvarieties of M which are cut out by
ideals generated by k-tuples of elements in Ai: (Note that since SpecðAÞ is reduced
and irreducible, any non-zero k-tuple generates the ideal of a proper subvariety.)

For each gAG we obtain the translate

gZi;kCGi;k  M:

Let Gi;kðgÞCGi;k denote the subset of points V such that gZV ¼ ZV : We claim that

this is a constructible subset. It may be described as the set of points VAGi;k such

that the intersection gZi;k-Zi;k-ðfVg  MÞ contains Zi;k-ðfVg  MÞ: This set is
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the complement in Gi;k of the image of the map

ðZi;k � ðgZi;k-Zi;kÞÞ-Gi;k

so it is constructible.
Now as gj runs through a finite set of generators we obtain the intersection of this

finite collection of subsets, which is again a constructible subset

Gi;kðGÞ :¼
\

j

Gi;kðgjÞCGi;k:

Each V in Gi;kðGÞ defines a G-invariant closed proper subvariety ZVCM; and

conversely it is clear that any G-invariant closed proper subvariety of M appears as a
ZV for some i; k and some VAGi;kðGÞ:

Let Ni;k be the union of the points contained in all of the subvarieties ZV for

all VAGi;kðGÞ: This is again a constructible set since it is the image of the

projection

Zi;k Gi;k
Gi;kðGÞ-M:

If a point xAM is contained in any proper closed G-invariant subvariety then it is
contained in some Ni;k: Note also that Ni;k is G-invariant; indeed it is a union of the

G-invariant subsets ZV for all the VAGi;kðGÞ:
We now have two possibilities: either

(a) one of the constructible subsets Ni;k is dense in M; or

(b) all of the constructible subsets Ni;k are contained in proper closed subvarieties

Ni;k:

In case (b), we obtain a countable union of closed subvarieties
S

i;k Ni;k such that if

xAM is a point which is not in this countable union, then x is never contained in a
proper closed G-invariant subvariety.

In case (a) we claim that no point has a Zariski-dense orbit. Indeed the
complement of the constructible set which is dense, has a closure which is itself a
proper Zariski closed and G-invariant subvariety (note that all of our constructible
sets were G-invariant). Thus any point here has non-Zariski-dense orbit. On the
other hand, any point in the complement of this closed set is in the open interior of
the constructible set in question, so it is by definition in the image of one of the ZV ;
i.e. it is in a proper G-invariant closed subvariety. This proves that in case (a) no
point has a Zariski-dense orbit.

Assume now that there is some point in M which has a Zariski-dense orbit, then
we are in case (b), so there is a countable union of closed subvarieties such that if x is
not in here then x has Zariski-dense orbit. The lemma is proven. &

We are now ready to prove the main result of this section.
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Theorem 2.2. Suppose that G acts on an irreducible complex affine algebraic variety

M. There are two possibilities: either

(1) there exists a non-constant G-invariant meromorphic function; or

(2) there exists a point xAM with Gx Zariski-dense in M.

Proof. Assume that no point in M has a Zariski-dense orbit. This means that
we are in situation (a) discussed in the proof of Lemma 2.1. In other words,
there exist integers i; kX0 so that the G-invariant constructible set Ni;kCM is

dense in M: To simplify notation put S :¼ Gi;kðGÞ and Z :¼ Zi;k Gi;k
Gi;kðGÞ:

By construction S and Z are both schemes of finite type over C and the natural
maps

constitute a G equivariant family of closed G-invariant proper subvarieties of M:
Moreover, the total space Z of this family maps onto the G-invariant constructible
subset Ni;kCM:

Let x be a point in the open interior of Ni;kCM and let ZCM be the Zariski-

closure of Gx: Passing to a subgroup of finite index in G we can assume that Z is
geometrically irreducible. Let VAS be such that Z ¼ ZV : Then xAZV and by further
localizing S we may assume that all the fibers of Z-S are irreducible and of the
same dimension.

Let WCZ denote the set of all points which are contained in two or more distinct
fibers ZV1

and ZV2
(i.e. two fibers with ZV1

aZV2
). We claim that this is a

constructible subset. To see this, look at the closed subvariety ZM ZCZZ
and the subset I of S  S given by the condition

I :¼ fðV1;V2ÞAS  S j such that ZV1
¼ ZV2

as subvarieties in Mg:

Note that ICS  S is a constructible subset (see this by taking a compactification of
M; compactifying the family Z-S and then using Chow schemes) and so the
preimage I of I in ZZ is also constructible. The subset W is the projection of
ZM Z�I on one of the factors Z; so W is constructible.

Next, we claim that W does not contain our original point x thought of as a point
in the fiber VAS: For if it did, this would mean that there was a distinct ZV 0aZV

containing x; and then x would be contained in the G-invariant set ZV 0-ZV ; but this
latter set is a proper subset of ZV ; contradicting the fact (by definition of our family)
that Gx is Zariski-dense in ZV :

It follows that there is an open set of the total space Z which does not meet W :
Note that it is clear from the definition that W is the inverse image of a constructible
subset in M; thus this subset does not contain the generic point of M so there is a
closed set C such that W is contained in the preimage of C in Z: Since W is a G-
invariant set, we may replace C here by the intersection of all of its translates so we
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can assume that C is G-invariant as well. Finally then we can throw C out of M (i.e.
replace M by M � C in the whole discussion) so we may assume that W is empty.
Note that the new M will no longer be affine but only quasi-affine. This does not
affect the rest of the argument though since the existence of meromorphic functions
can be detected on opens.

By taking a compactification of M and looking at the Chow scheme of
subvarieties of this compactification, we can replace our family by a family indexed
by a new base scheme S where each fiber (considered as a subset of M) occurs exactly
once.

Now by the above reduction the morphism Z-M is injective on points; also its
image hits a generic point of M: Thus there is a largest open subset of M over which
this is an isomorphism and we can replace M by this open subset (which is G-
invariant). Hence we obtain a G-invariant fibration M-S: Now any meromorphic
function on S pulls back to give a G-invariant meromorphic function on M: This
essentially proves the theorem. The only problem we need to address is that in the
construction of the family Z-S we had to pass to a finite index subgroup of G and
so the function just constructed may be invariant only under a subgroup of finite
index of G: This however is easily remedied—by taking the different invariant
polynomials in the Galois translates of our meromorphic function we obtain a
meromorphic function invariant by the full G: &

In view of Theorem 2.2 we need to find effective criteria for the non-existence of
invariant rational functions on an affine variety. One such criterion is given by the
following lemma:

Lemma 2.3. Let G be a finitely presented discrete group.

(alg) Suppose M is a reduced irreducible scheme of finite type over C: Suppose

that G acts on M by algebraic automorphisms and let yAM be a point in the

smooth locus of M, fixed by the action, so that G acts linearly on the tangent

space TyM: Let GCGLðTyMÞ be the Zariski-closure of im½G-GLðTyMÞ�:
Assume that G acts on TyM with an open orbit, and that the connected

component Go of G has no non-trivial characters. Then there is no G-invariant

rational function on M.
(an) Suppose that N is an irreducible analytic space on which G acts by analytic

automorphisms. Suppose that yAN is a point in the smooth locus of N, fixed by

the action, so that G acts linearly on the tangent space TyN: Let GCGLðTyNÞ
be the Zariski-closure of im½G-GLðTyNÞ�: Assume that G acts on TyN with

an open orbit, and that the connected component Go of G has no non-

trivial characters. Then there is no G-invariant analytic-meromorphic function

on N.

Proof. Clearly, the statement of the lemma is insensitive to passing to a finite index
subgroup of G and so we may assume that G ¼ Go: We will only give the proof in the
algebraic case. The analytic case is completely analogous.
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Suppose that h is such a function, and write the germ of h at y as f =g with
f ; gAOM;y relatively prime. Then for any gAG;

f

g
¼ h ¼ g�h ¼ g�f

g�g
;

which implies that there is a unit uðgÞAO
M;y with

g�f ¼ uðgÞf ;

g�g ¼ uðgÞg:

Note that g/uðgÞ is a cocycle for G acting on the multiplicative group of units
O

M;y: In particular we get that the value uðgÞðyÞ is a character of G:
Without loss of generality, we may assume that h is not an invertible function at o

(otherwise subtract the constant function with the same value at o) hence we may
assume that one of f or g has a non-trivial leading term of some degree. We may

suppose that f has such (otherwise replace h by h�1). Let fm be the leading term of f :
Note that fm (of degree m)—modulo higher order terms—is an element of
Symm T3ðMÞy: The action of G on this leading term factors through the group G:

Our previous formula gives

g�ðfmÞ ¼ uðgÞðyÞfm:

This shows that g/uðgÞðyÞ comes from a character of G; but by assumption there
are no such characters, Therefore we get g�ðfmÞ ¼ fm; so fm is a G-invariant
homogeneous form of degree m:

In particular, we can think of fm as a G-invariant polynomial function on the
tangent space TyM: This contradicts the supposed existence of an open orbit in the

action of G on TyM: The lemma is proven. &

The essential consequence of Theorem 2.2 that we need is the following
localization statement.

Corollary 2.4. Suppose that yAM is a point in the smooth locus of M, fixed by the

action, so that G acts linearly on the tangent space TyM: Let GCGLðTyMÞ be the

Zariski-closure of im½G-GLðTyMÞ�: Assume that G acts on TyM with an open orbit,

and that the connected component Go of G has no non-trivial characters. Then there

exists a point xAM with Gx Zariski-dense in M.

Proof. By Theorem 2.2 we only have to rule out the possibility that M admits a non-
constant G-invariant meromorphic function. This however is precisely the content of
Lemma 2.3(alg). The corollary is proven. &

Theorem 2.2, Lemma 2.3 and Corollary 2.4 not only provide a convenient
localization criterion for the density of an action but also suggest another geometric
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notion of ‘largeness’ of the G-orbits. Motivated by Theorem 2.2, we define various
degrees of analytic generic Zariski denseness (AGZD for short) as follows:

Definition 2.5. Suppose that a finitely generated group G acts by analytic
automorphisms on an irreducible analytic space N: Let m : G N-N be the action
map.

* We say that the action m is AGZD1 if there is no G-invariant analytic
meromorphic function f on N:

* We say that the action m is AGZD2 if there is no pair ðU ; f Þ; where UCN is a G-
invariant analytically Zariski-dense open subset of N and f : U-Z is a G
equivariant holomorphic map from U to a complex analytic space Z with
dim Zodim N:

* We say that the action m is AGZD3 if there is a point xAN such that mðG fxgÞ
is analytically Zariski-dense in N:

* We say that the action m is AGZD4 if there is an analytically Zariski-dense open
subset UCN such that for every xAU the G orbit of x is analytically Zariski-
dense in N:

Clearly for an analytic action m one has the implications:

AGZD4 ) AGZD3 ) AGZD2 ) AGZD1;

but we do not think that the converse implications are true. Similarly, it is clear that
if m is actually an algebraic action, then AGZD1 implies that m is Zariski-dense in
the algebraic sense of Theorem 2.2.

Suppose now that B is a base scheme and that p : M-B is a morphism equipped
with a connection r (by which we mean a stratification over the crystalline site of S

[6,17]). For the following definition it is not necessary to assume that r is integrable.

Definition 2.6. Suppose that B and the generic geometric fiber of M=B are
irreducible. We say that ðp : M-B;rÞ is generically Zariski-dense (or GZD) if there
is no algebraic meromorphic function f on the total space M which is invariant
under r:

If the connection r is integrable, then the corresponding analytic family is
associated to a local system of complex analytic spaces over B; which in turn
corresponds to the monodromy action m of G :¼ p1ðB; oÞ on a fiber Man

o : It is clear

that if m is AGZD1, then ðp : M-B;rÞ is GZD.
In particular, the AGZD1 property for MBðXo; nÞ or equivalently MDRðXo; nÞ

implies the algebraic generic Zariski-denseness property GZD for the Gauss–Manin
connection rn

DR:
Consider now a family of smooth projective connected curves f : X-B and let

oAB be a base point. We will show that when the geometric monodromy of f : X-B

is of finite index in the mapping class group or when f comes from a Lefschetz pencil
as in Theorem B, then the monodromy action of p1ðB; oÞ on MBðXo; nÞ is AGZD1.
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In combination with Theorem 2.2 this fact yields statement (i) of Theorems A and B.
As explained above this automatically gives the analytic statement (ii) in both
theorems. In fact, it follows from the above considerations that MDRðX=B; nÞ-B

together with the non-Abelian Gauss–Manin connection is GZD in the sense of
Definition 2.6.

In view of all this it only remains to show that under the hypothesis of Theorems A
or B the algebraic action

monn
B : p1ðB; oÞ-AutðMBðXo; nÞÞ:

on the affine variety MBðXo; nÞ is AGZD1. (Note that since Xo is a smooth curve
the variety MBðXo; nÞ is irreducible by Simpson [16, Section 11].) In view of
Corollary 2.4, to achieve this we only need to find a smooth point rAMBðXo; nÞ
which is fixed by the monodromy group monn

Bðp1ðB; oÞÞ; and for which the Zariski-

closure of monn
Bðp1ðB; oÞÞCGLðT½r�MBðXo; nÞÞ acts on TðMBðXo; nÞÞr with an open

orbit and has a connected component of the identity which admits no non-trivial
characters.

In the next section we describe a proposal for such a point r which utilizes the
Schrödinger representation of a finite dihedral Heisenberg group. Later on, we will
show in Sections 3.1 and 3.2 that the open orbit property for the monodromy action
on the tangent space at r holds, provided that the geometric monodromy of
f : X-B is large enough.

We have stated the additional properties AGZD2-4 in order to pose the question:
which of these properties hold for families whose monodromy has finite index in the
mapping class group? For (sufficiently ample) Lefschetz pencils?

2.2. The Schrödinger representation

Since r is supposed to be fixed by the monodromy a natural choice would be to
take r to be the trivial representation of p1ðXoÞ in GLðn;CÞ: However, the trivial
representation is a singular point of MBðXo; nÞ and so is unsuitable for our purposes.
On the other hand, any representation

r : p1ðXoÞ-GLðn;CÞ

which has finite image will be fixed under some finite index subgroup of
monn

Bðp1ðB; oÞÞ: Furthermore, the properties AGZD1–AGZD4 and GZD are

obviously stable under passage to a finite index subgroup of G: Hence we are free
to replace B by any finite etale cover of B; and so it is enough to find a finite
representation r which satisfies the open orbit condition.

In order to apply Corollary 2.4 we also need to choose rAMBðXo; nÞ to
be a smooth point. This is equivalent to choosing r to be an irreducible
representation.

To construct such a representation we proceed as follows. Let lnCC be the

group of all nth roots of unity. Let dZ=nZ=n :¼ HomZðZ=n;CÞ denote the group of
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characters of the cyclic group Z=n: Consider the finite Heisenberg group Hn: By
definition Hn is the central extension

0-ln-Hn-Z=n  dZ=nZ=n-0

corresponding to the cocycle e : ðZ=n  dZ=nZ=nÞ2-lnCC; eðða; aÞ; ða0a0ÞÞ ¼ a0ðaÞ:
Explicitly, Hn can be identified with the set ln  Z=n  dZ=nZ=n with a group law given

by

ðl; a; aÞðl0; a0; a0Þ ¼ ðll0a0ðaÞ; a þ a0; aa0Þ: ð2:1Þ

Let fn : Hn-GLðVnÞ be the Schrödinger representation of Hn [14]. By definition fn

is the unique n-dimensional irreducible representation of Hn which has a tautological
central character. One way to construct fn is to observe that the natural injective
map

ln  dZ=nZ=n +Hn; ðl; aÞ/ðl; 0; aÞ

is a group monomorphism, i.e. Hn contains ln  dZ=nZ=n as an abelian subgroup. Let T

be the one-dimensional complex representation of ln  dZ=nZ=n which corresponds to

the pullback of the tautological character of ln under the projection ln  dZ=nZ=n-ln:

In other words, T ¼ ðC; tÞ where t : ln  Z=n-C is given by tðl; aÞ ¼ l: In terms

of T then we have

ðVn;fnÞ ¼ IndHn

lncZ=nZ=n
ðTÞ:

Explicitly, we can identify Vn with the vector space of all complex valued functions
on the finite set Z=n and the action fn by the formula

½fnðl; a; aÞf �ðxÞ ¼ laðxÞf ðx þ aÞ;

for all xAZ=n; fAVn and ðl; a; aÞAHn:
The irreducibility of the representation fn follows from Frobenius reciprocity or

directly by noticing that Vn has a basis consisting of the characteristic functions of
the elements in Z=n and that the subgroup Z=nCHn acts transitively on the elements
of this basis. In particular if we compose fn with some surjective homomorphism
p1ðXoÞ7Hn we will get a representation of p1ðXoÞ in GLðVnÞ which is irreducible
and has finite image. Unfortunately, it turns out (see Remark 2.10) that this
representation cannot be used directly to obtain an open orbit action on the tangent
space to MBðXo; nÞ: However a slight modification of this representation does the
job. The modification involves an extension of Hn of dihedral type which we proceed
to describe.

Let l2 ¼ f�1;þ1gCC be the group of square roots of one. The group l2 acts

naturally on Z=n  dZ=nZ=n as the inversion on both factors. This action clearly
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preserves the cocycle defining the Heisenberg central extension 0-ln-Hn-Z=n dZ=nZ=n-0 and so we get a natural action of l2 on Hn: Explicitly, if we think of Hn as

the set ln  Z=n  dZ=nZ=n equipped with the group law (2.1), then an element eAl2 acts

on Hn via ðl; a; aÞ/ðl; ea; aeÞ: We define the dihedral Heisenberg group as the
semidirect product

DHn :¼ l2rHn

for the above action. Thus DHn can be identified with the set l2  ln  Z=n  dZ=nZ=n

with a group law given by

ðe; l; a; aÞ � ðe0; l0; a0; a0Þ ¼ ðee0; ll0a0eðaÞ; a þ ea0; aa
0eÞ: ð2:2Þ

In particular, for each ðe; l; a; aÞADHn we have

ðe; l; a; aÞ ¼ ð1; l; a; aÞ � ðe; 1; 0; 1Þ

¼ ðe; 1; 0; 1Þ � ð1; l; ea; aeÞ;

where 1 : Z=n-C stands for the trivial character, i.e. 1ðaÞ ¼ 1 for all a:
Observe next that the Schrödinger representation fn : Hn-GLðVnÞ extends

naturally to a dihedral Schrödinger representation

dfn : DHn-GLðVnÞ

defined by

ðdfnðe; l; a; aÞf ÞðxÞ ¼ laðxÞf ðeðx þ aÞÞ

for all fAVn and all xAZ=n:
Recall that if C is any smooth curve of genus g; then there is a surjective

homomorphism p1ðCÞ7Fg onto a free group of g generators. This homomorphism

is obtained by moding p1ðCÞ out by the normal subgroup generated by the a-cycles
for a standard basis in the first homology of C: Note furthermore that DHn is

generated by the three elements ð�1; 1; 0; 1Þ; ð1; 1; 1; 1Þ and ð1; 1; 0; aÞ; where aAdZ=nZ=n

is any generator. Hence we can find a surjective homomorphism p1ðCÞ-Fg-DHn

as long as gX3:
By hypothesis the genus of Xo is big enough and so we can find a surjective

homomorphism cn : p1ðXoÞ7DHn: Let r : p1ðXoÞ-GLðVnÞ denote the composi-
tion r :¼ cn 3 dfn: By construction r is irreducible and so represents a smooth point
of the moduli of representations. Moreover by a standard deformation theory
argument (see e.g. [11]), we can identify the Zariski tangent space T½r�MBðXo; nÞ with

the group cohomology H1ðp1ðXoÞ; adðrÞÞ; where

adðrÞ : p1ðXoÞ-GLðEndðVnÞÞ
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is the natural representation induced from r: Explicitly,

adðrÞ ¼ ðdf3
n #dfnÞ 3 cn

and since adðfnÞ ¼ f3
n #fn has a trivial central character we see that adðrÞ factors

trough the quotient group DHn7l2rðZ=n  dZ=nZ=nÞ:
It is not hard to calculate H1ðp1ðXoÞ; adðrÞÞ in terms of geometric data on the

curve Xo: The action of l2 on Z=n  dZ=nZ=n induces an obvious action (inversion on

both factors) of l2 on the group characters

HomðZ=n  dZ=nZ=n;CÞ ¼ dZ=nZ=n  Z=n:

Now for each orbit uAðdZ=nZ=n  Z=nÞ=l2 we get an irreducible representation Wu of

l2rðZ=n  dZ=nZ=nÞ: The representation Wð1;0Þ corresponding to the trivial character is

just the trivial one dimensional representation of l2rðZ=n  dZ=nZ=nÞ: For any other

orbit u we have that u ¼ fw; w�1g for some non-trivial character wAdZ=nZ=n  Z=n and so

Wu is the representation of l2rðZ=n  dZ=nZ=nÞ induced from the one-dimensional

representation ðC; wÞ of Z=n  dZ=nZ=n: Thus Wu ¼ ðC; wÞ"ðC; w�1Þ as a representation

of Z=n  dZ=nZ=n and the generator of l2 acts by switching the two summands. In

particular, Wu is a two-dimensional irreducible (we are assuming that n is odd here)

representation of l2rðZ=n  dZ=nZ=nÞ:
With this notation we have

Lemma 2.7. The tangent space to MBðXo; nÞ at the dihedral Schrödinger representa-

tion r is given by

T½r�MBðXo; nÞ ¼ H1ðXo; adðrÞÞ ¼ "
uAðcZ=nZ=nZ=nÞ=l2

H1ðXo;WuÞ; ð2:3Þ

where Wu is the local system on Xo corresponding to the representation

p1ðXoÞ!
cn

DHn-l2rðZ=n  dZ=nZ=nÞ-GLðWuÞ:

Proof. Note that a representation k : Z=n  dZ=nZ=n-GLðVÞ of the abelian group

Z=n  dZ=nZ=n will extend to representation of the ‘dihedral’ group l2rðZ=n  dZ=nZ=nÞ if

and only if k is self-dual. Furthermore, each self-dual representation k has a
canonical dihedral extension:

dk : l2rðZ=n  dZ=nZ=nÞ-GLðVÞ;

ARTICLE IN PRESS
L. Katzarkov et al. / Advances in Mathematics 179 (2003) 155–204168



in which l2 acts as the self-duality automorphism of V : Concretely if we decompose

ðV ; kÞ into a direct sum of characters of Z=n  dZ=nZ=n; then the self-duality of V will
identify the multiplicity space of each character w with the multiplicity space of the

character w�1: In particular, the multiplicity spaces in the character decomposition of

ðV ; kÞ depend not on the individual characters but rather on the l2-orbits uAðdZ=nZ=n 
Z=nÞ=l2: Hence ðV ; dkÞ decomposes as

ðV ; dkÞ ¼ "
uAðcZ=nZ=nZ=nÞ=l2

Wu#Mu;

where Mu denotes the multiplicity space of a character wAu in ðV ; kÞ:
Consider now the representation adðfnÞ of Hn: Since it has a trivial central

character, it factors through a representation

adðfnÞ
ab : Z=n  dZ=nZ=n-GLðEndðVnÞÞ:

This is the abelian part of adðfnÞ: The representation adðfnÞ
ab is self-dual by

construction and so admits a canonical dihedral extension

d adðfnÞ
ab : l2rðZ=n  dZ=nZ=nÞ-GLðEndðVnÞÞ:

This dihedral extension fits in the commutative diagram

and so understanding adðrÞ is equivalent to understanding adðfnÞ
ab: But adðfnÞ

ab is

just the regular representation of the abelian group Z=n  dZ=nZ=n: To see this note first

that dim EndðVnÞ ¼ n2 ¼ dim C½Z=n  dZ=nZ=n�: Now since every irreducible represen-

tation of Z=n  dZ=nZ=n occurs in C½Z=n  dZ=nZ=n� with multiplicity one we need only to

check that for every character w : Z=n  dZ=nZ=n-C we have

dim Hom
ðZ=ncZ=nZ=nÞ�mod

ðw; adðfnÞ
abÞX1:

But the group of characters of Z=n  dZ=nZ=n is naturally isomorphic to dZ=nZ=n  Z=n and

so each character w as above is given by a pair ðx; xÞAdZ=nZ=n  Z=n via the formula
wða; aÞ ¼ xðaÞ � aðxÞ: Therefore, we only need to show that for any pair ðx; xÞ there
exists a non-zero element Aðx;xÞAEndðVnÞ ¼ V3

n #Vn so that

ða; aÞAðx;xÞ ¼ xðaÞaðxÞAðx;xÞ

for all ða; aÞAZ=n  dZ=nZ=n:
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To construct the element Aðx;xÞ recall that the vector space Vn ¼ C½Z=n� has a

natural basis fe0; e1;y; en�1g consisting of characteristic functions of elements of
Z=n; i.e. eiðjÞ :¼ dij: Let fe30 ; e31 ;y; e3n�1g be the dual basis of V3

n : Then in terms of

the basis fe3i #ejgn�1
i;j¼0 of V3

n #Vn the representation adðfnÞ
ab is given by the formula

½adðfnÞ
abða; aÞ�ðe3i #ejÞ ¼ aðj � iÞe3i�a#ej�a:

In view of this we may take

Aðx;xÞ :¼
Xn�1

i¼0

xðiÞe3i #eiþx

which is obviously a non-zero eigenvector corresponding to the character w ¼ ðx; xÞ:
This shows that

ðEndðVnÞ; adðfnÞ
abÞ ¼ C½Z=n  dZ=nZ=n� ¼ "

wAcZ=nZ=nZ=n

ðC; wÞ;

and so the lemma is proven. &

Let us now go back to the problem of checking whether monðp1ðB; oÞÞ has a dense
orbit on MBðXo; nÞ: As mentioned above, the fact that r has a finite image implies
that the conjugacy class of r will be fixed by some finite-index subgroup of
monðp1ðB; oÞÞ: In particular, applying Corollary 2.4 to this subgroup, it follows that
in order to show the existence of a dense monðp1ðB; oÞÞ-orbit on MBðXo; nÞ; it
suffices to check the following two items:

(i) The Zariski-closure G of

im½monðp1ðB; oÞÞ-GLðH1ðXo; adðrÞÞÞ�

in GLðH1ðXo; adðrÞÞÞ has an open orbit on H1ðXo; adðrÞÞ:
(ii) The identity component Go of G does not have any non-trivial characters.

Condition (ii) follows easily from isomorphism (2.3):

Lemma 2.8. The identity component Go of the Zariski-closure of

im½monðp1ðB; oÞÞ-GLðH1ðXo; adðrÞÞÞ�

in GLðH1ðXo; adðrÞÞÞ has no non-trivial characters.

Proof. Indeed, let p : Yo-Xo be the dihedral Galois cover of Xo corresponding to
the surjection

p1ðXoÞ!
cn

DHn-l2rðZ=n  dZ=nZ=nÞ: ð2:4Þ
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Then Yo is a smooth connected curve and the pushforward of the trivial one-
dimensional local system CYo

via p is precisely

p�CYo
¼ "

uAðcZ=nZ=nZ=nÞ=l2

Wu:

Thus we can identify H1ðXo; adðrÞÞ with H1ðYo;CÞ:
Next, observe that, without a loss of generality, we may assume that the family

f : X-B has an algebraic section s : B-X : Indeed, since X is quasi-projective a
generic hyperplane section on X will be a multisection of f : But replacing B by an
étale cover of a Zariski open set of B will replace monðp1ðB; oÞÞ by a subgroup of
finite index. In particular, such a replacement will not affect the property that
monðp1ðB; oÞÞ fixes the conjugacy class of r: In fact, by taking another étale cover if
necessary we can ensure that not only the conjugacy class of r is fixed under
monðp1ðB; oÞÞ but that the actual representation

r : p1ðXo; sðoÞÞ-GLðVnÞ

remains fixed under monðp1ðB; oÞÞ: Indeed, to achieve this we only need to pass to
the finite index subgroup of the monodromy which preserves the kernel of r and acts
trivially on the finite group imðrÞ ¼ DHn:

Assume that we are in this situation. Then r lifts to a well-defined representation
of p1ðB; oÞrmonp1ðXo; sðoÞÞ and so defines a DHn-cover of X : In particular

under the identification H1ðXo; adðrÞÞDH1ðYo;CÞ the action of monðp1ðB; oÞÞ on

H1ðXo; adðrÞÞ becomes just the monodromy action of p1ðB; oÞ on H1ðYo;CÞ
corresponding to the family of curves Y-B: But by Deligne’s semisimplicity
theorem [1, Corollaire 4.2.9] the monodromy action on the middle
dimensional cohomology of any smooth projective family over a quasi-
projective base has a semisimple Zariski-closure. Thus Go must be a connected
semisimple algebraic group and so has no non-trivial characters. The lemma is
proven. &

In order to check that condition (i) is satisfied we need to make sure that the
monodromy group of the family f : X-B is sufficiently large.

Before we explain how this is achieved we need to introduce some notation. On the
way we will also rephrase condition (i) in a slightly more general context.

Let f : X-B be a smooth family of connected curves of genus gX3: Let as before
oAB be a fixed base point and let

mon : p1ðB; oÞ-MapðXoÞC Outðp1ðXoÞÞ

be the corresponding geometric monodromy representation.
If f : X-B has a holomorphic section s : B-X the representation

mon : p1ðB; oÞ-MapðXoÞ
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can be lifted to a geometric monodromy representation respecting the base point:

mons : p1ðB; oÞ-Map1ðXoÞCAutðp1ðXo; sðoÞÞÞ:

Here Map1ðXoÞ denotes the mapping class group of the once punctured surface
Xo � fsðoÞg:

Fix a finite abelian group A and let DA :¼ l2rA denote the standard dihedral

extension of A in which the generator ð�1ÞAl2 acts as the inversion on A: Fix a

surjective homomorphism p1ðXo; sðoÞÞ7DA and let pDA : YDA
o -Xo be the

corresponding Galois cover. Let Map1ðXo;DAÞ be the group of pDA-liftable
mapping classes, i.e.

Map1ðXo;DAÞ ¼ jAMap1ðXoÞ
j preserves ker½p1ðXo; sðoÞÞ7DA�
and j induces the identity on DA

					
( )

:

Clearly Map1ðXo;DAÞCMap1ðXoÞ is of finite index and consists precisely of the

mapping classes on Xo which lift to mapping classes on YDA
o : Furthermore, since

by definition each jAMap1ðXo;DAÞ induces the identity on DA it follows that

any lift *jAMapðYDA
o Þ of j commutes with the action of DA on YDA

o ; and that

DA acts transitively on the set of all such lifts. Thus, if we define

LMap1ðXo;DAÞCMap1ðYDA
o Þ to be the subgroup consisting of all lifts of elements

in Map1ðXoÞ we see that LMap1ðXo;DAÞ fits in a short exact sequence of groups

1-DA-LMap1ðXo;DAÞ-Map1ðXo;DAÞ-1:

Assume now that monsðp1ðB; oÞÞCMap1ðXo;DAÞ: In particular, monsðp1ðB; oÞÞ
preserves p1ðYDA

o Þ and so we get a short exact sequence of groups

1-p1ðB; oÞ mons p1ðYDA
o Þ-p1ðXo; sðoÞÞ-DA-1:

Let YDA-X denote the DA-Galois cover of X corresponding to the homomorph-

ism p1ðX ; sðoÞÞ7DA: By construction p1ðYDAÞDp1ðB; oÞ mons p1ðYDA
o Þ and the

corresponding monodromy representation

monDA : p1ðB; oÞ-MapðYDA
o ÞCOutðp1ðYDA

o ÞÞ

lands in LMap1ðXo;DAÞ:
Furthermore, note that from the viewpoint of the density properties we are

interested in, the conditions that f : X-B has a section and that

monðp1ðB; oÞÞCMap1ðXo;DAÞ are harmless. Indeed, as explained in the proof of
Lemma 2.8, if f : X-B is an arbitrary smooth projective family of curves with B

smooth and connected and X quasi-projective, then we can always find a Zariski
open set UCB containing the point oAB; and a finite étale cover ðB0; o0Þ-ðU ; oÞ; so
that the pulled-back family X B B0-B0 has a holomorphic section, and a geometric
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monodromy which is contained in Map1ðXo;DAÞ: Since p1ðU ; oÞ7p1ðB; oÞ is
surjective and p1ðB0; o0ÞCp1ðU ; oÞ is a subgroup of finite index, it follows that the
geometric monodromy monðp1ðB0; o0ÞÞ of the family X B B0-B0 is a subgroup of
finite index in monðp1ðB; oÞÞ: In particular, any density statement we can make for
the action of p1ðB; oÞ will be equivalent to the corresponding density statement for
the action of p1ðB0; o0Þ:

The previous reasoning also shows that for any smooth family of curves f : X-B;
such that B is smooth and X is quasi-projective, and any surjective homomorphism
p1ðXo; sðoÞÞ7DA; there is an appropriate ðB0; o0Þ-ðB; oÞ and an DA-Galois cover

YDA-X B B0; so that:

* the image of the monodromy representation

monDA : p1ðB0; o0Þ-MapðYDA
o Þ

is contained in LMap1ðXo;DAÞ;
* the natural map monDAðp1ðB0; o0ÞÞ-monðp1ðB; oÞÞ has finite kernel and cokernel.

Motivated by the discussion in Sections 2.1 and 2.2 we make the following definition:

Definition 2.9. Let A be a finite abelian group. A pair

ðf : X-B; p1ðXoÞ7DAÞ

is called good if the Zariski-closure of

im½p1ðB0; o0Þ ���!monDA
LMap1ðXo;DAÞCMapðYDA

o Þ-SpðH1ðYDA
o ;ZÞÞ�

in SpðH1ðYDA
o ;CÞÞ acts on H1ðYDA

o ;CÞ with an open orbit.

Clearly now, condition (i) is equivalent to the statement that if A ¼ Z=n  dZ=nZ=n

and if the homomorphism p1ðXoÞ-DA is induced from a surjective homomorphism

p1ðXoÞ-DHn;

then the pair ðf : X-B; p1ðXoÞ7DAÞ is good.
In other words, we need to find geometric restrictions on a family f : X-B and a

homomorphism p1ðXoÞ7DA; which will guarantee that the pair
ðf : X-B; p1ðXoÞ7DAÞ is good.

As a first approximation one has to understand the image of LMap1ðXo;DAÞ into

the symplectic group SpðH1ðYDA
o ;ZÞÞ: In the next section, we will analyze the

hyperelliptic part of this image for a suitably chosen surjection p1ðXoÞ7DA:

Remark 2.10. Satisfying condition (i) is a somewhat subtle task. In a preliminary
version of this paper we attempted to work with a representation r : p1ðXoÞ-
GLðVnÞ which comes from a choice of a surjective homomorphism p1ðXoÞ7Hn onto
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the Heisenberg group Hn rather than its dihedral extension DHn: This representation
r is also irreducible and so gives a smooth point in MBðXo; nÞ which satisfies
condition (ii). Furthermore, the image of LMapðXo;AÞ into the corresponding

symplectic group SpðH1ðY A
o ;ZÞÞ was described explicitly by Looijenga [10, Theorem

2.5]. Unfortunately, the self-duality pairing on the representation adðfnÞ
ab gives rise

to a quadratic function on H1ðXo; adðrÞÞ which will be preserved by all elements of
the geometric monodromy and so we cannot hope that G will have an open orbit for
this choice of r: Replacing r by a representation coming from a surjection onto the
dihedral Heisenberg group repairs this problem as we will see below. However this
changes the setup and forces us to work with the two-dimensional dihedral
representations Wu instead of the characters of A: In particular, this setup lies
beyond the scope of Looijenga’s analysis in [10] and forces us to look for a

description of the image of LMap1ðXo;DAÞ into the symplectic group

SpðH1ðYDA
o ;ZÞÞ based on first principles only.

Remarkably enough, it turns out that such a concrete description is possible and
that it leads to a stronger result which uses only hyperelliptic mapping classes to
obtain an open orbit. However note that we need to assume that n is odd in the
explicit argument.

3. Proofs of the main theorems

In this section we prove Theorems A and B.

3.1. The case of a hyperelliptic monodromy

In this section f : X-B will denote a smooth family of all hyperelliptic curves
of genus g: For us the hyperelliptic curves will be represented as branched double

covers of P1 having 2g þ 2 branch points. From that point of view it is natural
to take B to be the configuration space Conf2gþ2 of 2g þ 2 distinct points

in P1: However, it is well known [13] that no universal hyperelliptic family exists on
that space. This can be remedied by either passing to an unramified double cover
of Conf2gþ2 (see [13, Remark 4]) or, alternatively, by taking an open subfamily

of Conf2gþ2: We take the second approach since it is better suited for our

purposes.
Concretely, we take B to be the configuration space of 2g þ 2 distinct points in the

affine line C ¼ P1 � fNg: To see that the universal hyperelliptic family on B exists,
we only need to show that the incidence divisor

S :¼ fðfb1;y; b2gþ2g; xÞAB  P1jxAfb1;y; b2gþ2ggCB  P1

corresponds to a section s in the line bundle p�
P1Oð2g þ 2Þ on B  P1: Indeed, if this

is the case we have a divisor sðBÞ in the total space totðp�
P1Oð2g þ 2ÞÞ of the line
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bundle p�
P1Oð2g þ 2Þ and so X can be constructed simply as the preimage of sðBÞ in

totðp�
P1Oðg þ 1ÞÞ under the natural squaring map.

To see that S is in the linear system jp�
P1Oð2g þ 2Þj one can argue as follows. Fix an

affine coordinate z on C ¼ P1 � fNg: For any integer k40 let Sk :¼
H0ðP1;OP1ðkÞÞ: On the product Sk  P1 we have the line bundle p�

P1OðkÞ: Moreover,

the direct image pSk�p
�
P1OðkÞ is a vector bundle of rank k þ 1 on Sk which is

canonically isomorphic to OSk
#Sk and so has a tautological section corresponding

to idSk
: Let sk denote the corresponding section of p�

P1OðkÞ: By construction, the

divisor of sk consists of all pairs ðs; xÞASk  P1 with sðxÞ ¼ 0: Consider now the
subspace EkCSk of all monic polynomials in z of degree k: Since by definition B can
be identified with the open subset of the affine subspace E2gþ2CS2gþ2 consisting of

monic polynomials with simple zeros, we can take s ¼ s2gþ2jB:

Therefore, we have constructed a universal double cover

over the configuration space B: Note that the fundamental group of B is the braid
group B2gþ2 on 2g þ 2 strands and that the monodromy homomorphism for

f : X-B can be interpreted as the standard surjection from B2gþ2 onto the

hyperelliptic mapping class group.

Fix as base point oAB the double cover no : Xo-P1 with branch points

1; 2;y; 2g þ 2ARCP1 on the real axis. Make branch cuts Ci on P1 from 2i � 1 to
2i along the real axis. Topologically, the surface Xo is obtained (see Fig. 1) by gluing

together two copies of the sliced-up P1 along the rims of the branch cuts.

For concreteness we label the two P1-sheets as the upper and the lower sheet of Xo:

The covering map no : Xo-P1 projects each sheet onto P1 and the corresponding
covering involution io : Xo-Xo interchanges the two sheets.

While working with loops on Xo (either as representatives of elements in p1ðXoÞ or
as circles determining Dehn twists on Xo) it will be convenient to describe these loops

in terms of their no-images in P1: We will only look at loops which do not pass
through the branch points and which are transversal to the boundary circles of our

sheets. Every such loop L projects via no onto a simple closed path in P1 which does
not pass through any branch point and is transversal to the branch cuts. Therefore

specifying a loop L in Xo is the same thing as specifying a simple closed path in P1

(not passing through the branch points and transversal to the branch cuts), together
with a labeling at each point indicating whether it is on the upper or lower sheet and
such that this labeling changes upon crossing a branch cut. To avoid introducing
additional notation we will write L both for the loop in Xo and for the corresponding

labeled path in P1: This will not create any confusion since it will always be clear
from the context which incarnation of L we have in mind.
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The image of the geometric monodromy representation

mon : p1ðB; oÞ-MapðXoÞ

for the family f : X-B; is the full hyperelliptic mapping class group

DðXoÞ ¼ ffAMapðXoÞjfiof�1 ¼ iog:

It is generated by the right-handed Dehn twists along the sequence of loops
a1;y; a2gþ1 depicted in Fig. 2. In this figure we use the convention that for paths in

P1 the solid pieces are on the upper sheet and the dotted pieces are on the lower
sheet.

Note that the above Dehn twists define a surjective homomorphism from the braid
group B2gþ2 on 2g þ 2 strands to the hyperelliptic mapping class group DðXoÞ:
Indeed, by definition B2gþ2 can be presented as

B2gþ2 ¼ t1; t2;y; t2gþ1

titj ¼ tjti; for ji � jjX2

titiþ1ti ¼ tiþ1titiþ1

					
* +

and so the assignment ti/ (Dehn twist along ai) induces a (necessarily surjective)
group homomorphism kg : B2gþ2-DðXoÞ:

Fix a positive odd integer n: To fix notation, choose a primitive nth root of unity

gAln and let a : Z=n-C; k/gk be the corresponding character. For future use we

denote the corresponding standard generators of DHn as follows:

r :¼ ð�1; 1; 0; 1Þ; a :¼ ð1; 1; 1; 1Þ; a :¼ ð1; 1; 0; aÞ:

We also write e :¼ ð1; 1; 0; 1Þ for the identity element in DHn:
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With this notation we are now ready to define the base representation
rAMBðXo; nÞ at which we will be checking the open orbit condition (i) from Section
2.2. For this we only need to exhibit a surjective homomorphism cn : p1ðXoÞ-DHn:
We define cn to be trivial on the complement of the branch cuts on both sheets and
we postulate that the passing transformations PiADHn corresponding to going
through the branch cut Ci should be

P1 ¼ r; P2 ¼ ar; P3 ¼ ar; P4 ¼ a; P5 ¼ a; Pi ¼ e; for all iX6:

Assume that gX6; so there are at least two branch cuts with passing transformation
equal to the identity.

Consider next any two element orbit u ¼ fw; w�1gAðdZ=nZ=n  Z=nÞ=l2 and let Wu be

the corresponding two-dimensional irreducible representation of DHn: As we saw in

Section 2.2, the action of DHn on Wu factors through l2rðZ=n  dZ=nZ=nÞ: Choose a

basis fvþ; v�g of Wu consisting of eigenvectors for the Z=n  dZ=nZ=n action. To fix
notation assume that vþ corresponds to the character w and that v� corresponds to

the character w�1: If we write the character w as w ¼ ðab; acÞ for some integers b and c;
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then in the basis fvþ; v�g the representation Wu is given by associating

r/R; a/Pb; a/Pc;

where P and R are the 2  2 matrices:

P :¼
g 0

0 g�1

 !
; R :¼

0 1

1 0

 !
:

This gives the matrices for the action of passing transformations on the local system
Wu:

P1 ¼ R; P2 ¼ PbR; P3 ¼ PcR; P4 ¼ Pb; P5 ¼ Pc ð3:1Þ

and the rest are equal to the identity matrix IAGL2ðCÞ:
Note that by our assumption on n it follows that P is of odd order so these

matrices are never equal to �I :
For any 1piojp2g þ 2 let Lij denote the loop which goes around the branch

points i and j; passing under any other branch points which are in between on the
real axis, and going in the clockwise direction. (Some sample loops Lij are illustrated

in Fig. 3.) Assume that the lower part of the curve is on the upper sheet, and let
MijAGL2ðCÞDGLðWuÞ denote the monodromy transformation around Lij :

Observe next that the representation Wu is self-dual: in our basis fvþ; v�g the
invariant pairing Q : Wu#Wu-C is given by

Q
r

s

 !
;

r0

s0

 ! !
:¼ rs0 þ r0s:

The pairing Q induces an intersection pairing on H1ðXo;WuÞ and an isomorphism of

homology and cohomology H1ðXo;WuÞDH1ðXo;WuÞ; both compatible with the
monodromy action of the hyperelliptic mapping class group p1ðB; oÞDDðXoÞ: Thus it
suffices to calculate the monodromy action on the homology H1ðXo;WuÞ:

We will represent the elements in H1ðXo;WuÞ by loop-like chains. Similarly to
ordinary loops, a loop-like chain with coefficients in Wu is given by

* an oriented simple closed path in P1 (not passing through the branch points and
transversal to the branch cut), together with a labeling at each point indicating
whether it is on the upper or the lower sheet, and such that the labeling changes
upon crossing of a branch cut;

* a specification at each point of the path of a vector in Wu; such that upon crossing
a branch cut Ci from the upper to the lower sheet this vector is modified by the
corresponding passing matrix Pi:

A loop-like chain will typically be denoted by vL; where L is the loop and v is the
corresponding vector in Wu:
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Our convention for the intersection pairing on H1ðXo;WuÞ will be that we
intersect the loop-like chains by intersecting the underlying loops according to the
right-hand rule (a first path intersects positively a second path which, to him is
coming from the right) and at each intersection point we pair the corresponding
elements in Wu via Q:

The homology group H1ðXo;WuÞ contains elements of the form vijLij ; where

vijAWu is any vector which is invariant under Mij : We can distinguish three cases:

* if Mij is the identity then vij can be any vector so there is a two-dimensional space

of such cycles;
* if Mij is a reflection (of the form PkR) then vij is of the form ðv þ MijvÞ for any

sufficiently general vector in Wu; and in fact we may take v ¼ vþ;
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* if Mij is a rotation of the form Pk for k different from 0 modulo the order of P;

then there are no non-zero cycles of this form.

Using these elements we can now prove the following:

Lemma 3.1. The cycles of the form vijLij span the homology H1ðXo;WuÞ of the

hyperelliptic curve with coefficients in Wu:

Proof. We need to separate into cases depending on b and c: Assume first of all that
b and c are different and different from 0 (modulo n). For the purposes of this
lemma, we can apply a braid transformation to arrange things so that the passing
matrices are (in order starting with P1):

Pb; Pc; PbR; PcR; R; I ;y :

Now we consider an element of the homology of the hyperelliptic curve with
coefficients in Wu: It can be moved to a cycle supported over the real axis, necessarily
on the interval between 1 and 2g þ 2: Look first at the interval ½2g þ 1; 2g þ 2�: By
subtracting off a cycle of the form v2gþ1;2gþ2L2gþ1;2gþ2 we obtain a cycle which is zero

on the upper sheet along the interval in question (note that the vector v2gþ1;2gþ2 can

be arbitrary). Now the cycle condition at the point 2g þ 2 implies that the cycle is
also zero on the lower sheet. We get to a cycle supported on the interval ½1; 2g þ 1�:
Continuing this way by induction we get to a cycle supported on the interval [8] (the
last non-trivial passing matrix is P5).

The monodromy transformation M9;10 is the identity and so again we can take

v9;10 to be an arbitrary vector. By subtracting a multiple of v9;10L9;10 we get to a cycle

supported in [7].
Next, look at the monodromy matrices

M2;9 ¼ RPb and M4;9 ¼ RPc:

Thus we get that up to scalars

v2;9 ¼ ð1 þ RPbÞvþ ¼
1

gb

 !

and

v4;9 ¼ ð1 þ RPcÞvþ ¼
1

gc

 !
:

The determinant of the matrix with these two vectors in the columns is gc � gb which
is non-zero under our assumption that b is different from c: Therefore by subtracting
off an appropriate combination of the cycles v2;9L2;9 and v4;9L4;9 we obtain a cycle

which is zero in the interval [6,7], in other words it is supported in [6]. Again the
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monodromy matrix M7;8 is the identity so we can subtract off a vector of the form

v7;8 to get a cycle supported in [5].

We repeat the argument above using

v2;7 ¼ ð1 þ PbRPbÞvþ ¼ vþ

and

v4;7 ¼ ð1 þ PbRPcÞvþ ¼ vþ þ gc�bv�

which are linearly independent. This, combined with subtracting off a v5;6L5;6; gets us

to a cycle supported in [3]; and repeating again the same argument with v2;5 and v4;5

we get to a cycle supported in [1]. On the other hand, the monodromy
transformation M1;2 is trivial so by subtracting off a cycle of the form v1;2L1;2

with v1;2 arbitrary, we get to a cycle supported in [1], which must be a multiple of

v2;3L2;3 so we are done. One can note in passing that this last cycle must

automatically be zero since the monodromy M2;3 does not have any fixed vectors but

this is not really important. This completes the proof in the case bac:
Suppose now we are in the case b ¼ c (modulo n). Then b and c are non-zero.

Thus, we can repeat the same argument as above but arranging things so that the
passing matrices are (in order)

Pb; Pc; I ; PbR; PcR; R; I ;y :

In this case the same argument as before (but using vectors such as v4;11; v6;11; etc.)

allows us to get to a cycle supported on ½1; 5�: Now the first monodromy matrices are
the identities:

M1;2 ¼ M2;3 ¼ M3;4 ¼ I ;

so we can subtract off cycles of the form v1;2L1;2; v2;3L2;3; and v3;4L3;4 to get to a cycle

supported on [2,3] and again we are done. This completes the proof of the
lemma. &

For the remainder of the argument we return to the labeling (3.1) for the order of
the branch cuts.

Now let tijAMapðXoÞ denote the right-handed Dehn twist along the loop Lij: For

the three types of behavior of Mij we have

* if Mij is the identity, then tijADðXoÞ and acts on the local system R1f�Wu: In

particular tij maps to a well-defined element DijASpðH1ðXo;WuÞÞ;
* if Mij is a reflection, then t2

ijADðXoÞ and acts on the local system R1f�Wu: In

particular t2
ij maps to a well-defined element D2

ijASpðH1ðXo;WuÞÞ (Fig. 4

illustrates the typical action of D2
ij);

* if Mij is a rotation then we do not consider the Dehn twist.
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For uniformity, we will always consider D2
ij : We now have the following

lemma:

Lemma 3.2. The subgroup of SpðH1ðXo;WuÞÞ generated by the elements

D2
ij

1piojp2g þ 2

Mija rotation

					
( )

acts irreducibly on the complex vector space H1ðXo;WuÞ:

Proof. Consider the elements of the form D2
ij � 1 in the group algebra of

SpðH1ðXo;WuÞÞ: By general principles this algebra is semisimple, so it suffices to

find a vector w0 such that the subspace generated by the action of the D2
ij � 1 starting
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with w0; spans the whole H1ðXo;WuÞ: We will start with

w0 :¼ v2;11L2;11

and show that using the D2
ij � 1 we can get to any vector vijLij : In view of Lemma 3.1

this will complete the proof of the irreducibility.
Note that P6 is the identity and P1 is a reflection, so M2;11 ¼ R is a reflection. Thus

v2;11 is of the form vþ þ Rvþ ¼ vþ þ v�:

Using D2
12 � 1 we get to ðvþ þ RvþÞL12 (note that we allow ourselves to multiply

by a factor for example 1
2

or �1
2

when we say this).

Now one of b or c is different from zero modulo the order of P: Assume for
example that b is different from zero. Then the monodromy transformation M2;7 is

P�bR so using D2
27 � 1 we get to

ð1 þ P�bRÞð1 þ RÞvþL27:

Applying again D2
12 � 1 we get back to

ð1 þ P�bRÞð1 þ RÞvþL12:

In the other case where b is zero but c non-zero we could use D2
29 � 1 and

get to

ð1 þ P�cRÞð1 þ RÞvþL12:

In the first case, note that the image of ð1 þ RÞ is not contained in the kernel

of ð1 þ P�bRÞ; and the image of ð1 þ P�bRÞ is linearly independent from the
image of ð1 þ RÞ; so with the vector we obtained previously we obtain both
vectors vþL12 and v�L12: The same holds in the second case where we used the
matrix Pc:

A similar argument gets us to any of the vectors vL34 and vL56:

Next, using again the fact that one of the PbR or PcR is different from R; and

using the appropriate transformation D2
4;11 � 1 or D2

6;11 � 1 as well as D2
2;11 � 1 and

following by D2
11;12 � 1; we get to any vector of the form vL11;12: Now using the Dehn

twists for i; j with 11piojp2g þ 2 we obtain all of the vectors of the form vLij for

11piojp2g:

From these using the Dehn twists D2
i;j � 1 for io11 and jX11 we get to all vectors

of the form vijLij for io11 and jX11:

Similarly we get to all vectors of the form vijLij when the monodromy

transformations Mij are reflections, by using the Dehn twist D2
ij � 1 on a vector

vklLkl where one of k or l is either i or j and where ½k; l� is a branch cut on which the
passing matrix is a reflection (note that such k; l always exist when the monodromy
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Mij is a reflection). Here from above we have already gotten to the vklLkl with vkl

arbitrary.
This argument also works to obtain vijLij whenever 1piojp6 is an exceptional

case where the monodromy is the identity due to a special equality of the form b ¼ c

or b ¼ 0 or c ¼ 0:
The only cycles which remain to be obtained are the vijLij for 7piojp10: We

first obtain v78L78: To do this, note that two among the three matrices R; PbR

and PcR are different, and for appropriate choices of i and j corresponding to
these two, chosen among 2; 4 and 6; we have that the images of the rank one
matrices ð1 þ Mi;7Þ and ð1 þ Mj;7Þ are linearly independent and span our

two-dimensional space (this is similar to the argument used in Lemma 3.1).

Thus applying the Dehn twist D2
78 � 1 to the vectors vi;7 and vj;7 we span a

two-dimensional space so we can get to any vector of the form v78L78 with
v78 arbitrary. The same argument yields any vector of the form v9;10L9;10 with

v9;10 arbitrary. Finally, in the exceptional case where M89 is the identity (this

is when b ¼ c), using its Dehn twist we get to the vectors of the form
v89L89:

This completes the proof of the lemma. &

Let now g denote the Lie algebra of the monodromy group acting on the

representation C4g�4DH1ðXo;WuÞ: Note that g is semisimple, by general theory. In

Lemma 3.2 we proved that H1ðXo;WuÞ is an irreducible representation of g: The

above proof works for the Lie algebra since the D2
ij are unipotent matrices with

Jordan blocks of length at most one and thus Aij :¼ D2
ij � 1 are elements of g: Hence

the above proof shows that the Aij act irreducibly.

For some i; j we have Aij decomposing into two Jordan blocks of length one (this is

the case for A1;2; A3;4 etc.). However there are some i; j where the monodromy Mi;j is

a reflection (for example i ¼ 2; j ¼ 11), where the Ai;j has a single Jordan block of

length one.
Next, note that by isolating the monodromy representation on the part of the

curve where the local system is trivial, we obtain a monodromy representation of the
direct sum of two copies of the cohomology of a hyperelliptic curve of genus g0 with
the monodromy acting diagonally. If we take all branch points for iX11 then this
has genus g0 ¼ g � 5: Deligne’s argument from [3, Section 4.4] or the argument from
[7] works for the hyperelliptic monodromy action on the standard cohomology (the
monodromy is generated by conjugate Dehn twists) so this monodromy group is
Spð2g � 10Þ: In particular, we have

spð2g � 10ÞCgCspð4g � 4Þ;

where the composite inclusion is the linear embedding of the diagonal action on the
direct sum of two copies of the standard representation of spð2g � 10Þ:

This shows that our monodromy action satisfies the hypothesis of the following
purely algebraic theorem:
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Theorem 3.3. There exists g0 with the following property: suppose gXg0 and suppose g

is a semisimple Lie algebra sitting in a pair of inclusions

spð2g � 10ÞCgCspð4g � 4Þ;

where the composite inclusion is the linear embedding of the diagonal action on the

direct sum of two copies of the standard representation of spð2g � 10Þ: Suppose that

the action of g on C4g�4 is irreducible, and suppose g contains an element A which acts

on C4g�4 with a single Jordan block of length one. Then g ¼ spð4g � 4Þ:

Proof. We first claim that g is simple. If that were not the case, then we could write

g ¼ g1  g2 and so the representation W ¼ C4g�4 would decompose as an exterior

tensor product ¼ W12W2 of representations of g1 and g2: This however can be

ruled out by looking at the element A: If it is non-trivial in both factors then it would
act on W by a Jordan normal form which is the tensor product of two non-trivial
Jordan normal forms, in particular it would have a Jordan block of length 41; if it
was non-trivial in only one of the factors then it would act by the tensor product of a
non-trivial Jordan form, by a trivial vector space (of dimension 41); thus it would
have at least two Jordan blocks. In either case this contradicts the hypothesis that A

acts on C4g�4 with a single Jordan block of length one. This proves that g is simple.
Now we can choose g0 big enough so that the dimension of spð2g � 10Þ is bigger

than the dimension of the exceptional simple Lie algebras. By classification, this
means that g is of one of soð2mÞ; soð2m � 1Þ; spð2mÞ; or slðmÞ: Looking at
dimensions, we get mXg � C where C is some constant.

On the other hand, note that all the fundamental representations of the classical
groups are essentially (the only exception being the spin representation) the wedge
powers of the standard representation. Combined with Weyl’s dimension formula
this implies that there is an m0 such that for mXm0 the only irreducible
representations of dimension o5m of one of the classical groups above, are the
fundamental representation or (in the last case) the dual of the fundamental
representation.

This claim gives that g acts by the standard representation, which immediately
implies that it is equal to spð4g � 4Þ (it cannot be orthogonal or special linear
because we already know it is contained in the symplectic group). &

We are now in a position to complete the

Proof of Theorem A. Let g0 be such that Theorem 3.3 holds. In view of Corollary 2.4
and Lemma 2.8 we only need to show that the Zariski-closure G of the monodromy
action of p1ðB; oÞ on H1ðXo; adðrÞÞ acts with an open orbit on H1ðXo; adðrÞÞ:

By Theorem 3.3, we get that each subspace H1ðXo;WuÞCH1ðXo; adðrÞÞ yields a
monodromy representation equal to the symplectic group. Note that Theorem 3.3
implies that the Lie algebra of the monodromy group is equal to spð4g � 4Þ:
However, in view of the fact that we already have an inclusion of the monodromy
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group of H1ðXo;WuÞ in Spð4g � 4Þ; we get that this inclusion is surjective so the
monodromy group is equal to Spð4g � 4Þ which we now write as SpðH1ðXo;WuÞÞ:

In particular, we have a natural inclusion

GCSpðH1ðXo;CÞÞ 
Y

uað1;0Þ
SpðH1ðXo;WuÞÞ;

so that the projection on each factor is surjective. On the other hand, G is
semisimple. Going back to the level of Lie algebras, this implies that the simple
summands of g are spð2gÞ occurring once, and spðH1ðXo;WuÞÞ ¼ spð4g � 4Þ
occurring a certain number of times. Call these summands s1;y; sk:

Each irreducible factor H1ðXo;WuÞ in the representation H1ðXo; adðrÞÞ; is an
irreducible representation of the Lie algebra

spð2gÞ"s1"?"sk:

As such, it decomposes a priori into an exterior tensor product of representations of
the summands; but by dimension considerations, this tensor product must just be an
irreducible representation of one of the summands si: Also this representation is
isomorphic to the standard representation of si ¼ spð4g � 4Þ: Thus each H1ðXo;WuÞ
comes from the standard representation composed with a projection onto one of the

factors. Note also that the representation C2g comes from the standard representa-
tion composed with the projection onto the factor spð2gÞ:

The above statements on the level of Lie algebras imply the same things for the
connected components of the Lie groups. We obtain that the connected component
of the monodromy group G decomposes as a product

Go ¼ Spð2gÞ  S1 ? Sk;

where each Si is equal to Spð4g � 4Þ and Si acts on a direct sum of ri copies of its
standard representation.

Our goal now is to prove that all of the ri are equal to 1: Suppose the contrary, i.e.
suppose that there are two distinct components u and u0 such that the same Si acts on
H1ðXo;WuÞ and H1ðXo;Wu0 Þ: In particular this means that H1ðXo;WuÞ and
H1ðXo;Wu0 Þ are isomorphic as representations of Go:

The elements D2
ij are unipotent so they go into Go: Let G denote the subgroup of

the monodromy group which maps into Go: We obtain a map

C½G�-C½Go�:

In particular, the action of the group algebra C½G� on "u H1ðXo;WuÞ factors
through the action of the group algebra of Go: Thus, with our assumption of the
previous paragraph that some ri is 41; we would get two components H1ðXo;WuÞ
and H1ðXo;Wu0 Þ which are isomorphic as representations of the group algebra C½G�:
Therefore for every element EAC½G�; the eigenvalues of E acting on H1ðXo;WuÞ and
H1ðXo;Wu0 Þ are the same. We will write down elements E which act with single
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non-zero eigenvalues; thus these values are the same for u and u0: We will show
that this implies that u and u0 are the same component. This will contradict
the assumption that ri41 so it will prove the statement that all of the ri are
equal to 1.

We will write down our E as products of elements of the form Aij :¼ D2
ij � 1: The

component u (respectively u0) is determined by the numbers b and c (respectively b0

and c0) which occur above. These are taken modulo the order n of the root of unity g;
and interchanging b2� b and c2� c does not change the dihedral component u:
Thus, proving that the two components are the same means that we want to show

ðb; cÞ ¼ 7ðb0; c0Þ in ðZ=nÞ2:

Let i; j ¼ 7; 9; 11: Look for example at

A2;iA1;2:

This takes the vector v2;jL2;j first to v2;jL1;2 and then to

ð1 þ P�xi RÞv2;jL2;i

where xi ¼ b; c or 0 depending on whether i ¼ 7; 9 or 11: Look now at

E ¼ A2;iA1;2A2;jA1;2:

It has an image vector which is a multiple of v2;iL2;i so this can be its only non-zero

eigenvector. Its action on this vector is

Ev2;iL2;i ¼ ð1 þ P�xi RÞð1 þ P�xj RÞv2;iL2;i:

Note also that the matrix ð1 þ P�xi RÞ is itself of rank one so the product of matrices
appearing above also has a single non-zero eigenvalue. In particular, the unique
non-zero eigenvalue of B is equal to the unique non-zero eigenvalue of the matrix
ð1 þ P�xi RÞð1 þ P�xj RÞ: This matrix may be written as

1 þ gxj�xi g�xi þ g�xj

gxi þ gxj 1 þ gxi�xj

 !
:

Its eigenvector is

v2;i ¼ ð1 þ P�xi RÞvþ ¼
1

gxi

 !
:

Calculating

1 þ gxj�xi g�xi þ g�xj

gxi þ gxj 1 þ gxi�xj

 !
1

gxi

 !
¼

2 þ gxj�xi þ gxi�xj

2gxi þ gxj þ g2xi�xj

 !
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says that the eigenvalue is equal to

2 þ gxj�xi þ gxi�xj :

Now take various values of i and j; and compare the results for the components u

and u0: We obtain
from i ¼ 11; j ¼ 7;

gb þ g�b ¼ gb0 þ g�b0 ;

from i ¼ 11; j ¼ 9;

gc þ g�c ¼ gc0 þ g�c0 ;

and from i ¼ 9; j ¼ 7;

gb�c þ gc�b ¼ gb0�c0 þ gc0�b0 :

In Z=n these equations give

b ¼ 7b0; c ¼ 7c0; ðb � cÞ ¼ 7ðb0 � c0Þ:

The first two equations admit four possibilities: either

ðb; cÞ ¼ ðb0; c0Þ or ðb; cÞ ¼ �ðb0; c0Þ;

or else

ðb; cÞ ¼ 7ðb0;�c0Þ:

The first two possibilities are what we want to show. In the last two possibilities we
have

b � c ¼ 7ðb0 þ c0Þ:

Thus the third equation above says

b0 þ c0 ¼ 7ðb0 � c0Þ:

This says that either c0 ¼ �c0 or else b0 ¼ �b0: In either case, the equation ðb; cÞ ¼
7ðb0;�c0Þ gets transformed into the equation ðb; cÞ ¼ 7ðb0; c0Þ so we are done. In
fact, we could have noted here that since n is odd, the equations c0 ¼ �c0 or b0 ¼ �b0

do not occur, but the present argument works even when n is even.
We have now shown that if H1ðXo;WuÞ and H1ðXo;Wu0 Þ are isomorphic as

representations of Go then u and u0 represent the same dihedral component of our
representation. This implies that all of the ri are equal to one, which in turn gives that

Go ¼ Spð2gÞ 
Y

uað1;0Þ
SpðH1ðXo;WuÞÞ:
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(Actually, the same is true of the full monodromy group because the full group is
also contained in this product of symplectic groups: G ¼ Go:) This group acts on its

representation C2g""uað1;0ÞH1ðXo;WuÞ with an open orbit. Combined with

Lemma 2.8 and Theorem 2.2 this completes the proof of Theorem A. &

3.2. Lefschetz pencils

We would now like to extend the techniques of the previous section in order to
prove Theorem B.

Let Z be a smooth projective surface with b1ðZÞ ¼ 0: Let OZð1Þ be a very ample

line bundle on Z and let P1CPðH0ðZ;OZðkÞÞÞ be a generic line. Denote by E : bZZ-Z

the blow-up of Z at the base points of the pencil of curves fDtgtAP1 ; and let f :bZZ-P1 be the corresponding Lefschetz fibration. Let p1;y; pmAP1 be the critical

points of f and let B ¼ P1 � fp1;y; pmg and X ¼ f �1ðBÞ: Let Xt; tAB denote the

fiber of f over t; or equivalently, the strict transform of the divisor DtCZ:
Fix g0 so that Theorem 3.3 applies. Then, as we saw at the end of the previous

section, it follows that the monodromy group of the hyperelliptic family of genus g0

acting on the cohomology of the full local system EndðVnÞ corresponding to adðrÞ is
equal to Spð2g0Þ 

Q
u SpðH1ðXo;WuÞÞ with SpðH1ðXo;WuÞÞ ¼ Spð4g0 � 4Þ: We

also assume that g0X6; so there are several branch cuts along which the
representation r is the identity. Set m :¼ 2g0 þ 1:

Let L :¼ OZðkÞ denote our line bundle. Our assertions will be made for k big

enough. Let DCPH0ðZ;LÞ denote the discriminant locus consisting of the sections

defining singular curves. We will fix a base point oAPH0ðZ;LÞ �D (chosen
specially below); and as always Xo will denote the smooth curve defined by the

section o: Then p1ðPðH0Þ �D; oÞ acts by diffeomorphisms on Xo and hence it acts
on MBðXo; nÞ: Furthermore, by the Lefschetz hyperplane section theorem, the
geometric monodromy action p1ðB; oÞ-MapðXoÞ for the family f : X-B factors

through the natural map p1ðB; oÞ-p1ðPðH0Þ �D; oÞ and so it suffices to show that

p1ðPðH0Þ �D; oÞ acts on MBðXo; nÞ with a Zariski-dense orbit.
As before we shall fix a local system r on Xo; with finite monodromy

factoring through a representation of the dihedral Heisenberg group. Then there is

a subgroup of finite index in p1ðPH0 �D; oÞ which preserves r; so it acts on the
space

T½r�MBðXo; nÞ ¼ H1ðXo; adðrÞÞ ¼ H1ðXo;CÞ" "
uað1;0Þ

H1ðXo;WuÞ
 !

:

According to Corollary 2.4 and Lemma 2.8 we only need to show that the Zariski-
closure G of the image of this monodromy action acts with an open orbit on

H1ðXo; adðrÞÞ: Our technique will be to show that G is as big as possible, given the
above decomposition and the fact that it preserves symplectic forms on everything.
To achieve this we will use a family of curves in the linear system jLj which have
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hyperelliptic handles and will apply to the curves the results for the hyperelliptic case
obtained in Section 3.1.

We will define a particular subspace ECPH0ðZ;LÞ; and among other things
choose oAE�D-E: Then the fundamental group p1ðE�D-E; oÞ is contained in

p1ðH0 �D; oÞ and again a finite index subgroup will act on H1ðXo; adðrÞÞ: The
subspace E will be designed so that p1ðE�D-E; oÞ preserves the handle
decomposition of Xo: Using this we will obtain first a smaller subgroup of G and

then apply an argument using loops in the full space PH0ðZ;LÞ �D (which do not
preserve the handle decomposition) to obtain the full group G:

Fix a point PAZ: Choose a collection of sections a0; ffigm
i¼1; fsjgN

j¼0AH0ðZ;LÞ so

that for a suitable local trivialization of L and local coordinates ðx; yÞ near P we
have

(a) near P we have a0 ¼ xm � y2;
(b) the section a0 has no singularities other than P;
(c) near P the sections fi have the form xi;
(d) the sections sj vanish to order at least m þ 2 at P and together with a0 form a

basis for a linear system which has no base points outside of P:

It is clear that by taking k big enough we can always find such a0; fi and sj: In

addition, we will need to choose the sj’s so that they satisfy certain connectedness

conditions which we shall describe further on (Lemmas 3.4 and 3.8).
With these choices we let E be the affine space of sections of L of the form

a0 þ
Xm�1

i¼0

tifi þ
XN

j¼0

zjsj;

and we take as a base point the point oAE corresponding to the values zj ¼ 0 and

ti ¼ 0 for i40; with t0 ¼ 1: Write this as o ¼ ð1; 0;y; 0Þ: We will work on open
polydisks in E of the form jt0 � 1joB; jtijoB for i40 and jzjjoC for all j (with B

and C to be determined later), possibly after rescaling the fi:
To achieve the desired behavior of the monodromy we start by looking at the

choice of the sj and C : For k big enough we can choose a linearly independent family

of sections sj such that the sj all vanish to order 4m at P; and such that the linear

system they generate is without base points away from P: Let GCPH0ðX ;LÞ
denote the subspace generated by the sj and by a0: It is a projective space, with a

codimension one projective subspace GNCG corresponding to the linear system
spanned by the sj without a0: The family of sections a0 þ

P
j zjsj provides a system of

affine coordinates zj for the complementary affine space AG :¼ G�GN: On the

other hand, over AG the universal family of curves is a family which is
holomorphically locally trivial near the singular point P: Indeed, over any small
enough disc in the coordinates zj; one can choose local coordinates at P; depend-

ing on the zj’s, such that a0 þ
P

j zjsj has the form xðzjÞm � yðzjÞ2: Let DG denote

the subset of points in G parametrizing curves that have singularities outside
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of P; union the GN which corresponds to curves with bigger singularities than
usual at P: Over G�DG we obtain a family of curves which are smooth except
for their singularities at P; and the family is holomorphically locally trivial
(hence topologically locally trivial) along the section corresponding to the
point P:

Let s0 be a point in the complement G�DG and let Xs0 be the fiber over s0: With m

odd, the singularity of each fiber at P is a higher-order cusp, so in fact the fibers such
as Xs0 are singular curves which are topologically (but not differentially) manifolds.
The local topological triviality of the family means that it makes sense to speak of
the monodromy action of p1ðG�DG; s0Þ on the cohomology of the fiber Xs0 with
coefficients in the trivial local system.

Now we come to the first of the connectedness conditions referred to above. In
fact, the subject of the monodromy of pencils having singularities especially at the
base locus, has been intensively studied recently notably by Tibar [18,19]. Our
situation above is a very special easy case of this phenomenon so we do not need to
call upon his general results.

Lemma 3.4. For k big enough and by choosing a big enough family of sections sj; we

can ensure that the Zariski closure of the monodromy action of p1ðG�DG; s0Þ on

H1ðXs0 ;CÞ is the full symplectic group.

Proof. If we choose a general line A1CAG then by standard Lefschetz theory
(see e.g. [8,9]) the fundamental group of G�DG is generated by the loops in

A1 �A1-DG: Here (and this is the important point of the argument) we can take

only the loops which go around the points in A1-DG; we do not need to look at the
loop going around the point at infinity since it is the product of the others. Thus, the
fundamental group of G�DG is generated by loops going around the affine part of
the discriminant DG �GN ¼ DG-AG:

For k big enough and by choosing a big enough family of sections sj; the

affine part of the discriminant divisor DG �GN is irreducible, hence connected.
Note that we could never assure that DG is connected since it contains GN

as an irreducible component—thus the importance of saying that the monodromy
is generated by loops around the affine piece. To get this connectedness we
follow the standard argument in the theory of Lefschetz pencils: the discriminant
divisor in the affine piece is the image of an affine space bundle over the surface
Z � P: For big enough values of k this family of affine spaces (which to a point
xAZ � P associates the subspace of sections in AG which are singular at x) is a
vector bundle over Z � P; thus its image is irreducible. Of course, we also choose k

so that the general point in this divisor corresponds to an ordinary double point of
the curve.

Now the Kazhdan–Margulis result as reported by Deligne [3, 5.10] works the same
way to show that the monodromy of the fundamental group of G�DG on the
cohomology of the family of curves with trivial coefficients, has Zariski-closure equal
to the full symplectic group. Indeed, the monodromy around a point of DG �GN is
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a symplectic transvection (because the singular curve has an ordinary node), and the
connectedness of the divisor means that all of these elements are conjugate. As we
have seen above, they generate the monodromy group, so we have a group generated
by a family of conjugate symplectic transvections. Furthermore, the monodromy
representation has no fixed vectors (a fixed vector would correspond to a class in

H1ðZ;CÞ which we have assumed is trivial). &

Choose k and the sj as per the above lemma. Choose an explicit collection of loops

gk in G�DG which generate the monodromy, and choose C big enough so that
these loops are contained in the region jzjjoC :

Our coordinate patch around P will consist of a nested pair of balls UCU 0CZ

together with a pair of coordinate functions ðx; yÞ : U 0-C2 sending U (respectively

U 0) to the ball of radius T (respectively T 0) in C2: We can assume that x and y

come from sections of OZðk0Þ for some k0; via a trivialization of this last line
bundle over U 0: Furthermore, the trivialization can be assumed to come
from a given section u of OZð1Þ which does not vanish at P: Then provisionally
put

fi :¼ xiuk�ik0 for 0pipm � 1 and a0 :¼ xmuk�mk0 � y2uk�2k0 :

These come from global sections of OZðkÞ (choose k4mk0).

Lemma 3.5. For any fixed choice of the sections sj and a0; of the constants T and T 0;
and for any d40; we can make a rescaling of our local coordinates and of the fi so that

the following hold:

* we can retain properties (a) and (c), while a0 and the sj remain fixed in H0ðZ;LÞ;
* the sections fi become arbitrarily small inside H0ðZ;LÞ;
* the coordinate patches U and U 0 become arbitrarily small inside Z; and

X
j

zjsj

					
					od

on the coordinate patch U 0; for all jzj joC :

Proof. We can rescale x by a factor of l2 and y by a factor of lm; and the

trivialization by a factor of l�2m (in other words scale u by a factor of l2m=k0 ). We

retain expressions (a) and (c), a0 remains fixed in H0ðZ;LÞ; and the sections fi

become arbitrarily small inside H0ðZ;LÞ: Also the coordinate patches U and U 0

become arbitrarily small inside Z: Finally, since the sj (which are fixed) vanish to

order 4m at P; for any d40 we can choose the rescaling so that the required
estimate holds. &
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The family of curves of the form

a0 þ
Xm�1

i¼0

tifi ¼ xm � y2 þ
Xm�1

i¼0

tix
i

gives the full family of hyperelliptic curves in our coordinate patch. In particular, the
monodromy of this family (i.e. the fundamental group of the complement of the
discriminant locus) acts as the braid group of braids on m strands. Choose loops
generating this monodromy and choose B so that the loops are contained in the
region jtijoB:

Let @U be the spherical boundary of the coordinate patch. In terms of the local
coordinates the equation for @U is jðx; yÞj ¼ T: For T big enough, the intersection of
the curve

a0 þ
Xm�1

i¼0

tifi

with the sphere @U will remain approximately equal to a single fixed circle as ti vary
in the region jtijoB: As pointed out above, if we made a sufficient rescaling at the
start then the ball U will still be small in Z: Furthermore, by the estimate of Lemma
3.5, addition of the terms

P
j zjsj will not move the intersection circle by very much

either.
We have thus found parameters for our family of curves E (and a rescaling

of the fi) such that for any point ðt; zÞ in the family satisfying the bounds
jtijoB and jzjjoC ; the intersection Xðt;zÞ-@U remains close to a single fixed

circle.
Finally, we choose as a base point o ¼ ð1; 0;y; 0Þ i.e. t0 ¼ 1: By choosing d

small enough in the above choices, we can insure using the estimate of Lemma 3.5
that when we let the z coordinates go around the loops gk; the piece of the
curve inside U does not move too far from the base curve and in particular
the monodromy action on this piece is trivial. Similarly, note that with a very
small scaling factor l the sections fi become very small compared to a0 (or
more precisely, they become small compared to the differential of a0 along the
zero-set of a0). So when t goes around loops generating the braid group action,
this does not move very much the curve outside of U 0: Furthermore, we choose U

so that these loops act trivially in the coordinate patch on U 0 � U : Thus
when t moves we obtain a braid group action on the piece of the curve
inside U and a trivial action on the piece outside U : We can sum all this up as
follows:

Corollary 3.6. Over E the family of curves decomposes into a family of hyperelliptic

curves of genus g0 joined onto a family of curves of genus g � g0 along a circle

which stays essentially fixed. There is a collection of paths in E which generate a

monodromy action on the genus g � g0 piece whose Zariski-closure is the full

symplectic group of the cohomology of the genus g � g0 curves (Lemma 3.4). These
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paths act trivially on the hyperelliptic piece. On the other hand, there are paths in E

generating the braid group action on the hyperelliptic piece, which in turn act trivially

on the piece of genus g � g0:

Next, fix our base representation r to be trivial on the genus g � g0 piece and equal
to the dihedral Heisenberg representation chosen in the hyperelliptic argument of the
previous sections for the hyperelliptic genus g0 piece. Note that since m ¼ 2g0 þ 1
rather than 2g0 þ 2; one of the branch points on the hyperelliptic handle is at infinity;
we assume that this branch point is part of a branch cut on which the passing matrix
is trivial. Furthermore, there is at least one other branch cut on which the passing
matrix is trivial too.

If we consider monodromy elements coming from the family E; these preserve the
cutting-up of our curve into pieces Xo-U of genus g0 and Xo � Xo-U of genus
g � g0: This monodromy group preserves the decomposition of the cohomology of

adðrÞ into a sum of two pieces, one of dimension 2n2ðg � g0Þ and the other of
dimension

2ðn2 � 1Þðg0 � 1Þ þ 2g0:

The first piece corresponds to the monodromy on the sum of n2 copies of the trivial
representation, since r and thus adðrÞ are trivial outside Xo-U : Now the
cohomology of Xo � Xo-U with coefficients in the trivial local system is isomorphic
to the cohomology of the Riemann surface obtained by glueing in a disc along the
boundary Xo-@U : In turn, this Riemann surface is homeomorphic to the cusp curve
considered in the family parametrized by G above. Thus the monodromy result of
Lemma 3.4 implies that the monodromy action of the loops gk on the cohomology of
Xo � Xo-U with coefficients in the trivial local system, has Zariski-closure equal to
the symplectic group Spð2ðg � g0ÞÞ: Now taking into account the fact that the

restriction of Vn to Xo � Xo-U is the direct sum of n2 copies of the trivial
representation; we get that the monodromy action on this first piece is a diagonal

copy of Spð2ðg � g0ÞÞ embedded in the product of n2 copies of its standard
representation.

The second piece corresponds to the monodromy action on the cohomology
of our genus g0 handle with coefficients in adðrÞ: We have an action of
the braid group Bm on this second piece equal to the braid monodromy action
for the family of hyperelliptic curves. Of course not all elements of Bm

preserve the representation r; and as before we look only at elements which
preserve r: The results of Section 3.1 apply here, giving the Zariski closure
of the monodromy of this braid action on the cohomology of the hyperelliptic
piece.

We are now in the following situation. Consider the cohomology H1ðXo; adðrÞÞ:
Let H1ðXo; adðrÞÞhyper and H1ðXo; adðrÞÞg�g0 ; respectively, denote the cohomol-
ogies of adðrÞ over the hyperelliptic piece and the complementary piece.

Note that in H1ðXo; adðrÞÞhyper we restrict to classes which are zero on the
boundary circle joining the two pieces. By Mayer–Vietoris, restriction gives an
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isomorphism

H1ðXo; adðrÞÞ!D H1ðXo; adðrÞÞhyper"H1ðXo; adðrÞÞg�g0 :

Furthermore, both pieces have natural symplectic forms and the symplectic form on

H1ðXo; adðrÞÞ corresponds to the direct sum.
Combined with the decomposition

H1ðXo; adðrÞÞ ¼ H1ðXo;CÞ" "
uað1;0Þ

H1ðXo;WuÞ
 !

;

this yields splittings

H1ðXo; adðrÞÞhyper ¼ H1ðXo;CÞhyper" "
uað1;0Þ

H1ðXo;WuÞhyper

 !
;

and similarly

H1ðXo; adðrÞÞg�g0 ¼ H1ðXo;CÞg�g0" "
uað1;0Þ

H1ðXo;WuÞg�g0

 !
:

Again these decompositions are compatible with the symplectic form. The action of

p1ðE� E-D; oÞ on H1ðXo; adðrÞÞ preserves this decomposition.
Let G denote the global monodromy group i.e. the complex Zariski-closure of the

monodromy image of p1ðPH0ðZ;LÞ �D; oÞ acting on H1ðXo; adðrÞÞ: Let Ghyper

(respectively Gg�g0 ) denote the Zariski closures of the monodromy of the family E

(i.e. of the image of p1ðE� E-D; oÞ) acting on each of the pieces in the above
decomposition.

Lemma 3.7. With these notations, the product group is contained in the global

monodromy

Ghyper  Gg�g0CG:

Furthermore,

Ghyper ¼ Spð2g0Þ 
Y

uað1;0Þ
SpðH1ðXo;WuÞhyperÞ;

and Gg�g0 is the diagonal copy of Spð2ðg � g0ÞÞ acting on H1ðXo;CÞg�g0DC2n2ðg�g0Þ:

Proof. The loops discussed in Corollary 3.6 generate a subgroup of G which factors

as a product of subgroups of Ghyper and Gg�g0 ; since the loops preserve the
decomposition along @U and act trivially on one side or the other. The subgroup

generated by these loops is also a subgroup of Ghyper  Gg�g0 : However, these loops
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generate inside Gg�g0 the diagonal copy of Spð2ðg � g0ÞÞ acting on

H1ðXo;CÞg�g0DC2n2ðg�g0Þ (cf the discussion above), and for the hyperelliptic case
by the result of the previous section, the group

Spð2g0Þ 
Y

uað1;0Þ
SpðH1ðXo;WuÞhyperÞCGhyper:

For general reasons, neither Gg�g0 nor Ghyper can be any bigger than these subgroups
generated by our loops. Therefore, our loops generate all of Gg�g0 (respectively

Ghyper), and we obtain that

Ghyper  Gg�g0CG:

The lemma is proven. &

To finish the proof of Theorem B we need some elements of G which mix up the

factors H1ðXo; adðrÞÞhyper and H1ðXo; adðrÞÞg�g0 : We get these by the following an
‘‘interchange of singularities’’ argument, which basically comes down to saying that
certain singularities in the hyperelliptic family and singularities in the complemen-
tary family are conjugate under the global monodromy.

Lemma 3.8. Let x in Ghyper denote the monodromy element which acts by the Dehn

twist Dm�2;m�1 on the cohomology of the hyperelliptic piece. Let ZAGg�g0 denote a

Dehn twist coming from a double point on the complement of U. Then there is an

element c of the global monodromy group G such that c�1xc ¼ Z:

Proof. This is because the Dehn twists generating the fundamental group of

PH0ðZ;LÞ �D are all conjugate since the discriminant divisor D is connected.
However, one must be a bit careful since we are looking at cohomology with
coefficients in a local system that is not necessarily preserved by the full fundamental
group: our representation r is preserved by a subgroup of finite index which

corresponds to a covering of PH0ðZ;LÞ ramified along D; and in this covering the
inverse image of the discriminant locus might no longer be connected. We remedy
this by stating somewhat more explicitly how to construct c; but without actually

writing down the equations for this loop in PH0ðZ;LÞ since that would be tedious.
Recall that we have assumed that the last two branch points of the hyperelliptic
curve were in branch cuts where the passing transformation was the identity. The
curve acquires a node when these two branch points come together; this node
corresponds to the monodromy element x: Then this node can move out of our
coordinate patch U and into the complementary region Z � U : At this point we are

left with a hyperelliptic handle whose equation is a small deformation of xm�2 � y2

rather than xm � y2: The connectedness of the discriminant locus analogous to DG �
GN but for m � 2 rather than m; and also for two nodes at once, allows us to choose
a path whereby the node which came out of U gets interchanged with another node
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corresponding to Z: This connectedness statement, which holds for k large enough, is
the second statement referred to in condition (d) at the start of the argument. After
interchanging the two singularities, go backwards along the path to send the x node
back into U : All of this corresponds to a path in the subvariety of D corresponding
to sections with two nodes. (Geometrically, this subvariety is the codimension two
nodal locus of the discriminant variety; we choose a path which interchanges the two
sheets of the discriminant which come together along the nodal locus.) Choose a
path c which is near to this path, but in the complement of the discriminant. This
has the effect of giving the conjugation above. Finally, notice that all of this took
place in a region where the representation r is trivial, so we can follow r along the
path c; i.e. the path c lifts to a path in the ramified covering on which r is
defined. &

Let xAGhyper; ZAGg�g0 ; and cAG be the elements from the above lemma. Note
that Z is a generating symplectic transvection in Spð2ðg � g0ÞÞ: Of course, Z no longer

acts as a symplectic transvection but as a direct sum of n2 copies of a transvection on

H1ðXo;CÞg�g0 :
Now the proof of Theorem B will be a consequence of the following statement.

Lemma 3.9. The global monodromy group is the full product

G ¼ SpðH1ðXo;CÞÞ 
Y

uað1;0Þ
SpðH1ðXo;WuÞÞ

acting on H1ðXo;CÞ"ð"uað1;0ÞH
1ðXo;WuÞÞ by the sum of the standard representa-

tions.

Proof. Note first that G is contained in the product. Its image in the first factor is the

full group Spð2gÞ ¼ SpðH1ðXo;CÞÞ; which is just the usual statement (the Deligne–
Kazhdan–Margulis theorem again) for cohomology with the trivial coefficient
system C:

Look at one of the pieces H1ðXo;WuÞ; proceeding in the spirit of the hyperelliptic
discussion in the previous section (the proof of Lemma 3.2 and Theorem A). First we

show that the action of G on H1ðXo;WuÞ is irreducible. For this, it suffices to

consider the action of the group algebra. There is a vector v in H1ðXo;WuÞhyper such
that

C½Ghyper� � v ¼ H1ðXo;WuÞhyper:

We claim that

C½G� � v ¼ H1ðXo;WuÞ:

Let A be the image of the element x� 1: It is a two-dimensional subspace of

H1ðXo;WuÞ; and in particular it is contained in C½G� � v: Thus there are elements v1
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and v2 of C½G� � v such that ðx� 1Þv1 and ðx� 1Þv2 span A: On the other hand, the

image B of Z� 1 ¼ c�1ðx� 1Þc is an isomorphic image of A; a two-dimensional

space contained in H1ðXo;WuÞg�g0 : The isomorphism is given by

c�1 : A!D B:

The vectors

c�1ðx� 1Þcðc�1v1Þ and c�1ðx� 1Þcðc�1v2Þ

span B: In particular B is contained in C½G� � v:

Now we can write H1ðXo;WuÞg�g0 ¼ C2ðg�g0Þ"C2ðg�g0Þ and the image of the
action of G contains the diagonal copy of Spð2ðg � g0ÞÞ (this is the image of Gg�g0 ).
The subspace B is transverse to the above decomposition, in other words it contains
one basis element in each piece. It follows that the translates of B by elements of

Gg�g0 span H1ðXo;WuÞg�g0 : Therefore

H1ðXo;WuÞg�g0CC½G� � v;

so putting this together with the above we get that C½G� � v ¼ H1ðXo;WuÞ; so the

action of G on H1ðXo;WuÞ is irreducible as claimed (to get this last deduction we use
the standard fact that G is semisimple so its action decomposes as a direct sum of
irreducible pieces).

Next, note that the image of G acting on H1ðXo;WuÞ is a simple group. This is

because the group Ghyper acting on H1ðXo;WuÞ contains an element whose Jordan
normal form has a single Jordan block of length one (see the argument of the
previous section for the hyperelliptic case). As before this implies that the image is
simple.

Next, we show that the image of G acting on H1ðXo;WuÞ is the full symplectic

group SpðH1ðXo;WuÞÞ: This again is by the same argument as in the previous
section, using the fact that the image of G acting on Wu contains a copy of Spð2ðg �
g0ÞÞ; and noting that we can insure that g � g0 is large enough (by choosing k big).

Finally, complete the proof of Lemma 3.9 by noting that inside Ghyper we can find
an element which acts with different eigenvalues on each of the different pieces

H1ðXo;WuÞ; the same element as exhibited in the previous section. As then, this
implies that

G ¼ Spð2gÞ 
Y

uað1;0Þ
SpðH1ðXo;WuÞÞ:

This completes the proof of the lemma. &

Proof of Theorem B. The dihedral Heisenberg representation r which we chose here
corresponds to a smooth point in MBðXo; nÞ; fixed under a finite index subgroup of
the monodromy group. The action of the monodromy group which fixes r on the
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tangent space T½r�MBðXo; nÞ at r is exactly the action on H1ðXo; adðrÞÞ we

considered above. The Zariski-closure G as described in Lemma 3.9, acts with an
open orbit. Either from the general consideration in Lemma 2.8 or else just by
inspection, this monodromy group has no characters. Therefore by Corollary 2.4 we
get that the monodromy action on MBðXo; nÞ is Zariski-dense. &

4. Further remarks

4.1. Topologically irreducible families

The requirement that our families have relatively large monodromy was used in an
essential way in the proofs of Theorems A and B. However this requirement seems to
be more an artifact of the method of proof rather than a real condition on the family
f : X-B which is necessary for the density of the monodromy action. In this section
we briefly examine some consequences of the density, which will allow us to probe
the necessity of the ‘large monodromy’ condition.

Recall that a smooth family of curves f : X-B is called topologically irreducible if
and only if there is no finite collection of disjoint embedded circles in Xo which is
preserved by the geometric monodromy. We have the following simple.

Lemma 4.1. Let f : X-B be a family of smooth curves, such that the monodromy

action of p1ðB; oÞ has a Zariski-dense orbit on the Betti moduli space MBðXo; nÞ for

some nX1: Then f : X-B is topologically irreducible.

Proof. Assume that one can find simple disjoint loops a1;y; akCXo such that the
collection fa1;y; akg of free homotopy classes on Xo is preserved by
monðp1ðB; oÞÞCMapðXoÞ: Then for every NAZ we have a well-defined
monðp1ðB; oÞÞ-invariant regular function cN : MBðXo; nÞ-C on MBðXo; nÞ; given

by cNð½r�Þ :¼ Trð
Qk

i¼1ðrðaiÞÞNÞ: But clearly for some N the function cN will be non-

constant and so monðp1ðB; oÞÞ cannot have a Zariski-dense orbit on MBðXo; nÞ: The
lemma is proven. &

In particular, all families of curves satisfying the hypothesis of Theorems A and B
will be topologically irreducible. Recently McMullen has shown that topological
irreducibility holds very generally: every non-isotrivial holomorphic family of curves
is topologically irreducible [12, Proof of Theorem 3.1]. In particular, this corollary of
our main results was already known.

When we started the current project we were hoping that topological irreducibility
will allow one to distinguish symplectic Lefschetz pencils (whose topology tends to
be much softer) from projective Lefschetz pencils. In the meantime however, Ivan

Smith succeeded in showing [16] that all symplectic Lefschetz fibrations over P1 are
topologically irreducible. We still expect that the stronger property GZD (or the
open orbit property from Theorem B) will allow one to distinguish projective from
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symplectic Lefschetz pencils. We hope to return to examples of this type in a future
paper.

McMullen’s result (with the alternative symplectic proof by Smith when the base is

P1) is the only evidence we have for the following conjectural generalization of
Theorems A and B:

Conjecture 4.2. For a family f : X-B assume that monðp1ðB; oÞÞ is not a finite group.

Then

(i) there is no meromorphic function on MBðXo; nÞan
which is invariant under the

action of monn
Bðp1ðB; oÞÞ (equivalently there is no meromorphic function on

MDRðXo; nÞan
which is monn

DRðp1ðB; oÞÞ-invariant);

(ii) in the case of MBðXo; nÞ; considered with its natural structure of an affine algebraic

variety, there exist a point xBAMBðXo; nÞ so that the orbit

monn
Bðp1ðB; oÞÞ � xBCMBðXo; nÞ

is Zariski-dense in MBðXo; nÞ:

Procesi’s theorem [15] implies that the field of rational functions on MBðXo; nÞ is
generated by traces of evaluation maps for conjugacy classes of simple loops on Xo:
One might hope (although we did not find an argument) that the field of p1ðB; oÞ-
invariant rational functions on MBðXo; nÞ is similarly generated by the traces of
evaluation maps at finite invariant collections of simple loops. If this were the case
then McMullen’s theorem would imply the validity of the variant of Conjecture 4.2
concerning algebraic meromorphic functions. The property AGZD1 (i.e. the
conjecture as it is stated using analytic meromorphic functions) would seem to
remain more elusive.

4.2. Points G-near to a finite representation

We briefly describe here another variation on the basic result. Essentially, we have
constructed a finite-image representation, the dihedral Schrödinger representation r;
which corresponds to a smooth point in MBðXo; nÞ and which turns out to be
sufficient in order to get the Zariski-denseness property. In an attempt to better
understand what is going on, we can explore a bit further the sense in which r is near
the rest of MBðXo; nÞ:

Suppose a finitely presented group G acts on an affine variety M; and suppose
pAM is a closed point in the smooth set of M; fixed by the action. We say that

another point qAM is G-near to p if p lies in the closure of the orbit G � q: Let
N ¼ NearðM; p;GÞCM denote the subset of points q which are G-near to p: It is G-
invariant. Let TpN denote its tangent cone at p; defined to be the set of limits of

secants to M going from p to points qAN which approach p (the limits of secants
may be taken in any real embedding of M). Note that TpNCTpM is an invariant
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subset of the tangent space to M at p: An easy argument similar to that of Corollary
2.4 shows that if TpN is Zariski-dense in TpM then N is Zariski-dense in M:

Suppose gAG: Let RCTpM denote the span of the eigenvectors of g whose

eigenvalues have norm o1: We claim that RCTpN: Choose a smooth submanifold

VCM tangent to R: Let D be a ball neighborhood of p in M: Then the collection

fVk :¼ g�kðW-gkDÞg

is a collection of manifolds with boundaries lying in the boundary of D; which are

tangent to R at the origin, and whose curvature is bounded (the V-gkD all lie in a

sector preserved by g�1 and in which g�1 smooths things out). Thus, these converge
to a manifold VN which is preserved by the action of g and on which g acts with all
eigenvalues o1: In particular, VNCN which shows that RCTpN:

Lemma 4.3. Suppose rAMBðXo; nÞ is the dihedral Schrödinger representation we have

considered above. Suppose that a group G ¼ p1ðB; oÞ acts, satisfying one of the

hypotheses of Theorem A or B: Let N ¼ NearðMBðXo; nÞ; r;GÞ: Then TrN is Zariski-

dense in TrMBðXo; nÞ:

Proof. Recall that

T½r�MBðXo; nÞ ¼ H1ðXo; adðrÞÞ;

and that we have a decomposition

H1ðXo; adðrÞÞ ¼ "
u

H1ðXo;WuÞ
� �

such that the monodromy group G is Zariski-dense in the product G ¼
Q

u Gu with

Gu ¼ SpðH1ðXo;WuÞÞ: Each component of the decomposition corresponds to a
weight one variation of Hodge structure over B which is irreducible and not unitary
(since both Hodge subspaces are nontrivial). Therefore G actually lies in a real form
which decomposes

GCGR ¼
Y

u

Gu;R

and the Gu;R are noncompact real forms of the symplectic groups. (One cannot have

a real component whose complexification splits into two components, because that
would be a complex group considered as a real group, which is never of Hodge type.)
The real Zariski closure of G; i.e. the intersection of all real algebraic subsets of G

containing G; is GR; since anything smaller would lead to a smaller complex Zariski
closure.

Let pru : GR-Gu;R denote the projection. Let EuCGR be the real algebraic subset

of elements g such that all of the eigenvalues of pruðgÞAGu;R have norm 1: This is a
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proper subset since Gu;R is noncompact. The union
S

u Eu is again a proper real

algebraic subset of GR; so it cannot contain G:
Thus there is an element gAG such that every projection pruðgÞ has at least one

eigenvalue of norm different from 1: On the other hand these projections have
determinant one, so each pruðgÞ has at least one eigenvalue of norm o1:

In particular, there is a vector vAH1ðXo; adðrÞÞ such that v is in the span of
the eigenvectors of g corresponding to eigenvalues of absolute value o1; and such

that v has a nonzero component in all of the irreducible factors of H1ðXo; adðrÞÞ:
Using the fact that the complex Zariski closure of G contains a product of symplectic
groups (corresponding to the decomposition into irreducible pieces of the

representation H1ðXo; adðrÞÞ), we find that the orbit of the vector v under the
action of G is Zariski-dense in T½r�MBðXo; nÞ: On the other hand, from our discussion

prior to the present lemma, v is in the G-invariant subset TrN: Thus TrN is Zariski-

dense. &

Corollary 4.4. The moduli space MBðXo; nÞ contains a smooth point, the dihedral

Schrödinger representation r; such that the set of points NearðMBðXo; nÞ; r;GÞC
MBðXo; nÞ which are G-near to r; is Zariski-dense in MBðXo; nÞ:

It is clear that any G-invariant regular (i.e. holomorphic algebraic) function takes
the same value at r as at every point of NearðMBðXo; nÞ; r;GÞ: In particular, this
corollary implies the result that there are no G-invariant regular functions. This
result is weaker than our main results about non-existence of invariant meromorphic
functions, but does provide a slightly different conceptual route to the topological
irreducibility result referred to above.

Our motivation for introducing the notion of G-nearness is that the first
and second authors asked some time ago whether there was any sense in which
the finite-image representations could take up a big place in MBðXo; nÞ: The short
answer to that question is that, by Jordan’s theorem, the finite image representations
occupy a rather small place in that there are only finitely many outside of
representations which factor through a normalizer of a torus (and those which
factor in this way lie in a closed subset of relatively high codimension). However,
Corollary 4.4 provides the slightly more subtle answer that, in the presence of
a large monodromy action, if you start out very near to a certain finite-
image representation (such as one of our dihedral Schrödinger representations)
and then let the monodromy act, then you can get out to a significant part of
MBðXo; nÞ:

4.3. Other groups

Finally, let us explicitly state that we expect that all of the results and
conjectures of this paper to hold for Betti and deRham cohomology with
coefficients in an arbitrary complex reductive group G: Specifically we make the
following
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Conjecture 4.5. Let f : X-B be a smooth algebraic family of curves and G a complex

reductive group. Then:

(i) Assume that f is not isotrivial. Then the families

MBðX=B;GÞ-B and MDRðX=B;GÞ-B

of relative Betti and de Rham cohomology with coefficients in G are GZD when

equipped with the non-Abelian Gauss–Manin connection.
(ii) Assume that f comes from a projective Lefschetz pencil of sufficiently high degree.

Then there exists a smooth point rAMBðXo;GÞ which is fixed by a finite index

subgroup GCp1ðB; oÞ and for which the Zariski-closure of G in

GLðTrMBðXo;GÞÞ acts with an open orbit on TrMBðXo;GÞ:
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