Essential point spectra of operator matrices through local spectral theory

S.V. Djordjević a, *, H. Zguitti b

a Facultad de Ciencias Físico-Matemáticas, BUAP, Apdo. Postal 1152, Puebla, Pue. CP. 72000, Mexico
b Département de Mathématiques et Informatique, Faculté des Sciences de Rabat, BP 1014, Rabat, Morocco

Received 27 November 2006
Available online 23 May 2007
Submitted by R. Curto

Abstract

For \(A \in B(X) \), \(B \in B(Y) \) and \(C \in B(Y, X) \), let \(M_C \) be the operator defined on \(X \oplus Y \) by \(\begin{bmatrix} A & C \\ 0 & B \end{bmatrix} \). In this paper, we study defect set \((\Sigma(A) \cup \Sigma(B)) \setminus \Sigma(M_C)\), where \(\Sigma \) is the Browder spectrum, the essential approximate point spectrum and Browder essential approximate point spectrum. We then give application for Weyl’s and Browder’s theorems.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Operator matrices; Browder’s theorem; Weyl’s theorem

1. Introduction

Throughout this paper, \(X \) and \(Y \) are Banach spaces and \(B(X, Y) \) denotes the space of all bounded linear operators from \(X \) to \(Y \). We set \(B(X) \) to denote \(B(X, X) \). For \(T \in B(X) \), let \(T^* \), \(N(T) \), \(R(T) \), \(\sigma(T) \), \(\sigma_p(T) \) and \(\sigma_a(T) \) denote respectively the adjoint, the null space, the range, the spectrum, the point spectrum and the approximate point spectrum of \(T \). Let \(n(T) \) and \(d(T) \) be the nullity and the deficiency of \(T \) defined by

\[
n(T) = \dim N(T) \quad \text{and} \quad d(T) = \text{codim} R(T).
\]

If the range \(R(T) \) of \(T \) is closed and \(n(T) < \infty \) (respectively \(d(T) < \infty \)), then \(T \) is called an upper semi-Fredholm (respectively a lower semi-Fredholm) operator. If \(T \in \mathcal{L}(X) \) is either upper or lower semi-Fredholm, then \(T \) is called a semi-Fredholm operator, and the index of \(T \) is defined by \(\text{ind}(T) = n(T) - d(T) \). If both \(n(T) \) and \(d(T) \) are finite, then \(T \) is a Fredholm operator. An operator \(T \) is called Weyl if it is Fredholm of index zero. The ascent, notated by \(\text{asc}(T) \), and the descent, notated by \(\text{dsc}(T) \), of \(T \) are given by

\[
\text{asc}(T) = \inf \{ n : N(T^n) = N(T^{n+1}) \}, \quad \text{dsc}(T) = \inf \{ n : R(T^n) = R(T^{n+1}) \};
\]

if no such \(n \) exists, then \(\text{asc}(T) = \infty \), respectively \(\text{dsc}(T) = \infty \). For \(T \in B(X) \) we say that \(\lambda \notin \mathcal{F}(T) \) if \(\text{asc}(T - \lambda) = \text{dsc}(T - \lambda) < \infty \).

* Corresponding author.
E-mail addresses: slavdj@fcfm.buap.mx (S.V. Djordjević), zguitti@hotmail.com (H. Zguitti).
A bounded linear operator T is called \textit{Browder} if it is Fredholm of finite ascent and descent. The essential spectrum $\sigma_e(T)$, Weyl spectrum $\sigma_w(T)$, and Browder spectrum $\sigma_b(T)$ of T are defined by

\[
\sigma_e(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm} \},
\]
\[
\sigma_w(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl} \},
\]
\[
\sigma_b(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Browder} \}.
\]

Evidently
\[
\sigma_e(T) \subseteq \sigma_w(T) \subseteq \sigma_b(T) = \sigma_e(T) \cup \text{acc } \sigma(T),
\]

where for a subset $K \subseteq \mathbb{C}$, we write acc K (respectively iso K) for accumulation (respectively isolated) points of K.

We say that \textit{Weyl’s theorem} holds for T if
\[
\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T);
\]
where $\pi_{00}(T)$ is the set of isolated point of $\sigma(T)$ which are eigenvalues of finite multiplicity, and that \textit{Browder’s theorem} holds for $T \in \mathcal{L}(X)$ if
\[
\sigma_w(T) = \sigma_b(T).
\]

Denote
\[
\Phi_l(X) = \{ T \in B(X) : R(T) \text{ is closed and complemented subspace of } X \text{ and } n(T) < \infty \}
\]
and
\[
\Phi_r(X) = \{ T \in B(X) : N(T) \text{ is complemented subspace of } X \text{ and } d(T) < \infty \}
\]
the set of left and right Fredholm operators, respectively. It is well known that
\[
\Phi(X) = \Phi_l \cap \Phi_r(X).
\]

Also, let
\[
SF_+(X) = \{ T \in B(X) : R(T) \text{ is closed and } n(T) < \infty \},
\]
and let $SF_+(X)$ be the class of all $T \in SF_+(X)$ with ind $T \leq 0$. The \textit{essential approximate point spectrum} $\sigma_{ea}(T)$ and the \textit{Browder essential approximate point spectrum} $\sigma_{ab}(T)$ are defined by

\[
\sigma_{ea}(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not in } SF_+(X) \},
\]
\[
\sigma_{ab}(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not in } SF_+(X) \text{ or has infinite ascent} \}.
\]

It is known that
\[
\sigma_{ea}(T) = \bigcap \{ \sigma_a(T + K) : K \in \mathcal{K}(X) \},
\]
\[
\sigma_{ab}(T) = \bigcap \{ \sigma_a(T + K) : TK = KT \text{ and } K \in \mathcal{K}(X) \};
\]

where $\mathcal{K}(X)$ is the ideal of compact operators on X (see [11]). We say that \textit{a-Weyl’s theorem} holds for T if
\[
\sigma_a(T) \setminus \sigma_{ea}(T) = \pi_{00}^a(T);
\]
where $\pi_{00}^a(T)$ is the set of isolated points of $\sigma_a(T)$ which are eigenvalues of finite multiplicity, and that \textit{a-Browder’s theorem} holds for T if
\[
\sigma_{ea}(T) = \sigma_{ab}(T).
\]

In [6,12], it is shown that for any $T \in \mathcal{B}(X)$ we have the implications:

- Weyl’s theorem
- a-Weyl’s theorem
- Browder’s theorem
- a-Browder’s theorem
We say that T has the single valued extension property (SVEP) at $\lambda \in \mathbb{C}$ if for every open neighborhood U of λ, the only solution of the equation $(T - \mu)f(\mu) = 0$ that is analytic on U is the constant function $f \equiv 0$. Let $S(T)$ be the set of all λ on which T does not satisfy the SVEP.

For $A \in \mathcal{B}(X)$, $B \in \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$ we denote by M_C the operator defined on $X \oplus Y$ by

$$M_C = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix}.$$

Numerous mathematicians were interested by the following equality

$$\Sigma(M_C) = \Sigma(A) \cup \Sigma(B), \quad \text{for every } C \in \mathcal{B}(Y, X)$$

where $\Sigma \in \{\sigma, \sigma_e, \sigma_w, \ldots\}$. See for instance [3,7,9,13] and the references therein. In this paper we describe the defect set $(\Sigma(A) \cup \Sigma(B)) \setminus \Sigma(M_C)$ for $\Sigma \in \{\sigma_b, \sigma_{ea}, \sigma_{ab}\}$ and we give an application for Weyl’s theorem of M_C.

2. Browder spectrum

Lemma 2.1. Let $A \in \mathcal{B}(X)$, $B \in \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$ an arbitrary operators. If A has infinite ascent, then M_C has infinite ascent, and B has infinite descent, then M_C has infinite descent too.

Proof. Let A has infinite ascent. Then for every $n \in \mathbb{N}$ exists $x_n \in X$ such that $x_n \in N(A^{n+1}) \setminus N(A^n)$. Then $x_n \oplus 0 \in N(M_C^{n+1}) \setminus N(M_C^n)$.

Suppose the contrary, that B has infinite descent and $\text{dsc}(M_C) = n < \infty$. Since $\text{dsc}(B)$ is infinite, there exists a $y \in R(B^n) \setminus R(B^{n+1})$, i.e. there exists $z \in Y$ such that $y = B^n(z)$ and $y \neq B^{n+1}(t)$ for all $t \in Y$. Let, for example, $v = 0 \oplus z$ and

$$M_C^n(v) = \tilde{x} \oplus B^n(z) \in R(M_C^n) = R(M_C^{n+1}).$$

There exists a $v_0 = x_0 \oplus z_0 \in X \oplus Y$ such that

$$\tilde{x} \oplus B^n(z) \left(= M_C^n(v) \right) = M_C^{n+1}(v_0) = \tilde{x}_0 \oplus B^{n+1}(z_0).$$

Hence,

$$B^{n+1}(z_0) = B^n(z) = y \in R(B^{n+1})$$

and the contradiction proofs the lemma. \(\Box\)

Lemma 2.2. Let $A \in \mathcal{B}(X)$, $B \in \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$ an arbitrary operators. If $\lambda \in (\sigma_b(A) \cup \sigma_b(B)) \setminus \sigma_b(M_C)$, then $\lambda \in \sigma_b(A) \cap \sigma_b(B)$.

Proof. Let $\lambda \notin \sigma_b(M_C)$, then $M_C - \lambda$ is a Fredholm operator of index zero and $\text{asc}(M_C - \lambda) = \text{dsc}(M_C - \lambda) < \infty$.

Suppose that $\lambda \notin \sigma_b(A)$. Since $A - \lambda$ is a Fredholm operator of index zero, together with $M_C - \lambda$ is a Fredholm operator of index zero, follows that $\text{ind}(B - \lambda) = 0$. From $\text{dsc}(M_C - \lambda) < \infty$, by Lemma 2.1, follows that $\text{dsc}(B - \lambda) < \infty$ and by [1, Theorem 3.4(iv)] we have that $\text{asc}(B - \lambda) = \text{dsc}(B - \lambda) < \infty$. Hence, $\lambda \notin \sigma_b(B)$.

Similarly, if we suppose that $\lambda \notin \sigma_b(B)$ we consequently have that $\text{ind}(A - \lambda) = 0$. Now by [1, Theorem 3.4(iv)], how it is $\text{asc}(A - \lambda) < \infty$, we have that $\text{asc}(A - \lambda) = \text{dsc}(A - \lambda) < \infty$ and $\lambda \notin \sigma_b(A)$. \(\Box\)

Theorem 2.3. Let $A \in \mathcal{B}(X)$, $B \in \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$ an arbitrary operators, then

$$(\sigma_b(A) \cup \sigma_b(B)) \setminus \sigma_b(M_C) \subset (\sigma_b(A) \cap \sigma_b(B)) \cup (\sigma_w(A) \cap \sigma_w(B)).$$

Proof. Let $\lambda \in (\sigma_b(A) \cup \sigma_b(B)) \setminus \sigma_b(M_C)$. Then we have $\lambda \in (\sigma_b(A) \cap \sigma_b(B))$ (by Lemma 2.2), $\text{ind}(M_C - \lambda) = 0$ and $\text{asc}(M_C - \lambda) = \text{dsc}(M_C - \lambda) < \infty$. By Lemma 2.1 we have that $\text{asc}(A - \lambda) < \infty$ and $\text{dsc}(B - \lambda) < \infty$, and from [1, Theorem 3.8] follows that $\lambda \notin (\sigma_{w}(A) \cap \sigma_{w}(B))$. Also, $A - \lambda$ is upper semi-Fredholm and $B - \lambda$ is lower semi-Fredholm (see [8, Theorem 3.2]).

Suppose that $\lambda \notin (\sigma_{w}(A) \cap \sigma_{w}(B))$. Then $\lambda \notin (\sigma_{w}(A) \cap \sigma_{w}(B)) \cup (\sigma_{w}(A) \cap \sigma_{w}(B)) \cup (\sigma_{w}(A) \cap \sigma_{w}(B))$ and by [13, Theorem 3.3] follows that $\lambda \notin (\sigma_{w}(A) \cup \sigma_{w}(B))$. Hence, $\lambda \notin \sigma_{w}(A) \cup \sigma_{w}(B)$, i.e. $\text{asc}(A - \lambda) \neq \text{dsc}(A - \lambda)$.
or \(\text{asc}(A - \lambda) = \text{dsc}(A - \lambda) = \infty \), and, \(\text{asc}(B - \lambda) \neq \text{dsc}(B - \lambda) \) or \(\text{asc}(B - \lambda) = \text{dsc}(B - \lambda) = \infty \). Hence, in any case, \(\lambda \in (\mathcal{F}(A^* \cap \mathcal{F}(B)) \).

Now suppose that \(\lambda \notin (\mathcal{F}(A^*) \cap \mathcal{F}(B)) \). If \(\lambda \notin \mathcal{F}(A^*) \), then \(\text{asc}(A - \lambda) = \text{dsc}(A - \lambda) < \infty \). The operator \(A - \lambda \) is upper semi-Fredholm with finite ascend and descent, i.e. \(\lambda \notin \sigma_b(A) \). Contradiction.

Similarly, if we suppose that \(\lambda \notin \mathcal{F}(B) \), follows that \(\lambda \notin \sigma_b(B) \). \(\square \)

Remark 2.4. In general, condition \((\sigma_a(A) \cup \sigma_b(B)) \setminus \sigma_b(MC) \subset (\mathcal{S}(A^*) \cap \mathcal{S}(B)) \cup (\mathcal{F}(A^*) \cap \mathcal{F}(B))\) in Theorem 2.3 can be weaker, but if we give this version by connection with works in [13]. Matter in fact, for Fredholm operator \(T \) with zero index (Weyl operator) we have that \(0 \in \mathcal{S}(T) \) implies \(0 \notin \mathcal{F}(T) \). Really, if \(T \) has no SVEP at 0 and index zero, by [1, Theorems 3.4 and 3.8] follows that \(\text{asc}(T) \neq \text{dsc}(T) \) or \(\text{asc}(T) = \text{dsc}(T) = \infty \), i.e. \(0 \notin \mathcal{F}(T) \). Hence, we have
\[
(\sigma_a(A) \cup \sigma_b(B)) \setminus \sigma_b(MC) \subset (\mathcal{F}(A^*) \cap \mathcal{F}(B)).
\]

Corollary 2.5. Let \(A \in \mathcal{B}(X) \), \(B \in \mathcal{B}(Y) \), then for every \(C \in \mathcal{B}(Y, X) \) holds \(\sigma_b(MC) \subset (\mathcal{F}(A^*) \cap \mathcal{F}(B)) = \sigma_b(A) \cup \sigma_b(B) \). \(\square \)

Corollary 2.6. Let \(A \in \mathcal{B}(X) \), \(B \in \mathcal{B}(Y) \) and \(C \in \mathcal{B}(Y, X) \) an arbitrary operators. If \((\mathcal{F}(A^*) \cap \mathcal{F}(B)) = \emptyset \), then for every \(C \in \mathcal{B}(Y, X) \) holds \(\sigma_b(MC) = \sigma_b(A) \cup \sigma_b(B) \).

3. Essential approximate point spectra

Lemma 3.1. Let \(A \in \mathcal{B}(X) \), \(B \in \mathcal{B}(Y) \) and \(C \in \mathcal{B}(Y, X) \) an arbitrary operators. Then
\[
\sigma_{ea}(MC) \subseteq \sigma_{ea}(A) \cup \sigma_{ea}(B).
\]

Proof. Let \(\lambda \notin (\sigma_{ea}(A) \cup \sigma_{ea}(B)) \), then it follows from equality (1) that there exists \(K_1 \in \mathcal{K}(X) \) and \(K_2 \in \mathcal{K}(Y) \) such that \(\lambda \notin (\sigma_a(A + K_1) \cup \sigma_a(B + K_2)) \). Let \(K = K_1 \oplus K_2 \), then \(K \in \mathcal{K}(X \oplus Y) \). Since \(\sigma_a(MC) \subseteq \sigma_a(A) \cup \sigma_a(B) \) (see [8, Proposition 5.1 and proof of Proposition 3.1]) then \(\lambda \notin \sigma_a(MC + K) \). Thus \(\lambda \notin \sigma_{ea}(MC) \). \(\square \)

For the sake of completes we will give next lemma that is version of Theorem 2.1 of [4] for the case of Banach spaces \(X \) and \(Y \).

Lemma 3.2. Let \(A \in \mathcal{B}(X) \), \(B \in \mathcal{B}(Y) \) and \(C \in \mathcal{B}(Y, X) \) an arbitrary operators. If \(MC \) is upper semi-Fredholm with \(\text{ind}(MC) \leq 0 \), then \(A \) is upper semi-Fredholm and
\[
\begin{align*}
n(B) < \infty \text{ and } \text{ind}(A) + \text{ind}(B) & \leq 0, \text{ or } \\
n(B) = d(A) & = \infty.
\end{align*}
\]

Proof. Let \(MC \in SF_+(X \oplus Y) \). Then
\[
MC = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & B \end{bmatrix} \begin{bmatrix} I & C \\ 0 & I \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix}
\]
and by [2, Corollary 1.3.4] follows that \(\begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \in SF_+(X \oplus Y) \). Now by [5, Lemma 2.1] we have that \(A \) is a semi-Fredholm operator and, since, for every \(x \in N(A) \), \(x \oplus 0 \in N(MC) \), follows that \(n(A) \leq n(MC) < \infty \). Hence, \(A \) is upper semi-Fredholm and [5, Lemma 2.1] implies that \(B \) is a semi-Fredholm operator.

If we suppose that \(n(B) < \infty \), then we have
\[
\text{ind}(A) + \text{ind}(B) = \text{ind}(MC) \leq 0.
\]
Now, let \(n(B) = \infty \) and let \(\{y_n\} \) be a sequence of linearly independent vectors of \(N(B) \). Since \(n(MC) < \infty \), we can suppose, without lost of generality, that \(C(y_n) \neq 0 \) and, also, \(C(y_n) \notin R(A) \), for all positive integer \(n \). Really, if \(C(y_n) = 0 \), then \(0 \oplus y_n \in N(MC) \). Also, if \(C(y_n) (= Ax_n) \in R(A) \), then \(-x_n \oplus y_n \in N(MC) \).
Suppose that \(d(A) = n < \infty \) and let \(C_y_1, \ldots, C_y_n \) are linearly independent vectors modulo \(R(A) \). Then, for every \(m > n \), exists scalars \(\alpha^m_1, \ldots, \alpha^m_m \) and \(x_m \in X \) such that
\[
\alpha^m_1 C_y_1 + \cdots + \alpha^m_m C_y_m + C_y_m = Ax_m.
\]

Now the vectors \(-x_m \oplus (\alpha^m_1 C_y_1 + \cdots + \alpha^m_m C_y_n + y_m)\) are linearly independent vectors in \(N(M_C) \) that implies \(n(M_C) = \infty \). The contradiction shows \(d(A) = \infty \). \(\square \)

Theorem 3.3. Let \(A \in B(X), B \in B(Y) \) and \(C \in B(Y, X) \) an arbitrary operators. Then
\[
(\sigma_{ea}(A) \cup \sigma_{ea}(B)) \setminus \sigma_{ea}(M_C) \subseteq (S(A) \cap S(B^*)) \cup S(A^*).
\]

Proof. Let \(\lambda \in (\sigma_{ea}(A) \cup \sigma_{ea}(B)) \setminus \sigma_{ea}(M_C) \), then \(M_C - \lambda \) is an upper semi-Fredholm operator with \(\text{ind}(M_C - \lambda) \leq 0 \). If \(\text{ind}(M_C - \lambda) = 0 \), then it follows from [13] that \(\lambda \in (S(A) \cap S(B^*)) \cup (S(A^*) \cap S(B)) \). Now assume that \(\text{ind}(M_C - \lambda) < 0 \).

Case 1. \(\lambda \in \sigma_{ea}(A) \). Since \(A \) is upper semi-Fredholm (Lemma 3.2), then \(\text{ind}(A - \lambda) > 0 \) hence it follows from [1, Corollary 3.19(i)] that \(\lambda \in S(A) \). If \(R(B - \lambda) \) is closed then we deduce from Lemma 3.2 that \(B - \lambda \) is upper semi-Fredholm and \(\text{ind}(B - \lambda) < 0 \), so [1, Corollary 3.19(ii)] \(\lambda \in S(B^*) \), or \(n(B) = d(A) = \infty \) which is impossible. Therefore \(\lambda \in S(A) \cap S(B^*) \).

Case 2. \(\lambda \in \sigma_{ea}(B) \). Then \(B - \lambda \) is not upper semi-Fredholm or \(\text{ind}(B - \lambda) > 0 \). Assume that \(B - \lambda \) is not upper semi-Fredholm. If \(R(B - \lambda) \) is closed, then \(n(B - \lambda) = \infty \) hence (Lemma 3.2) \(n(B - \lambda) = d(A - \lambda) = \infty \). Since \(A - \lambda \) is upper semi-Fredholm then \(\text{ind}(A - \lambda) < 0 \). Thus \(\lambda \in S(A^*) \) (see [1]). Hence \(\lambda \in S(A^*) \).

Now if \(B - \lambda \) is upper semi-Fredholm with \(\text{ind}(B - \lambda) > 0 \), then by Lemma 3.2, \(\text{ind}(A - \lambda) < 0 \). Thus \(\lambda \in S(A^*) \). \(\square \)

Corollary 3.4. If \(A \) and \(A^* \), or \(A \) and \(B^* \) have the SVEP, then
\[
\sigma_{ea}(M_C) = \sigma_{ea}(A) \cup \sigma_{ea}(B),
\]
for every \(C \in B(Y, X) \).

Theorem 3.5. Let \(A \in B(X), B \in B(Y) \) and \(C \in B(Y, X) \) an arbitrary operators. Then
\[
(\sigma_{ab}(A) \cup \sigma_{ab}(B)) \setminus \sigma_{ab}(M_C) \subseteq S(A^*) \cap F(B).
\]

Proof. Let \(\lambda \in (\sigma_{ab}(A) \cup \sigma_{ab}(B)) \setminus \sigma_{ab}(M_C) \), then \(M_C - \lambda \) is an upper semi-Fredholm of finite ascent. Hence by Lemmas 2.1 and 3.2, \(A - \lambda \) is an upper semi-Fredholm operator of finite ascent. Then \(\lambda \notin \sigma_{ab}(A) \) and, consequently, by [1, Corollary 3.19] we have \(\lambda \notin S(A^*) \).

Hence, we have \(\lambda \in \sigma_{ab}(B) \). If \(B - \lambda \) is not upper semi-Fredholm, then from Lemma 3.2 we have \(d(A - \lambda) = \infty \). Then \(\text{ind}(A - \lambda) < 0 \) thus \(\lambda \in S(A^*) \).

Now if \(B - \lambda \) is upper semi-Fredholm, then \(B - \lambda \) is not of finite ascent when \(\lambda \in F(B) \). Therefore \(\lambda \in S(A^*) \cap F(B) \). \(\square \)

Corollary 3.6. If \(S(A^*) \cap F(B) = \emptyset \), then
\[
\sigma_{ab}(M_C) = \sigma_{ab}(A) \cup \sigma_{ab}(B),
\]
for every \(C \in B(Y, X) \).

4. Applications

Proposition 4.1. If \((S(A) \cap S(B^*)) \cup S(A^*) = \emptyset \), then

(a) Browder’s theorem holds for \(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \) \(\Rightarrow \) Browder’s theorem holds for \(\begin{bmatrix} A \\ 0 & C \end{bmatrix} \).

(b) a-Browder’s theorem holds for \(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \) \(\Rightarrow \) a-Browder’s theorem holds for \(\begin{bmatrix} A \\ 0 & C \end{bmatrix} \).
Theorem 4.2. Assume that \((S(A) \cap S(B^*)) \cup S(A^*) = \emptyset\). If \(A\) is isoloid and obeys Weyl’s theorem, then Weyl’s theorem holds for \([\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}]\) for every \(C \in \mathcal{B}(Y,X)\).

Proof. It follows from Proposition 4.1 that \(\sigma(MC) \setminus \sigma_w(MC) = \sigma(MC) \setminus \sigma_b(MC) \subseteq \pi_{00}(MC)\). Let \(\lambda \in \pi_{00}(MC)\), since \(\sigma(MC) = \sigma(A) \cup \sigma(B)\). Then \(\lambda \in \text{iso}(\sigma(A) \cup \sigma(B))\). Now the remaining part of the proof is same as the proof of [10, Theorem 2.4]. □

The condition \(A\) is isoloid is crucial in Theorem 4.2 as showing by the following example:

Example 4.3. Let \(A, B\) and \(C\) on \(l_2\) defined by:

\[
A(x_1, x_2, x_3, \ldots) = \left(0, x_1, 0, \frac{1}{2}x_2, 0, \frac{1}{3}x_3, \ldots, \right),
\]

\[
B(x_1, x_2, x_3, \ldots) = (0, x_2, 0, x_4, 0, x_6, \ldots),
\]

\[
C(x_1, x_2, x_3, \ldots) = (0, 0, x_2, 0, x_3, 0, x_4, \ldots).
\]

Then \(\sigma(A) = \sigma_w(A) = \{0\}, \pi_{00}(A) = \emptyset\) and \(\sigma(B) = \sigma_w(B) = \{0, 1\}, \pi_{00}(B) = \emptyset\). Since \(A, A^*, B\) and \(B^*\) satisfy the SVEP then it follows from [7,9,13] that

\[
\sigma\left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}\right) = \sigma\left(\begin{bmatrix} A & C \\ 0 & B \end{bmatrix}\right) = \sigma_w\left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}\right) = \sigma_w\left(\begin{bmatrix} A & C \\ 0 & B \end{bmatrix}\right) = \{0, 1\},
\]

and \(\pi_{00}\left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}\right) = \emptyset \neq \{0\} = \pi_{00}\left(\begin{bmatrix} A & C \\ 0 & B \end{bmatrix}\right)\). Thus \(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}\) satisfies Weyl’s theorem but fails for \(\begin{bmatrix} A & C \\ 0 & B \end{bmatrix}\). Here \(A\) is not isoloid.

The condition that \(A\) satisfies Weyl’s theorem is also essential. To see this let

\[
A(x_1, x_2, x_3, \ldots) = \left(0, 0, 0, \frac{1}{2}x_2, 0, \frac{1}{3}x_3, 0, \ldots, \right),
\]

\[
B(x_1, x_2, x_3, \ldots) = (0, x_2, 0, x_4, 0, x_6, \ldots),
\]

\[
C(x_1, x_2, x_3, \ldots) = (x_1, 0, x_2, 0, x_3, 0, x_4, \ldots).
\]

Then \((S(A) \cap S(B^*)) \cup S(A^*) = \emptyset\) and \(\sigma(A) = \sigma_w(A) = \{0\} = \pi_{00}(A)\) and \(\sigma(B) = \sigma_w(B) = \{0, 1\}, \pi_{00}(B) = \emptyset\). So \(A\) does not satisfy Weyl’s theorem but is isoloid. Since

\[
\sigma\left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}\right) = \sigma\left(\begin{bmatrix} A & C \\ 0 & B \end{bmatrix}\right) = \sigma_w\left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}\right) = \sigma_w\left(\begin{bmatrix} A & C \\ 0 & B \end{bmatrix}\right) = \{0, 1\},
\]

and \(\pi_{00}\left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}\right) = \emptyset \neq \{0\} = \pi_{00}\left(\begin{bmatrix} A & C \\ 0 & B \end{bmatrix}\right)\). Thus \(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}\) satisfies Weyl’s theorem but fails for \(\begin{bmatrix} A & C \\ 0 & B \end{bmatrix}\).

Acknowledgments

The authors are indebted to the referee for several helpful remarks. The second author acknowledges the Abdus Salam International Centre for Theoretical Physics for the support he found during his visit and where a part of this paper was done.
References