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Abstract

We obtain a trace representation for multidimensional cyclic codes via Delsarte’s theorem. This relates
the weights of the codewords to the number of affine rational points of Artin–Schreier type hypersurfaces
over finite fields. Using Deligne’s and Hasse–Weil–Serre inequalities we get bounds on the minimum dis-
tance. Comparison of the bounds is made and illustrated by examples. Some applications of our results are
given. We obtain a bound on certain character sums over F2 which gives better estimates than Deligne’s in-
equality in some cases. We also improve the minimum distance bounds of Moreno–Kumar on p-ary subfield
subcodes of generalized Reed–Muller codes for some parameters.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let Fq be a finite field of characteristic p with q = pe. Multidimensional cyclic codes are
natural generalizations of usual cyclic codes to many variables. Namely, a q-ary �-D cyclic code
of volume (length) n1 × · · · × n� is an ideal of the quotient ring Fq [x1, . . . , x�]/(xn1

1 − 1, . . . ,

x
n�

� − 1), where n1, . . . , n� are positive integers which are usually assumed to be relatively prime
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to q . Structure and minimum distance bounds for these codes are studied, for example, in [1,
7–10,13–17].

We fix integers � � 1, m � 2 and n1, n2, . . . , n� � 1 such that nt | (qm − 1) for each
1 � t � �. In this paper we obtain a natural trace representation for q-ary �-D cyclic codes of
volume n1 × · · · × n� using a corresponding finite set of multivariate polynomials over Fqm .
This representation leads to consideration of Artin–Schreier type hypersurfaces of the form
yq − y = f (x1, . . . , x�), where f (x1, . . . , x�) ∈ Fqm [x1, . . . , x�]. We obtain a minimum distance
bound using Deligne’s inequality [2, Proposition 3.8]. Under restrictive conditions, we obtain an-
other bound on the minimum distance using Hasse–Weil–Serre inequality [19, Theorem V.3.1].
We compare these bounds and we observe that when both of these apply, the bound from Hasse–
Weil–Serre inequality gives better results. In this way, for q = 2 we also obtain an improvement
of Deligne’s character sum inequality [2, Proposition 3.8] in some cases. Some applications of
our results are also provided. We improve the minimum distance bounds of Moreno–Kumar on
p-ary subfield subcodes of generalized Reed–Muller codes in Example 4.1. We obtain bounds
on the minimum distance of a class of 2-D cyclic codes in Example 4.2, to which the results of
[7] cannot be applied. Using the methods here, an extension of [7, Theorem 6.1] is obtained in
Example 4.3.

The paper is organized as follows. In Section 2 we give the trace representation. Minimum
distance bounds from Deligne’s and Hasse–Weil–Serre inequalities are given in Section 3. The
applications are presented in Section 4.

The following notation will be fixed throughout the paper. Let Ω be the set {0, . . . , n1 − 1} ×
· · · × {0, . . . , n� − 1}. An element (i1, . . . , i�) of Ω is denoted as i. We denote the monomial
x1 · · ·x� as x. Moreover for each i = (i1, . . . , i�) ∈ Ω , the monomial x

i1
1 · · ·xi�

� is denoted as xi

in short. For 1 � t � �, we fix a primitive nt th root of unity ζt ∈ Fqm and denote (ζ1, . . . , ζ�) by

ζ . Similarly, (ζ
i1
1 , . . . , ζ

i�
� ) is denoted by ζ i . The ideal 〈xn1

1 − 1, . . . , x
n�

� − 1〉 of Fq [x1, . . . , x�]
is denoted by a. We let R = Fq [x1, . . . , x�]/a and represent its elements as f (x) + a, where

f (x) =
∑
j∈Ω

ajxj ∈ Fq [x1, . . . , x�].

Evaluation of f (x) at ζ i is denoted by f (ζ i). Note that R can be identified with the space
F

n1×···×n�
q of q-ary n1 × · · · × n� arrays (or vectors of length n1 · · ·n�) via the map

∑
j∈Ω

ajxj + a �→ (aj )j∈Ω. (1.1)

Using this identification, we will represent the codewords of �-D cyclic codes as cosets of poly-
nomials or arrays ((2.4) and Remark 3.2, respectively). For a nonempty subset S of Ω , we set

SpanFq

{
xi : i ∈ S

} =
{∑

i∈S

λix
i : λi ∈ Fq

}
.

The space SpanFqm {xi : i ∈ S} is defined similarly. Finally, we use the symbols trm and Trm to
denote the trace maps from Fqm onto Fq and Fp , respectively.
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2. Trace representation

In this section we give some basic results on q-ary �-D cyclic codes of volume n1 × · · · × n�

and we obtain a trace representation using Delsarte’s theorem [3]. First we define an action of
the cyclic group of order m on Ω . For i ∈ Ω , let qi = (j1, . . . , j�) be the element of Ω given by

jt ≡ qit mod nt for 1 � t � �. (2.1)

A subset of Ω is called closed if it is a union of some orbits of this action. The empty set is also
considered as a closed set. Let U be the collection of all such closed subsets of Ω throughout.
Note that for U ∈ U , the complement Uc = Ω \U and −U = {−i: −i ∈ U} are also closed sets,
where −i = (j1, . . . , j�) such that jt ≡ −it mod nt for 1 � t � �.

Proposition 2.1. There is a one-to-one correspondence between the q-ary �-D cyclic codes of
volume n1 ×· · ·×n� and the elements of U . For an element U ∈ U , the corresponding q-ary �-D
cyclic code CU is

CU = {
f (x) + a ∈ R: f

(
ζ i

) = 0 for each i ∈ U
}
. (2.2)

Conversely for a q-ary �-D cyclic code C of volume n1 × · · · × n�, the corresponding closed set
Z(C) ∈ U is

Z(C) = {
i ∈ Ω: f

(
ζ i

) = 0 for each f (x) + a ∈ C
}
. (2.3)

Proof. See [6, Proposition 2.12]. �
For an �-D cyclic code C, the closed set Z(C) given in (2.3) is called the zero set of C. For

Z(C) 	= ∅, a subset of Z(C) consisting of exactly one representative from each orbit of the action
(2.1) in Z(C) is called a basic zero set (of C or Z(C)) in Ω .

For a q-ary �-D cyclic code C of volume n1 × · · · × n�, the dual

C⊥ =
{ ∑

i∈Ω

bix
i + a ∈ R:

∑
i∈Ω

aibi = 0 for each
∑
i∈Ω

aix
i + a ∈ C

}

is also a q-ary �-D cyclic code of the same volume.

Proposition 2.2. Let U be the zero set of an �-D cyclic code C and C⊥ be the dual code. We
have that dimFq

(C) = |Uc| and Z(C⊥) = −(Uc).

Proof. The proof follows from [6, Theorem 2.17] and [6, Proposition 2.20]. �
Remark 2.3. The results above also hold when m = 1. Note that the action (2.1) is trivial and
any subset of Ω is closed in this case. Hence for any m � 1, there is a one-to-one correspondence
between qm-ary �-D cyclic codes of volume n1 × · · · × n� and all subsets of Ω .
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Note that if U = Ω , then the corresponding �-D cyclic code is the trivial code {0 + a} ⊆ R.
The next theorem gives a natural representation for nontrivial �-D cyclic codes using polynomials
from Fqm [x].

Theorem 2.4. For U ∈ U \ {Ω}, let CU be the corresponding �-D cyclic code over Fq of volume
n1 × · · · × n�. If I is a basic zero set of −(Uc) (or C⊥), then we have

CU =
{ ∑

j∈Ω

trm
(
f

(
ζ j

))
xj + a ∈ R: f (x) ∈ SpanFqm

{
xi : i ∈ I

}}
. (2.4)

This representation of CU is called its trace representation.

Proof. Let am be the ideal 〈xn1
1 − 1, . . . , x

n�

� − 1〉 of Fqm [x1, . . . , x�]. Let Rm = Fqm [x1, . . . ,

x�]/am and D be the qm-ary �-D cyclic code of volume n1 × · · · × n� corresponding to −(Uc).
For i, i′ ∈ Ω , let i · i′ be the element (j1, . . . , j�) of Ω such that jt ≡ it i

′
t mod nt for 1 � t � �.

Using Remark 2.3 and (2.2) we obtain that

D =
{ ∑

j∈Ω

ajxj + am ∈ Rm:
∑
j∈Ω

aj ζ i·j = 0 for each i ∈ −(
Uc

)}
.

Let C be the Fqm -linear code in Rm defined as

C =
{ ∑

j∈Ω

f
(
ζ j

)
xj + am ∈ Rm: f (x) ∈ SpanFqm

{
xi : i ∈ −(

Uc
)}}

.

It follows from the definitions that D ⊆ C⊥. Moreover the Fqm -linear evaluation map from
SpanFqm {xi : i ∈ −(Uc)} onto C sending f (x) to

∑
j∈Ω f (ζ j )xj + am ∈ Rm is one-to-one.

Therefore dimFqm C = |−(Uc)|. Since D is the qm-ary �-D cyclic code corresponding to −(Uc),

we have dimFqm D = |U | (cf. Proposition 2.2) and hence D = C⊥.

Note that the restriction D|Fq
= D ∩ R is equal to C⊥

U . Hence by Delsarte’s theorem ([3] or
[19, VIII.1.2]), we have

CU = trm
(
D⊥) = trm(C),

where trm is defined on the codewords of C by

trm

( ∑
j∈Ω

f
(
ζ j

)
xj + am

)
=

∑
j∈Ω

trm
(
f

(
ζ j

)) + a.

Noting that it is enough to use I rather than −(Uc) in the trace representation (2.4) we complete
the proof. �
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3. Minimum distance bounds and applications

In this section we obtain minimum distance bounds for �-D cyclic codes.
For f (x) ∈ Fqm [x], let N(f ) denote the number of affine rational points of the Artin–Schreier

type hypersurface

yq − y = f (x1, . . . , x�)

in A
�+1(Fqm). We have

N(f ) = qm� +
∑

c∈Fq\{0}

∑
(x1,...,x�)∈F

�
qm

e
2πi

Trm(cf (x1,...,x�))

p (3.1)

(see [18, Lemma 2, p. 52]).

Let Ev : Fqm [x] → F
(qm−1)�

q be the evaluation map sending f (x) to (trm(f (α))), where α

runs through (Fqm \ {0})�. Using Hilbert’s Theorem 90 (cf. [11, Theorem 2.25]) we obtain:

Lemma 3.1. Let f (x) = ∑
i∈I λix

i ∈ Fqm [x], where I is a finite set of �-tuples of nonnegative
integers. Assume that i1, . . . , i� � 1 for each i ∈ I . For the Hamming weight ‖Ev(f )‖ of the

vector Ev(f ) ∈ F
(qm−1)�

q , we have

∥∥Ev(f )
∥∥ = qm� − N(f )

q
.

Except for Example 4.3 we will let n1 = · · · = n� = qm − 1. Moreover we assume that
i1, . . . , i� � 1 for each i ∈ I (cf. Lemma 3.1). Hence, for U ∈ U \ {Ω}, CU will be the q-ary �-D
cyclic code of volume (qm − 1) × · · · × (qm − 1) corresponding to U . If I is a basic zero set of
−(Uc), then the weights of codewords in CU are related to ‖Ev(f )‖ for f ∈ SpanFqm {xi : i ∈ I }
by (2.4).

Remark 3.2. Assume that nt 	= qm − 1 for some 1 � t � �. Let f (x1, . . . , x�) ∈ Fqm [x1, . . . ,

x�] \ {0} be a polynomial with the corresponding codeword

a = (
trm

(
f (1, . . . ,1)

)
, . . . . . . , trm

(
f

(
ζ

n1−1
1 , . . . , ζ

n�−1
�

))) ∈ F
n1×···×n�
q

in some �-D cyclic code of volume n1 × · · · × n� (cf. (1.1) and (2.4)). Let n̄ = qm − 1,
ζ̄1 = · · · = ζ̄� all be a primitive n̄th root of unity and f̄ (x1, . . . , x�) ∈ Fqm [x1, . . . , x�] be the
polynomial

f̄ (x1, . . . , x�) = f
(
x

n̄/n1
1 , . . . , x

n̄/n�

�

)
.

Then the codeword

ā = (
trm

(
f̄ (1, . . . ,1)

)
, . . . . . . , trm

(
f̄

(
ζ̄ n̄−1, . . . , ζ̄ n̄−1))) ∈ F

n̄�

q
1 �
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is the corresponding codeword of f̄ (x1, . . . , x�) in an �-D cyclic code C of volume n̄ × · · · × n̄.
We have the following relation between the Hamming weights of a and ā:

∥∥Ev(f̄ )
∥∥ = ‖ā‖ = ‖a‖

(
n̄

n1

)
. . .

(
n̄

n�

)
.

For i ∈ Ω , the sum i1 + · · · + i� is denoted as |i|. For i 	= 0, let t be the largest integer
such that i1

pt , . . . ,
i�
pt are all integers. We denote t by jp(i) and the �-tuple ( i1

pt , . . . ,
i�
pt ) by

hp(i). We take jp(0) = 0 and hp(0) = 0 by convention. For a polynomial f (x) = ∑
i∈I λix

i ∈
SpanFqm {xi : i ∈ I } and c ∈ Fq \ {0}, let Pf,c(x) be the multivariate polynomial

Pf,c(x) :=
∑
i∈I

(cλi)
p−jp(i)

xhp(i) ∈ Fqm [x]. (3.2)

Our first bound is an application of Theorem 2.4 and Deligne’s inequality [2, Proposition 3.8].

Theorem 3.3. Assume that for each f (x) ∈ SpanFqm {xi : i ∈ I } and c ∈ Fq \ {0} the condition

Pf,c(x) = 0 �⇒ f (x) = 0 (3.3)

holds. Let d = max{|hp(i)|: i ∈ I }. Then the minimum distance of CU satisfies

d(CU) � qm� − qm�−1 −
⌊

(q − 1)(d − 1)(qm)�− 1
2

q

⌋
.

Proof. For f (x) ∈ SpanFqm {xi : i ∈ I }, using (3.1) and (3.2) we have

N(f ) = qm� +
∑

c∈Fq\{0}

∑
x∈F

�
qm

e
2πi

Trm(cf (x))
p = qm� +

∑
c∈Fq\{0}

∑
x∈F

�
qm

e
2πi

Trm(Pf,c(x))

p .

For each c ∈ Fq \ {0}, using (3.3) and Deligne’s inequality we obtain

∣∣∣∣ ∑
x∈F

�
qm

e
2πi

Trm(Pf,c(x))

p

∣∣∣∣ � (d − 1)
(
qm

)�− 1
2 .

As N(f ) is an integer divisible by q , we further have

N(f ) � qm� + q

⌊
(q − 1)(d − 1)(qm)�− 1

2

q

⌋
. (3.4)

The proof follows from Theorem 2.4, Lemma 3.1 and (3.4). �
Remark 3.4. Note that for q = p, the condition (3.3) holds.
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Theorem 3.3 gives a very neat result in a general case. Next, we obtain a minimum distance
bound from Hasse–Weil–Serre inequality. To simplify the statement of the next theorem, we
introduce some further notation. For f (x) ∈ SpanFqm {xi : i ∈ I }, c ∈ Fq \ {0}, a ∈ {1, . . . , �},
and α = (α1, . . . , αa−1, αa+1, . . . , α�) ∈ F

�−1
qm , let f̂a,α(x) = f (α1, . . . , αa−1, x,αa+1, . . . , α�) ∈

Fqm [x] and P̂f,c,a,α(x) ∈ Fqm [x] be the univariate polynomial defined by

P̂f,c,a,α(x) = P
f̂a,α,c

(x). (3.5)

Moreover let df,c,a,α be the degree of the polynomial P̂f,c,a,α(x). We will denote the subset
consisting of α ∈ F

�−1
qm such that P̂f,c,a,α(x) is the zero polynomial for some c ∈ Fq \ {0} by

Mf,a . Finally, for α ∈ F
�−1
qm \ Mf,a we let

d̄f,a,α =
∑

c∈Fq\{0}
(df,c,a,α − 1).

Theorem 3.5. Assume that there exists a nonempty subset A of {1, . . . , �} such that for each
f (x) ∈ SpanFqm {xi : i ∈ I }, a ∈ A, and α ∈ F

�−1
qm , the univariate polynomial

P̂f,c,a,α(x) is either always the zero polynomial or never the zero polynomial (3.6)

as c runs through Fq \ {0}. Then we have

d(CU) � qm� − qm�−1

− min
a∈A

max
f

{
|Mf,a |(q − 1)qm−1 +

∑
α∈F

�−1
qm \Mf,a

⌊
d̄f,a,α�2qm/2�

2q

⌋}
,

where the maximum is over f (x) ∈ SpanFqm {xi : i ∈ I } \ {0}.

Proof. For f (x) ∈ SpanFqm {xi : i ∈ I } \ {0} and a ∈ A, using (3.1) and (3.5) we get

N(f ) = qm� +
∑

α∈Mf,a

∑
c∈Fq\{0}

∑
x∈Fqm

e
2πi

Trm(P̂f,c,a,α (x))

p

+
∑

α∈F
�−1
qm \Mf,a

∑
c∈Fq\{0}

∑
x∈Fqm

e
2πi

Trm(P̂f,c,a,α (x))

p .

Note that

∑
α∈Mf,a

∑
c∈Fq\{0}

∑
x∈F m

e
2πi

Trm(P̂f,c,a,α (x))

p = |Mf,a |(q − 1)qm.
q
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For α ∈ F
�−1
qm \ Mf,a , using [5, Theorem 2.1 and Proposition 1.2], [19, Proposition 3.7.8] and

Hasse–Weil–Serre inequality we obtain

∣∣∣∣ ∑
c∈Fq\{0}

∑
x∈Fqm

e
2πi

Trm(cgα (x))
p

∣∣∣∣ � q

⌊
d̄f,a,α�2qm/2�

2q

⌋
.

Now the proof follows from Theorem 2.4 and Lemma 3.1. �
We note that for q = p, the condition (3.6) holds for any nonempty subset A of {1, . . . , �}. Us-

ing Theorem 3.5 and simple bounds on |Mf,a | and d̄f,a,α , we improve the bound of Theorem 3.3
in general.

Example 3.6. Let � = 2, q = p, m be an even integer, 1 � r � m − 1 and s = r + 1. We use
the notation of Theorem 3.5. Let i1 = (pr ,1), i2 = (pr−1,p), . . . , is = (1,pr). It is clear that
I = {i1, . . . , is} is a basic zero set in Ω = {0,1, . . . , pm − 2} × {0,1, . . . , pm − 2}. For f (x) =
λ1x

i1 + · · · + λsx
is ∈ SpanFpm {xi : i ∈ I } \ {0}, c ∈ Fp \ {0}, a = 1 and α ∈ Fpm we have

P̂f,c,a,α(x) = (
(λ1α)

1
pr + (

λ2α
p
) 1

pr−1 + · · · + (
λsα

pr ))
cx.

Hence Mf,1 is the subset of Fpm consisting of α such that

λ1α + λ
p

2 αp2 + · · · + λ
pr

s αp2r = 0.

Hence |Mf,1| � p2r and if α /∈ Mf,1, then d̄f,1,α = 0. Therefore using Theorem 3.5 we obtain

d(CU) � p2m − p2m−1 − p2r (p − 1)pm−1. (3.7)

Using Theorem 3.3 we would only get

d(CU) � p2m − p2m−1 − (p − 1)pr−1p
3m
2 . (3.8)

Note that (3.8) is nontrivial only if r < m
2 . Moreover if r < m

2 , then

p2r (p − 1)pm−1 < (p − 1)pr−1p
3m
2

and hence (3.7) is better than (3.8). Next we show that the bound of Theorem 3.5 is tight for
r < m

2 . As Fp2 ⊆ Fpm , there exist r elements v1, . . . , vr of Fpm , which are linearly indepen-
dent over Fp2 . Let V be their Fp2 -linear span and h(x) ∈ Fpm [x] be the additive polynomial
h(x) = ∏

v∈V (x − v). Since the set V of the zeroes of h(x) is an Fp2 -linear subspace of Fpm ,

the polynomial h(x) is of the form h(x) = h1x + h2x
p2 + · · · + hrx

p2r
. Hence |Mf,1| = p2r for

some f (x) ∈ SpanFpm {xi : i ∈ I } \ {0} and the bound of Theorem 3.5 is tight in this case.

For q = p = 2, using the methods in the proof of Theorem 3.5, we obtain the following
corollary. It gives better upper bounds than [2, Proposition 3.8] in some cases. We keep the
notation and the assumptions of this section.
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Corollary 3.7. For m � 2 and q = p = 2, we have that

∣∣∣∣ ∑
x∈F

�
2m

(−1)trm(f (x))

∣∣∣∣ � min
a∈{1,...,�} max

f

{
|Mf,a |2m + 2

∑
α∈F

�−1
2m \Mf,a

⌊
d̄f,a,α�2m/2+1�

4

⌋}
,

where the maximum is over f (x) ∈ SpanF2m {xi : i ∈ I } \ {0}.
4. Applications

As a first application we improve the minimum distance bound given in [12, Theorem 8 and
Section 5, Note 1] for p-ary subfield subcodes of generalized Reed–Muller codes for some para-
meters.

Example 4.1. For q = p, � � 2, m � 2 and 0 � d � �(pm − 1), let Rd(�,pm) be the gen-
eralized Reed–Muller code of order d and length p�m over Fpm . It is well known that for
d < �(pm − 1), the dual Rd(�,pm)⊥ of Rd(�,pm) is R�(pm−1)−d−1(�,p

m). Let Bd(�,pm)

be the p-ary subfield subcode of Rd(�,pm). Using Delsarte’s Theorem [3] and Deligne’s in-
equality [2, Proposition 3.8], Moreno and Kumar obtained lower bounds for the minimum
distance d(B�(pm−1)−d−1(�,p

m)⊥) of the dual p-ary code B�(pm−1)−d−1(�,p
m)⊥. Moreover

they showed that for fixed d and large pm, the bound of [12] is considerably better than the
bound of [4], which is obtained by applying the BCH bound. In this example we apply the meth-
ods of Theorem 3.5 in order to find even better bounds. For simplicity we consider only the case
� = 2 and we assume d � 2. Let d̄ be the largest integer coprime to p and less than or equal to d .
We further assume that

pm + p

⌊
(p − 1)(d̄ − 1)�2pm/2�

2p

⌋
� pm+1, (4.1)

which is equivalent to � (p−1)(d̄−1)�2pm/2�
2p

� � pm−pm−1. Let Dd be the maximum of the integers

pm

(
pm + p

⌊
(p − 1)(d̄ − 1)�2pm/2�

2p

⌋)
, (4.2)

and

(
pm − (d − t)p�logp( d−1

t
)�)(pm + p

⌊
(p − 1)(t − 1)�2pm/2�

2p

⌋)

+ pm+1(d − t)p�logp( d−1
t

)� (4.3)

as t runs through the integers coprime to p from 1 to d . We prove that if (4.1) holds, then

d
(
B2(pm−1)−d−1

(
2,pm

)⊥)
� p2m − Dd

p
. (4.4)

The bound in (4.4) is a considerable improvement of [12, Theorem 8 and Section 5, Note 1] for
some parameters. For example when p = 2, m = 5 and d = 2,3,4,5,6, the assumption (4.1)
holds and by (4.4) we obtain
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d
(
B59(2,32)⊥

)
� 496, d

(
B58(2,32)⊥

)
� 352, d

(
B57(2,32)⊥

)
� 341,

d
(
B56(2,32)⊥

)
� 160, d

(
B55(2,32)⊥

)
� 155,

while [12, Theorem 8] would only give

d
(
B59(2,32)⊥

)
� 422, d

(
B58(2,32)⊥

)
� 331, d

(
B57(2,32)⊥

)
� 241,

d
(
B56(2,32)⊥

)
� 150, d

(
B55(2,32)⊥

)
� 60.

Now we prove (4.4). We are interested in the number of affine rational points of Artin–Schreier
hypersurfaces

zp − z = h(x, y)

where h(x, y) is a polynomial in Fpm [x, y] of degree at most d . Using the method of Theo-
rem 3.5, we consider the univariate polynomials f (x) = h(x,α) ∈ Fpm[x] as α runs through Fpm .
These are polynomials of the form

f (x) =
d∑

i=0

fi(α)xi,

where fi(α) = ∑d−i
j=0 fi,jα

j with fi,j ∈ Fpm . Moreover if fi,j = 0 for each 1 � i � d and 0 �
j � d − i, then we assume that (f0,1, . . . , f0,d ) 	= 0, since otherwise the corresponding codeword
of B2(pm−1)−d−1(2,pm)⊥ is either the zero codeword or a codeword of Hamming weight p2m.
Using the operator axrp �→ a1/pxr , it is enough to consider the class of polynomials of the form

g(x) = g0(α) +
∑

1�t�d
gcd(t,p)=1

gt (α)xt ,

where g0(α) = ∑d
j=0 f0,j α

j , and for 1 � t � d with gcd(t,p) = 1,

gt (α) =
�logp( d

t
)�∑

u=0

(
ftpu,0 + ftpu,1α + · · · + ftpu,d−tpuαd−tpu)1/pu

.

For 1 � t � d with gcd(t,p) = 1 we have

⌊
logp

(
d

t

)⌋
=

{ �logp(d−1
t

)� + 1 if logp(d
t
) is an integer,

�logp(d−1
t

)� if logp(d
t
) is not an integer,

and we define δt ∈ Fpm as

δt =
{

(ftpv,0)
1/p if v = logp(d

t
) is an integer,

0 if log ( d ) is not an integer.
p t
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For 1 � t � d with gcd(t,p) = 1, we obtain

gt (α) = δt +
�logp( d−1

t
)�∑

u=0

(
ftpu,0 + ftpu,1α + · · · + ftpu,d−tpuαd−tpu)1/pu

.

Note that

(
gt (α)

)(p
�logp( d−1

t )�
)

is a polynomial in Fpm[α] of degree at most (d − t)p�logp( d−1
t

)�. Hence for 1 � t � d with
gcd(t,p) = 1, either gt (α) = 0 for each α ∈ Fpm or otherwise if there exists α ∈ Fpm such that

gt (α) 	= 0, then the element gt (α) ∈ Fpm is zero for at most (d − t)p�logp( d−1
t

)� distinct α ∈ Fpm .
Consider first the case that for each 1 � t � d with gcd(t,p) = 1, the element gt (α) = 0 for

each α ∈ Fpm . In this case the number of affine rational points of the Artin–Schreier hypersurface
zp − z = h(x, y) is equal to pm times the number of affine rational points of the Artin–Schreier
curve

zp − z = f0(y) (4.5)

in A
2(Fpm). Then the number of affine rational points of the hypersurface (4.5) is bounded from

above by the integer in (4.2).
Next we consider the remaining case and let t be the largest integer with 1 � t � d and

gcd(t,p) = 1 such that there exists α ∈ Fpm with gt (α) 	= 0. In this case the number of affine
rational points of the Artin–Schreier hypersurface zp − z = h(x, y) is the same as the number of
affine rational points of the hypersurface

zp − z = g0(y) +
∑

1�i�t
gcd(i,p)=1

gi(y)xi . (4.6)

As the element gt (y) ∈ Fpm is zero for at most (d − t)p�logp( d−1
t

)� distinct values of y ∈ Fpm , the
number of affine rational points of the hypersurface (4.6) is bounded from above by the integer
in (4.3). Therefore using (4.1), Lemma 3.1 and Theorem 3.5, we complete the proof of (4.4).

In the following application we consider the minimum distance of 2-D cyclic codes whose
dual has 3 basic zeroes for which [7, Proposition 6.5] does not apply.

Example 4.2. For � = 2, m � 2, positive integers i, j � qm − 2 coprime to p, and integers
1 � u < v with ipv � qm − 2, let i1 = (i, j), i2 = (ipu, j) and i3 = (ipv, j). Assume that the
integers j, jq, . . . , jqm−1 are all distinct modulo qm − 1. Then {i1, i2, i3} is a basic zero set in
Ω = {0,1, . . . , qm − 2} × {0,1, . . . , qm − 2}. Let U be the element of U such that {i1, i2, i3} is
a basic zero set of −(Uc). By Theorem 3.3 we have

d(CU) � q2m − q2m−1 −
⌊

(q − 1)(ipv + j − 1)q3m/2 ⌋
. (4.7)
q
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Now we want to apply Theorem 3.5. We assume that

⌊
(q − 1)(max{i, j} − 1)�2qm/2�

2q

⌋
� qm − qm−1. (4.8)

Under the notation of Theorem 3.5, we first consider the case a = 2. Let (λ1, λ2, λ3) ∈ F
3
qm \ {0},

α ∈ Fqm , f (x, y) = λ1x
iyj + λ2x

ipu
yj + λ3x

ipv
yj and f̂2,α(y) = f (α, y) = (λ1α

i + λ2α
ipu +

λ3α
ipv

)yj ∈ Fqm [y]. Note that f̂2,α(y) is identically zero if and only if α ∈ Fqm is a solution of

λ1x
i + λ2x

ipu + λ3x
ipv = 0. (4.9)

Let Sq(i;u,v) be the maximum of the cardinalities of the solution sets in Fqm of Eq. (4.9) as
(λ1, λ2, λ3) runs through F

3
qm \ {0}. Let

D1 = (
qm − Sq(i;u,v)

)(
qm + q

⌊
(q − 1)(j − 1)�2qm/2�

2q

⌋)
+ Sq(i;u,v)qm+1.

Using Theorem 3.5, when (4.8) holds, we obtain

d(CU) � q2m − D1

q
. (4.10)

Next we consider the case a = 1. Let (λ1, λ2, λ3) ∈ F
3
qm \ {0}, α ∈ Fqm and f (x, y) =

λ1x
iyj + λ2x

ipu
yj + λ3x

ipv
yj . For c ∈ Fq \ {0}, let

P̂f,c,1,α(x) = ((
λ1cα

j
) + (

λ2cα
j
)p−u + (

λ3cα
j
)p−v )

xi . (4.11)

If q 	= p, in some cases there exist c1, c2 ∈ Fq \ {0} with P̂f,c1,1,α(x) is identically zero while
P̂f,c2,1,α(x) is not identically zero. Assume that q = p and let Sp(j ;v − u,v) be the maximum
of the cardinalities of the solution sets in Fpm of

λ1x
jpv + λ2x

jpv−u + λ3x
j = 0

as (λ1, λ2, λ3) runs through F
3
pm \ {0}. Let

D2 = (
pm − Sp(j ;v − u,v)

)(
pm + p

⌊
(p − 1)(i − 1)�2pm/2�

2p

⌋)
+ Sp(j ;v − u,v)pm+1.

If q = p and (4.8) holds, then using Theorem 3.5 we obtain

d(CU) � p2m − D

p
, (4.12)

where D = min{D1,D2}.
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It is clear that

Sq(i;u,v) � ipv − i + 1 and Sp(j ;v − u,v) � jpv − j + 1. (4.13)

Let

D∗
1 = (

qm − (
ipv − i + 1

))(
qm + q

⌊
(q − 1)(j − 1)�2qm/2�

2q

⌋)
+ (

ipv − i + 1
)
qm+1,

D∗
2 = (

pm − (
jpv − j + 1

))(
pm + p

⌊
(p − 1)(i − 1)�2pm/2�

2p

⌋)
+ (

jpv − j + 1
)
pm+1.

Using (4.10) and (4.13), when (4.8) holds, we also obtain

d(CU) � q2m − D∗
1

q
. (4.14)

If q = p and (4.8) holds, by (4.12) and (4.13) we further have

d(CU) � p2m − D∗

p
, (4.15)

where D∗ = min{D∗
1 ,D∗

2}. For fixed i, j,p,u and v, if qm is sufficiently large and (4.8) holds,
then the bound (4.14) is better than the bound (4.7). For q = p and fixed i, j,p,u, v, if m is
sufficiently large and (4.8) holds, then

D∗ =
{

D∗
2 if i � j,

D∗
1 if j � i

and the bound (4.15) is better than the bound (4.7). Note that it follows, as explained in Exam-
ple 3.6, that Sq(1;1,2) = Sp(1;1,2) = p2. Therefore the bounds in (4.13) are tight for some
special cases.

The next application generalizes [7, Theorem 6.1]. It also gives an illustration of Remark 3.2.

Example 4.3. For � � 2 and m � 2, let n1, . . . , n�−1 be divisors of qm − 1, n1 � 3 and n� =
qm −1. Let 1 � i1 < i2 � n1 −1, i1 = (i1,1, . . . ,1) and i2 = (i2,1, . . . ,1). It is clear that {i1, i2}
is a basic zero set in Ω = {0,1, . . . , n1 − 1}× · · ·× {0,1, . . . , n�−1 − 1}× {0,1, . . . , qm − 2}. Let
U be the closed subset of Ω such that {i1, i2} is a basic zero set of −(Uc). Let CU be the q-ary
�-D cyclic code of volume n1 · · ·n�−1(q

m − 1) corresponding to U . Let u1 = qm−1
n1

, . . . , u�−1 =
qm−1
n�−1

and

θ = qm − 1

gcd(u1(i2 − i1), qm − 1)
= n1

gcd(i2 − i1, n1)
.

In this example we will show that CU is a 2-weight code consisting of q2m − (qm − 1)θ − 1
codewords of weight
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n1n2 · · ·n�−1
(
qm − qm−1) (4.16)

and (qm − 1)θ codewords of weight

(
n1 − n1

θ

)
n2 · · ·n�−1

(
qm − qm−1). (4.17)

Using Remark 3.2, we consider Artin–Schreier type hypersurfaces of the form

yq − y = f (x) = λ1x
u1i1
1 x

u2
2 · · ·xu�−1

�−1 x� + λ2x
u1i2
1 x

u2
2 · · ·xu�−1

�−1 x�, (4.18)

where λ1, λ2 ∈ Fqm . Let α1, . . . , α�−1 ∈ Fqm \ {0} and consider the univariate polynomial

(
λ1α

u1i1
1 + λ2α

u1i2
1

)
βx ∈ Fqm [x], (4.19)

where β = α
u2
2 · · ·αu�−1

�−1 if � � 3, and β = 1 if � = 2. For α1, β ∈ Fqm \ {0}, the polynomial in
(4.19) is identically zero if and only if

λ1 + α
u1(i2−i1)
1 λ2 = 0. (4.20)

Let S be the subset of (Fqm \ {0})2 consisting of (λ1, λ2) such that there exists α1 ∈ Fqm \ {0}
satisfying (4.20). Then |S| = θ(qm −1). Moreover for (λ1, λ2) ∈ S, the number of α1 ∈ Fqm \ {0}
satisfying (4.20) is qm−1

θ
. Therefore if (λ1, λ2) ∈ S, then for the number N(f ) of affine rational

points of the hypersurface (4.18) we have

N(f ) =
(

qm − 1 − qm − 1

θ

)(
qm − 1

)�−2
qm

+
((

qm − 1
)�−1 −

(
qm − 1 − qm − 1

θ

)(
qm − 1

)�−2
)

qm+1

+ (
qm(�−1) − (

qm − 1
)�−1)

qm+1.

If (λ1, λ2) /∈ S ∪ {(0,0)}, then it is not difficult to observe that

N(f ) = (
qm − 1

)�−1
qm + (

qm(�−1) − (
qm − 1

)�−1)
qm+1.

Hence for the Hamming weight of Ev(f ) ∈ F
(qm−1)�

q , we have that if (λ1, λ2) ∈ S, then

∥∥Ev(f )
∥∥ = qm� − N(f )

q
=

(
qm − 1 − qm − 1

θ

)(
qm − 1

)�−2(
qm − qm−1)

and if (λ1, λ2) /∈ S ∪ {(0,0)}, then

∥∥Ev(f )
∥∥ = (

qm − 1
)�−1(

qm − qm−1).
We obtain (4.16) and (4.17) using Remark 3.2.
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