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Background: Patients with pollen allergies are frequently
polysensitized. Pollens contain epitopes that are conserved
across multiple species.
Objective: We sought to demonstrate that cross-reactive T cells
that recognize conserved epitopes show higher levels of
expansion than T cells recognizing monospecific epitopes
because of more frequent stimulation.
Method: RNAwas sequenced from 9 pollens, and the reads were
assembled de novo into more than 50,000 transcripts. T-cell
epitopes from timothy grass (Phleum pratense) were examined
for conservation in these transcripts, and this was correlated to
their ability to induce T-cell responses. T cells were expanded
in vitro with P pratense–derived peptides and tested for cross-
reactivity to pollen extracts in ELISpot assays.
Results: We found that antigenic proteins are more conserved
than nonimmunogenic proteins in P pratense pollen.
Additionally, P pratense epitopes that were highly conserved
across pollens elicited more T-cell responses in donors with
grass allergy than less conserved epitopes. Moreover,
conservation of a P pratense peptide at the transcriptomic level
correlated with the ability of that peptide to trigger T cells that
were cross-reactive with other non–P pratense pollen extracts.
Conclusion: We found a correlation between conservation of
peptides in plant pollens and their T-cell immunogenicity within
P pratense, as well as their ability to induce cross-reactive T-cell
From athe La Jolla Institute for Allergy and Immunology; bthe Department of Molecular

Biology, University of Salzburg; and cthe Laboratory of Cellular Immunology and
dCenter of Medical Immunology, Institute for Research in Biomedicine, University

of Italian Switzerland, Bellinzona.

Supported in part by federal funds from the National Institutes of Allergy and Infectious

Diseases (grant no. U19AI100275) and the European Research Council (grant no.

323183 PREDICT) in addition to funds from ALK-Abell�o A/S (Hørsholm, Denmark).

The Institute for Research in Biomedicine and the Center of Medical Immunology are

supported by the Helmut Horten Foundation.

Disclosure of potential conflict of interest: L. Westernberg has received travel support

fromALK-Abell�o. A. Sette and B. Peters have received grants from the NIH andALK-

Abell�o, have consultant arrangements with ALK-Abell�o, and have a patent in

collaboration with ALK-Abell�o. S. Natali and F. Sallusto have received grants from

the European Research Council. H. Hofer is an employee of the University of

Salzburg. M. Wallner is employed by the University of Salzburg and has received

grants from the University of Salzburg, the Austrian Science Fund (FWF), and the

Austrian Federal Ministry of Science, Research, and Economy (BMWFW). The rest of

the authors declare that they have no relevant conflicts of interest.

Received for publication February 14, 2015; revised November 2, 2015; accepted for

publication November 18, 2015.

Available online February 13, 2016.

Corresponding author: Bjoern Peters, PhD, Division of Vaccine Discovery, La Jolla

Institute for Allergy & Immunology, La Jolla, CA 92037. E-mail: bpeters@liai.org.

The CrossMark symbol notifies online readers when updates have been made to the

article such as errata or minor corrections

0091-6749

� 2016 The Authors. Published by Elsevier Inc. on behalf of the American Academy

of Allergy, Asthma & Immunology. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.jaci.2015.11.034
responses. T cells recognizing conserved epitopes might be more
prominent because they can be stimulated by a broader range of
pollens and thereby drive polysensitization in allergic donors.
We propose that conserved peptides could potentially be used in
diagnostic or immunomodulatory approaches that address the
issue of polysensitization and target multiple pollen allergies. (J
Allergy Clin Immunol 2016;138:571-8.)

Key words: T cell, epitope, timothy grass allergy, pollen allergy,
cross-reactivity, RNA sequencing, sequence conservation,
transcriptome

Patients with pollen allergies are often polysensitized, as
evidenced by positive RAST and/or skin prick test results to
multiple pollen allergens. The relatively low frequency of
monosensitizations can be explained by the presence of
cross-reactive IgE epitopes conserved across multiple pollens,
which result in immune reactivity to homologous regions in
allergens to which the patient was not originally sensitized.1 In
the context of immunotherapy, the high degree of polysensitization
in subjects suggests that a single allergen administered in therapeu-
tic mode could be sufficient to induce tolerance. In fact, several
investigators have suggested that immunotherapy with a single
grass species, such as Phleum pratense, is sufficient to also treat
allergies to other grass pollens caused by observed cross-
reactivity at the IgE level.2,3 On the other hand, it is firmly
established that allergen-specific T cells play an important role in
allergic inflammation4 and that induction of antigen-specific regu-
latoryT cells5 or elimination of allergen-specificTH2 cellsmight be
a prerequisite for the induction of specific tolerance.6 Yet evalua-
tion of cross-reactivity at the T-cell level has been less documented.

A recent study using tetramer costaining of 6 different
MHC-epitope complexes found limited cross-reactivity of these
epitopes with homologs in other Pooidea grasses and concluded
that multiple grass pollen species immunotherapy is likely to be
more beneficial than single-species immunotherapy.7 Although
that study was limited to epitopes from 2 major allergens (Phl p
1 and 5), we have recently shown that a large fraction of
P pratense–specific T cells target epitopes contained in timothy
grass T-cell antigens (TGTAs) unrelated to the known P pratense
allergens that are also major targets of T-cell responses but were
initially identified based on their high IgE reactivity.8 On the basis
of these data, we reasoned that a broader evaluation of T-cell
cross-reactivity including more epitopes and also those from
TGTAs would be of interest, particularly because clinical studies
have shown a good degree of success for single-species immuno-
therapy9,10 contrary to what might be expected based on the data
presented in the tetramer costaining study for a selected set of epi-
topes. To gain a comprehensive picture of conservation between
different grass, weed, and tree pollens, we sequenced the
571

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:bpeters@liai.org
http://dx.doi.org/10.1016/j.jaci.2015.11.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaci.2015.11.034&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


J ALLERGY CLIN IMMUNOL

AUGUST 2016

572 WESTERNBERG ET AL
Abbreviations used
IUIS: In
ternational Union of Immunological Societies
SIT: S
pecific immunotherapy
TGTA: T
imothy grass T-cell antigen
transcriptome of 9 allergenic pollen species and determined how
the conservation between P pratense T-cell epitopes and other
pollen transcriptomes related to their immunogenicity and their
ability to elicit cross-reactive T-cell immune responses.
METHODS

Patient population
Study participants were recruited, as previously described.11We drew from

a cohort of 55 patients between the ages of 19 and 62 years, and 28 of our pa-

tients were female. We only included participants with timothy grass allergy

who had skin reactions with wheals of 5 mm or greater in diameter after

skin prick testing or P pratense–specific IgE levels of 0.35 kU/L or greater,

as determined by RAST, and had a history of seasonal grass pollen allergy

symptoms. We did not control for other allergies, and many patients were

polysensitized. We included patient samples collected both in and out of the

season. Further details about the age, sex, and allergy status of the patients

used in our studies can be found in Table E1 in this article’s Online Repository

at www.jacionline.org. Patients’ PBMCs used in T cell cross-reactivity studies

were further prescreened based on their reactivity to P pratense peptides after

timothy grass culture.
RNA sequencing and de novo transcriptome

assembly
Total RNA of the pollen extract was isolated, as previously described.12

RNAwas sequenced on a HiSeq 2500 Sequencer (Illumina, Sn Diego, Calif).

Replicate samples were run across all lanes of the sequencer to generate paired

reads of 100 bp in each direction. Before assembly, several preprocessing

steps were performed: (1) reads not passing Illumina filters were discarded,

(2) portions of reads matching adapter/primer sequences were trimmed,

(3) 39 regions of reads following a low-quality score (Q < 20) were discarded,

and (4) remaining reads of less than 30 bp in length were discarded. These

preprocessing steps were performed with a combination of FASTX-toolkit

(0.0.13.2)13 and cutadapt (1.3).14 High-quality reads were assembled into

transcripts by using Trinity (r2012-10-05),15 specifying ‘‘–min_kmer_cov

2’’ to ensure each sequence was observed at least twice.
In vitro expansion of allergen-specific T cells from

PBMCs
PBMCs were isolated from whole blood by means of density gradient

centrifugation and cryopreserved, as previously described.8 For in vitro

expansion, cells were thawed and cultured with RPMI 1640 (Omega

Scientific, Tarzana, Calif) supplemented with 5% human AB serum (Cellgro,

Manassas, Va) at a density of 23 106 cells/mL in 24-well plates (BD Biosci-

ences, San Jose, Calif) and stimulated with peptide (0.5 mg/mL). Cells were

kept at 378C in a 5% CO2 atmosphere, and additional IL-2 (10 U/mL; eBio-

science, San Diego, Calif) was added every 3 days after initial antigenic stim-

ulation. On day 14, cells were harvested and screened for cytokine production

by means of ELISpot after restimulation with peptides or pollen extracts.
ELISpot assays
Production of IL-5 from in vitro–expanded PBMCs in response to peptide

pool or extract stimulation was measured with an ELISpot, as previously

described.16 Briefly, 1 3 105 cells per well were incubated with a peptide

pool (5 mg/mL) or extract (50 mg/mL, except for oak, which was tested at
25 mg/mL). After 22 hours, cells were removed, and plates were washed

and incubatedwith 2mg/mL biotinylated anti-human IL-5 antibody (Mabtech,

Cincinnati, Ohio) at 378C. After 2 hours, plates were washed, and avidin-

peroxidase complex was added (Vector Laboratories, Burlingame, Calif) for

1 hour at room temperature. Peroxidase-conjugated spots were developed

with 3-amino-9-ethylcarvazole solution (Sigma-Aldrich, St Louis, Mo).
T-cell clones
PBMCs were labeled with carboxyfluorescein succinimidyl ester and

cultured in complete RPMI 1640 supplemented with 2 mmol/L glutamine, 1%

(vol/vol) nonessential amino acids, 1% (vol/vol) sodium pyruvate, penicillin

(50 U/mL), streptomycin (50 mg/mL), and 5% human serum (Swiss Red

Cross, Bern, Switzerland) at a density of 2 3 106 cells/mL in 24-well plates.

Cells were stimulated with pools of peptides (0.5 mg/mL per peptide), and

rIL-2 (10 U/mL) was added on day 3 after initial antigenic stimulation. At

day 11, cells were stained with Pacific blue–labeled anti–inducible

costimulator mAb (C398.4A; BioLegend, San Diego, Calif) and BV785-

labeled anti-CD25 mAb (BC96; BioLegend). carboxyfluorescein

succinimidyl ester–low, inducible costimulator–positive, CD251 cells were

sorted and cloned by means of limiting dilution, as previously described.17

T-cell clones were screened at day 20 after initial stimulation by

culturing 3 3 104 T cells/well with autologous irradiated (95 Gy) EBV-

transformed B cells (2 3 104) in the absence or presence of allergen extracts

(50 mg/mL) or peptides (0.5 mg/mL). Mycobacterium tubercolosis lysate

(5 mg/mL) was used as a negative control. Proliferation was measured on

day 3 after a 16-hour pulse with tritiated thymidine (GE Healthcare, Fairfield,

Conn).
RESULTS

Determining sequence conservation among a

diverse selection of pollen species
To address the potential effect of sequence conservation and

T-cell cross-reactivity on allergic responses, we selected 9 pollen
species that represent the 3 major groups of pollen allergens
(grasses, weeds, and trees). Specifically, we included 4 grasses
(sweet vernal [Anthoxanthum odoratum], rye [Lolium perenne],
Kentucky blue [Poa pratensis], and Bermuda [Cynodon dacty-
lon]), 3 trees (ash [Fraxinus excelsior], olive [Olea europaea],
and oak [Quercus alba]), and 2 weeds (western ragweed [Ambro-
sia psilostachya] and English plantain [Plantago lanceolata]).
Because no pollen transcriptomic data were available for any of
these, we isolated and sequenced pollen RNA and assembled
the reads de novo into transcripts, resulting in more than 50,000
transcripts for each pollen. Table E2 in this article’s Online
Repository at www.jacionline.org provides an overview of the
read counts and assembly statistics.

As a quality control, for each pollen transcriptome, we
examined whether the known IgE-reactive allergens listed by
the International Union of Immunological Societies (IUIS) were
reidentified in our analysis. A total of 26 allergens are listed by
IUIS (minimum length, 50 residues), covering all pollen species
we sequenced (except for sweet vernal grass). For 23 of these
allergens, we identified transcripts that had more than 90%
sequence identity for more than 50% of the length of previously
described allergens (Table I). For 2 of the 3 remaining allergens
(Poa p 5 and Que a 1), isoforms of the IUIS allergens that met
these criteria were listed in Allergome.18 Thus our transcriptomic
analysis reidentified isoforms of all but 1 (Amb p 5) of the known
allergens from the pollen species we sequenced.

Next, wewanted to determine the degree of conservation of the
10 IgE-reactive P pratense allergens listed by the IUIS. We

http://www.jacionline.org
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TABLE I. Recovery of known allergen sequences in tran-

scriptomic analysis

Allergen

Match in

transcriptome Allergen

Match in

transcriptome

Bermuda grass Oak

Cyn d 1 Yes Que a 1 No

Cyn d 7 Yes Ash

Cyn d 12 Yes Fra e 1 Yes

Cyn d 15 Yes Olive

Cyn d 23 Yes Ole e 1 Yes

Cyn d 24 Yes Ole e 2 Yes

Rye grass Ole e 3 Yes

Lol p 1 Yes Ole e 6 Yes

Lol p 2 Yes Ole e 8 Yes

Lol p 3 Yes Ole e 9 Yes

Lol p 4 Yes Ole e 10 Yes

Lol p 5 Yes Ole e 11 Yes

Lol p 11 Yes English plantain

Kentucky blue grass Pla l 1 Yes

Poa p 1 Yes Western ragweed

Poa p 5 No Amb p 5 No

All allergens from the 9 pollen species we sequenced for which there was a greater than

50-amino-acid residue protein sequence available from IUIS are listed. The ‘‘Match in

transcriptome’’ column is set to yes if there was a match with greater than 90% sequence

identity over more than 50% of the protein sequence. No sequences of sufficient length

were available in IUIS for sweet vernal grass (Anthoxanthum odoratum).
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assessed the conservation of 15-mer peptides within each protein
because this constitutes the typical length of an MHC class
II–restricted T-cell epitope. Peptides were considered conserved
if a transcript encoding a homolog with 2 or fewer residue mis-
matches was found. Fig 1, A, plots the percentage of peptides
conserved in all the grasses we sequenced (pangrass) or even in
all pollens (panpollen) for each of the IUIS allergens. A broad
spectrum of conservation was detected. Less than 20% of the
Phl p 2–, 4–, 5–, and 6–derived peptides were conserved across
grasses. By contrast, Phl p 7, 11, and 12 peptides were highly
homologous, with more than 60% of the peptides conserved
across all grasses. Phl p 1, 3, and 13 exhibited intermediate con-
servation, with 30%, 34%, and 58% of their peptides conserved in
pangrasses, respectively. A similarly broad range of conservation
was observed for panpollens, with Phl p 11 and 12 showing
greater than 60% conservation.
Sequence conservation contributes to

immunogenicity
To test the hypothesis that the level of conservation of a protein

across pollens can contribute to its immunogenicity, we examined
proteins distinct from IUIS allergens that were recently identified
in a transcriptomic and proteomic characterization of P pratense
pollen. We assembled 2 sets of proteins. The first set contained 13
TGTAs (ie, all P pratense proteins distinct from the IUIS aller-
gens for which we have detected T-cell responses in >_20% of
allergic patients in our original screen).8 The second set of pro-
teins consisted of 14 unreactive proteins identified in the same
transcriptomic and proteomic analysis as the TGTAs but for
which no T-cell or antibody responses were detected in any
allergic donor. Fig E1 in this article’s Online Repository at
www.jacionline.org shows a breakdown of conservation for
each of the proteins in the unreactive protein and TGTA protein
sets analogous to Fig 1, A. These data were further condensed
in Fig 1, B andC, which compare the pangrass and panpollen con-
servation of these protein sets to the IUIS IgE allergens. In both
the pangrass and panpollen comparisons, the unreactive proteins
showed the lowest degree of conservation. The median pangrass
conservation of peptides from unreactive proteins was 11%
compared with 32% for the IUIS allergens and 65% for the
TGTAs. For the panpollen conservation, the medians were 0%,
23%, and 29% for unreactive proteins, IUIS allergens, and
TGTAs, respectively. These differences were significant
(P < .05, 1-tailed Mann-Whitney test) for both comparisons of
unreactive proteins versus TGTAs and for the panpollen
conservation comparison of unreactive proteins versus IUIS
allergens. The pangrass conservation comparison of unreactive
proteins versus IUIS allergens showed the same trend but was
less than the significance threshold (P 5 .087).

In conclusion, the data presented in Fig 1 demonstrate that pol-
len proteins recognized by immune cells of allergic donors, either
at the T-cell or IgE level, are more conserved compared with other
pollen proteins and that this trend is more pronounced for T-cell
allergens. This suggests that sequence conservation might be of
particular relevance in the context of T-cell immunogenicity.

To determine whether conservation of the individual peptides
correlates with the immunogenicity of a peptide, we studied
previously generated IL-5 responses in donors with P pratense al-
lergy. Originally, we tested 648 overlapping peptides from IUIS P
pratense allergens16 in 25 allergic donors. For 85 donor-peptide
pairs (patients used are designated IUIS in Table E1), a significant
IL-5 response was detected. Thus the likelihood of an individual
peptide to be immunogenic in an individual donor was as follows:

85/(25 * 648) 5 0.5%.

In our follow-up study testing additional P pratense proteins
based on transcriptomic and proteomic analysis, we screened
822 peptides for immune recognition in 20 donors (referred to
as TGTA in Table E1) and identified 375 donor-peptide hits,8 cor-
responding to a 2.3% likelihood for an individual peptide to be
immunogenic in an individual donor. Given that the peptides
in the second study were preselected based on predicted
HLA-binding affinities, a higher hit rate was expected.

Next, we separated peptides into different sets based on the
number of pollens in which they were conserved. For each set, we
calculated the average frequency with which an individual
peptide was immunogenic in an individual donor and normalized
these values to an average of 1.0 within each study to make them
comparable (Fig 2). Indeed, peptides from both the IUIS allergens
and the TGTAs were more frequently immunogenic if they were
more conserved. Peptides that were found to be conserved in only
1, 2, or 3 pollens were 49% less likely to be immunogenic than
average, whereas peptides conserved in 8, 9, or 10 pollens were
47% more likely to be immunogenic than average. This
correlation is highly significant (r2 5 0.796, P 5 .00056). Thus
conservation of a P pratense peptide across multiple pollens is
correlated with an increased likelihood of the peptide being
recognized by T cells in subjects with P pratense allergy.

Sequence conservation predicts allergic T-cell

responses
We hypothesized that the more frequent recognition of

conserved peptides might be a result of selective expansion of
cross-reactive T cells by repeated stimulation with various
allergen sources. Cross-reactive T cells that recognize epitopes

http://www.jacionline.org


FIG 1. Conservation of timothy grass proteins across other pollens. A, Six

hundred forty-eight peptides from IgE-reactive P pratense allergens listed

by IUIS were examined for their conservation in other pollen species.

A peptides was considered conserved in another pollen if its transcriptome

encoded the peptide or a variant with up to 2 amino acid substitutions. The

percentage of peptides conserved in all 4 additional grass transcriptomes

(pangrass) is indicated by light gray columns, and the percentage of

peptides conserved in all 10 pollens (panpollen) is indicated by dark gray
columns. Antigens are sorted based on pangrass conservation from

low to high. B and C, The pangrass (Fig 1, B) and panpollen (Fig 1, C)
conservation of IUIS allergens was then compared with that of proteins

identified in P pratense pollen based on a transcriptomic and proteomic

=
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contained in multiple pollens might be stimulated more
frequently than those recognizing epitopes exclusively found in
a single source, which could result in dominance of the allergic
response to conserved epitopes. To test this hypothesis, we
expanded PBMCs from 19 P pratense–reactive donors with
individual epitopes derived from TGTA or IUIS allergens (these
patients are designated as CR in Table E1, and the sequence of
the peptides used is described in Table E3 in this article’s Online
Repository at www.jacionline.org). After 14 days, IL-5 and IFN-g
release was measured to the epitope itself, P pratense extract, and
extracts from other pollen. T cells from subjects with P pratense
allergy released much more IL-5 than IFN-g (see Fig E2 in this
article’s Online Repository at www.jacionline.org). Responses
to extracts and peptide pools were expressed as the relative
fraction epitope response to account for variation between
patients (Fig 3, A). When we correlated cross-reactive responses
to different extracts with transcriptomic conservation of the
epitope in those extracts, a clear hierarchy was observed.
Non–P pratense extracts in which the P pratense epitope is
completely conserved (0 mismatches) showed the highest
response, followed by non–P pratense extracts with 1 to 2
mismatches, and the lowest responses were observed for non–P
pratense extracts with 3 or more mismatches. The exact same
hierarchy was observed when analyzing peptides from IUIS
allergens and TGTA peptides separately (see Fig E3 in this arti-
cle’s Online Repository at www.jacionline.org). Thus P pratense
epitopes found to be conserved in other pollen transcriptomes
were indeed more likely to induce T-cell responses that could
cross-recognize different pollen species.

To examine how our results with polyclonal T-cell cultures
were reflected on a single-cell level, we generated T-cell clones
from PBMCs of patients with P pratense allergy (see theMethods
section). Clones were in vitro expanded with the respective
peptide used for T-cell clone generation (Fig 3) and then
restimulated with the relevant peptide, an irrelevant control
peptide, and extracts, as previously described.17 In Fig 4, A, we
show the mean spot-forming cells/million for the polyclonal
T-cell line generated by culturing PBMCs with peptide P5. In
Fig 4, B-E, we show clones generated by using the same peptide
with the same patients’ PBMCs. Additional clones with another
peptide (P7) are shown in Fig E4 in this article’s Online
Repository at www.jacionline.org. Several of the T-cell clones
generated were cross-reactive (Fig 4, B and C) but with different
cross-reactivity patterns.We also found somemonospecific T-cell
clones that reacted only with P pratense or only with birch pollen
(Fig 4, D). The overall cross-reactivity pattern of clones for
peptides P5 and P7 are summarized in Table II and compared
with T-cell culture cross-reactivity. We find that the diverse
specificity of the clones, when averaged, starts to mimic the
reactivity pattern of the T-cell culture, with all strongly cross-
reactive extracts (>30% in the T-cell culture) being represented
with cross-reactivity also at the clonal level. These data suggest
that the cross-reactivity pattern observed at the polyclonal level
analysis. Medians and quantile ranges are indicated by boxes and error
bars. P pratense pollen proteins that were not recognized by either T-cell

or B-cell responses were less conserved than both IUIS allergens and

TGTAs. Asterisks indicate statistically significant differences: P < .05,

1-tailed Mann-Whitney test.
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FIG 2. Peptide conservation correlates with immunogenicity. Panels of

peptides from timothy grass proteins were previously tested for the ability

to induce IL-5 responses in PBMCs from allergic patients after in vitro
culture with timothy grass extract in 2 separate cohorts. Peptides from

each study were separated into sets based on the number of pollen species

in which they were conserved (x-axis). For each set, the average frequency

of T-cell responses was calculated and normalized to 1.0 for each study

(y-axis). Data for peptides derived from IUIS allergens are shown as blue
diamonds, whereas peptides derived from TGTA antigens are shown as

red boxes, and averages of the 2 are shown as black circles. The line depicts

a linear correlation for the averaged data, which is highly significant with an

r2 value of 0.796.
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FIG 3. Conservation in the transcriptome predicts peptide cross-reactivity.

For each peptide, donors with P pratense allergy were selected who reacted

to the peptide after expanding PBMCs in vitro with P pratense extract.

PBMCs were stimulated with individual peptides for 14 days, and IL-5

responses were measured by using an ELISpot to (1) the peptide itself,

(2) P pratense extract, (3) the 9 other extracts for which the transciptomes

were sequenced, and (4) peptide pools that did or did not contain the pep-

tide as relevant and irrelevant controls. T-cell cultures that did not induce a

robust response of greater than 200 spot-forming cells/million to the pep-
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is the result of a heterogeneous population of clones with varying
cross-reactivity patterns.
tide itself were excluded (30% of cultures). Reponses to extracts and pep-

tide pools are expressed as the relative fraction of the response to the

peptide itself and capped at 100%. Each gray bar represents the average

response 6 SEM. Asterisks indicate P values of statistical significance, as

indicated on the right according to 1-tailed Mann-Whitney tests.
DISCUSSION
The present study has generated the largest panel of pollen

transcriptomes to date to perform an unbiased analysis of the
effect of sequence conservation on shaping allergen-specific
T-cell responses. We show that within and beyond the dominant
IgE allergens, there is a substantial fraction of peptides and
antigens that are highly conserved across pollens and that this
conservation is positively correlated with their likelihood to elicit
an immune response. Notably, we could predict the likelihood of
P pratense peptides to induce a cross-reactive T-cell immune
response to other pollens based on their degree of sequence
conservation in other pollens.

On the basis of these observations, we hypothesize that cross-
reactions at the level of T-cell responses might play a key role in
polysensitization to different allergens. Specifically, as outlined in
the model presented in Fig 5, we hypothesize that cross-reactive
T cells elicited by allergen exposure will (1) be boosted and selec-
tively expanded by exposure to additional allergens containing
the conserved epitope and (2) generate help for any B cell specific
for an allergen cross-reactive at the T-cell level through a classic
antigen bridge–linked T-cell/B-cell help mechanism, regardless
of whether the IgE response is cross-reactive.

The specific pattern of the cross-reactive responses and our data
in T-cell clones suggest that this is an MHC/T-cell–dependent
response and not a bystander effect. Benjaponpitak et al19

observed a general increase in IL-4 cytokine production in
response to a control allergen and tetanus toxoid during the
escalation phase of an immunotherapy regimen. They describe
this increase as evidence for a TH2 bystander effect. If the effects
in our culturewere similarly nonspecific, wewould have observed
an increased cytokine release to all extracts tested in our culture
and tested to the negative control pool. Instead, we observed a
pattern that shows a preferential increase in response to extracts
that contain conserved sequences. Additionally, our T-cell clone
data show that cells derived from one clone can produce cytokines
when stimulated with several extracts pointing more toward true
cross-reactivity rather than a bystander effect. However, we
observed some low-level cross-reactivity against C dactylon
and F excelsior in the T-cell cultures with peptide 7 that were
not recapitulated on the clonal level. Therefore we cannot
completely exclude that some of the reactivity we observed in
our culture system was due to bystander activation.

Allergic cross-reactive responses are relevant in a variety of
clinical settings extending beyond pollen and grass allergies.
Patients sensitized to shrimp, for example, are very likely to also
have positive skin prick test responses to other crustaceans and
even other bivalves.20 Patients with oral allergy syndrome
become sensitized to pollen proteins through inhalation and
then experience an IgE-mediated allergic reaction against food
antigens that are similar in structure.21 Cross-reactivity of IgE
antibodies is determined by means of structural homology of
the epitope,22 and the presence of cross-reactive IgE antibodies
is typically reflective of clinical cross-sensitization.23 The results



FIG 4. T-cell clone cross-reactivity. Donor 1583was cultured with peptide P5 and then restimulated with that

same (relevant) peptide, an irrelevant peptide control, and peptides from the 4 grasses (green), 4 trees

(blue), and 2 weeds (red).A, ELISpot data from the P5 cultured cell line. B-E, Proliferation of 4 representative

T-cell clones derived from the same patient. SI was calculated by dividing cpm of antigen stimulated wells

with cpm of unstimulated wells. Conditions with SI>2 were considered positive (*).

TABLE II. Comparison of T-cell clonal data with data from

T-cell cultures

Peptide 5 Peptide 7

Clone T-cell culture Clone T-cell culture

Peptide 100% 100% 100% 100%

Irr 0% 8% 0% 22%

Phleum pratense 64% 88% 33% 30%

Lolium perenne 18% 85% 100% 62%

Poa pratensis 55% 91% 100% 45%

Cynodon dactylon 45% 14% 0% 16%

Fraxinus excelsior 0% 12% 0% 27%

Quercus alba 0% 0% 0% 0%

Betula verrucosa 9% 3% 0% 3%

Olea europaea 0% 27% 0% 3%

Ambrosia psilostachya 0% 2% 0% 5%

Plantago lanceolata 0% 13% 0% 13%

Reactivity from 11 clones for peptide 5 and 3 clones from peptide 7 was averaged and

compared with the percentage of cross-reactivity generated by using T-cell culture

methods.

Irr, Irrelevant control peptide.
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of our present study suggest that allergen cross-reactivity at the
T-cell level should also be explored in these settings.
In a more general context, the data we present here highlight
how the interactions between the immune system and its
environment are highly complex and do not fit a simple paradigm
in which exposure to a single species of allergen elicits a species-
specific response. Rather, our data suggest that T-cell responses
are shaped by repeated exposure to related species that carry
conserved and cross-reactive linear sequences. This phenomenon
is not unique to allergies, and in this respect it is noteworthy that a
recent study that examined the level of sequence conservation
associated with T-cell cross-reactivity in different Dengue viral
strains also derived a maximum of 2 substitutions as a threshold
beyond which little or no cross-reactivity was observed.24

Furthermore, we have recently shown that interspecies conserva-
tion plays a key role in shaping the repertoire of human T-cell
responses to epitopes conserved in different herpes viruses,
such as CMV and EBV,25 and in different species of the
Mycobacterium genus.26

It must be stressed that the observed correlation between the
transcriptomic conservation of epitopes and the observed cross-
reactivity is a statistical phenomenon not deterministically pre-
dictive for an isolated sequence. T-cell lines expanded with
individual P pratense peptides that are completely conserved in
the transcriptomes of other pollens nevertheless sometimes



FIG 5. Schematic representation of allergen cross-reactive versus monospecific T-cell epitope recognition.

Allergens 1 and 2 contain a conserved T-cell epitope. Therefore cross-reactive T cells that respond to this

epitope will be primed more frequently (cross-reactive T-cell in red, top) than T cells that are specific for an

epitope unique to a single allergen (allergen monospecific T cell in blue, bottom). Consequently, cross-

reactive T cells can provide T-cell help to B cells that are specific to different allergens and promote antibody

production/isotype switching to IgE. Importantly, both B cells that produce cross-reactive IgE and B cells

that produce monospecific IgE can receive help from cross-reactive T cells as long as they process and

present a conserved T-cell epitope. APC, Antigen-presenting cells.
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show no reactivity to those pollen extracts, whereas other peptides
with many substitutions elicit high responses. This is expected
because factors other than the peptide sequence itself, notably
abundance of the antigen in which it is embedded, can influence
reactivity levels. Also, some substitutions are more likely to
disrupt cross-reactivity than others, in particular nonconservative
substitutions and those that target anchor residues for MHC bind-
ing and key residues for T-cell recognition. Althoughwe can show
a high polarization toward IL-5–secreting T cells in allergic sub-
jects, we have not shown that cross-reactivity can be observed
with other TH2 cytokines. However, we chose IL-5 because
Schulten et al8 previously showed that it is representative of mul-
tiple TH2 cytokines after extract and peptide pool stimulation.

Additional limitations to our study must be pointed out. First,
donor samples were collected both in and out of the allergy
season, and the study was not designed or powered to distinguish
whether the exposure pattern at the time of sample collection
could further affect the reactivity pattern. Future studies will have
to test this potential effect of seasonality.

Second, it is possible that some of the cross-reactivity observed
is due to bystander activation. Given that the cross-reactivity
pattern we observed at the clonal level mimicked that of the
polyclonal T-cell cultures, we do not think that bystander
activation is a major effect in our system, but its contribution
cannot be ruled out.
The fact that there are large numbers of peptides in P pratense
that are conserved across pollens and are capable of inducing
cross-reactive T-cell responses suggests that there is potential to
design cocktails of peptides and antigens that could serve as diag-
nostic or immunotherapeutic reagents to simultaneously target
multiple pollen allergens. It has previously been shown that
immunotherapy with P pratense extract can induce cross-
reactive responses to pollen extracts from other grass species.2,3

Our work shows that different T-cell epitopes have different
potential for eliciting cross-reactive responses and that this
potential is predictable based on sequence conservation of the
peptides between different pollens. Thus it should be possible
to develop cocktails of peptides that specifically elicit
cross-reactive immune responses, which could be used for
pangrass or even panpollen immunotherapy. Importantly, it is
not necessary that these are the same peptides that elicit TH2
responses in allergic patients, but it is also conceivable to develop
specific immunotherapy (SIT) approaches using conserved
peptides present across pollens that elicit bystander suppression
of the allergic responses.

In terms of diagnostics, the use of extracts or recombinant
allergens that are at least partially conserved across different pollen
species means that patients for whom there is a single clinically
relevant allergen might still be classified as sensitized to multiple
pollens because of cross-reactivity in skin tests or RASTs.27,28
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It will be worth examining whether the use of T-cell epitopes
uniquely conserved in different pollen species could more clearly
delineate patient sensitization patterns. This could be useful both to
modify and improve the SIT preparations29 or to instruct patients
on what allergens to avoid.

In conclusion, we have assembled a large panel of pollen
transcriptomes and used these data to examine the interplay of
sequence conservation and T-cell cross-reactivity. Thereby we
established thresholds of sequence conservation for T-cell
epitopes that have potential immunologic relevance and found
that many epitopes exist that are highly conserved across grass,
tree, and weed pollens. Our findings have potential relevance for
the design of next-generation SIT treatments and development of
pollen species–specific allergy diagnostics.

Clinical implications: Our data suggest that conserved epitopes
that elicit highly immunogenic T cells could delineate patient
sensitization patterns, might inform the design of therapeutics
for polysensitized allergic subjects, and refine the understand-
ing of monospecific versus cross-reactive allergic responses.
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FIG E1. Conservation of peptides in different timothy grass pollen proteins. A, Conservation of the 13

TGTAs. B, Conservation of timothy grass pollen proteins that were unreactive based on both T-cell and

B-cell responses.
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FIG E2. Cytokine release by T cells after 2 weeks of peptide culture. Shown

are IFN-g and IL-5 release by T cells restimulated either with the peptide

with which they were originally cultured or restimulated with a relevant

peptide pool or an irrelevant peptide pool or timothy grass extract. Each bar
represents the average spot-forming cells/million (SFC) 6 SEM.
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FIG E3. Separate analysis of correlation between cross-reactivity and conservation for IUIS allergen

peptides and TGTA peptides. The analysis performed is the same as in Fig 3 but splits out peptides from

known IUIS allergens versus TGTA proteins. *P < .05, **P < .01, ***P < .005, and ****P < .001. n.s., Not

significant.
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FIG E4. A, Additional T-cell clones generated from the same culture (with P pratense peptide P5) as shown

in Fig 4. B, ELISpot data from the cell line (top) and proliferation from individual T-cell clones (bottom)

derived from another culture with P pratense peptide P7. SI was calculated by dividing cpm of antigen

stimulated wells with cpm of unstimulated wells. Conditions with SI>2 were considered positive (*).
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TABLE E1. Donor information

Patient ID Sex

Age

(y)

Phleum

pratense

Grasses Trees Weeds

Used in

study Season

Cynodon

dactylon

Poa

pratensis

Lolium

perenne

Anth-

oxanthum

odoratum

Fraxinus

excelsior

Betula

verrucosa

Quercus

alba

Olea

europaea

Plantago

lanceolata

Ambrosia

psilostachya

D00004 Female 25 Yes Yes Yes Yes Yes No No Yes Yes Yes No IUIS In

D00008 Male 28 Yes Yes Yes Yes Yes No No No No No Yes IUIS In

D00010 Male 50 Yes Yes Yes Yes No No No No No No No IUIS In

D00012 Female 45 Yes Yes Yes Yes Yes No No No Yes No No IUIS In

D00015 Female 40 Yes Yes Yes Yes No Yes Yes No No No Yes IUIS In

D00016 Male 54 Yes Yes Yes Yes Yes Yes Yes Yes No No No TGTA In

D00017 Female 62 Yes No No Yes No Yes No No No No No TGTA In

D00020 Female 40 Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes IUIS In

D00039 Male 31 Yes Yes Yes Yes Yes No No No No No Yes IUIS Out

D00041 Female 26 Yes No Yes Yes Yes No No No No No No IUIS Out

D00042 Male 42 Yes Yes Yes Yes Yes No No No No No No IUIS Out

D00045 Female 21 Yes No No Yes Yes No No No No No Yes IUIS Out

D00053 Female 50 Yes No Yes Yes Yes No No No No No No IUIS Out

D00056 Male 42 Yes No Yes No Yes No No No No No No IUIS Out

D00061 Female 52 Yes No Yes Yes Yes Yes No No No No No IUIS Out

D00062 Male 27 Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes IUIS Out

D00073 Female 44 Yes No Yes No Yes No Yes No No Yes No TGTA Out

D00078 Male 54 Yes Yes Yes Yes Yes Yes No Yes No No No CR Out

D00084 Male 30 Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes TGTA, CR Out

D00089 Female 62 Yes No No Yes No Yes No No No No No CR Out

D00090 Male 42 Yes Yes No No No No No No No No No TGTA Out

D00092 Female 39 Yes Yes Yes No No No No No No No No TGTA Out

D00102 Male 28 Yes Yes Yes Yes Yes No No No No No Yes TGTA In

D00104 Male 61 Yes Yes Yes Yes No No No No No No Yes TGTA, CR In

D00117 Female 53 Yes No Yes Yes No No No No No No No TGTA Out

U00001 Female 20 Yes Yes Yes Yes Yes No No Yes Yes No Yes IUIS Out

U00013 Female 22 Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes IUIS Out

U00016 Female 34 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes IUIS Out

U00022 Female 29 Yes Yes Yes Yes Yes No No No No No Yes IUIS Out

U00029 Female 22 Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes IUIS Out

U00032 Female 21 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes IUIS Out

U00039 Male 29 Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes IUIS Out

U00043 Male 33 Yes Yes Yes Yes Yes Yes No Yes No No No IUIS Out

U00057 Male 56 Yes No Yes Yes Yes No No No No No No IUIS Out

U00058 Female 22 Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes IUIS, TGTA,

CR

Out

U00062 Female 22 Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes IUIS Out

U00095 Male 52 Yes No Yes Yes Yes No No No No No Yes TGTA Out

U00098 Male 22 Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes TGTA, CR Out

U00106 Male 19 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes TGTA, CR Out

U00125 Male 23 Yes No Yes Yes Yes Yes No Yes Yes Yes Yes TGTA Out

U00129 Male 22 Yes Yes Yes Yes Yes No No Yes Yes Yes Yes TGTA In

U00140 Male 29 Yes No Yes Yes Yes No No No No Yes No TGTA Out

U00147 Male 23 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes TGTA, CR Out

U00150 Female 19 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes TGTA, CR Out

U00151 Male 23 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes TGTA, CR Out

U00153 Female 21 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes TGTA In

1140 Male 21 Yes NA NA NA NA NA Yes NA NA NA NA CR Out

1249 Male 45 Yes NA NA NA NA NA Yes NA NA NA NA CR Out

1250 Female 47 Yes NA NA NA NA NA Yes NA NA NA NA CR Out

1370 Male 35 Yes NA NA NA NA NA Yes NA NA NA NA CR Out

1372 Female 43 Yes NA NA NA NA NA No NA NA NA NA CR Out

1373 Female 37 Yes NA NA NA NA NA No NA NA NA NA CR Out

1376 Female 37 Yes NA NA NA NA NA Yes NA NA NA NA CR Out

1378 Male 51 Yes NA NA NA NA NA Yes NA NA NA NA CR Out

1379 Female 51 Yes NA NA NA NA NA No NA NA NA NA CR Out

Summary 28 Female/

27 male

19-62 55/55 33/46 42/46 42/46 38/46 21/46 24/55 20/46 19/46 21/46 27/46 16 In/

39 out

CR, PBMCs from 19 P pratense–reactive donors with individual epitopes derived from TGTA or IUIS allergens; NA, skin prick test or RAST data are not available for this allergen

in this patient; No, patient with a negative skin prick test response or RAST result with a specific IgE level of less than 0.35 kU/L in response to the allergen tested; Yes, patient with

a positive skin prick test response or RAST result with a specific IgE level of 0.35 kU/L or greater in response to the allergen tested.
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TABLE E2. Sequencing and assembly statistics

Common name

Sweet vernal

grass

Western

ragweed

Bermuda

grass Ash Rye grass Olive

English

plantain

Kentucky

blue grass Oak

Abbreviation AO AP CD FE LP OE PL PP QA

Reads (millions) 75.4 62.7 66.3 75.6 65.1 73.5 59.0 67.2 63.5

Bases (MB) 7,535 6,271 6,625 7,559 6,511 7,353 5,898 6,717 6,354

Assembled scaffolds 317,874 121,659 112,527 81,401 122,266 74,333 57,102 128,174 54,280

Median scaffold length 544 390 842 722 631 710 696 635 634

Maximum scaffold length 11,515 8,325 14,364 9,838 9,631 8,133 8,090 10,100 14,807
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TABLE E3. Sequences for peptides used in cross-reactivity

studies

IUIS TGTA

P1 5 EEWEPLTKKGNVWEV P9 5 ELRKTYNLLDAVSRH

P2 5 NVWEVKSSKPLVGPF P10 5 AVMLTFDNAGMWNVR

P3 5 KPPFSGMTGCGNTPI P11 5 IGSFFYFPSIGMQRT

P4 5 STWYGKPTGAGPKDN P12 5 QVYPRSWSAVMLTFD

P5 5 GELELQFRRVKCKYP P13 5 AAYLATRGLDVVDAV

P6 5 SGIAFGSMAKKGDEQ P14 5 NFTVGRIIELFTAKG

P7 5 AFKVAATAANAAPAN P15 5 APSGRIVMELYADVV

P8 5 LAKYKANWIEIMRIK P16 5 HYKGSSFHRVIPGFM

P17 5 IIELFTAKGFTVQEM

P18 5 GEVLNALAYDVPIPG

P19 5 NGSQFFLCTAKTAWL

P20 5 VKLRRSSAAQVDGFY

P21 5 VVSRLLIPVPFDPPA

P22 5 GDLYIFESRAICKYA

P23 5 NPMTVFWSKMAQSMT

P24 5 CDASILIDPLSNQSA

P25 5 PRRWLRFCNPELSEI

P26 5 QYAKEIWGITANPVP

P27 5 LVSKLYEVVPGILTE
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