Note

The transformation graph G^{xyz} when $xyz = --+$

Baoyindureng Wua,b, Li Zhangb, Zhao Zhanga

aCollege of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China
bInstitute of Systems Science, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, PR China

Received 18 April 2003; received in revised form 15 March 2005; accepted 7 April 2005
Available online 2 June 2005

Abstract

The transformation graph G^{xyz} of G is the graph with vertex set $V(G) \cup E(G)$ in which the vertex x and y are joined by an edge if one of the following conditions holds: (i) x, $y \in V(G)$, and x and y are not adjacent in G, (ii) x, $y \in E(G)$, and x and y are adjacent in G, (iii) one of x and y is in $V(G)$ and the other is in $E(G)$, and they are incident in G. In this paper, it is shown that for two graphs G and G', $G^{xyz} \cong G'^{xyz}$ if and only if $G \cong G'$. Simple necessary and sufficient conditions are given for G^{xyz} to be planar and hamiltonian, respectively. It is also shown that for a graph G, the edge-connectivity of G^{xyz} is equal to its minimum degree. Two related conjectures and some research problems are presented.

Keywords: Transformation; Total graph; Isomorphism

1. Introduction

All graphs considered here are finite and simple. Undefined terminology and notations can be found in [3]. Let $G = (V(G), E(G))$ be a graph. The connectivity (edge-connectivity)
of G, denoted by $\kappa(G)(\lambda(G))$, is defined to be the largest integer k for which G is k-connected (k-edge connected). We use $\omega(G)$ to denote the number of components of G. For a vertex v of G, the eccentricity $\text{ecc}_G(v)$ of v is the largest distance between v and all the other vertices of G, i.e., $\text{ecc}_G(v) = \max\{d_G(u, v) | u \in V(G)\}$. The diameter $\text{diam}(G)$ of G is $\max\{\text{ecc}_G(v) | v \in V(G)\}$, equivalently, the maximum distance between two vertices of G. $I_G(v)$ denotes the set of edges incident with v in G, and $|I_G(v)|$ is called the degree $d_G(v)$ of v in G. The neighborhood $N_G(v)$ of v is the set of all vertices of G adjacent to v. Since G is simple, $|N_G(v)| = d_G(v)$.

Suppose that V' is a nonempty subset of $V(G)$. We call V' an independent set if no two vertices of V' are adjacent in G whereas a clique if every pair of vertices of V' are adjacent in G. The subgraph $G[V']$ of G induced by V' is a graph with $V(G[V']) = V'$ and $uv \in E(G[V'])$ if and only if $uv \in E(G)$. For two disjoint nonempty subsets S and S' of V, we denote by $[S, S']$ the set of edges with one end in S and the other in S'. Let $G = (V(G), E(G))$ and $H = (V(H), E(H))$ be two graphs. The union $G \cup H$ of G and H is the graph whose vertex set is $V(G) \cup V(H)$ and the edge set $E(G) \cup E(H)$. Particularly, we denote their union by $G + H$ if they are disjoint, i.e., $V(G) \cap V(H) = \emptyset$. The join $G \vee H$ of G and H is the graph obtained from $G + H$ by joining each vertex of G to each vertex of H. We call G and H isomorphic, and write $G \cong H$, if there exists a bijection $\theta : V(G) \leftrightarrow V(H)$ with $xy \in E(G)$ if and only if $\theta(x)\theta(y) \in E(H)$ for all $x, y \in V(G)$.

The line graph $L(G)$ of G is the graph whose vertex set is $E(G)$, and in which two vertices are adjacent if and only if they are adjacent in G. The total graph $T(G)$ of G is the graph whose vertex set is $V(G) \cup E(G)$, and in which two vertices are adjacent if and only if they are adjacent or incident in G. Wu and Meng [7] generalized the concept of total graph, and introduced some new graphical transformations.

Let $G = (V(G), E(G))$ be a graph, and α, β be two elements of $V(G) \cup E(G)$. We say that the associativity of α and β is + if they are adjacent or incident in G, otherwise −. Let xyz be a 3-permutation of the set $\{+, −\}$. We say that α and β correspond to the first term x (resp. the second term y or the third term z) of xyz if both α and β are in $V(G)$ (resp. both α and β are in $E(G)$, or one of α and β is in $V(G)$ and the other is in $E(G)$). The transformation graph G^{xyz} of G is defined on the vertex set $V(G) \cup E(G)$. Two vertices α and β of G^{xyz} are joined by an edge if and only if their associativity in G is consistent with the corresponding term of xyz.

Since there are eight distinct 3-permutations of $\{+, −\}$, we obtain eight graphical transformations of G. It is interesting to see that G^{+++} is exactly the total graph $T(G)$ of G, and $G^{−−−}$ is the complement of $T(G)$. Also, for a given graph G, G^{+++} and $G^{−−−}$, $G^{++−}$ and $G^{−−+}$, $G^{−++}$ and G^{+++} are other three pairs of complementary graphs.

One of the classical theorems on line graphs is due to Whitney [6]. That is, for any two connected graphs G and G', $L(G) \cong L(G')$ if and only if either $G \cong G'$, or $\{G, G'\} = \{K_3, K_{1,3}\}$. Behzad and Radjavi [2] also showed that for any two graphs G and G', $G^{+++} \cong G'^{+++}$ if and only if $G \cong G'$. Motivated from the above, we prove that for two graphs G and G', $G^{+++} \cong G'^{+++}$ if and only if $G \cong G'$. In Section 2, it is shown that G^{+++} is planar if and only if $\nu(G) \leq 4$, and is hamiltonian if and only if $|\nu(G)| \geq 3$. Also, we prove that for any graph G, the edge-connectivity of G^{+++} is equal to its minimum degree.
2. Eccentricity, connectivity, planarity, and hamiltonity

Let G be a graph with n vertices, and $H = G^{+++}$. For every vertex $v \in V(G)$, $d_H(v) = n - 1$, and for an edge $e = uv \in E(G)$, $d_H(e) = d_G(u) + d_G(w)$.

Theorem 2.1. Let G be a graph, and $H = G^{+++}$. Then $ecc_H(v) \leq 2$ if $v \in V(G)$, and $ecc_H(e) \leq 3$ if $e \in E(G)$, and $ecc_H(e) = 3$ if and only if $\text{diam}(L(G)) \geq 3$.

Proof. Let $u, w \in V(G)$. If u and w are not adjacent in H, then they are adjacent in G. Let $e = uw$. Since uw is a path joining u and w in H, we have $d_H(u, w) = 2$. Assume $u \in V(G)$ and $e \in E(G)$. If u and e are not adjacent in H, then u is not incident with e in G. Let w be an end vertex of e in G. If u and w are not adjacent in G, then uw is a path joining u and w in H, so $d_H(u, w) \leq 2$; if u and w are adjacent in G, and let $e' = uw$, then $ue'w$ is a path joining u and e in H, so $d_H(u, w) \leq 2$. Now assume $e, e' \in E(G)$. If e and e' are not adjacent in H, then they have no common end vertex. Let u be an end vertex of e in G. Then $d_H(e, e') = \min(d_H(u, e), d_H(u, e')) = 1 + 2 = 3$. Note that if $\text{dima}(L(G)) \geq 3$, and we take $e_1, e_2 \in E(G)$ with $d_L(G)(e_1, e_2) \geq 3$, then $d_H(e_1, e_2) = 3$. Summing up the argument above, the result follows. □

So, G^{+++} is connected and $\text{diam}(G^{+++}) \leq 3$ for any graph G (see [7]). It is well-known that $\kappa(G) \leq \lambda(G) \leq \delta(G)$ for any graph G. In [1], Bauer and Tindell showed that $\lambda(G^{+++}) = \delta(G^{+++})$ for any connected graph G. We shall obtain the similar result for G^{+++}. Before proving it, recall that the subdivision graph $S_1(G)$ of G is the graph with the vertex set $V(G) \cup E(G)$. Two element x and y are joined by an edge if and only if one of x, y is in $V(G)$ and the other is in $E(G)$, and they are incident in G. So, $G^{+++} = (\overline{G} + L(G)) \cup S_1(G)$.

Theorem 2.2. Let G be a graph and $H = G^{+++}$. Then $\lambda(H) = \delta(H)$.

Proof. It suffices to show that $\lambda(H) \geq \delta(H)$. Let S be a minimum edge-cut of H. Then $H - S$ has exactly two components, which are denoted by H_1 and H_2. First assume that $V(H_i) \cap V(G) \neq \emptyset$, and let $u_i \in V(G) \cap V(H_i)$ for $i = 1, 2$. Since $\overline{G} \cup S_1(G)$ is a subdivision of the complete graph on $V(G)$, u_1 and u_2 are connected by at least $|V(G)| - 1$ vertex-disjoint paths in $\overline{G} \cup S_1(G)$. Hence $|S| \geq |V(G)| - 1 \geq \delta(H)$.

Now we assume that all the vertices of G are contained in the same component of $H - S$. Without loss of generality, suppose $V(G) \subseteq V(H_2)$. Take a vertex e from $V(H_1)$, then $e \in E(G)$. Let x, y be the end vertices of e in G. Then $x, y \in V(H_2)$. As we know, $N_H(e)$ can be partitioned into two vertex-disjoint cliques, which contain x and y, respectively. We denote the two cliques by C_x and C_y. Then $|C_x| = d_G(x)$ and $|C_y| = d_G(y)$. It follows that e and x are connected by at least $d_G(x)$ vertex-disjoint paths in $H[C_x \cup \{e\}]$, and e and y are connected by at least $d_G(y)$ vertex-disjoint paths in $H[C_y \cup \{e\}]$. Thus, we have $|S| \geq d_G(x) + d_G(y) \geq \delta(H)$. This completes the proof. □

In general does $\kappa(G^{+++})$ equal to $\delta(G^{+++})$? The answer is negative. To see this, let $G = K_n + K_m$, where $n \geq 3$, $m \geq 2$, and $H = G^{+++}$. Suppose $V(G) = \{u_1, \ldots, u_n, v_1, \ldots, v_m\}$ such that the subgraph K_n of G is induced by $V' = \{u_1, \ldots, u_n\}$. Then $H - V'$ is not
connected since as vertices of H, the edges of K_n are not adjacent to any v_i ($1 \leq i \leq m$) in H. This implies that $\kappa(H) \leq |V'| = n$. Note that $d_H(v) = n + m - 1$ for any vertex $v \in V(G)$ and $d_H(u_i u_j) = d_G(u_i) + d_G(u_j) = 2n - 2$ where $i, j = 1, 2, \ldots, n$. Thus $\kappa(H) \leq n - \delta(H) = \min\{n + m - 1, 2n - 2\}$ since $n \geq 3$ and $m \geq 2$.

Theorem 2.3. For a graph G, G^{++} is planar if and only if $|V(G)| \leq 4$.

Proof. It is easy to check that G^{++} is planar for every graph G with $|V(G)| \leq 4$.

Note that $\overline{G} \cup S_1(G)$ is a subgraph of G^{++} and is a subvision of the complete graph on $V(G)$. If G^{++} is planar, then it does not contain the subdivision of a complete subgraph with 5 vertices by the well-known Kuratowski’s theorem. So $|V(G)| \leq 4$. \qed

Theorem 2.4. For a graph G, G^{++} is hamiltonian if and only if $|V(G)| \geq 3$.

Proof. It is obvious that if $|V(G)| < 3$, then G^{++} is not hamiltonian. For the sufficiency, let G be a graph with $|V(G)| \geq 3$. If G is empty, then G^{++} is a complete graph, and is hamiltonian. Now suppose G is not empty, and let M be a maximum matching of G. Let G' be the complete graph on $V(G)$. Then G is a spanning subgraph of G', and there exists a Hamilton cycle C' of G' containing all the edges of M. Suppose that e_1, e_2, \ldots, e_m are all the edges of G on C', then $M \subseteq \{e_1, e_2, \ldots, e_m\}$. Let $e_i = u_i v_i$ for $i = 1, 2, \ldots, m$, and $u_1, v_1, u_2, v_2, \ldots, u_m, v_m, \ldots, u_1$ are the vertices of C' assigned clockwise. Note that if $\{e_1, \ldots, e_m\} = E(G)$, then we may obtain a Hamilton cycle of G^{++} by replacing each edge $u_i v_i$ of C' by the path $u_i e_i v_i$ of length 2 for $i = 1, \ldots, m$.

Otherwise, $E(G) \setminus \{e_1, \ldots, e_m\} \neq \emptyset$. Since M is a maximum matching of G, each edge of $E(G) \setminus \{e_1, \ldots, e_m\}$ (denoted by F) is incident with some u_i or v_j for $i, j = 1, 2, \ldots, m$ in G. Next we should insert all the edges of G (as the vertices of G^{++}) into C' to obtain a Hamilton cycle of G^{++}. We do this by replacing each edge $u_i v_i$ of C' by a path P_i, $i = 1, 2, \ldots, m$, where P_i is walked along the following vertices: u_i, the edges of F incident with u_i but not incident with u_i (any order), e_i, the edges of F incident with v_i but not incident with u_i (any order), v_i. Note that if there is some edge e of F whose two end-vertices both belonging to $\{u_1, \ldots, u_m, v_1, \ldots, v_m\}$, we just insert e at the end-vertex first appeared on C' and do not insert e at the second one again. Thus we get a Hamilton cycle of G^{++} from C'. \qed

3. **Isomorphism**

For a graph G and $v \in V(G)$, we denote the subgraph $G[N_G(v)]$ of G by G_v for short. Recall that $I_G(v)$ is the set of edges incident with v in G. Next, we start with a few useful remarks. Let G be a graph, $H = G^{++}$.

Remark 1. For a vertex $v \in V(G)$, we have

1. $N_H(v) \cap V(G) \neq \emptyset$ if and only if $d_G(v) \neq |V(G)| - 1$,
2. for a component F of H_v, $V(F) \subseteq V(G)$ if and only if $V(F) \cap V(G) \neq \emptyset$, and
3. if $d_G(v) > 0$, then $H[I_G(v)] (\cong K_d)$ is a component of H_v, where $d = d_G(v)$.

It follows from the fact that \(N_H(v) = (V(G) \setminus N_G(v)) \cup I_G(v) \). In particular, if \(d_G(v) = |V(G)| - 1 \), then \(N_H(v) \) is a clique, and if \(d_G(v) = 0 \), \(N_H(v) = V(G) \setminus \{v\} \).

Remark 2. If \(e = uw \in E(G) \), then \(N_H(e) \) is not a clique of \(H \), but can be partitioned into two cliques of \(H \) each containing a vertex of \(G \). So, \(\omega(H_e) \leq 2 \), and \(H_e \) is connected if and only if \(u \) and \(w \) have a common neighbor.

Remark 3. Let \(G \) and \(G' \) be two graphs with \(G^{++} \equiv G'^{++} \), and \(\theta \) be an isomorphism from \(G^{++} \) to \(G'^{++} \). For \(v \in V(G) \), if \(d_G(v) > 0 \) and \(G - v - N_G(v) \) has an edge, then \(\theta(v) \in V(G') \).

Since \(N_{G^{++}}(v) \) cannot be partitioned into two cliques, and neither is \(N_{G'^{++}}(\theta(v)) \). By Remark 2, \(\theta(v) \in V(G') \).

Lemma 3.1. Let \(G \) be a graph and \(H = G^{++} \). For a pair of adjacent vertices \(u \) and \(v \) of \(H \), \(N_H(u) \setminus \{v\} = N_H(u) \setminus \{u\} \) if and only if they are isolated vertices of \(G \).

Proof. If \(u \) and \(v \) are two isolated vertices of \(G \), then \(N_H(u) \setminus \{v\} = V(G) \setminus \{u, v\} = N_H(v) \setminus \{u\} \). Next we prove the necessity. Since \(u \) and \(v \) are adjacent in \(H \), if \(\{u, v\} \subseteq E(G) \), then \(u = xy \) and \(v = xz \) in \(G \) for some vertices \(x, y, z \in V(G) \). However, \(N_H(u) \setminus \{v\} \neq N_H(v) \setminus \{u\} \) since \(y \in N_H(u) \setminus N_H(v) \). So at least one of \(u \) and \(v \) is in \(V(G) \). Assume that \(u \in V(G) \), \(v \in E(G) \), and let \(v = uw \in E(G) \) where \(w \in V(G) \). Obviously, \(w \in N_H(u) \setminus N_H(u) \). So both \(u \) and \(v \) are vertices of \(V(G) \), and they are not adjacent in \(G \). If \(d_G(u) \neq 0 \), let \(e \) be an edge incident with \(u \) in \(G \), then \(e \in N_H(u) \setminus N_H(v) \) since \(v \) is not incident with \(e \) in \(G \). So \(d_G(u) = 0 \). Similarly, we have \(d_G(v) = 0 \). This completes the proof. \(\square \)

Lemma 3.2. For two graphs \(G \) and \(G' \), if \(G^{++} \equiv G'^{++} \), then \(|V(G)| = |V(G')| \) and \(|E(G)| = |E(G')| \).

Proof. Let \(\theta \) be an isomorphism from \(G^{++} \) to \(G'^{++} \). Since \(|V(G)| + |E(G)| = |V(G^{++})| = |V(G')| + |E(G')| \), it suffices to show that \(|V(G)| = |V(G')| \). Let \(W = \theta(V(G)) \). First assume that \(W \cap V(G') \neq \emptyset \). Take a vertex \(v' \) from \(W \cap V(G') \), then \(v = \theta^{-1}(v') \in V(G) \) by the definition of \(W \). Therefore, \(|V(G)| - 1 = d_G(v') = d_{G^{++}}(v') = |V(G')| - 1 \), and \(|V(G)| = |V(G')| \). Now let \(W \cap V(G') = \emptyset \). By the definition of \(G'^{++} \), each element of \(W \) is an edge of \(G' \), which is adjacent to exactly two elements of \(V(G') \) in \(G'^{++} \). Hence, we have \(|W| = |V(G')| = 2|W| = 2|V(G)| \). On the other hand, \(|W| = |V(G')| = |V(G), \theta^{-1}(V(G'))| = 2|\theta^{-1}(V(G'))| = 2|V(G')| \). Thus, \(|V(G)| = |V(G')| \). \(\square \)

Theorem 3.3. For two graphs \(G \) and \(G' \), \(G^{++} \equiv G'^{++} \) if and only if \(G \cong G' \).

Proof. The sufficiency is obvious.

For the necessity, let \(\theta \) be an isomorphism from \(G^{++} \) to \(G'^{++} \), and \(W = \theta(V(G)) \). Then \(|W| = |V(G)| = |V(G')| \) by Lemma 3.2. Since \(G'^{++} = V(G') \setminus W \), \(G'^{++} \) is \(G' \) and \(G^{++} \) is \(G' \). If \(W = V(G') \), we have \(G \cong G' \). So we assume that \(W \setminus V(G') \neq \emptyset \).
Next we see that G has at most one isolated vertex. Suppose it is not, and let u and v be two isolated vertices. Let $u' = \theta(u)$ and $v' = \theta(v)$. Then u' and v' are adjacent in $G'_{r,s}$ and $N_{G'_{r,s}}(u') \cup v' = N_{G'_{r,s}}(v') \cup u'$ by the isomorphism. By Lemma 3.1, u' and v' are isolated vertices of G', too. Therefore $V(G') = \{u' \cup N_{G'_{r,s}}(u')\}$, and since $\theta((u) \cup N_{G'_{r,s}}(u)) = \{u' \cup N_{G'_{r,s}}(u')\}$, we have $W = V(G')$, a contradiction.

Now choose $e' \in V(G') \setminus W$, and let $e = \theta^{-1}(e')$. Then $e \in E(G)$, and $ecc_{G'_{r,s}}(e) = ecc_{G'_{r,s}}(e') \leq 2$ by Theorem 2.1. This implies that G has at most one nontrivial component. Let x_1, y_1 be the two end vertices of e in G. Then x_1 and y_1 are not adjacent in $G_{r,s}$, and so $\theta(x_1)$ and $\theta(y_1)$ are not adjacent in $G'_{r,s}$.

Claim 1. $N_G(x_1) \cap N_G(y_1) = \emptyset$. If $N_G(x_1) \cap N_G(y_1) \neq \emptyset$, then $G'_{r,s}$ is connected. Since $\theta(x_1)$ and $\theta(y_1)$ are two neighbors of e', and are not adjacent in $G'_{r,s}$, $N_{G'_{r,s}}(e')$ is not a clique, and thus contains a vertex of G'. Since $G'_{r,s}$ is connected, $N_{G'_{r,s}}(e') \subseteq V(G')$ by (2) of Remark 1. Moreover, since $d_{G'_{r,s}}(e') = |V(G')| - 1$, $V(G') = \{e' \cup N_{G'_{r,s}}(e')\}$. On the other hand, since $d_{G'_{r,s}}(e') = d_{G'_{r,s}}(x_1) + d_{G'_{r,s}}(y_1) = |V(G)| - 1$, we have $|N_G(x_1) \cup N_G(y_1)| = d_{G'_{r,s}}(x_1) + d_{G'_{r,s}}(y_1) = |N_G(x_1) \cap N_G(y_1)| \leq |V(G)| - 2$. Combining with the fact that G has at most one isolated vertex, there exists a vertex $z \in V(G) \setminus (N_G(x_1) \cup N_G(y_1))$ with $d_G(z) > 0$.

Since $e \in G - z - N_G(z)$, we have $\theta(z) \in V(G')$ by Remark 3. However, $\theta(z) \notin \{e' \cup N_{G'_{r,s}}(e')\} = V(G')$, a contradiction. The claim is true.

Now let $N_G(x_1) \setminus \{y_1, y_2, \ldots, y_t\}$ and $N_G(y_1) \setminus \{x_1, x_2, \ldots, x_s\}$ have two cliques of $G_{r,s}$, $(\{x_1, x_2, \ldots, x_s\})$ and $(\{y_1, y_2, \ldots, y_t\})$. Since $d_{G'_{r,s}}(e') = d_{G'_{r,s}}(e') = |V(G')| - 1$ and $|V(G)| = |V(G')|$, there is the only element z that is neither adjacent to x_1 nor y_1 in G. So $V(G) = \{x_1, x_2, \ldots, x_s, y_1, \ldots, y_t, z\}$, and $N_{G_{r,s}}(e') = \{x_1, x_2, \ldots, x_s, y_1, \ldots, y_t\}$ and $\omega(G_{r,s}) = 2$.

Note that $\{\theta(x_1), \theta(y_1)\} \cap V(G') \neq \emptyset$. If $\theta(x_1), \theta(y_1) \in E(G')$, $\theta(x_1)$ and $\theta(y_1)$ must be adjacent in $G'_{r,s}$ by (3) of Remark 1, a contradiction. So, we consider two cases.

Case 1. $\theta(x_1), \theta(y_1) \subseteq V(G')$. Since $\{x_1, x_2, \ldots, x_s\}$ and $\{y_1, y_2, \ldots, y_t\}$ are two cliques of $G_{r,s}$, $(\theta(x_1), \theta(x_2), \ldots, \theta(x_s), \theta(y_1), \theta(y_2), \ldots, \theta(y_t))$ are also two cliques of $G'_{r,s}$. If follows from $e' \in V(G')$, $\{\theta(x_1), \theta(y_1)\} \subseteq V(G')$, and (2) of Remark 1 that $V(G') = \{e' \cup \{\theta(x_1), \theta(x_2), \ldots, \theta(x_s), \theta(y_1), \theta(y_2), \ldots, \theta(y_t)\}\}$. So $\overline{G'} \cong G_{r,s} \bigcup N_{G_{r,s}}(e') \cong (K_s + K_t) \cup K_1$, i.e., $G' \cong K_{s,t} + K_1$. Next we show $G \cong K_{s,t} + K_1$. Since $\theta(z) \in E(G')$ and $G' \cong K_{s,t} + K_1$, we have $G_{r,s} \cong G_{r,s} \bigcup N_{G_{r,s}}(z) \cong (K_s + K_t) \cup K_1$. Since $G = G_{r,s}$, $G' = G_{r,s}$, and $G_{r,s}$ has an edge e, and is not empty, by Remark 3, z must be an isolated vertex of G. Therefore $V(G) = \{z\} \cup N_{G_{r,s}}(z)$ and $\overline{G} \cong (K_s + K_t) \cup K_1$. So $G \cong K_{s,t} + K_1 \cong G'$.

Case 2. One of $\theta(x_1)$ and $\theta(y_1)$ is in $V(G')$ and the other is in $E(G')$. Without loss of generality, assume $\theta(y_1) \in V(G')$ and $\theta(x_1) \in E(G')$. By (2) of Remark 1, $\theta(x_2y_1), \ldots, \theta(x_sv_1) \in V(G')$ and $\theta(x_1y_2), \ldots, \theta(x_1y_t) \in E(G')$. By the similar argument as in the proof of Claim 1, we have $N_G(x_1) \cap N_G(y_1) = \emptyset$ for $i = 2, \ldots, s$. Combining with $N_G(y_1) = \{x_1, x_2, \ldots, x_s\}$, it follows that

\[
\{x_1, x_2, \ldots, x_s\} \text{ is an independent set of } G.
\]

Since $\theta(x_iy_1) \in V(G')$, we have $d_G(x_i) = t$ for $i = 2, \ldots, s$. Indeed, we can see that $N_G(x_i) = \{y_1, y_2, \ldots, y_s\}$ for each $i = 1, 2, \ldots, s$. (***)
For otherwise, there exists an \(x_i \) with \(i \geq 2 \) adjacent to \(z \) in \(G \). Then \(G - x_1 - N_G(x_1) \) is not empty (since \(x_1z \in E(G) \)). By Remark 3, \(\theta(x_1) \in V(G') \), which contradicts to the assumption \(\theta(x_1) \in E(G') \). We consider two subcases.

Subcase 2.1. \(d_G(z) > 0 \).

By the discussions above, \(N_G(z) \subseteq \{ y_2, \ldots, y_l \} \). Let \(d_G(z) = t - k \), where \(k \geq 1 \). Without loss of generality, assume that \(N_G(z) = \{ y_k+1, \ldots, y_l \} \). Then \(N_{G'}(z) = \{ x_1, \ldots, x_s, y_1, \ldots, y_k, z, y_{k+1}, \ldots, y_l \} \), and by Remark 3, \(\theta(z) \in V(G') \). By \(\theta(x_1) \in E(G') \) and Remark 1, we have \(V(G') = \{ e', \theta(x_2y_1), \ldots, \theta(x_sy_1) \} \cup \{ \theta(y_1), \ldots, \theta(y_k) \} \cup \{ \theta(zy_k+1), \ldots, \theta(zy_l), \theta(z) \} \). One can see that \(\{ y_k+1, \ldots, y_l \} \) is also an independent set of \(G \). Otherwise, let \(y_l \in E(G) \) for some \(l, m \in \{ k+1, \ldots, t \} \). Since \(\theta(zy_l), \theta(zy_m) \in V(G') \), by Remark 1, \(\theta(y_l) \in V(G') \), a contradiction. Now we give a bijection \(\sigma : V(G) \leftrightarrow V(G') \), defined by \(\sigma(x_i) = \theta(x_iy_1) \) for \(i = 1, \ldots, s \), \(\sigma(z) = \theta(y_1), \sigma(y_1) = \theta(z), \sigma(y_i) = \theta(y_i) \) for \(i = 2, \ldots, k \), and \(\sigma(y_j) = \theta(zy_j) \) for \(j = k+1, \ldots, t \). Then it is easy to check that \(\sigma \) is an isomorphism from \(
abla G \) to \(
abla G' \), and so \(G \cong G' \).

Subcase 2.2. \(d_G(z) = 0 \).

Then \(N_{G'}(z) = \{ x_1, x_2, \ldots, x_s \} \cup \{ y_1, y_2, \ldots, y_k \} \), and so \(N_{G'}(z) = \{ \theta(x_1), \theta(x_2), \ldots, \theta(x_s) \} \cup \{ \theta(y_1), \theta(y_2), \ldots, \theta(y_k) \} \). By \((\ast) \) and \((\ast\ast) \), \(G'^{++} = \{ \theta(x_1), \theta(x_2), \ldots, \theta(x_s) \} \) is a component of \(G'^{++} \). Hence \(\theta(x_i) \in E(G') \) for each \(i \), by \(\theta(x_1) \in E(G') \) and Remark 1. Since \(e' \in V(G) \), if \(\theta(z) \in V(G') \), then by \((2) \) of Remark 1, \(\theta(y_1), \ldots, \theta(y_k) \in V(G') \). Thus \(V(G') = \{ \theta(z), \theta(y_1), \theta(y_2), \ldots, \theta(y_k) \} \cup \{ e', \theta(x_2y_1), \ldots, \theta(x_sy_1) \} \). We give a bijection \(\sigma : V(G) \leftrightarrow V(G') \), defined by \(\sigma(x_i) = \theta(x_iy_1) \) for \(i = 1, \ldots, s \), \(\sigma(z) = \theta(y_1), \sigma(y_1) = \theta(z) \), and \(\sigma(y_j) = \theta(zy_j) \) for \(j = 2, \ldots, t \). One can check that \(\sigma \) is an isomorphism from \(G \) to \(G' \).

Now let \(\theta(z) \in E(G') \). Then by Remark 2, \(\omega(G'^{++}) = 1 \). On the other hand, \((\ast\ast) \) implies that \(\omega(G^{++}) = 2 \), and \(\omega(G^{++}) = 2 \). Hence \(\omega(G^{++}) = 2 \), and \(\{ \theta(x_1), \theta(x_2), \ldots, \theta(x_s) \} \) and \(\{ \theta(y_1), \theta(y_2), \ldots, \theta(y_k) \} \) are two cliques of \(G^{++} \). Since \(W = \{ \theta(z) \} \cup \{ \theta(y_1), \theta(y_2), \ldots, \theta(y_k) \} \), we have \(G \cong G'^{++}[W] \cong (K_s + K_t) \cong K_{s+t} \), i.e., \(G \cong K_{s+t} + K_1 \). Next we shall see that \(G' \cong K_{s+t} + K_1 \). Since \(\theta(z) \in E(G') \), each of \(\{ \theta(x_1), \theta(x_2), \ldots, \theta(x_s) \} \) and \(\{ \theta(y_1), \theta(y_2), \ldots, \theta(y_k) \} \) contains a vertex of \(G' \), respectively. By our assumption \(\theta(y_1) \in V(G') \), and so assume \(\theta(x_1) \in V(G') \) without loss of generality. Since \(N_{G^{++}}(\theta(x_1)) = \{ \theta(x_1), \theta(x_2), \ldots, \theta(x_s), \theta(z) \} \cup \{ \theta(y_1), \theta(y_2), \ldots, \theta(x_1y_1) \} \) and \(\theta(x_1) \in E(G') \), we have \(\theta(x_1y_1), \theta(x_2y_2), \ldots, \theta(x_sy_s) \in V(G') \), and so \(V(G') = \{ \theta(x_1y_1), \ldots, \theta(x_sy_s) \} \cup \{ \theta(y_1), e', \theta(x_2y_1), \ldots, \theta(x_{s-1}y_{s-1}) \} \cup \{ \theta(x_s), \theta(x_sy_s) \} \). Hence, \(G' \cong K_{s+t} + K_1 \), and \(G \cong G' \).

Thus, \(G \cong G' \) in any case. This completes the proof. \(\square \)

Theorem 3.4. Let \(G \) and \(G' \) be two graphs. Then \(G^{++} \cong G'^{++} \) if and only if \(G \cong G' \).

Proof. Since \(G^{++} = G^{++} \) for any graph \(G \), \(G^{++} \cong G^{++} \) if and only if \(G^{++} \cong G^{++} \). So the result is immediate from Theorem 3.3. \(\square \)

Since \(G^{++} \) and \(G^{++} \) are also complementary for a graph \(G \), and by the theorem of Behzad and Radjavi in [2], we have \(G^{++} \cong H^{++} \) if and only if \(G \cong H \). In view of these results, we believe that
Conjecture A. For two graphs G and G', $G^{++-} \cong G'^{++-}$ if and only if $G \cong G'$.

Conjecture B. For two graphs G and G', $G^{+-+} \cong G'^{-+-}$ if and only if $G \cong G'$.

4. For further research

Note that for a graph G, its total graph G^{+++} is connected if and only if G is connected. Wu and Meng [7] proved that if $xyz \neq +++$, G^{xyz} is always connected for every graph G (even G may not be connected) except for a few cases, and the diameter of G^{xyz} does not exceed 3 or 4. It is also interesting to investigate various kinds of properties of G^{xyz}. Vizing, independently Behzad, conjectured that $\chi(G^{+++}) \leq \Delta(G) + 2$ for any simple graph G. It is known as the total graph conjecture, and is still open, see [5] for its history and development. Fleischner and Hobbs [4] showed that G^{+++} is hamiltonian if and only if G contains an EPS-subgraph. So, the investigation of the chromatic number and the existence for a Hamilton cycle of G^{xyz} is of special interest.

Acknowledgments

The authors would like to thank the referees for their valuable suggestions and comments.

References