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Abstract

In this paper, we will see that codes de,ned over p-adic ,elds can be used in the same way as
convolutional codes. We will prove some theoretical results concerning their encoders and show
that, in practice, they can be encoded and decoded e.ciently. c© 2001 Published by Elsevier
Science B.V.
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0. Introduction

Convolutional codes are massively used in practical error-correcting devices. One
reason for this is that algorithms which encode and decode them are e.cient and easy
to implement. The di9erence between block codes and convolutional codes is that, in a
block code, the codeword transmitted at time t depends only on the message at time t
whereas, for a convolutional code, the word transmitted at time t depends on a certain
number of messages emitted during the preceding time indices. More precisely, a block
code is de,ned over a ,nite ,eld F and a convolutional code is de,ned over the ,eld
F((D)) of Laurent series over F. The role of the indeterminate D is to remember the
past messages. The main justi,cation of this paper is that we can do the same thing
with other kinds of indeterminate, i.e. we can de,ne codes similar to convolutional
codes over every complete discrete valuation ring having a ,nite residue ,eld, and
notably over extension of p-adic ,elds. We will call these codes CDVR-codes.

Note that p-adic codes were ,rst used in [10,1], but with a di9erent meaning. Indeed,
the main idea was that, if we have a block code over the ring Zp of p-adic integers
then, for every n, it induces a block code over the ring Z=(pn), and that some properties
of the parent code can be found again in its child. However, in the rest of this paper,
we will only use the term “p-adic code” to mean “CDVR-code over Qp”.

This paper is organized as follows. Section 1 is a small reminder concerning dis-
crete valuation rings whose results are used to give, in Section 2, a de,nition of
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CDVR-codes. In Section 3, we will study more in detail CDVR-codes de,ned over the
,eld Q2 of 2-adic numbers. We will see there that, for a given code, we can choose
some encoders with good properties, and that we can encode and decode e.ciently.
In Section 4 we will brieHy see what happens if we use a rami,ed extension of Q2.
Section 5 is an enumeration of some properties of 2-adic codes.

1. Discrete valuation rings

This section is devoted to a brief study of complete discrete valuation rings whose
residue ,eld is ,nite. The most important result for the rest of this paper is the clas-
si,cation of these rings (Theorem 3).

De�nition 1. An integral domain A is called a discrete valuation ring if it is a principal
ideal domain having a unique maximal ideal.

Let A be a discrete valuation ring. If M is its maximal ideal then the quotient ,eld
F= A=M is called the residue 8eld of A. As M is a principal ideal it has a generator
element, say �, called an uniformizer (or local parameter) of A. Then every element x
in A−{0} can be written as x=�ru where r¿0 and u is a unit in A. The integer r is
called the valuation of x, denoted by vA(x) and is, in fact, the greatest integer n such
that x is an element of Mn. By extension, let vA(0) = +∞. Therefore the application
vA from A to N∪{+∞} is a valuation over A. This valuation is extended over K , the
,eld of fractions of A, in the following way: if x and y are two elements of A; y �= 0,
let vK (x=y) = vA(x) − vA(y) be the valuation of x=y.

Moreover, if a¿ 1 is a real number, the function x �→ |x| de,ned by |0| = 0 and
|x|= a−vK (x) is an absolute value on K . This absolute value induces a distance over K
de,ned by

dK :K × K → R+

(x; y) �→ dK (x; y) = |x − y|:
We recall that if (E; d) is a metric space, then a sequence (an) of elements of E is a
Cauchy sequence if, for all �¿ 0, there exists an integer N�, such that for n¿N� and
m¿N�, d(an; am)¡�.

De�nition 2. A discrete valuation ring A is said complete if every Cauchy sequence
of elements of A converges (for the topology induced by dK) in A.

Let A be a complete discrete valuation ring, M its maximal ideal, F its residue ,eld
and K its ,eld of fractions. Let S be a set of representatives of the cosets of F in A.
Then

A=

{∑
i¿0

xi�i | xi ∈ S
}
;
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M =

{∑
i¿0

xi�i | xi ∈ S
}
;

K =

{∑
i¿d

xi�i | xi ∈ S; d ∈ Z
}
:

The following theorem completely classi,es the complete discrete valuation rings hav-
ing a ,nite residue ,eld.

Theorem 3. Let F be a 8nite 8eld of characteristic p and A a complete discrete
valuation ring having residue 8eld F. Only two cases are possible:
(1) If A has characteristic p then A is isomorphic to the ring F[[T ]] of formal power

series over F. Its 8eld of fractions is isomorphic to the 8eld F((T )) of Laurent
series over F.

(2) If A has characteristic zero then A is isomorphic to an extension of the ring Zp
of p-adic integers. Its 8eld of fractions is isomorphic to an extension of the 8eld
Qp of p-adic numbers.

For a proof of this theorem see, for example, [9] or [8].
For an element x=

∑
i¿r xi�

i of K , the weight of x, denoted by w(x), is the number
of its non-zero coe.cients, that is w(x) = #{i ∈ Z | xi �= 0}.

2. CDVR-codes

Let F be a ,nite ,eld of characteristic p. Let A be a complete discrete valuation
ring (CDVR) whose residue ,eld is F and K its ,eld of fractions. We denote by Af
the subsemiring of A containing the series of A whose general term is ultimately null
(i.e. ,nite weight series).

De�nition 4. An (n; k) CDVR-code over K is a k-dimensional subspace of the vector
space Kn having a basis consisting entirely of vectors from Anf.

If C is an (n; k) CDVR-code over K , an encoder of C is a k × n matrix over K
whose rows form a basis of C. This encoder is said 8nite if its coe.cients are in Af.

Let G be a ,nite encoder for C. Let u be an element of Kk . The codeword corre-
sponding to u in C is the element x = uG in Kn.

According to the classi,cation of ,eld of fractions of complete discrete valuation
rings (Theorem 3), two types of codes are enclosed in De,nition 4. If K has charac-
teristic p, then we ,nd again the classical de,nition of convolutional codes as can be
seen in, for example, [6]. If K has characteristic zero, then this de,nition identi,es a
new class of codes with coe.cients over extensions of p-adic ,elds.
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Although some properties can be obtained directly, without distinguishing between
these two cases (notably a notion of “state space”), we will not talk about that here.
However, in the next section, we focus on 2-adic codes and we will see some basic
properties of their encoders. (Note that the choice of 2-adic was driven by practical
constraints and that theoretical results can be generalized to p-adic codes in a straight-
forward way.)

3. 2-adic codes

De�nition 5. A 2-adic code with parameters (n; k) is a CDVR-code over Q2, that is a
k-dimensional subspace of Qn

2, having a basis consisting entirely of vectors from Nn.

Note that, in the context of 2-adic codes, an encoder is said to be ,nite if all its
components are elements of N.

Clearly, a given 2-adic code C possess an in,nite number of encoders. Some of
them have good properties and others are to be eliminated absolutely. We will see this
in the next subsection.

3.1. Finite encoders

In this section, we denote the set {x=2t | x ∈ N; t¿0} by N̂ and the set {x=2t | x ∈
Z; t¿0} by Ẑ. Let C be an (n; k) 2-adic code.

In the encoding process, we try to avoid the case where the image of a ,nite weight
word is an in,nite weight word as, in this case, a ,nite number of errors during the
transmission can cause an in,nite number of errors after the decoding stage. Only the
elements of N̂ have a ,nite weight and there exists two kinds of in,nite weight words
in Q2, the elements of Ẑ−N̂ and the elements of Q2−Ẑ. (Note that negative elements
of Z have an in,nite weight as −1 =

∑
i¿0 2i.) Conditions on the encoders can be

given to eliminate these two types of series (Theorem 6 and De,nition 7, respectively).
Moreover, De,nition 13 gives an even stronger property insuring that, for every word,
there is no any time delay between encoding and e9ective transmission.

Theorem 6. Let G be a 8nite encoder for C. The following three conditions are
equivalent:
(1) If x = uG is an element of N̂n

then u is necessarily in Ẑk ;
(2) The gcd of the kth-order minors (determinants of k × k sub-matrices) of G is a

power of 2;
(3) G has a right inverse with coe;cients in Ẑ.
An encoder satisfying these conditions is said to be weakly non-catastrophic.

Proof. We will prove successively (1) ⇒ (2) ⇒ (3) ⇒ (1).
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(1) ⇒ (2): We will, in fact, prove that if the gcd of the kth-order minors of G is

not a power of 2, then there exists an element u not belonging to Ẑk such that x= uG
is an element of N̂n

.
Let p be an odd prime dividing the gcd of the kth-order minors of G. Let G̃ be the

reduction of G modulo p. As every kth-order minor of G is null modulo p, the rank
of G̃ is strictly less than k. So there exists a non-null vector Ũ such that Ũ G̃ = 0.
Let U be the canonical injection of Ũ in N. Therefore, every coe.cient of the vector
UG is a multiple of p. As at least one coe.cient of U is not divisible by p, then

the vector u= 1=pU is not a vector of Ẑk . Moreover, by construction of u, the vector
x = uG has all its coe.cients in N̂.

(2) ⇒ (3): For != 1; : : : ; ( nk ), denote by G! the k × k sub-matrices of G and by "!
the corresponding minors. For != 1; : : : ; ( nk ), let K! be the adjoint matrix of G!, such
that G!K! = "!Ik . Inserting n− k null rows in an appropriate way in K!, we obtain a
matrix K ′! such that GK ′! = "!Ik , and this for all !.

As the gcd of the "! is of the form 2l, for some l¿0, then there exists some integers
h! such that

∑
! h!"! = 2l. Let

K ′ =
∑
!

h!K ′!:

Then every coe.cient of K ′ belongs to Z and

GK ′ =
∑
!

h!GK ′!

=
∑
!

h!"!Ik

=

(∑
!

h!"!

)
Ik

= 2lIk :

Therefore, the matrix K = 2−lK ′ is a right inverse of G having its coe.cients in Ẑ.
(3) ⇒ (1): Let H be a right inverse of G in Ẑ. Suppose that x = uG is an element

of N̂n
. Then we have u = xH and, as x has its coe.cients over N̂ and H has its

coe.cients over Ẑ, u is an element of Ẑk .

De�nition 7. Let G be a weakly non-catastrophic encoder. G is said to be (strongly)
non-catastrophic if, when x=uG is an element of N̂n

, then necessarily u is an element

of N̂k
.

De�nition 8. Let G be a k×n encoder and 16i6k. We say that G has an information
position for i if there exists an index 16j6n such that, gi; j �= 0 and, for all l �=
i; gl; j = 0.
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De�nition 9. A k×n encoder G is said to be quasi-monomial if it has an information
position for every i = 1; : : : ; k. In other words, G is a quasi-monomial encoder if and
only if there exists a diagonal k×k matrix A, a k× (n−k) matrix B and a permutation
matrix P of rank n such that

G = (A |B)P:

Theorem 10. A weakly non-catastrophic encoder is strongly non-catastrophic if and
only if it is quasi-monomial.

For the proof of this theorem, we need the following two lemmas.

Lemma 11. Let x and y be two vectors in N̂n
. There exists a non-negative integer

+ such that +x − y¿0 if and only if; for all i = 1; : : : ; n; xi = 0 implies yi = 0.

Proof of Lemma 11
• Let us show that if xi = 0 implies yi = 0, for all i, then there exists an integer +

such that +x−y¿0. Let 16i6n. Suppose that xi is a non-zero element of N̂. Then
there exists an integer s such that 2sxi and 2syi are non-negative integers. According
to Euclidean division in Z, there exists a ∈ N and b ∈ N such that 2syi = a2sxi + b,
with 06b¡ 2sxi. Let +i = a+ 1. Then +ixi¿yi.
If xi is zero, then by hypothesis, yi is also zero and +i = 0.
Let += maxi +i. Then +x − y¿0.

• Let us suppose that there exists an integer + such that +x− y¿0. Clearly if xi = 0,
for some i, then necessarily yi = 0.

Lemma 12. Let G be a 8nite encoder. If G is not quasi-monomial; then there exists
16i6k such that; for all 16j6n; we have∑

16l6k
l�=i

gl; j = 0 ⇒ gi; j = 0:

Proof of Lemma 12. Suppose that for all i = 1; : : : ; k, there exists 16j6n such that∑
l�=i gl; j = 0 and gi; j �= 0.

Let 16i6k, and j satisfy the preceding condition. As gl; j is an element of N̂ for
all l = 1; : : : ; n,

∑
l�=i gl; j = 0 is equivalent to gl; j = 0, for all l �= i. As gi; j �= 0, this

proves that G has an information position for i.
As this is true for all i, G is quasi-monomial.

Proof of Theorem 10
• Let us suppose that G is quasi-monomial and weakly non-catastrophic. There exists

a diagonal matrix A= diag(a1; : : : ; ak), with ai ∈ N for 16i6k, a k× (n−k) matrix
B, and a permutation matrix P of rank n such that G = (A |B)P. We can suppose,
without loss of generality, that P = In.
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As G is weakly non-catastrophic, according to Theorem 6, if x = uG is an element

of N̂n
, then u is an element of Ẑk . But we have xi=aiui, for i=1; : : : ; k with xi ∈ N̂

and ai ∈ N. So necessarily ui is an element of N̂, for all i.
• Let us suppose that G is not quasi-monomial. Then, according to Lemma 12, there

exists an index 16i6k such that for all j = 1; : : : ; n∑
16l6k
l�=i

gl; j = 0 ⇒ gi; j = 0:

So, using Lemma 11, there exists an integer + such that

+
∑

16l6k
l�=i

g(l) − g(i)¿0;

where g(l) is the lth row of G.
Let u= (ul)16l6k be de,ned by

ul =
{−1 if l= i;
+ otherwise:

Then x = uG is an element of N̂n
and u is not an element of N̂k

.
So G is not strongly non-catastrophic.

De�nition 13. A strongly non-catastrophic encoder G is said to be basic if, when
x = uG is an element of Nn, then necessarily u is an element of Nk .

De�nition 14. Given a k × n matrix M over K , we denote the gcd of its ith-order
minors by .i, for i = 1; : : : ; k, and, by convention, .0 = 1. Then, for i = 1; : : : ; k, the
ith invariant factor of G is the element of K de,ned by /i = .i=.i−1.

Theorem 15. Let G be a basic encoder. The following properties are satis8ed:
(1) The invariant factors of G are all 1; i.e. /i = 1 for all i:
(2) The gcd of the kth-order minors of G is 1; i.e. .k = 1:
(3) G has a right inverse with coe;cients in Z:
(4) G is a sub-matrix of an n× n matrix invertible in Z.

Proof
Basic ⇒ (2): As G is strongly non-catastrophic the gcd of its kth-order minors is

a power of 2 (Theorem 6), say 2l for some l¿0. Suppose that l¿ 0. Let G̃ be the
reduction of G modulo 2. As l¿ 0 the rank of G̃ is strictly less than k. Then there
exists a non-null vector Ũ such that Ũ G̃ is null in GF(2). Let U be the canonical
injection of Ũ in N. Then every coe.cient of the vector UG is a multiple of 2. Hence
the vector u = 1

2U has at least one coe.cient which is not in N and yet the vector
x = uG is in Nn. So G is not basic.
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(2) ⇔ (1): The product of the invariant factors of G is given by

/1/2 · · · /k =
.1

.0

.2

.1
· · · .k

.k−1

=
.k
.0

=.k:

As every coe.cient of G is in N, the .i are non-negative integers, and as the rank
of G is at least 1, they are, in fact, positive. Moreover, by construction, .i−1 divides
.i for all i¿1, so the /i are also non-negative integers. Hence the /i are all 1 if and
only if .k is equal to 1.

(2) ⇒ (3): Denote by G! the k × k sub-matrices of G and by "! the corresponding
minors, for != 1; : : : ;

( n
k

)
. Let, for != 1; : : : ;

( n
k

)
, K! be the adjoint matrix of G!, such

that G!K! ="!Ik . Inserting appropriately n− k null rows in K!, we obtain a matrix K ′!
such that GK ′! = "!Ik , for all !.

As the gcd of the "! is 1, there exists some integers h! such that
∑

! h!"! = 1. Let

K =
∑
!

h!K ′!:

Then K has its coe.cients in Z and

GK =
∑
!

h!GK ′!

=
∑
!

h!"!Ik

=

(∑
!

h!"!

)
Ik

= Ik :

(1) ⇔ (4): Denote by 0 the k × n matrix of the invariant factors of G (i.e. 0 =
diag(/1; : : : ; /k)). Then there exists a k × k invertible matrix X and a n× n invertible
matrix Y , having their coe.cients in Z, such that

XGY = 0:

As every invariant factor is 1, we have

G = A(Ik 0k;n−k)B;

where A= X−1 and B= Y−1. If

B=
(
B1

B2

)
;

where B1 is a k × n matrix and B2 is a (n− k) × n matrix, then G = AB1. But, since
A is invertible, the matrix(

AB1

B2

)
is also invertible and with coe.cients in Z.
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Fig. 1. Binary adder with carry.

Fig. 2. Encoding circuit for the 2-adic encoder G = (3; 7).

Conversely, if

B=
(
G
H

)

is invertible in Z, then the equation G= Ik (Ik 0n−k)B shows that the invariant factors
are all equal to 1.

3.2. Physical realization

As for convolutional codes, it is possible to draw a blueprint for an actual physical
device directly from a ,nite encoder of a given 2-adic code. In fact, as far as encoding
circuits are concerned, the only di9erence between convolutional codes and 2-adic codes
is the structure of binary adders. Adders for convolutional codes are simply XOR gates
while adders for 2-adic codes are constituted by a three-entry modulo 2 adder with
carry and a memory register which re-inject the carry at the next time index as shown
in Fig. 1. In this ,gure s= (a+ b+ r) mod 2 and r′ = �(a+ b+ r)=2�. The encoding
circuit for the 2-adic code generated by G = (3; 7) is given in the example shown in
Fig. 2.

Thus, to a given encoder correspond a unique encoding circuit and vice versa. The
generic circuit of (2; 1) codes is given in Fig. 3 (where a symbol inside a circle denotes
a multiplicative gate). The parameters of this circuit are the following:
• m is a non-negative integer (constraint length of the code),
• for i = 1; : : : ; m, ai is an element of GF(2) (feedback branch of the code),
• d1; e1 and, for i = 1; : : : ; m, c1

i are elements of GF(2) (forward branch for the ,rst
symbol) and
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Fig. 3. Encoding circuit of a (2,1) code.

• d2, e2 and, for i=1; : : : ; m, c2
i are elements of GF(2) (forward branch for the second

symbol).
Let

t = −1 +
m∑
i=1

ai2i ;

rs =
m∑
i=1

csi2
i with s= 1 or 2:

Then the circuit presented in Fig. 3 is the encoding circuit of the encoder

G =
(
e1t − d1 − r1

t
e2t − d2 − r2

t

)
:

(Note that G is a ,nite encoder if and only if a1 = · · · = am = 0, that is if there is no
feedback branch.)

This construction can be easily extended to (n; 1) codes by adding more forward
branches. Moreover, a (n; k) code, is, in fact, the superposition of k 1-dimensional
circuits whose output vectors are added componentwise (with carry).

3.3. Transducers and trellis structure

De�nition 16. Let V be any ,nite set, A and B two monoids (whose neutral elements
are both denoted by 0). Let E be a subset of V × V × A× B and r an element of V .
The triple T = (V; E; r) is an (A; B)- transducer if
(1) For all v in V ,⊎

(v;v′ ;a;b)∈E
{a} = A:

(2) (r; r; 0; 0) is an element of E.

Note that a transducer has a structure of labeled directed graph. An example of a
(GF(2);GF(2)2)-transducer is given in Fig. 4.
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Fig. 4. Re,ned transducer for the 2-adic encoder G = (3; 5).

De�nition 17. Let T=(V; E; r) be an (A; B)-transducer. The output function associated
with T is the function fT de,ned by

fT :AN → BN;

(a0; a1; : : :) �→ (b0; b1; : : :)

such that there exists v1 in V such that (r; v1; a0; b0) ∈ E and, for all i¿1, there exists
vi+1 ∈ V such that (vi; vi+1; ai; bi) ∈ E.

In De,nition 16, property (1) insures that fT is well de,ned over AN and prop-
erty (2) insures that if fT (a0; a1; : : :)=(b0; b1; : : :), then fT (0; a0; a1; : : :)=(0; b0; b1; : : :).
Moreover, there exists a natural set isomorphism between any complete discrete val-
uation ring with residue ,eld A and the set AN. Hence we will use the notation
fT (
∑

i¿0 ai�
i) to denote fT (a0; a1; : : :).

Theorem 18. Let G be a 8nite encoder of an (n; k) 2-adic code C. Then there exists
a (GF(2)k ;GF(2)n)-transducer T (associated to G) such that; for all u in Qk

2;

uG = fT (u):

Proof. We have seen in the preceding section that we can associate an encoding cir-
cuit to every ,nite encoder. This circuit is made of memory register and adders with
carry. So the current state of the whole circuit is completely determined if we know
the respective states of all the memory registers (including those inside the adders).
Moreover for every state of the circuit and every input vector, we can compute the
state in which the circuit will be during the next time index. In this way, we con-
struct a transducer whose vertices are the possible states of the encoding circuit and
in which two vertices are connected by an edge if and only if there exists an input
vector transforming a vertex in the other.

As this transducer is just another formalization of the encoding circuit, it veri,es the
required property.
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In order to simplify the notations in the rest of this section, given a non-negative
integer x, we will denote the quotient (resp. remainder) of x by 2 by x← (resp. x◦).
(And we will apply them componentwise on vectors.)

Example 19. Let G=(3; 7). The encoding circuit associated with G is given in Fig. 2.
There are 2 memory registers and 3 adders with carry, so a state of the circuit is given
by ,ve binary digits (r1; r2; c1; c2; c3). If u ∈ GF(2) is encoded then the next state will be
(u; r1; c′1; c

′
2; c
′
3) with c′1=(u+r1+c1)←; c′2=(u+r1+c2)←; c′3=((u+r1+c2)◦+r2+c3)←.

The corresponding output is the vector ((u+ r1 + c1)◦; (u+ r1 + c2 + r2 + c3)◦). In this
way, we construct a (GF(2);GF(2)2)-transducer with 32 vertices and 64 edges whose
initial state is (0; 0; 0; 0; 0).

We can already see that this construction produces transducers which are far from
being optimal. In the preceding example, we note that c1 and c2 must be equal. In
fact, some states are never reached from the initial state (among others, the states
with c1 �= c2). Some other states can be merged together because they have the same
predecessors, successors and input=output values.

Theorem 20. Let g be a positive integer. There exists a (GF(2);GF(2))-transducer T
with g states such that ug= fT (u); for all u ∈ Z2.

Proof. Let g be a positive integer and u =
∑

i¿0 ui2
i an element of Z2. Let (si)i∈N

and (xi)i∈N be two sequences de,ned by

si+1 = (si + uig)←

xi = (si + uig)
◦ for i¿0;

with s0 = 0. Then

x0 = (u0g)
◦

= (ug)
◦
;

x1 = ((u0g)← + u1g)
◦

= ((ug)←)
◦
;

x2 = (((u0g)← + u1g)← + u2g)
◦

= (((ug)←)←)
◦
;

...

As, for all y ∈ N, y = y◦ + 2(y←)◦ + 4((y←)←)◦ + · · ·, then∑
i¿0

xi2i = ug:

So, let V={0; 1; : : : ; g−1} and E={(s; s←; 0; s◦) | s ∈ V}∪{(s; (s+g)←; 1; (s+g)◦) | s ∈
V}. Then T = (V; E; 0) is a (GF(2);GF(2))-transducer such that, for all u ∈ Z2,

ug= fT (u):

Using the preceding theorem, we can construct a transducer for every vector G =
(g1; : : : ; gn) of positive integers. Let V =

∏n
i=1{0; 1; : : : ; gi − 1} and E = {(s; (s +
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uG)←; u; (s+ uG)◦) | s ∈ V; u ∈ {0; 1}}. The transducer (V; E; 0) is called the product
transducer of G. Once again this transducer is too big, in the sense that some vertices
cannot be reached from the initial state. So let V? be the subset of V containing only
vertices which are successors of the 0 state and E? = {(s; s′; i; o) ∈ E | s ∈ V?}. The
transducer (V?; E?; 0) is called the re8ned transducer of G. Clearly the number of
vertices of the product transducer is

∏n
i=1 gi, but the numbers of vertices of the re,ned

transducer is much less than this product. We have the following result.

Proposition 21. Let G = (g1; : : : ; gn) be a vector of n positive integers. Let T =
(V?; E?; 0) be the re8ned trellis of G. Then

|V?|6
(

n∑
i=1

gi

)
− n+ 1: (1)

Proof. Let (V; E; 0) be the product transducer of G. For an element s= (s1; : : : ; sn) of
V we say that s is admissible if

for all 16i¡ j6n; −gi ¡ sjgi − sigj ¡gj: (2)

Denote the set of admissible elements by A. We will show that V? is a subset of A

and that the number of elements of A veri,es (1).
• Let s be an admissible element of V and 16i¡ j6n. Then

−gi ¡ (2s←j + s
◦
j )gi − (2s←i + s

◦
i )gj ¡gj:

This is equivalent to

−gi − s◦j gi + s
◦
i gj ¡ 2s←j gi − 2s←i gj ¡gj + s

◦
i gj − s◦j gi:

As −2gi6− gi − s◦j gi + s◦i gj and gj + s◦i gj − s◦j gi62gi (s◦i and s◦j are 0 or 1), then
−gi ¡ s←j gi − s←i gj ¡gj:Moreover, as s is admissible, we have

−gi ¡ (sj + gj)gi − (si + gi)gj ¡gj:

Using the same decomposition as above, we have

−gi ¡ (sj + gj)←gi − (si + gi)←gj ¡gj:

Hence if s is admissible then s← and (s+G)← are also admissible. So, as 0 clearly
veri,es (2), every element of V? is admissible.
• Let s be an admissible element of V and e= (e1; : : : ; en) be a non-zero vector of Zn

such that
∑n

i=1 ei = 0. Then there exists an index i such that ei ¿ 0 and an index
j such that ej ¡ 0. Let’s suppose that −gi ¡ (sj + ej)gi − (si + ei)gj ¡gj. This is
equivalent to

−gi − ejgi + eigj ¡ sjgi − sigj ¡gj + eigj − ejgi:
As s veri,es (2), we have

−gi6− gi − ejgi + eigj;

gj + eigj − ejgi6gj:
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Hence eigj − ejgi = 0 which, as ei ¿ 0 and ej ¡ 0, is impossible. So s + e is not
admissible. In other words, given an positive integer t there exists at most one vector
of V? whose coordinates sum to t. So,

|V?|61 +
n∑
i=1

(gi − 1):

Note that bound (1) can still be re,ned. For example, in the case n = 2, let G =
(g1; g2), with g1 and g2 being two positive integers. Denote the gcd of g1 and g2

by d. We can see that, for u = 1; : : : ; d, there is not any element (s1; s2) in A with
s1 + s2 = u(g1 + g2)=d− 1. So, in this case |V?|6g1 + g2 − d. This can be generalized
in the case n¿ 2 as

|V?|6
n∑
t=1

(−1)t+1


n−t+1∑

i1=1

n−t+2∑
i2=i1+1

· · ·
n∑

it=it−1+1

gcd(gi1 ; : : : ; git )


 :

(With the natural convention gcd(x) = x for every x.)
Moreover, we conjecture that this bound is exact, that is:

Conjecture 22. Let G = (g1; : : : ; gn) be a vector of n positive integers. Let T =
(V?; E?; r) be the re8ned trellis of G. Then

|V?| =
n∑
t=1

(−1)t+1


n−t+1∑

i1=1

n−t+2∑
i2=i1+1

· · ·
n∑

it=it−1+1

gcd(gi1 ; : : : ; git )


 :

Moreover; if the gi’s are pairwise coprime; then

|V?| =
n∑
i=1

gi − n+ 1:

Note 1. Since the original redaction of this paper, I proved this conjecture. In fact, a
transducer is, among other things, a Markov chain having an unique ergodic class, so
we can study its stationary probability distribution vector. Using this vector, we can
show that an element of V belongs to V? if and only if it is admissible. The result
then follows.

Example 23. Fig. 4 shows as an example the re,ned transducer for the 2-adic code
generated by G = (3; 5). In this ,gure an arrow denotes a state transition, it is plain
if the input is 0 and dashed if the input is 1 and its label is the corresponding output
vector. The set of vertices is a subset of {0; : : : ; 2} × {0; : : : ; 4} with 7 elements.

For a given code, the existence of a transducer implies the existence of a trellis
describing this code for any length. So, in order to decode this code, we can use any
trellis-oriented algorithm, for example the Viterbi algorithm.
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Fig. 5. Adder with carry in Q2[X ]=(X 2 − 2).

4. Codes over extensions of the 2-adic �eld

Consider the polynomial P(X ) = X e − 2 in Q2[X ], for e¿2. Let 8 be a root of
P(X ) and L=Q2(8). As 2=8 e; 2 is nomore prime in L, and so is not an uniformizer.
However, 8 is such an uniformizer. Hence L = {∑i¿r xi8

i | r ∈ Z; xi ∈ GF(2)}. We
say that L=Q2 is a totally rami,ed extension of degree e. (More generally, this is true
as soon as P(X ) = X e + ae−1X e−1 + · · · + a1X + a0 is an Eisenstein polynomial, i.e.
2 | ai, for 06i¡ e and 4 A a0.)

Note that we can also write L = Q2 + 8Q2 + · · · + 8 e−1Q2 but, in this case, the
sequence is e-interleaved. So, if P(X ) =X e−2 then the carry computed at time t is in
fact added at time t + e. This means that an adder for L contains e memory registers
(see Fig. 5 in the case e = 2).

Moreover, the techniques used for computing the transducer in Section 3.3 can still be
used for e¿ 1, with, for x in L, x← (resp. x◦) denoting the quotient (resp. remainder)
of x by 8.

5. Some remarks about 2-adic codes

We give here some remarks about 2-adic codes concerning their di9erence against
convolutional codes.
• Non GF(2)-linearity. Due to the change of characteristic between GF(2) and Q2, a

2-adic code is linear over Q2 but not over GF(2). So we cannot represent a 2-adic
encoder as a semi-in,nite matrix with coe.cients over GF(2) (as it can be done for
convolutional codes).

• Distance properties. The lack of GF(2)-linearity of 2-adic codes implies, among
other things, that the Hamming distance is not directly induced by the Hamming
weight (i.e. dH (x; y) �= wH (x − y), for some x and y). Clearly, a notion of weight
enumerator can be de,ned (directly or on the trellis structure) but its usefulness
is not evident. So we must give a notion of distance enumerator by iterating over
every pair of codewords. This is mathematically possible but obviously impossible
to compute in practice. Worse, although a crude approximation may be possible to
compute, it is likely unuseful.
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• Performances. For the moment, we made a very small number of simulations, in
fact, just enough to validate the encoding and decoding algorithms. It seems that
the performance of a 2-adic code is very close to that of a convolutional code with
the same parameters. Note that we just compared convolutional codes which are
known to be optimal with 2-adic codes chosen more or less at random (but with
comparable decoding complexity). Nevertheless, for a 2-adic code, the sequence of
carries depends on the message (more precisely, on the distribution of the 1’s in the
message) and is transmitted as part of the codeword. This suggest a better decoding
power.

6. Conclusion

We have seen in this paper that we can de,ne codes over p-adic ,elds and that they
can be used in the same way as convolutional codes. They can be encoded and decoded
easily, using already known techniques. Moreover, these codes can, a priori, be used
everywhere the convolutional codes are used (alone or, for example, as constituents of
turbo-codes).

Nevertheless, a great amount of work is still to be done, notably to give a mathe-
matical notion of what is a “good” 2-adic code. It also seems that codes de,ned over
a rami,ed extension of a p-adic ,eld may be of particular interest (the carry sequence
is then more or less interleaved between the symbols).
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